1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drm_vma_manager.h>
29 #include <drm/i915_drm.h>
30 #include <linux/dma-fence-array.h>
31 #include <linux/kthread.h>
32 #include <linux/dma-resv.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/slab.h>
35 #include <linux/stop_machine.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39 #include <linux/mman.h>
40
41 #include "display/intel_display.h"
42 #include "display/intel_frontbuffer.h"
43
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_pm.h"
48 #include "gem/i915_gemfs.h"
49 #include "gt/intel_engine_user.h"
50 #include "gt/intel_gt.h"
51 #include "gt/intel_gt_pm.h"
52 #include "gt/intel_mocs.h"
53 #include "gt/intel_reset.h"
54 #include "gt/intel_renderstate.h"
55 #include "gt/intel_workarounds.h"
56
57 #include "i915_drv.h"
58 #include "i915_scatterlist.h"
59 #include "i915_trace.h"
60 #include "i915_vgpu.h"
61
62 #include "intel_pm.h"
63
64 static int
insert_mappable_node(struct i915_ggtt * ggtt,struct drm_mm_node * node,u32 size)65 insert_mappable_node(struct i915_ggtt *ggtt,
66 struct drm_mm_node *node, u32 size)
67 {
68 memset(node, 0, sizeof(*node));
69 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70 size, 0, I915_COLOR_UNEVICTABLE,
71 0, ggtt->mappable_end,
72 DRM_MM_INSERT_LOW);
73 }
74
75 static void
remove_mappable_node(struct drm_mm_node * node)76 remove_mappable_node(struct drm_mm_node *node)
77 {
78 drm_mm_remove_node(node);
79 }
80
81 int
i915_gem_get_aperture_ioctl(struct drm_device * dev,void * data,struct drm_file * file)82 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
83 struct drm_file *file)
84 {
85 struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
86 struct drm_i915_gem_get_aperture *args = data;
87 struct i915_vma *vma;
88 u64 pinned;
89
90 mutex_lock(&ggtt->vm.mutex);
91
92 pinned = ggtt->vm.reserved;
93 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
94 if (i915_vma_is_pinned(vma))
95 pinned += vma->node.size;
96
97 mutex_unlock(&ggtt->vm.mutex);
98
99 args->aper_size = ggtt->vm.total;
100 args->aper_available_size = args->aper_size - pinned;
101
102 return 0;
103 }
104
i915_gem_object_unbind(struct drm_i915_gem_object * obj,unsigned long flags)105 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
106 unsigned long flags)
107 {
108 struct i915_vma *vma;
109 LIST_HEAD(still_in_list);
110 int ret = 0;
111
112 lockdep_assert_held(&obj->base.dev->struct_mutex);
113
114 spin_lock(&obj->vma.lock);
115 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
116 struct i915_vma,
117 obj_link))) {
118 list_move_tail(&vma->obj_link, &still_in_list);
119 spin_unlock(&obj->vma.lock);
120
121 ret = -EBUSY;
122 if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
123 !i915_vma_is_active(vma))
124 ret = i915_vma_unbind(vma);
125
126 spin_lock(&obj->vma.lock);
127 }
128 list_splice(&still_in_list, &obj->vma.list);
129 spin_unlock(&obj->vma.lock);
130
131 return ret;
132 }
133
134 static int
i915_gem_phys_pwrite(struct drm_i915_gem_object * obj,struct drm_i915_gem_pwrite * args,struct drm_file * file)135 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
136 struct drm_i915_gem_pwrite *args,
137 struct drm_file *file)
138 {
139 void *vaddr = obj->phys_handle->vaddr + args->offset;
140 char __user *user_data = u64_to_user_ptr(args->data_ptr);
141
142 /*
143 * We manually control the domain here and pretend that it
144 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
145 */
146 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
147
148 if (copy_from_user(vaddr, user_data, args->size))
149 return -EFAULT;
150
151 drm_clflush_virt_range(vaddr, args->size);
152 intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
153
154 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
155 return 0;
156 }
157
158 static int
i915_gem_create(struct drm_file * file,struct drm_i915_private * dev_priv,u64 * size_p,u32 * handle_p)159 i915_gem_create(struct drm_file *file,
160 struct drm_i915_private *dev_priv,
161 u64 *size_p,
162 u32 *handle_p)
163 {
164 struct drm_i915_gem_object *obj;
165 u32 handle;
166 u64 size;
167 int ret;
168
169 size = round_up(*size_p, PAGE_SIZE);
170 if (size == 0)
171 return -EINVAL;
172
173 /* Allocate the new object */
174 obj = i915_gem_object_create_shmem(dev_priv, size);
175 if (IS_ERR(obj))
176 return PTR_ERR(obj);
177
178 ret = drm_gem_handle_create(file, &obj->base, &handle);
179 /* drop reference from allocate - handle holds it now */
180 i915_gem_object_put(obj);
181 if (ret)
182 return ret;
183
184 *handle_p = handle;
185 *size_p = size;
186 return 0;
187 }
188
189 int
i915_gem_dumb_create(struct drm_file * file,struct drm_device * dev,struct drm_mode_create_dumb * args)190 i915_gem_dumb_create(struct drm_file *file,
191 struct drm_device *dev,
192 struct drm_mode_create_dumb *args)
193 {
194 int cpp = DIV_ROUND_UP(args->bpp, 8);
195 u32 format;
196
197 switch (cpp) {
198 case 1:
199 format = DRM_FORMAT_C8;
200 break;
201 case 2:
202 format = DRM_FORMAT_RGB565;
203 break;
204 case 4:
205 format = DRM_FORMAT_XRGB8888;
206 break;
207 default:
208 return -EINVAL;
209 }
210
211 /* have to work out size/pitch and return them */
212 args->pitch = ALIGN(args->width * cpp, 64);
213
214 /* align stride to page size so that we can remap */
215 if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
216 DRM_FORMAT_MOD_LINEAR))
217 args->pitch = ALIGN(args->pitch, 4096);
218
219 args->size = args->pitch * args->height;
220 return i915_gem_create(file, to_i915(dev),
221 &args->size, &args->handle);
222 }
223
224 /**
225 * Creates a new mm object and returns a handle to it.
226 * @dev: drm device pointer
227 * @data: ioctl data blob
228 * @file: drm file pointer
229 */
230 int
i915_gem_create_ioctl(struct drm_device * dev,void * data,struct drm_file * file)231 i915_gem_create_ioctl(struct drm_device *dev, void *data,
232 struct drm_file *file)
233 {
234 struct drm_i915_private *dev_priv = to_i915(dev);
235 struct drm_i915_gem_create *args = data;
236
237 i915_gem_flush_free_objects(dev_priv);
238
239 return i915_gem_create(file, dev_priv,
240 &args->size, &args->handle);
241 }
242
243 static int
shmem_pread(struct page * page,int offset,int len,char __user * user_data,bool needs_clflush)244 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
245 bool needs_clflush)
246 {
247 char *vaddr;
248 int ret;
249
250 vaddr = kmap(page);
251
252 if (needs_clflush)
253 drm_clflush_virt_range(vaddr + offset, len);
254
255 ret = __copy_to_user(user_data, vaddr + offset, len);
256
257 kunmap(page);
258
259 return ret ? -EFAULT : 0;
260 }
261
262 static int
i915_gem_shmem_pread(struct drm_i915_gem_object * obj,struct drm_i915_gem_pread * args)263 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
264 struct drm_i915_gem_pread *args)
265 {
266 unsigned int needs_clflush;
267 unsigned int idx, offset;
268 struct dma_fence *fence;
269 char __user *user_data;
270 u64 remain;
271 int ret;
272
273 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
274 if (ret)
275 return ret;
276
277 fence = i915_gem_object_lock_fence(obj);
278 i915_gem_object_finish_access(obj);
279 if (!fence)
280 return -ENOMEM;
281
282 remain = args->size;
283 user_data = u64_to_user_ptr(args->data_ptr);
284 offset = offset_in_page(args->offset);
285 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
286 struct page *page = i915_gem_object_get_page(obj, idx);
287 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
288
289 ret = shmem_pread(page, offset, length, user_data,
290 needs_clflush);
291 if (ret)
292 break;
293
294 remain -= length;
295 user_data += length;
296 offset = 0;
297 }
298
299 i915_gem_object_unlock_fence(obj, fence);
300 return ret;
301 }
302
303 static inline bool
gtt_user_read(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)304 gtt_user_read(struct io_mapping *mapping,
305 loff_t base, int offset,
306 char __user *user_data, int length)
307 {
308 void __iomem *vaddr;
309 unsigned long unwritten;
310
311 /* We can use the cpu mem copy function because this is X86. */
312 vaddr = io_mapping_map_atomic_wc(mapping, base);
313 unwritten = __copy_to_user_inatomic(user_data,
314 (void __force *)vaddr + offset,
315 length);
316 io_mapping_unmap_atomic(vaddr);
317 if (unwritten) {
318 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
319 unwritten = copy_to_user(user_data,
320 (void __force *)vaddr + offset,
321 length);
322 io_mapping_unmap(vaddr);
323 }
324 return unwritten;
325 }
326
327 static int
i915_gem_gtt_pread(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pread * args)328 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
329 const struct drm_i915_gem_pread *args)
330 {
331 struct drm_i915_private *i915 = to_i915(obj->base.dev);
332 struct i915_ggtt *ggtt = &i915->ggtt;
333 intel_wakeref_t wakeref;
334 struct drm_mm_node node;
335 struct dma_fence *fence;
336 void __user *user_data;
337 struct i915_vma *vma;
338 u64 remain, offset;
339 int ret;
340
341 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
342 if (ret)
343 return ret;
344
345 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
346 vma = ERR_PTR(-ENODEV);
347 if (!i915_gem_object_is_tiled(obj))
348 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
349 PIN_MAPPABLE |
350 PIN_NONBLOCK /* NOWARN */ |
351 PIN_NOEVICT);
352 if (!IS_ERR(vma)) {
353 node.start = i915_ggtt_offset(vma);
354 node.allocated = false;
355 } else {
356 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
357 if (ret)
358 goto out_unlock;
359 GEM_BUG_ON(!node.allocated);
360 }
361
362 mutex_unlock(&i915->drm.struct_mutex);
363
364 ret = i915_gem_object_lock_interruptible(obj);
365 if (ret)
366 goto out_unpin;
367
368 ret = i915_gem_object_set_to_gtt_domain(obj, false);
369 if (ret) {
370 i915_gem_object_unlock(obj);
371 goto out_unpin;
372 }
373
374 fence = i915_gem_object_lock_fence(obj);
375 i915_gem_object_unlock(obj);
376 if (!fence) {
377 ret = -ENOMEM;
378 goto out_unpin;
379 }
380
381 user_data = u64_to_user_ptr(args->data_ptr);
382 remain = args->size;
383 offset = args->offset;
384
385 while (remain > 0) {
386 /* Operation in this page
387 *
388 * page_base = page offset within aperture
389 * page_offset = offset within page
390 * page_length = bytes to copy for this page
391 */
392 u32 page_base = node.start;
393 unsigned page_offset = offset_in_page(offset);
394 unsigned page_length = PAGE_SIZE - page_offset;
395 page_length = remain < page_length ? remain : page_length;
396 if (node.allocated) {
397 ggtt->vm.insert_page(&ggtt->vm,
398 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
399 node.start, I915_CACHE_NONE, 0);
400 } else {
401 page_base += offset & PAGE_MASK;
402 }
403
404 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
405 user_data, page_length)) {
406 ret = -EFAULT;
407 break;
408 }
409
410 remain -= page_length;
411 user_data += page_length;
412 offset += page_length;
413 }
414
415 i915_gem_object_unlock_fence(obj, fence);
416 out_unpin:
417 mutex_lock(&i915->drm.struct_mutex);
418 if (node.allocated) {
419 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
420 remove_mappable_node(&node);
421 } else {
422 i915_vma_unpin(vma);
423 }
424 out_unlock:
425 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
426 mutex_unlock(&i915->drm.struct_mutex);
427
428 return ret;
429 }
430
431 /**
432 * Reads data from the object referenced by handle.
433 * @dev: drm device pointer
434 * @data: ioctl data blob
435 * @file: drm file pointer
436 *
437 * On error, the contents of *data are undefined.
438 */
439 int
i915_gem_pread_ioctl(struct drm_device * dev,void * data,struct drm_file * file)440 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
441 struct drm_file *file)
442 {
443 struct drm_i915_gem_pread *args = data;
444 struct drm_i915_gem_object *obj;
445 int ret;
446
447 if (args->size == 0)
448 return 0;
449
450 if (!access_ok(u64_to_user_ptr(args->data_ptr),
451 args->size))
452 return -EFAULT;
453
454 obj = i915_gem_object_lookup(file, args->handle);
455 if (!obj)
456 return -ENOENT;
457
458 /* Bounds check source. */
459 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
460 ret = -EINVAL;
461 goto out;
462 }
463
464 trace_i915_gem_object_pread(obj, args->offset, args->size);
465
466 ret = i915_gem_object_wait(obj,
467 I915_WAIT_INTERRUPTIBLE,
468 MAX_SCHEDULE_TIMEOUT);
469 if (ret)
470 goto out;
471
472 ret = i915_gem_object_pin_pages(obj);
473 if (ret)
474 goto out;
475
476 ret = i915_gem_shmem_pread(obj, args);
477 if (ret == -EFAULT || ret == -ENODEV)
478 ret = i915_gem_gtt_pread(obj, args);
479
480 i915_gem_object_unpin_pages(obj);
481 out:
482 i915_gem_object_put(obj);
483 return ret;
484 }
485
486 /* This is the fast write path which cannot handle
487 * page faults in the source data
488 */
489
490 static inline bool
ggtt_write(struct io_mapping * mapping,loff_t base,int offset,char __user * user_data,int length)491 ggtt_write(struct io_mapping *mapping,
492 loff_t base, int offset,
493 char __user *user_data, int length)
494 {
495 void __iomem *vaddr;
496 unsigned long unwritten;
497
498 /* We can use the cpu mem copy function because this is X86. */
499 vaddr = io_mapping_map_atomic_wc(mapping, base);
500 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
501 user_data, length);
502 io_mapping_unmap_atomic(vaddr);
503 if (unwritten) {
504 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
505 unwritten = copy_from_user((void __force *)vaddr + offset,
506 user_data, length);
507 io_mapping_unmap(vaddr);
508 }
509
510 return unwritten;
511 }
512
513 /**
514 * This is the fast pwrite path, where we copy the data directly from the
515 * user into the GTT, uncached.
516 * @obj: i915 GEM object
517 * @args: pwrite arguments structure
518 */
519 static int
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)520 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
521 const struct drm_i915_gem_pwrite *args)
522 {
523 struct drm_i915_private *i915 = to_i915(obj->base.dev);
524 struct i915_ggtt *ggtt = &i915->ggtt;
525 struct intel_runtime_pm *rpm = &i915->runtime_pm;
526 intel_wakeref_t wakeref;
527 struct drm_mm_node node;
528 struct dma_fence *fence;
529 struct i915_vma *vma;
530 u64 remain, offset;
531 void __user *user_data;
532 int ret;
533
534 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
535 if (ret)
536 return ret;
537
538 if (i915_gem_object_has_struct_page(obj)) {
539 /*
540 * Avoid waking the device up if we can fallback, as
541 * waking/resuming is very slow (worst-case 10-100 ms
542 * depending on PCI sleeps and our own resume time).
543 * This easily dwarfs any performance advantage from
544 * using the cache bypass of indirect GGTT access.
545 */
546 wakeref = intel_runtime_pm_get_if_in_use(rpm);
547 if (!wakeref) {
548 ret = -EFAULT;
549 goto out_unlock;
550 }
551 } else {
552 /* No backing pages, no fallback, we must force GGTT access */
553 wakeref = intel_runtime_pm_get(rpm);
554 }
555
556 vma = ERR_PTR(-ENODEV);
557 if (!i915_gem_object_is_tiled(obj))
558 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
559 PIN_MAPPABLE |
560 PIN_NONBLOCK /* NOWARN */ |
561 PIN_NOEVICT);
562 if (!IS_ERR(vma)) {
563 node.start = i915_ggtt_offset(vma);
564 node.allocated = false;
565 } else {
566 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
567 if (ret)
568 goto out_rpm;
569 GEM_BUG_ON(!node.allocated);
570 }
571
572 mutex_unlock(&i915->drm.struct_mutex);
573
574 ret = i915_gem_object_lock_interruptible(obj);
575 if (ret)
576 goto out_unpin;
577
578 ret = i915_gem_object_set_to_gtt_domain(obj, true);
579 if (ret) {
580 i915_gem_object_unlock(obj);
581 goto out_unpin;
582 }
583
584 fence = i915_gem_object_lock_fence(obj);
585 i915_gem_object_unlock(obj);
586 if (!fence) {
587 ret = -ENOMEM;
588 goto out_unpin;
589 }
590
591 intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
592
593 user_data = u64_to_user_ptr(args->data_ptr);
594 offset = args->offset;
595 remain = args->size;
596 while (remain) {
597 /* Operation in this page
598 *
599 * page_base = page offset within aperture
600 * page_offset = offset within page
601 * page_length = bytes to copy for this page
602 */
603 u32 page_base = node.start;
604 unsigned int page_offset = offset_in_page(offset);
605 unsigned int page_length = PAGE_SIZE - page_offset;
606 page_length = remain < page_length ? remain : page_length;
607 if (node.allocated) {
608 /* flush the write before we modify the GGTT */
609 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
610 ggtt->vm.insert_page(&ggtt->vm,
611 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
612 node.start, I915_CACHE_NONE, 0);
613 wmb(); /* flush modifications to the GGTT (insert_page) */
614 } else {
615 page_base += offset & PAGE_MASK;
616 }
617 /* If we get a fault while copying data, then (presumably) our
618 * source page isn't available. Return the error and we'll
619 * retry in the slow path.
620 * If the object is non-shmem backed, we retry again with the
621 * path that handles page fault.
622 */
623 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
624 user_data, page_length)) {
625 ret = -EFAULT;
626 break;
627 }
628
629 remain -= page_length;
630 user_data += page_length;
631 offset += page_length;
632 }
633 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
634
635 i915_gem_object_unlock_fence(obj, fence);
636 out_unpin:
637 mutex_lock(&i915->drm.struct_mutex);
638 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
639 if (node.allocated) {
640 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
641 remove_mappable_node(&node);
642 } else {
643 i915_vma_unpin(vma);
644 }
645 out_rpm:
646 intel_runtime_pm_put(rpm, wakeref);
647 out_unlock:
648 mutex_unlock(&i915->drm.struct_mutex);
649 return ret;
650 }
651
652 /* Per-page copy function for the shmem pwrite fastpath.
653 * Flushes invalid cachelines before writing to the target if
654 * needs_clflush_before is set and flushes out any written cachelines after
655 * writing if needs_clflush is set.
656 */
657 static int
shmem_pwrite(struct page * page,int offset,int len,char __user * user_data,bool needs_clflush_before,bool needs_clflush_after)658 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
659 bool needs_clflush_before,
660 bool needs_clflush_after)
661 {
662 char *vaddr;
663 int ret;
664
665 vaddr = kmap(page);
666
667 if (needs_clflush_before)
668 drm_clflush_virt_range(vaddr + offset, len);
669
670 ret = __copy_from_user(vaddr + offset, user_data, len);
671 if (!ret && needs_clflush_after)
672 drm_clflush_virt_range(vaddr + offset, len);
673
674 kunmap(page);
675
676 return ret ? -EFAULT : 0;
677 }
678
679 static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object * obj,const struct drm_i915_gem_pwrite * args)680 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
681 const struct drm_i915_gem_pwrite *args)
682 {
683 unsigned int partial_cacheline_write;
684 unsigned int needs_clflush;
685 unsigned int offset, idx;
686 struct dma_fence *fence;
687 void __user *user_data;
688 u64 remain;
689 int ret;
690
691 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
692 if (ret)
693 return ret;
694
695 fence = i915_gem_object_lock_fence(obj);
696 i915_gem_object_finish_access(obj);
697 if (!fence)
698 return -ENOMEM;
699
700 /* If we don't overwrite a cacheline completely we need to be
701 * careful to have up-to-date data by first clflushing. Don't
702 * overcomplicate things and flush the entire patch.
703 */
704 partial_cacheline_write = 0;
705 if (needs_clflush & CLFLUSH_BEFORE)
706 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
707
708 user_data = u64_to_user_ptr(args->data_ptr);
709 remain = args->size;
710 offset = offset_in_page(args->offset);
711 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
712 struct page *page = i915_gem_object_get_page(obj, idx);
713 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
714
715 ret = shmem_pwrite(page, offset, length, user_data,
716 (offset | length) & partial_cacheline_write,
717 needs_clflush & CLFLUSH_AFTER);
718 if (ret)
719 break;
720
721 remain -= length;
722 user_data += length;
723 offset = 0;
724 }
725
726 intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
727 i915_gem_object_unlock_fence(obj, fence);
728
729 return ret;
730 }
731
732 /**
733 * Writes data to the object referenced by handle.
734 * @dev: drm device
735 * @data: ioctl data blob
736 * @file: drm file
737 *
738 * On error, the contents of the buffer that were to be modified are undefined.
739 */
740 int
i915_gem_pwrite_ioctl(struct drm_device * dev,void * data,struct drm_file * file)741 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
742 struct drm_file *file)
743 {
744 struct drm_i915_gem_pwrite *args = data;
745 struct drm_i915_gem_object *obj;
746 int ret;
747
748 if (args->size == 0)
749 return 0;
750
751 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
752 return -EFAULT;
753
754 obj = i915_gem_object_lookup(file, args->handle);
755 if (!obj)
756 return -ENOENT;
757
758 /* Bounds check destination. */
759 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
760 ret = -EINVAL;
761 goto err;
762 }
763
764 /* Writes not allowed into this read-only object */
765 if (i915_gem_object_is_readonly(obj)) {
766 ret = -EINVAL;
767 goto err;
768 }
769
770 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
771
772 ret = -ENODEV;
773 if (obj->ops->pwrite)
774 ret = obj->ops->pwrite(obj, args);
775 if (ret != -ENODEV)
776 goto err;
777
778 ret = i915_gem_object_wait(obj,
779 I915_WAIT_INTERRUPTIBLE |
780 I915_WAIT_ALL,
781 MAX_SCHEDULE_TIMEOUT);
782 if (ret)
783 goto err;
784
785 ret = i915_gem_object_pin_pages(obj);
786 if (ret)
787 goto err;
788
789 ret = -EFAULT;
790 /* We can only do the GTT pwrite on untiled buffers, as otherwise
791 * it would end up going through the fenced access, and we'll get
792 * different detiling behavior between reading and writing.
793 * pread/pwrite currently are reading and writing from the CPU
794 * perspective, requiring manual detiling by the client.
795 */
796 if (!i915_gem_object_has_struct_page(obj) ||
797 cpu_write_needs_clflush(obj))
798 /* Note that the gtt paths might fail with non-page-backed user
799 * pointers (e.g. gtt mappings when moving data between
800 * textures). Fallback to the shmem path in that case.
801 */
802 ret = i915_gem_gtt_pwrite_fast(obj, args);
803
804 if (ret == -EFAULT || ret == -ENOSPC) {
805 if (obj->phys_handle)
806 ret = i915_gem_phys_pwrite(obj, args, file);
807 else
808 ret = i915_gem_shmem_pwrite(obj, args);
809 }
810
811 i915_gem_object_unpin_pages(obj);
812 err:
813 i915_gem_object_put(obj);
814 return ret;
815 }
816
817 /**
818 * Called when user space has done writes to this buffer
819 * @dev: drm device
820 * @data: ioctl data blob
821 * @file: drm file
822 */
823 int
i915_gem_sw_finish_ioctl(struct drm_device * dev,void * data,struct drm_file * file)824 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
825 struct drm_file *file)
826 {
827 struct drm_i915_gem_sw_finish *args = data;
828 struct drm_i915_gem_object *obj;
829
830 obj = i915_gem_object_lookup(file, args->handle);
831 if (!obj)
832 return -ENOENT;
833
834 /*
835 * Proxy objects are barred from CPU access, so there is no
836 * need to ban sw_finish as it is a nop.
837 */
838
839 /* Pinned buffers may be scanout, so flush the cache */
840 i915_gem_object_flush_if_display(obj);
841 i915_gem_object_put(obj);
842
843 return 0;
844 }
845
i915_gem_runtime_suspend(struct drm_i915_private * i915)846 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
847 {
848 struct drm_i915_gem_object *obj, *on;
849 int i;
850
851 /*
852 * Only called during RPM suspend. All users of the userfault_list
853 * must be holding an RPM wakeref to ensure that this can not
854 * run concurrently with themselves (and use the struct_mutex for
855 * protection between themselves).
856 */
857
858 list_for_each_entry_safe(obj, on,
859 &i915->ggtt.userfault_list, userfault_link)
860 __i915_gem_object_release_mmap(obj);
861
862 /*
863 * The fence will be lost when the device powers down. If any were
864 * in use by hardware (i.e. they are pinned), we should not be powering
865 * down! All other fences will be reacquired by the user upon waking.
866 */
867 for (i = 0; i < i915->ggtt.num_fences; i++) {
868 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
869
870 /*
871 * Ideally we want to assert that the fence register is not
872 * live at this point (i.e. that no piece of code will be
873 * trying to write through fence + GTT, as that both violates
874 * our tracking of activity and associated locking/barriers,
875 * but also is illegal given that the hw is powered down).
876 *
877 * Previously we used reg->pin_count as a "liveness" indicator.
878 * That is not sufficient, and we need a more fine-grained
879 * tool if we want to have a sanity check here.
880 */
881
882 if (!reg->vma)
883 continue;
884
885 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
886 reg->dirty = true;
887 }
888 }
889
890 static long
wait_for_timelines(struct drm_i915_private * i915,unsigned int wait,long timeout)891 wait_for_timelines(struct drm_i915_private *i915,
892 unsigned int wait, long timeout)
893 {
894 struct intel_gt_timelines *timelines = &i915->gt.timelines;
895 struct intel_timeline *tl;
896 unsigned long flags;
897
898 spin_lock_irqsave(&timelines->lock, flags);
899 list_for_each_entry(tl, &timelines->active_list, link) {
900 struct i915_request *rq;
901
902 rq = i915_active_request_get_unlocked(&tl->last_request);
903 if (!rq)
904 continue;
905
906 spin_unlock_irqrestore(&timelines->lock, flags);
907
908 /*
909 * "Race-to-idle".
910 *
911 * Switching to the kernel context is often used a synchronous
912 * step prior to idling, e.g. in suspend for flushing all
913 * current operations to memory before sleeping. These we
914 * want to complete as quickly as possible to avoid prolonged
915 * stalls, so allow the gpu to boost to maximum clocks.
916 */
917 if (wait & I915_WAIT_FOR_IDLE_BOOST)
918 gen6_rps_boost(rq);
919
920 timeout = i915_request_wait(rq, wait, timeout);
921 i915_request_put(rq);
922 if (timeout < 0)
923 return timeout;
924
925 /* restart after reacquiring the lock */
926 spin_lock_irqsave(&timelines->lock, flags);
927 tl = list_entry(&timelines->active_list, typeof(*tl), link);
928 }
929 spin_unlock_irqrestore(&timelines->lock, flags);
930
931 return timeout;
932 }
933
i915_gem_wait_for_idle(struct drm_i915_private * i915,unsigned int flags,long timeout)934 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
935 unsigned int flags, long timeout)
936 {
937 /* If the device is asleep, we have no requests outstanding */
938 if (!intel_gt_pm_is_awake(&i915->gt))
939 return 0;
940
941 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
942 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
943 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
944
945 timeout = wait_for_timelines(i915, flags, timeout);
946 if (timeout < 0)
947 return timeout;
948
949 if (flags & I915_WAIT_LOCKED) {
950 lockdep_assert_held(&i915->drm.struct_mutex);
951
952 i915_retire_requests(i915);
953 }
954
955 return 0;
956 }
957
958 struct i915_vma *
i915_gem_object_ggtt_pin(struct drm_i915_gem_object * obj,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)959 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
960 const struct i915_ggtt_view *view,
961 u64 size,
962 u64 alignment,
963 u64 flags)
964 {
965 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
966 struct i915_address_space *vm = &dev_priv->ggtt.vm;
967
968 return i915_gem_object_pin(obj, vm, view, size, alignment,
969 flags | PIN_GLOBAL);
970 }
971
972 struct i915_vma *
i915_gem_object_pin(struct drm_i915_gem_object * obj,struct i915_address_space * vm,const struct i915_ggtt_view * view,u64 size,u64 alignment,u64 flags)973 i915_gem_object_pin(struct drm_i915_gem_object *obj,
974 struct i915_address_space *vm,
975 const struct i915_ggtt_view *view,
976 u64 size,
977 u64 alignment,
978 u64 flags)
979 {
980 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
981 struct i915_vma *vma;
982 int ret;
983
984 lockdep_assert_held(&obj->base.dev->struct_mutex);
985
986 if (i915_gem_object_never_bind_ggtt(obj))
987 return ERR_PTR(-ENODEV);
988
989 if (flags & PIN_MAPPABLE &&
990 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
991 /* If the required space is larger than the available
992 * aperture, we will not able to find a slot for the
993 * object and unbinding the object now will be in
994 * vain. Worse, doing so may cause us to ping-pong
995 * the object in and out of the Global GTT and
996 * waste a lot of cycles under the mutex.
997 */
998 if (obj->base.size > dev_priv->ggtt.mappable_end)
999 return ERR_PTR(-E2BIG);
1000
1001 /* If NONBLOCK is set the caller is optimistically
1002 * trying to cache the full object within the mappable
1003 * aperture, and *must* have a fallback in place for
1004 * situations where we cannot bind the object. We
1005 * can be a little more lax here and use the fallback
1006 * more often to avoid costly migrations of ourselves
1007 * and other objects within the aperture.
1008 *
1009 * Half-the-aperture is used as a simple heuristic.
1010 * More interesting would to do search for a free
1011 * block prior to making the commitment to unbind.
1012 * That caters for the self-harm case, and with a
1013 * little more heuristics (e.g. NOFAULT, NOEVICT)
1014 * we could try to minimise harm to others.
1015 */
1016 if (flags & PIN_NONBLOCK &&
1017 obj->base.size > dev_priv->ggtt.mappable_end / 2)
1018 return ERR_PTR(-ENOSPC);
1019 }
1020
1021 vma = i915_vma_instance(obj, vm, view);
1022 if (IS_ERR(vma))
1023 return vma;
1024
1025 if (i915_vma_misplaced(vma, size, alignment, flags)) {
1026 if (flags & PIN_NONBLOCK) {
1027 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
1028 return ERR_PTR(-ENOSPC);
1029
1030 if (flags & PIN_MAPPABLE &&
1031 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
1032 return ERR_PTR(-ENOSPC);
1033 }
1034
1035 WARN(i915_vma_is_pinned(vma),
1036 "bo is already pinned in ggtt with incorrect alignment:"
1037 " offset=%08x, req.alignment=%llx,"
1038 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
1039 i915_ggtt_offset(vma), alignment,
1040 !!(flags & PIN_MAPPABLE),
1041 i915_vma_is_map_and_fenceable(vma));
1042 ret = i915_vma_unbind(vma);
1043 if (ret)
1044 return ERR_PTR(ret);
1045 }
1046
1047 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
1048 mutex_lock(&vma->vm->mutex);
1049 ret = i915_vma_revoke_fence(vma);
1050 mutex_unlock(&vma->vm->mutex);
1051 if (ret)
1052 return ERR_PTR(ret);
1053 }
1054
1055 ret = i915_vma_pin(vma, size, alignment, flags);
1056 if (ret)
1057 return ERR_PTR(ret);
1058
1059 return vma;
1060 }
1061
1062 int
i915_gem_madvise_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1063 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1064 struct drm_file *file_priv)
1065 {
1066 struct drm_i915_private *i915 = to_i915(dev);
1067 struct drm_i915_gem_madvise *args = data;
1068 struct drm_i915_gem_object *obj;
1069 int err;
1070
1071 switch (args->madv) {
1072 case I915_MADV_DONTNEED:
1073 case I915_MADV_WILLNEED:
1074 break;
1075 default:
1076 return -EINVAL;
1077 }
1078
1079 obj = i915_gem_object_lookup(file_priv, args->handle);
1080 if (!obj)
1081 return -ENOENT;
1082
1083 err = mutex_lock_interruptible(&obj->mm.lock);
1084 if (err)
1085 goto out;
1086
1087 if (i915_gem_object_has_pages(obj) &&
1088 i915_gem_object_is_tiled(obj) &&
1089 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1090 if (obj->mm.madv == I915_MADV_WILLNEED) {
1091 GEM_BUG_ON(!obj->mm.quirked);
1092 __i915_gem_object_unpin_pages(obj);
1093 obj->mm.quirked = false;
1094 }
1095 if (args->madv == I915_MADV_WILLNEED) {
1096 GEM_BUG_ON(obj->mm.quirked);
1097 __i915_gem_object_pin_pages(obj);
1098 obj->mm.quirked = true;
1099 }
1100 }
1101
1102 if (obj->mm.madv != __I915_MADV_PURGED)
1103 obj->mm.madv = args->madv;
1104
1105 if (i915_gem_object_has_pages(obj)) {
1106 struct list_head *list;
1107
1108 if (i915_gem_object_is_shrinkable(obj)) {
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1112
1113 if (obj->mm.madv != I915_MADV_WILLNEED)
1114 list = &i915->mm.purge_list;
1115 else
1116 list = &i915->mm.shrink_list;
1117 list_move_tail(&obj->mm.link, list);
1118
1119 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1120 }
1121 }
1122
1123 /* if the object is no longer attached, discard its backing storage */
1124 if (obj->mm.madv == I915_MADV_DONTNEED &&
1125 !i915_gem_object_has_pages(obj))
1126 i915_gem_object_truncate(obj);
1127
1128 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1129 mutex_unlock(&obj->mm.lock);
1130
1131 out:
1132 i915_gem_object_put(obj);
1133 return err;
1134 }
1135
i915_gem_sanitize(struct drm_i915_private * i915)1136 void i915_gem_sanitize(struct drm_i915_private *i915)
1137 {
1138 intel_wakeref_t wakeref;
1139
1140 GEM_TRACE("\n");
1141
1142 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1143 intel_uncore_forcewake_get(&i915->uncore, FORCEWAKE_ALL);
1144
1145 /*
1146 * As we have just resumed the machine and woken the device up from
1147 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
1148 * back to defaults, recovering from whatever wedged state we left it
1149 * in and so worth trying to use the device once more.
1150 */
1151 if (intel_gt_is_wedged(&i915->gt))
1152 intel_gt_unset_wedged(&i915->gt);
1153
1154 /*
1155 * If we inherit context state from the BIOS or earlier occupants
1156 * of the GPU, the GPU may be in an inconsistent state when we
1157 * try to take over. The only way to remove the earlier state
1158 * is by resetting. However, resetting on earlier gen is tricky as
1159 * it may impact the display and we are uncertain about the stability
1160 * of the reset, so this could be applied to even earlier gen.
1161 */
1162 intel_gt_sanitize(&i915->gt, false);
1163
1164 intel_uncore_forcewake_put(&i915->uncore, FORCEWAKE_ALL);
1165 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1166 }
1167
init_unused_ring(struct intel_gt * gt,u32 base)1168 static void init_unused_ring(struct intel_gt *gt, u32 base)
1169 {
1170 struct intel_uncore *uncore = gt->uncore;
1171
1172 intel_uncore_write(uncore, RING_CTL(base), 0);
1173 intel_uncore_write(uncore, RING_HEAD(base), 0);
1174 intel_uncore_write(uncore, RING_TAIL(base), 0);
1175 intel_uncore_write(uncore, RING_START(base), 0);
1176 }
1177
init_unused_rings(struct intel_gt * gt)1178 static void init_unused_rings(struct intel_gt *gt)
1179 {
1180 struct drm_i915_private *i915 = gt->i915;
1181
1182 if (IS_I830(i915)) {
1183 init_unused_ring(gt, PRB1_BASE);
1184 init_unused_ring(gt, SRB0_BASE);
1185 init_unused_ring(gt, SRB1_BASE);
1186 init_unused_ring(gt, SRB2_BASE);
1187 init_unused_ring(gt, SRB3_BASE);
1188 } else if (IS_GEN(i915, 2)) {
1189 init_unused_ring(gt, SRB0_BASE);
1190 init_unused_ring(gt, SRB1_BASE);
1191 } else if (IS_GEN(i915, 3)) {
1192 init_unused_ring(gt, PRB1_BASE);
1193 init_unused_ring(gt, PRB2_BASE);
1194 }
1195 }
1196
i915_gem_init_hw(struct drm_i915_private * i915)1197 int i915_gem_init_hw(struct drm_i915_private *i915)
1198 {
1199 struct intel_uncore *uncore = &i915->uncore;
1200 struct intel_gt *gt = &i915->gt;
1201 int ret;
1202
1203 BUG_ON(!i915->kernel_context);
1204 ret = intel_gt_terminally_wedged(gt);
1205 if (ret)
1206 return ret;
1207
1208 gt->last_init_time = ktime_get();
1209
1210 /* Double layer security blanket, see i915_gem_init() */
1211 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1212
1213 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
1214 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
1215
1216 if (IS_HASWELL(i915))
1217 intel_uncore_write(uncore,
1218 MI_PREDICATE_RESULT_2,
1219 IS_HSW_GT3(i915) ?
1220 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
1221
1222 /* Apply the GT workarounds... */
1223 intel_gt_apply_workarounds(gt);
1224 /* ...and determine whether they are sticking. */
1225 intel_gt_verify_workarounds(gt, "init");
1226
1227 intel_gt_init_swizzling(gt);
1228
1229 /*
1230 * At least 830 can leave some of the unused rings
1231 * "active" (ie. head != tail) after resume which
1232 * will prevent c3 entry. Makes sure all unused rings
1233 * are totally idle.
1234 */
1235 init_unused_rings(gt);
1236
1237 ret = i915_ppgtt_init_hw(gt);
1238 if (ret) {
1239 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
1240 goto out;
1241 }
1242
1243 /* We can't enable contexts until all firmware is loaded */
1244 ret = intel_uc_init_hw(>->uc);
1245 if (ret) {
1246 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
1247 goto out;
1248 }
1249
1250 intel_mocs_init(gt);
1251
1252 out:
1253 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1254 return ret;
1255 }
1256
__intel_engines_record_defaults(struct drm_i915_private * i915)1257 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
1258 {
1259 struct i915_request *requests[I915_NUM_ENGINES] = {};
1260 struct intel_engine_cs *engine;
1261 enum intel_engine_id id;
1262 int err = 0;
1263
1264 /*
1265 * As we reset the gpu during very early sanitisation, the current
1266 * register state on the GPU should reflect its defaults values.
1267 * We load a context onto the hw (with restore-inhibit), then switch
1268 * over to a second context to save that default register state. We
1269 * can then prime every new context with that state so they all start
1270 * from the same default HW values.
1271 */
1272
1273 for_each_engine(engine, i915, id) {
1274 struct intel_context *ce;
1275 struct i915_request *rq;
1276
1277 /* We must be able to switch to something! */
1278 GEM_BUG_ON(!engine->kernel_context);
1279 engine->serial++; /* force the kernel context switch */
1280
1281 ce = intel_context_create(i915->kernel_context, engine);
1282 if (IS_ERR(ce)) {
1283 err = PTR_ERR(ce);
1284 goto out;
1285 }
1286
1287 rq = intel_context_create_request(ce);
1288 if (IS_ERR(rq)) {
1289 err = PTR_ERR(rq);
1290 intel_context_put(ce);
1291 goto out;
1292 }
1293
1294 err = intel_engine_emit_ctx_wa(rq);
1295 if (err)
1296 goto err_rq;
1297
1298 /*
1299 * Failing to program the MOCS is non-fatal.The system will not
1300 * run at peak performance. So warn the user and carry on.
1301 */
1302 err = intel_mocs_emit(rq);
1303 if (err)
1304 dev_notice(i915->drm.dev,
1305 "Failed to program MOCS registers; expect performance issues.\n");
1306
1307 err = intel_renderstate_emit(rq);
1308 if (err)
1309 goto err_rq;
1310
1311 err_rq:
1312 requests[id] = i915_request_get(rq);
1313 i915_request_add(rq);
1314 if (err)
1315 goto out;
1316 }
1317
1318 /* Flush the default context image to memory, and enable powersaving. */
1319 if (!i915_gem_load_power_context(i915)) {
1320 err = -EIO;
1321 goto out;
1322 }
1323
1324 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1325 struct i915_request *rq;
1326 struct i915_vma *state;
1327 void *vaddr;
1328
1329 rq = requests[id];
1330 if (!rq)
1331 continue;
1332
1333 /* We want to be able to unbind the state from the GGTT */
1334 GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
1335
1336 state = rq->hw_context->state;
1337 if (!state)
1338 continue;
1339
1340 /*
1341 * As we will hold a reference to the logical state, it will
1342 * not be torn down with the context, and importantly the
1343 * object will hold onto its vma (making it possible for a
1344 * stray GTT write to corrupt our defaults). Unmap the vma
1345 * from the GTT to prevent such accidents and reclaim the
1346 * space.
1347 */
1348 err = i915_vma_unbind(state);
1349 if (err)
1350 goto out;
1351
1352 i915_gem_object_lock(state->obj);
1353 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
1354 i915_gem_object_unlock(state->obj);
1355 if (err)
1356 goto out;
1357
1358 i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
1359
1360 /* Check we can acquire the image of the context state */
1361 vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
1362 if (IS_ERR(vaddr)) {
1363 err = PTR_ERR(vaddr);
1364 goto out;
1365 }
1366
1367 rq->engine->default_state = i915_gem_object_get(state->obj);
1368 i915_gem_object_unpin_map(state->obj);
1369 }
1370
1371 out:
1372 /*
1373 * If we have to abandon now, we expect the engines to be idle
1374 * and ready to be torn-down. The quickest way we can accomplish
1375 * this is by declaring ourselves wedged.
1376 */
1377 if (err)
1378 intel_gt_set_wedged(&i915->gt);
1379
1380 for (id = 0; id < ARRAY_SIZE(requests); id++) {
1381 struct intel_context *ce;
1382 struct i915_request *rq;
1383
1384 rq = requests[id];
1385 if (!rq)
1386 continue;
1387
1388 ce = rq->hw_context;
1389 i915_request_put(rq);
1390 intel_context_put(ce);
1391 }
1392 return err;
1393 }
1394
1395 static int
i915_gem_init_scratch(struct drm_i915_private * i915,unsigned int size)1396 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
1397 {
1398 return intel_gt_init_scratch(&i915->gt, size);
1399 }
1400
i915_gem_fini_scratch(struct drm_i915_private * i915)1401 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
1402 {
1403 intel_gt_fini_scratch(&i915->gt);
1404 }
1405
intel_engines_verify_workarounds(struct drm_i915_private * i915)1406 static int intel_engines_verify_workarounds(struct drm_i915_private *i915)
1407 {
1408 struct intel_engine_cs *engine;
1409 enum intel_engine_id id;
1410 int err = 0;
1411
1412 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1413 return 0;
1414
1415 for_each_engine(engine, i915, id) {
1416 if (intel_engine_verify_workarounds(engine, "load"))
1417 err = -EIO;
1418 }
1419
1420 return err;
1421 }
1422
i915_gem_init(struct drm_i915_private * dev_priv)1423 int i915_gem_init(struct drm_i915_private *dev_priv)
1424 {
1425 int ret;
1426
1427 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1428 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1429 mkwrite_device_info(dev_priv)->page_sizes =
1430 I915_GTT_PAGE_SIZE_4K;
1431
1432 intel_timelines_init(dev_priv);
1433
1434 ret = i915_gem_init_userptr(dev_priv);
1435 if (ret)
1436 return ret;
1437
1438 intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1439 intel_wopcm_init(&dev_priv->wopcm);
1440
1441 /* This is just a security blanket to placate dragons.
1442 * On some systems, we very sporadically observe that the first TLBs
1443 * used by the CS may be stale, despite us poking the TLB reset. If
1444 * we hold the forcewake during initialisation these problems
1445 * just magically go away.
1446 */
1447 mutex_lock(&dev_priv->drm.struct_mutex);
1448 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1449
1450 ret = i915_init_ggtt(dev_priv);
1451 if (ret) {
1452 GEM_BUG_ON(ret == -EIO);
1453 goto err_unlock;
1454 }
1455
1456 ret = i915_gem_init_scratch(dev_priv,
1457 IS_GEN(dev_priv, 2) ? SZ_256K : PAGE_SIZE);
1458 if (ret) {
1459 GEM_BUG_ON(ret == -EIO);
1460 goto err_ggtt;
1461 }
1462
1463 ret = intel_engines_setup(dev_priv);
1464 if (ret) {
1465 GEM_BUG_ON(ret == -EIO);
1466 goto err_unlock;
1467 }
1468
1469 ret = i915_gem_contexts_init(dev_priv);
1470 if (ret) {
1471 GEM_BUG_ON(ret == -EIO);
1472 goto err_scratch;
1473 }
1474
1475 ret = intel_engines_init(dev_priv);
1476 if (ret) {
1477 GEM_BUG_ON(ret == -EIO);
1478 goto err_context;
1479 }
1480
1481 intel_init_gt_powersave(dev_priv);
1482
1483 intel_uc_init(&dev_priv->gt.uc);
1484
1485 ret = i915_gem_init_hw(dev_priv);
1486 if (ret)
1487 goto err_uc_init;
1488
1489 /* Only when the HW is re-initialised, can we replay the requests */
1490 ret = intel_gt_resume(&dev_priv->gt);
1491 if (ret)
1492 goto err_init_hw;
1493
1494 /*
1495 * Despite its name intel_init_clock_gating applies both display
1496 * clock gating workarounds; GT mmio workarounds and the occasional
1497 * GT power context workaround. Worse, sometimes it includes a context
1498 * register workaround which we need to apply before we record the
1499 * default HW state for all contexts.
1500 *
1501 * FIXME: break up the workarounds and apply them at the right time!
1502 */
1503 intel_init_clock_gating(dev_priv);
1504
1505 ret = intel_engines_verify_workarounds(dev_priv);
1506 if (ret)
1507 goto err_gt;
1508
1509 ret = __intel_engines_record_defaults(dev_priv);
1510 if (ret)
1511 goto err_gt;
1512
1513 ret = i915_inject_load_error(dev_priv, -ENODEV);
1514 if (ret)
1515 goto err_gt;
1516
1517 ret = i915_inject_load_error(dev_priv, -EIO);
1518 if (ret)
1519 goto err_gt;
1520
1521 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1522 mutex_unlock(&dev_priv->drm.struct_mutex);
1523
1524 return 0;
1525
1526 /*
1527 * Unwinding is complicated by that we want to handle -EIO to mean
1528 * disable GPU submission but keep KMS alive. We want to mark the
1529 * HW as irrevisibly wedged, but keep enough state around that the
1530 * driver doesn't explode during runtime.
1531 */
1532 err_gt:
1533 mutex_unlock(&dev_priv->drm.struct_mutex);
1534
1535 intel_gt_set_wedged(&dev_priv->gt);
1536 i915_gem_suspend(dev_priv);
1537 i915_gem_suspend_late(dev_priv);
1538
1539 i915_gem_drain_workqueue(dev_priv);
1540
1541 mutex_lock(&dev_priv->drm.struct_mutex);
1542 err_init_hw:
1543 intel_uc_fini_hw(&dev_priv->gt.uc);
1544 err_uc_init:
1545 if (ret != -EIO) {
1546 intel_uc_fini(&dev_priv->gt.uc);
1547 intel_cleanup_gt_powersave(dev_priv);
1548 intel_engines_cleanup(dev_priv);
1549 }
1550 err_context:
1551 if (ret != -EIO)
1552 i915_gem_contexts_fini(dev_priv);
1553 err_scratch:
1554 i915_gem_fini_scratch(dev_priv);
1555 err_ggtt:
1556 err_unlock:
1557 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1558 mutex_unlock(&dev_priv->drm.struct_mutex);
1559
1560 if (ret != -EIO) {
1561 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1562 i915_gem_cleanup_userptr(dev_priv);
1563 intel_timelines_fini(dev_priv);
1564 }
1565
1566 if (ret == -EIO) {
1567 mutex_lock(&dev_priv->drm.struct_mutex);
1568
1569 /*
1570 * Allow engines or uC initialisation to fail by marking the GPU
1571 * as wedged. But we only want to do this when the GPU is angry,
1572 * for all other failure, such as an allocation failure, bail.
1573 */
1574 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1575 i915_probe_error(dev_priv,
1576 "Failed to initialize GPU, declaring it wedged!\n");
1577 intel_gt_set_wedged(&dev_priv->gt);
1578 }
1579
1580 /* Minimal basic recovery for KMS */
1581 ret = i915_ggtt_enable_hw(dev_priv);
1582 i915_gem_restore_gtt_mappings(dev_priv);
1583 i915_gem_restore_fences(dev_priv);
1584 intel_init_clock_gating(dev_priv);
1585
1586 mutex_unlock(&dev_priv->drm.struct_mutex);
1587 }
1588
1589 i915_gem_drain_freed_objects(dev_priv);
1590 return ret;
1591 }
1592
i915_gem_driver_register(struct drm_i915_private * i915)1593 void i915_gem_driver_register(struct drm_i915_private *i915)
1594 {
1595 i915_gem_driver_register__shrinker(i915);
1596
1597 intel_engines_driver_register(i915);
1598 }
1599
i915_gem_driver_unregister(struct drm_i915_private * i915)1600 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1601 {
1602 i915_gem_driver_unregister__shrinker(i915);
1603 }
1604
i915_gem_driver_remove(struct drm_i915_private * dev_priv)1605 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1606 {
1607 GEM_BUG_ON(dev_priv->gt.awake);
1608
1609 intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1610
1611 i915_gem_suspend_late(dev_priv);
1612 intel_disable_gt_powersave(dev_priv);
1613
1614 /* Flush any outstanding unpin_work. */
1615 i915_gem_drain_workqueue(dev_priv);
1616
1617 mutex_lock(&dev_priv->drm.struct_mutex);
1618 intel_uc_fini_hw(&dev_priv->gt.uc);
1619 intel_uc_fini(&dev_priv->gt.uc);
1620 mutex_unlock(&dev_priv->drm.struct_mutex);
1621
1622 i915_gem_drain_freed_objects(dev_priv);
1623 }
1624
i915_gem_driver_release(struct drm_i915_private * dev_priv)1625 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1626 {
1627 mutex_lock(&dev_priv->drm.struct_mutex);
1628 intel_engines_cleanup(dev_priv);
1629 i915_gem_contexts_fini(dev_priv);
1630 i915_gem_fini_scratch(dev_priv);
1631 mutex_unlock(&dev_priv->drm.struct_mutex);
1632
1633 intel_wa_list_free(&dev_priv->gt_wa_list);
1634
1635 intel_cleanup_gt_powersave(dev_priv);
1636
1637 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1638 i915_gem_cleanup_userptr(dev_priv);
1639 intel_timelines_fini(dev_priv);
1640
1641 i915_gem_drain_freed_objects(dev_priv);
1642
1643 WARN_ON(!list_empty(&dev_priv->contexts.list));
1644 }
1645
i915_gem_init_mmio(struct drm_i915_private * i915)1646 void i915_gem_init_mmio(struct drm_i915_private *i915)
1647 {
1648 i915_gem_sanitize(i915);
1649 }
1650
i915_gem_init__mm(struct drm_i915_private * i915)1651 static void i915_gem_init__mm(struct drm_i915_private *i915)
1652 {
1653 spin_lock_init(&i915->mm.obj_lock);
1654
1655 init_llist_head(&i915->mm.free_list);
1656
1657 INIT_LIST_HEAD(&i915->mm.purge_list);
1658 INIT_LIST_HEAD(&i915->mm.shrink_list);
1659
1660 i915_gem_init__objects(i915);
1661 }
1662
i915_gem_init_early(struct drm_i915_private * dev_priv)1663 int i915_gem_init_early(struct drm_i915_private *dev_priv)
1664 {
1665 int err;
1666
1667 i915_gem_init__mm(dev_priv);
1668 i915_gem_init__pm(dev_priv);
1669
1670 spin_lock_init(&dev_priv->fb_tracking.lock);
1671
1672 err = i915_gemfs_init(dev_priv);
1673 if (err)
1674 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
1675
1676 return 0;
1677 }
1678
i915_gem_cleanup_early(struct drm_i915_private * dev_priv)1679 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1680 {
1681 i915_gem_drain_freed_objects(dev_priv);
1682 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1683 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1684 WARN_ON(dev_priv->mm.shrink_count);
1685
1686 i915_gemfs_fini(dev_priv);
1687 }
1688
i915_gem_freeze(struct drm_i915_private * dev_priv)1689 int i915_gem_freeze(struct drm_i915_private *dev_priv)
1690 {
1691 /* Discard all purgeable objects, let userspace recover those as
1692 * required after resuming.
1693 */
1694 i915_gem_shrink_all(dev_priv);
1695
1696 return 0;
1697 }
1698
i915_gem_freeze_late(struct drm_i915_private * i915)1699 int i915_gem_freeze_late(struct drm_i915_private *i915)
1700 {
1701 struct drm_i915_gem_object *obj;
1702 intel_wakeref_t wakeref;
1703
1704 /*
1705 * Called just before we write the hibernation image.
1706 *
1707 * We need to update the domain tracking to reflect that the CPU
1708 * will be accessing all the pages to create and restore from the
1709 * hibernation, and so upon restoration those pages will be in the
1710 * CPU domain.
1711 *
1712 * To make sure the hibernation image contains the latest state,
1713 * we update that state just before writing out the image.
1714 *
1715 * To try and reduce the hibernation image, we manually shrink
1716 * the objects as well, see i915_gem_freeze()
1717 */
1718
1719 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
1720
1721 i915_gem_shrink(i915, -1UL, NULL, ~0);
1722 i915_gem_drain_freed_objects(i915);
1723
1724 list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
1725 i915_gem_object_lock(obj);
1726 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
1727 i915_gem_object_unlock(obj);
1728 }
1729
1730 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1731
1732 return 0;
1733 }
1734
i915_gem_release(struct drm_device * dev,struct drm_file * file)1735 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
1736 {
1737 struct drm_i915_file_private *file_priv = file->driver_priv;
1738 struct i915_request *request;
1739
1740 /* Clean up our request list when the client is going away, so that
1741 * later retire_requests won't dereference our soon-to-be-gone
1742 * file_priv.
1743 */
1744 spin_lock(&file_priv->mm.lock);
1745 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
1746 request->file_priv = NULL;
1747 spin_unlock(&file_priv->mm.lock);
1748 }
1749
i915_gem_open(struct drm_i915_private * i915,struct drm_file * file)1750 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1751 {
1752 struct drm_i915_file_private *file_priv;
1753 int ret;
1754
1755 DRM_DEBUG("\n");
1756
1757 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1758 if (!file_priv)
1759 return -ENOMEM;
1760
1761 file->driver_priv = file_priv;
1762 file_priv->dev_priv = i915;
1763 file_priv->file = file;
1764
1765 spin_lock_init(&file_priv->mm.lock);
1766 INIT_LIST_HEAD(&file_priv->mm.request_list);
1767
1768 file_priv->bsd_engine = -1;
1769 file_priv->hang_timestamp = jiffies;
1770
1771 ret = i915_gem_context_open(i915, file);
1772 if (ret)
1773 kfree(file_priv);
1774
1775 return ret;
1776 }
1777
1778 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1779 #include "selftests/mock_gem_device.c"
1780 #include "selftests/i915_gem.c"
1781 #endif
1782