1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2008,2010 Intel Corporation
5 */
6
7 #include <linux/dma-resv.h>
8 #include <linux/highmem.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_gpu_commands.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_buffer_pool.h"
21 #include "gt/intel_gt_pm.h"
22 #include "gt/intel_ring.h"
23
24 #include "pxp/intel_pxp.h"
25
26 #include "i915_cmd_parser.h"
27 #include "i915_drv.h"
28 #include "i915_file_private.h"
29 #include "i915_gem_clflush.h"
30 #include "i915_gem_context.h"
31 #include "i915_gem_evict.h"
32 #include "i915_gem_ioctls.h"
33 #include "i915_trace.h"
34 #include "i915_user_extensions.h"
35
36 struct eb_vma {
37 struct i915_vma *vma;
38 unsigned int flags;
39
40 /** This vma's place in the execbuf reservation list */
41 struct drm_i915_gem_exec_object2 *exec;
42 struct list_head bind_link;
43 struct list_head reloc_link;
44
45 struct hlist_node node;
46 u32 handle;
47 };
48
49 enum {
50 FORCE_CPU_RELOC = 1,
51 FORCE_GTT_RELOC,
52 FORCE_GPU_RELOC,
53 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
54 };
55
56 /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */
57 #define __EXEC_OBJECT_HAS_PIN BIT(30)
58 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
59 #define __EXEC_OBJECT_USERPTR_INIT BIT(28)
60 #define __EXEC_OBJECT_NEEDS_MAP BIT(27)
61 #define __EXEC_OBJECT_NEEDS_BIAS BIT(26)
62 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */
63 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
64
65 #define __EXEC_HAS_RELOC BIT(31)
66 #define __EXEC_ENGINE_PINNED BIT(30)
67 #define __EXEC_USERPTR_USED BIT(29)
68 #define __EXEC_INTERNAL_FLAGS (~0u << 29)
69 #define UPDATE PIN_OFFSET_FIXED
70
71 #define BATCH_OFFSET_BIAS (256*1024)
72
73 #define __I915_EXEC_ILLEGAL_FLAGS \
74 (__I915_EXEC_UNKNOWN_FLAGS | \
75 I915_EXEC_CONSTANTS_MASK | \
76 I915_EXEC_RESOURCE_STREAMER)
77
78 /* Catch emission of unexpected errors for CI! */
79 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
80 #undef EINVAL
81 #define EINVAL ({ \
82 DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
83 22; \
84 })
85 #endif
86
87 /**
88 * DOC: User command execution
89 *
90 * Userspace submits commands to be executed on the GPU as an instruction
91 * stream within a GEM object we call a batchbuffer. This instructions may
92 * refer to other GEM objects containing auxiliary state such as kernels,
93 * samplers, render targets and even secondary batchbuffers. Userspace does
94 * not know where in the GPU memory these objects reside and so before the
95 * batchbuffer is passed to the GPU for execution, those addresses in the
96 * batchbuffer and auxiliary objects are updated. This is known as relocation,
97 * or patching. To try and avoid having to relocate each object on the next
98 * execution, userspace is told the location of those objects in this pass,
99 * but this remains just a hint as the kernel may choose a new location for
100 * any object in the future.
101 *
102 * At the level of talking to the hardware, submitting a batchbuffer for the
103 * GPU to execute is to add content to a buffer from which the HW
104 * command streamer is reading.
105 *
106 * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
107 * Execlists, this command is not placed on the same buffer as the
108 * remaining items.
109 *
110 * 2. Add a command to invalidate caches to the buffer.
111 *
112 * 3. Add a batchbuffer start command to the buffer; the start command is
113 * essentially a token together with the GPU address of the batchbuffer
114 * to be executed.
115 *
116 * 4. Add a pipeline flush to the buffer.
117 *
118 * 5. Add a memory write command to the buffer to record when the GPU
119 * is done executing the batchbuffer. The memory write writes the
120 * global sequence number of the request, ``i915_request::global_seqno``;
121 * the i915 driver uses the current value in the register to determine
122 * if the GPU has completed the batchbuffer.
123 *
124 * 6. Add a user interrupt command to the buffer. This command instructs
125 * the GPU to issue an interrupt when the command, pipeline flush and
126 * memory write are completed.
127 *
128 * 7. Inform the hardware of the additional commands added to the buffer
129 * (by updating the tail pointer).
130 *
131 * Processing an execbuf ioctl is conceptually split up into a few phases.
132 *
133 * 1. Validation - Ensure all the pointers, handles and flags are valid.
134 * 2. Reservation - Assign GPU address space for every object
135 * 3. Relocation - Update any addresses to point to the final locations
136 * 4. Serialisation - Order the request with respect to its dependencies
137 * 5. Construction - Construct a request to execute the batchbuffer
138 * 6. Submission (at some point in the future execution)
139 *
140 * Reserving resources for the execbuf is the most complicated phase. We
141 * neither want to have to migrate the object in the address space, nor do
142 * we want to have to update any relocations pointing to this object. Ideally,
143 * we want to leave the object where it is and for all the existing relocations
144 * to match. If the object is given a new address, or if userspace thinks the
145 * object is elsewhere, we have to parse all the relocation entries and update
146 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
147 * all the target addresses in all of its objects match the value in the
148 * relocation entries and that they all match the presumed offsets given by the
149 * list of execbuffer objects. Using this knowledge, we know that if we haven't
150 * moved any buffers, all the relocation entries are valid and we can skip
151 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
152 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
153 *
154 * The addresses written in the objects must match the corresponding
155 * reloc.presumed_offset which in turn must match the corresponding
156 * execobject.offset.
157 *
158 * Any render targets written to in the batch must be flagged with
159 * EXEC_OBJECT_WRITE.
160 *
161 * To avoid stalling, execobject.offset should match the current
162 * address of that object within the active context.
163 *
164 * The reservation is done is multiple phases. First we try and keep any
165 * object already bound in its current location - so as long as meets the
166 * constraints imposed by the new execbuffer. Any object left unbound after the
167 * first pass is then fitted into any available idle space. If an object does
168 * not fit, all objects are removed from the reservation and the process rerun
169 * after sorting the objects into a priority order (more difficult to fit
170 * objects are tried first). Failing that, the entire VM is cleared and we try
171 * to fit the execbuf once last time before concluding that it simply will not
172 * fit.
173 *
174 * A small complication to all of this is that we allow userspace not only to
175 * specify an alignment and a size for the object in the address space, but
176 * we also allow userspace to specify the exact offset. This objects are
177 * simpler to place (the location is known a priori) all we have to do is make
178 * sure the space is available.
179 *
180 * Once all the objects are in place, patching up the buried pointers to point
181 * to the final locations is a fairly simple job of walking over the relocation
182 * entry arrays, looking up the right address and rewriting the value into
183 * the object. Simple! ... The relocation entries are stored in user memory
184 * and so to access them we have to copy them into a local buffer. That copy
185 * has to avoid taking any pagefaults as they may lead back to a GEM object
186 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
187 * the relocation into multiple passes. First we try to do everything within an
188 * atomic context (avoid the pagefaults) which requires that we never wait. If
189 * we detect that we may wait, or if we need to fault, then we have to fallback
190 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
191 * bells yet?) Dropping the mutex means that we lose all the state we have
192 * built up so far for the execbuf and we must reset any global data. However,
193 * we do leave the objects pinned in their final locations - which is a
194 * potential issue for concurrent execbufs. Once we have left the mutex, we can
195 * allocate and copy all the relocation entries into a large array at our
196 * leisure, reacquire the mutex, reclaim all the objects and other state and
197 * then proceed to update any incorrect addresses with the objects.
198 *
199 * As we process the relocation entries, we maintain a record of whether the
200 * object is being written to. Using NORELOC, we expect userspace to provide
201 * this information instead. We also check whether we can skip the relocation
202 * by comparing the expected value inside the relocation entry with the target's
203 * final address. If they differ, we have to map the current object and rewrite
204 * the 4 or 8 byte pointer within.
205 *
206 * Serialising an execbuf is quite simple according to the rules of the GEM
207 * ABI. Execution within each context is ordered by the order of submission.
208 * Writes to any GEM object are in order of submission and are exclusive. Reads
209 * from a GEM object are unordered with respect to other reads, but ordered by
210 * writes. A write submitted after a read cannot occur before the read, and
211 * similarly any read submitted after a write cannot occur before the write.
212 * Writes are ordered between engines such that only one write occurs at any
213 * time (completing any reads beforehand) - using semaphores where available
214 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
215 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
216 * reads before starting, and any read (either using set-domain or pread) must
217 * flush all GPU writes before starting. (Note we only employ a barrier before,
218 * we currently rely on userspace not concurrently starting a new execution
219 * whilst reading or writing to an object. This may be an advantage or not
220 * depending on how much you trust userspace not to shoot themselves in the
221 * foot.) Serialisation may just result in the request being inserted into
222 * a DAG awaiting its turn, but most simple is to wait on the CPU until
223 * all dependencies are resolved.
224 *
225 * After all of that, is just a matter of closing the request and handing it to
226 * the hardware (well, leaving it in a queue to be executed). However, we also
227 * offer the ability for batchbuffers to be run with elevated privileges so
228 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
229 * Before any batch is given extra privileges we first must check that it
230 * contains no nefarious instructions, we check that each instruction is from
231 * our whitelist and all registers are also from an allowed list. We first
232 * copy the user's batchbuffer to a shadow (so that the user doesn't have
233 * access to it, either by the CPU or GPU as we scan it) and then parse each
234 * instruction. If everything is ok, we set a flag telling the hardware to run
235 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
236 */
237
238 struct eb_fence {
239 struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */
240 struct dma_fence *dma_fence;
241 u64 value;
242 struct dma_fence_chain *chain_fence;
243 };
244
245 struct i915_execbuffer {
246 struct drm_i915_private *i915; /** i915 backpointer */
247 struct drm_file *file; /** per-file lookup tables and limits */
248 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
249 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
250 struct eb_vma *vma;
251
252 struct intel_gt *gt; /* gt for the execbuf */
253 struct intel_context *context; /* logical state for the request */
254 struct i915_gem_context *gem_context; /** caller's context */
255
256 /** our requests to build */
257 struct i915_request *requests[MAX_ENGINE_INSTANCE + 1];
258 /** identity of the batch obj/vma */
259 struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1];
260 struct i915_vma *trampoline; /** trampoline used for chaining */
261
262 /** used for excl fence in dma_resv objects when > 1 BB submitted */
263 struct dma_fence *composite_fence;
264
265 /** actual size of execobj[] as we may extend it for the cmdparser */
266 unsigned int buffer_count;
267
268 /* number of batches in execbuf IOCTL */
269 unsigned int num_batches;
270
271 /** list of vma not yet bound during reservation phase */
272 struct list_head unbound;
273
274 /** list of vma that have execobj.relocation_count */
275 struct list_head relocs;
276
277 struct i915_gem_ww_ctx ww;
278
279 /**
280 * Track the most recently used object for relocations, as we
281 * frequently have to perform multiple relocations within the same
282 * obj/page
283 */
284 struct reloc_cache {
285 struct drm_mm_node node; /** temporary GTT binding */
286 unsigned long vaddr; /** Current kmap address */
287 unsigned long page; /** Currently mapped page index */
288 unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */
289 bool use_64bit_reloc : 1;
290 bool has_llc : 1;
291 bool has_fence : 1;
292 bool needs_unfenced : 1;
293 } reloc_cache;
294
295 u64 invalid_flags; /** Set of execobj.flags that are invalid */
296
297 /** Length of batch within object */
298 u64 batch_len[MAX_ENGINE_INSTANCE + 1];
299 u32 batch_start_offset; /** Location within object of batch */
300 u32 batch_flags; /** Flags composed for emit_bb_start() */
301 struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */
302
303 /**
304 * Indicate either the size of the hastable used to resolve
305 * relocation handles, or if negative that we are using a direct
306 * index into the execobj[].
307 */
308 int lut_size;
309 struct hlist_head *buckets; /** ht for relocation handles */
310
311 struct eb_fence *fences;
312 unsigned long num_fences;
313 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
314 struct i915_capture_list *capture_lists[MAX_ENGINE_INSTANCE + 1];
315 #endif
316 };
317
318 static int eb_parse(struct i915_execbuffer *eb);
319 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle);
320 static void eb_unpin_engine(struct i915_execbuffer *eb);
321 static void eb_capture_release(struct i915_execbuffer *eb);
322
eb_use_cmdparser(const struct i915_execbuffer * eb)323 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
324 {
325 return intel_engine_requires_cmd_parser(eb->context->engine) ||
326 (intel_engine_using_cmd_parser(eb->context->engine) &&
327 eb->args->batch_len);
328 }
329
eb_create(struct i915_execbuffer * eb)330 static int eb_create(struct i915_execbuffer *eb)
331 {
332 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
333 unsigned int size = 1 + ilog2(eb->buffer_count);
334
335 /*
336 * Without a 1:1 association between relocation handles and
337 * the execobject[] index, we instead create a hashtable.
338 * We size it dynamically based on available memory, starting
339 * first with 1:1 assocative hash and scaling back until
340 * the allocation succeeds.
341 *
342 * Later on we use a positive lut_size to indicate we are
343 * using this hashtable, and a negative value to indicate a
344 * direct lookup.
345 */
346 do {
347 gfp_t flags;
348
349 /* While we can still reduce the allocation size, don't
350 * raise a warning and allow the allocation to fail.
351 * On the last pass though, we want to try as hard
352 * as possible to perform the allocation and warn
353 * if it fails.
354 */
355 flags = GFP_KERNEL;
356 if (size > 1)
357 flags |= __GFP_NORETRY | __GFP_NOWARN;
358
359 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
360 flags);
361 if (eb->buckets)
362 break;
363 } while (--size);
364
365 if (unlikely(!size))
366 return -ENOMEM;
367
368 eb->lut_size = size;
369 } else {
370 eb->lut_size = -eb->buffer_count;
371 }
372
373 return 0;
374 }
375
376 static bool
eb_vma_misplaced(const struct drm_i915_gem_exec_object2 * entry,const struct i915_vma * vma,unsigned int flags)377 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
378 const struct i915_vma *vma,
379 unsigned int flags)
380 {
381 if (vma->node.size < entry->pad_to_size)
382 return true;
383
384 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
385 return true;
386
387 if (flags & EXEC_OBJECT_PINNED &&
388 vma->node.start != entry->offset)
389 return true;
390
391 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
392 vma->node.start < BATCH_OFFSET_BIAS)
393 return true;
394
395 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
396 (vma->node.start + vma->node.size + 4095) >> 32)
397 return true;
398
399 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
400 !i915_vma_is_map_and_fenceable(vma))
401 return true;
402
403 return false;
404 }
405
eb_pin_flags(const struct drm_i915_gem_exec_object2 * entry,unsigned int exec_flags)406 static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry,
407 unsigned int exec_flags)
408 {
409 u64 pin_flags = 0;
410
411 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
412 pin_flags |= PIN_GLOBAL;
413
414 /*
415 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
416 * limit address to the first 4GBs for unflagged objects.
417 */
418 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
419 pin_flags |= PIN_ZONE_4G;
420
421 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
422 pin_flags |= PIN_MAPPABLE;
423
424 if (exec_flags & EXEC_OBJECT_PINNED)
425 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
426 else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
427 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
428
429 return pin_flags;
430 }
431
432 static inline int
eb_pin_vma(struct i915_execbuffer * eb,const struct drm_i915_gem_exec_object2 * entry,struct eb_vma * ev)433 eb_pin_vma(struct i915_execbuffer *eb,
434 const struct drm_i915_gem_exec_object2 *entry,
435 struct eb_vma *ev)
436 {
437 struct i915_vma *vma = ev->vma;
438 u64 pin_flags;
439 int err;
440
441 if (vma->node.size)
442 pin_flags = vma->node.start;
443 else
444 pin_flags = entry->offset & PIN_OFFSET_MASK;
445
446 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED | PIN_VALIDATE;
447 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
448 pin_flags |= PIN_GLOBAL;
449
450 /* Attempt to reuse the current location if available */
451 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags);
452 if (err == -EDEADLK)
453 return err;
454
455 if (unlikely(err)) {
456 if (entry->flags & EXEC_OBJECT_PINNED)
457 return err;
458
459 /* Failing that pick any _free_ space if suitable */
460 err = i915_vma_pin_ww(vma, &eb->ww,
461 entry->pad_to_size,
462 entry->alignment,
463 eb_pin_flags(entry, ev->flags) |
464 PIN_USER | PIN_NOEVICT | PIN_VALIDATE);
465 if (unlikely(err))
466 return err;
467 }
468
469 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
470 err = i915_vma_pin_fence(vma);
471 if (unlikely(err))
472 return err;
473
474 if (vma->fence)
475 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
476 }
477
478 ev->flags |= __EXEC_OBJECT_HAS_PIN;
479 if (eb_vma_misplaced(entry, vma, ev->flags))
480 return -EBADSLT;
481
482 return 0;
483 }
484
485 static inline void
eb_unreserve_vma(struct eb_vma * ev)486 eb_unreserve_vma(struct eb_vma *ev)
487 {
488 if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE))
489 __i915_vma_unpin_fence(ev->vma);
490
491 ev->flags &= ~__EXEC_OBJECT_RESERVED;
492 }
493
494 static int
eb_validate_vma(struct i915_execbuffer * eb,struct drm_i915_gem_exec_object2 * entry,struct i915_vma * vma)495 eb_validate_vma(struct i915_execbuffer *eb,
496 struct drm_i915_gem_exec_object2 *entry,
497 struct i915_vma *vma)
498 {
499 /* Relocations are disallowed for all platforms after TGL-LP. This
500 * also covers all platforms with local memory.
501 */
502 if (entry->relocation_count &&
503 GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915))
504 return -EINVAL;
505
506 if (unlikely(entry->flags & eb->invalid_flags))
507 return -EINVAL;
508
509 if (unlikely(entry->alignment &&
510 !is_power_of_2_u64(entry->alignment)))
511 return -EINVAL;
512
513 /*
514 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
515 * any non-page-aligned or non-canonical addresses.
516 */
517 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
518 entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
519 return -EINVAL;
520
521 /* pad_to_size was once a reserved field, so sanitize it */
522 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
523 if (unlikely(offset_in_page(entry->pad_to_size)))
524 return -EINVAL;
525 } else {
526 entry->pad_to_size = 0;
527 }
528 /*
529 * From drm_mm perspective address space is continuous,
530 * so from this point we're always using non-canonical
531 * form internally.
532 */
533 entry->offset = gen8_noncanonical_addr(entry->offset);
534
535 if (!eb->reloc_cache.has_fence) {
536 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
537 } else {
538 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
539 eb->reloc_cache.needs_unfenced) &&
540 i915_gem_object_is_tiled(vma->obj))
541 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
542 }
543
544 return 0;
545 }
546
547 static inline bool
is_batch_buffer(struct i915_execbuffer * eb,unsigned int buffer_idx)548 is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx)
549 {
550 return eb->args->flags & I915_EXEC_BATCH_FIRST ?
551 buffer_idx < eb->num_batches :
552 buffer_idx >= eb->args->buffer_count - eb->num_batches;
553 }
554
555 static int
eb_add_vma(struct i915_execbuffer * eb,unsigned int * current_batch,unsigned int i,struct i915_vma * vma)556 eb_add_vma(struct i915_execbuffer *eb,
557 unsigned int *current_batch,
558 unsigned int i,
559 struct i915_vma *vma)
560 {
561 struct drm_i915_private *i915 = eb->i915;
562 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
563 struct eb_vma *ev = &eb->vma[i];
564
565 ev->vma = vma;
566 ev->exec = entry;
567 ev->flags = entry->flags;
568
569 if (eb->lut_size > 0) {
570 ev->handle = entry->handle;
571 hlist_add_head(&ev->node,
572 &eb->buckets[hash_32(entry->handle,
573 eb->lut_size)]);
574 }
575
576 if (entry->relocation_count)
577 list_add_tail(&ev->reloc_link, &eb->relocs);
578
579 /*
580 * SNA is doing fancy tricks with compressing batch buffers, which leads
581 * to negative relocation deltas. Usually that works out ok since the
582 * relocate address is still positive, except when the batch is placed
583 * very low in the GTT. Ensure this doesn't happen.
584 *
585 * Note that actual hangs have only been observed on gen7, but for
586 * paranoia do it everywhere.
587 */
588 if (is_batch_buffer(eb, i)) {
589 if (entry->relocation_count &&
590 !(ev->flags & EXEC_OBJECT_PINNED))
591 ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
592 if (eb->reloc_cache.has_fence)
593 ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
594
595 eb->batches[*current_batch] = ev;
596
597 if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) {
598 drm_dbg(&i915->drm,
599 "Attempting to use self-modifying batch buffer\n");
600 return -EINVAL;
601 }
602
603 if (range_overflows_t(u64,
604 eb->batch_start_offset,
605 eb->args->batch_len,
606 ev->vma->size)) {
607 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
608 return -EINVAL;
609 }
610
611 if (eb->args->batch_len == 0)
612 eb->batch_len[*current_batch] = ev->vma->size -
613 eb->batch_start_offset;
614 else
615 eb->batch_len[*current_batch] = eb->args->batch_len;
616 if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */
617 drm_dbg(&i915->drm, "Invalid batch length\n");
618 return -EINVAL;
619 }
620
621 ++*current_batch;
622 }
623
624 return 0;
625 }
626
use_cpu_reloc(const struct reloc_cache * cache,const struct drm_i915_gem_object * obj)627 static inline int use_cpu_reloc(const struct reloc_cache *cache,
628 const struct drm_i915_gem_object *obj)
629 {
630 if (!i915_gem_object_has_struct_page(obj))
631 return false;
632
633 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
634 return true;
635
636 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
637 return false;
638
639 return (cache->has_llc ||
640 obj->cache_dirty ||
641 obj->cache_level != I915_CACHE_NONE);
642 }
643
eb_reserve_vma(struct i915_execbuffer * eb,struct eb_vma * ev,u64 pin_flags)644 static int eb_reserve_vma(struct i915_execbuffer *eb,
645 struct eb_vma *ev,
646 u64 pin_flags)
647 {
648 struct drm_i915_gem_exec_object2 *entry = ev->exec;
649 struct i915_vma *vma = ev->vma;
650 int err;
651
652 if (drm_mm_node_allocated(&vma->node) &&
653 eb_vma_misplaced(entry, vma, ev->flags)) {
654 err = i915_vma_unbind(vma);
655 if (err)
656 return err;
657 }
658
659 err = i915_vma_pin_ww(vma, &eb->ww,
660 entry->pad_to_size, entry->alignment,
661 eb_pin_flags(entry, ev->flags) | pin_flags);
662 if (err)
663 return err;
664
665 if (entry->offset != vma->node.start) {
666 entry->offset = vma->node.start | UPDATE;
667 eb->args->flags |= __EXEC_HAS_RELOC;
668 }
669
670 if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
671 err = i915_vma_pin_fence(vma);
672 if (unlikely(err))
673 return err;
674
675 if (vma->fence)
676 ev->flags |= __EXEC_OBJECT_HAS_FENCE;
677 }
678
679 ev->flags |= __EXEC_OBJECT_HAS_PIN;
680 GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
681
682 return 0;
683 }
684
eb_unbind(struct i915_execbuffer * eb,bool force)685 static bool eb_unbind(struct i915_execbuffer *eb, bool force)
686 {
687 const unsigned int count = eb->buffer_count;
688 unsigned int i;
689 struct list_head last;
690 bool unpinned = false;
691
692 /* Resort *all* the objects into priority order */
693 INIT_LIST_HEAD(&eb->unbound);
694 INIT_LIST_HEAD(&last);
695
696 for (i = 0; i < count; i++) {
697 struct eb_vma *ev = &eb->vma[i];
698 unsigned int flags = ev->flags;
699
700 if (!force && flags & EXEC_OBJECT_PINNED &&
701 flags & __EXEC_OBJECT_HAS_PIN)
702 continue;
703
704 unpinned = true;
705 eb_unreserve_vma(ev);
706
707 if (flags & EXEC_OBJECT_PINNED)
708 /* Pinned must have their slot */
709 list_add(&ev->bind_link, &eb->unbound);
710 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
711 /* Map require the lowest 256MiB (aperture) */
712 list_add_tail(&ev->bind_link, &eb->unbound);
713 else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
714 /* Prioritise 4GiB region for restricted bo */
715 list_add(&ev->bind_link, &last);
716 else
717 list_add_tail(&ev->bind_link, &last);
718 }
719
720 list_splice_tail(&last, &eb->unbound);
721 return unpinned;
722 }
723
eb_reserve(struct i915_execbuffer * eb)724 static int eb_reserve(struct i915_execbuffer *eb)
725 {
726 struct eb_vma *ev;
727 unsigned int pass;
728 int err = 0;
729 bool unpinned;
730
731 /*
732 * Attempt to pin all of the buffers into the GTT.
733 * This is done in 2 phases:
734 *
735 * 1. Unbind all objects that do not match the GTT constraints for
736 * the execbuffer (fenceable, mappable, alignment etc).
737 * 2. Bind new objects.
738 *
739 * This avoid unnecessary unbinding of later objects in order to make
740 * room for the earlier objects *unless* we need to defragment.
741 *
742 * Defragmenting is skipped if all objects are pinned at a fixed location.
743 */
744 for (pass = 0; pass <= 2; pass++) {
745 int pin_flags = PIN_USER | PIN_VALIDATE;
746
747 if (pass == 0)
748 pin_flags |= PIN_NONBLOCK;
749
750 if (pass >= 1)
751 unpinned = eb_unbind(eb, pass == 2);
752
753 if (pass == 2) {
754 err = mutex_lock_interruptible(&eb->context->vm->mutex);
755 if (!err) {
756 err = i915_gem_evict_vm(eb->context->vm, &eb->ww);
757 mutex_unlock(&eb->context->vm->mutex);
758 }
759 if (err)
760 return err;
761 }
762
763 list_for_each_entry(ev, &eb->unbound, bind_link) {
764 err = eb_reserve_vma(eb, ev, pin_flags);
765 if (err)
766 break;
767 }
768
769 if (err != -ENOSPC)
770 break;
771 }
772
773 return err;
774 }
775
eb_select_context(struct i915_execbuffer * eb)776 static int eb_select_context(struct i915_execbuffer *eb)
777 {
778 struct i915_gem_context *ctx;
779
780 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
781 if (unlikely(IS_ERR(ctx)))
782 return PTR_ERR(ctx);
783
784 eb->gem_context = ctx;
785 if (i915_gem_context_has_full_ppgtt(ctx))
786 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
787
788 return 0;
789 }
790
__eb_add_lut(struct i915_execbuffer * eb,u32 handle,struct i915_vma * vma)791 static int __eb_add_lut(struct i915_execbuffer *eb,
792 u32 handle, struct i915_vma *vma)
793 {
794 struct i915_gem_context *ctx = eb->gem_context;
795 struct i915_lut_handle *lut;
796 int err;
797
798 lut = i915_lut_handle_alloc();
799 if (unlikely(!lut))
800 return -ENOMEM;
801
802 i915_vma_get(vma);
803 if (!atomic_fetch_inc(&vma->open_count))
804 i915_vma_reopen(vma);
805 lut->handle = handle;
806 lut->ctx = ctx;
807
808 /* Check that the context hasn't been closed in the meantime */
809 err = -EINTR;
810 if (!mutex_lock_interruptible(&ctx->lut_mutex)) {
811 if (likely(!i915_gem_context_is_closed(ctx)))
812 err = radix_tree_insert(&ctx->handles_vma, handle, vma);
813 else
814 err = -ENOENT;
815 if (err == 0) { /* And nor has this handle */
816 struct drm_i915_gem_object *obj = vma->obj;
817
818 spin_lock(&obj->lut_lock);
819 if (idr_find(&eb->file->object_idr, handle) == obj) {
820 list_add(&lut->obj_link, &obj->lut_list);
821 } else {
822 radix_tree_delete(&ctx->handles_vma, handle);
823 err = -ENOENT;
824 }
825 spin_unlock(&obj->lut_lock);
826 }
827 mutex_unlock(&ctx->lut_mutex);
828 }
829 if (unlikely(err))
830 goto err;
831
832 return 0;
833
834 err:
835 i915_vma_close(vma);
836 i915_vma_put(vma);
837 i915_lut_handle_free(lut);
838 return err;
839 }
840
eb_lookup_vma(struct i915_execbuffer * eb,u32 handle)841 static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle)
842 {
843 struct i915_address_space *vm = eb->context->vm;
844
845 do {
846 struct drm_i915_gem_object *obj;
847 struct i915_vma *vma;
848 int err;
849
850 rcu_read_lock();
851 vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle);
852 if (likely(vma && vma->vm == vm))
853 vma = i915_vma_tryget(vma);
854 rcu_read_unlock();
855 if (likely(vma))
856 return vma;
857
858 obj = i915_gem_object_lookup(eb->file, handle);
859 if (unlikely(!obj))
860 return ERR_PTR(-ENOENT);
861
862 /*
863 * If the user has opted-in for protected-object tracking, make
864 * sure the object encryption can be used.
865 * We only need to do this when the object is first used with
866 * this context, because the context itself will be banned when
867 * the protected objects become invalid.
868 */
869 if (i915_gem_context_uses_protected_content(eb->gem_context) &&
870 i915_gem_object_is_protected(obj)) {
871 err = intel_pxp_key_check(&vm->gt->pxp, obj, true);
872 if (err) {
873 i915_gem_object_put(obj);
874 return ERR_PTR(err);
875 }
876 }
877
878 vma = i915_vma_instance(obj, vm, NULL);
879 if (IS_ERR(vma)) {
880 i915_gem_object_put(obj);
881 return vma;
882 }
883
884 err = __eb_add_lut(eb, handle, vma);
885 if (likely(!err))
886 return vma;
887
888 i915_gem_object_put(obj);
889 if (err != -EEXIST)
890 return ERR_PTR(err);
891 } while (1);
892 }
893
eb_lookup_vmas(struct i915_execbuffer * eb)894 static int eb_lookup_vmas(struct i915_execbuffer *eb)
895 {
896 unsigned int i, current_batch = 0;
897 int err = 0;
898
899 INIT_LIST_HEAD(&eb->relocs);
900
901 for (i = 0; i < eb->buffer_count; i++) {
902 struct i915_vma *vma;
903
904 vma = eb_lookup_vma(eb, eb->exec[i].handle);
905 if (IS_ERR(vma)) {
906 err = PTR_ERR(vma);
907 goto err;
908 }
909
910 err = eb_validate_vma(eb, &eb->exec[i], vma);
911 if (unlikely(err)) {
912 i915_vma_put(vma);
913 goto err;
914 }
915
916 err = eb_add_vma(eb, ¤t_batch, i, vma);
917 if (err)
918 return err;
919
920 if (i915_gem_object_is_userptr(vma->obj)) {
921 err = i915_gem_object_userptr_submit_init(vma->obj);
922 if (err) {
923 if (i + 1 < eb->buffer_count) {
924 /*
925 * Execbuffer code expects last vma entry to be NULL,
926 * since we already initialized this entry,
927 * set the next value to NULL or we mess up
928 * cleanup handling.
929 */
930 eb->vma[i + 1].vma = NULL;
931 }
932
933 return err;
934 }
935
936 eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT;
937 eb->args->flags |= __EXEC_USERPTR_USED;
938 }
939 }
940
941 return 0;
942
943 err:
944 eb->vma[i].vma = NULL;
945 return err;
946 }
947
eb_lock_vmas(struct i915_execbuffer * eb)948 static int eb_lock_vmas(struct i915_execbuffer *eb)
949 {
950 unsigned int i;
951 int err;
952
953 for (i = 0; i < eb->buffer_count; i++) {
954 struct eb_vma *ev = &eb->vma[i];
955 struct i915_vma *vma = ev->vma;
956
957 err = i915_gem_object_lock(vma->obj, &eb->ww);
958 if (err)
959 return err;
960 }
961
962 return 0;
963 }
964
eb_validate_vmas(struct i915_execbuffer * eb)965 static int eb_validate_vmas(struct i915_execbuffer *eb)
966 {
967 unsigned int i;
968 int err;
969
970 INIT_LIST_HEAD(&eb->unbound);
971
972 err = eb_lock_vmas(eb);
973 if (err)
974 return err;
975
976 for (i = 0; i < eb->buffer_count; i++) {
977 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
978 struct eb_vma *ev = &eb->vma[i];
979 struct i915_vma *vma = ev->vma;
980
981 err = eb_pin_vma(eb, entry, ev);
982 if (err == -EDEADLK)
983 return err;
984
985 if (!err) {
986 if (entry->offset != vma->node.start) {
987 entry->offset = vma->node.start | UPDATE;
988 eb->args->flags |= __EXEC_HAS_RELOC;
989 }
990 } else {
991 eb_unreserve_vma(ev);
992
993 list_add_tail(&ev->bind_link, &eb->unbound);
994 if (drm_mm_node_allocated(&vma->node)) {
995 err = i915_vma_unbind(vma);
996 if (err)
997 return err;
998 }
999 }
1000
1001 /* Reserve enough slots to accommodate composite fences */
1002 err = dma_resv_reserve_fences(vma->obj->base.resv, eb->num_batches);
1003 if (err)
1004 return err;
1005
1006 GEM_BUG_ON(drm_mm_node_allocated(&vma->node) &&
1007 eb_vma_misplaced(&eb->exec[i], vma, ev->flags));
1008 }
1009
1010 if (!list_empty(&eb->unbound))
1011 return eb_reserve(eb);
1012
1013 return 0;
1014 }
1015
1016 static struct eb_vma *
eb_get_vma(const struct i915_execbuffer * eb,unsigned long handle)1017 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
1018 {
1019 if (eb->lut_size < 0) {
1020 if (handle >= -eb->lut_size)
1021 return NULL;
1022 return &eb->vma[handle];
1023 } else {
1024 struct hlist_head *head;
1025 struct eb_vma *ev;
1026
1027 head = &eb->buckets[hash_32(handle, eb->lut_size)];
1028 hlist_for_each_entry(ev, head, node) {
1029 if (ev->handle == handle)
1030 return ev;
1031 }
1032 return NULL;
1033 }
1034 }
1035
eb_release_vmas(struct i915_execbuffer * eb,bool final)1036 static void eb_release_vmas(struct i915_execbuffer *eb, bool final)
1037 {
1038 const unsigned int count = eb->buffer_count;
1039 unsigned int i;
1040
1041 for (i = 0; i < count; i++) {
1042 struct eb_vma *ev = &eb->vma[i];
1043 struct i915_vma *vma = ev->vma;
1044
1045 if (!vma)
1046 break;
1047
1048 eb_unreserve_vma(ev);
1049
1050 if (final)
1051 i915_vma_put(vma);
1052 }
1053
1054 eb_capture_release(eb);
1055 eb_unpin_engine(eb);
1056 }
1057
eb_destroy(const struct i915_execbuffer * eb)1058 static void eb_destroy(const struct i915_execbuffer *eb)
1059 {
1060 if (eb->lut_size > 0)
1061 kfree(eb->buckets);
1062 }
1063
1064 static inline u64
relocation_target(const struct drm_i915_gem_relocation_entry * reloc,const struct i915_vma * target)1065 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
1066 const struct i915_vma *target)
1067 {
1068 return gen8_canonical_addr((int)reloc->delta + target->node.start);
1069 }
1070
reloc_cache_init(struct reloc_cache * cache,struct drm_i915_private * i915)1071 static void reloc_cache_init(struct reloc_cache *cache,
1072 struct drm_i915_private *i915)
1073 {
1074 cache->page = -1;
1075 cache->vaddr = 0;
1076 /* Must be a variable in the struct to allow GCC to unroll. */
1077 cache->graphics_ver = GRAPHICS_VER(i915);
1078 cache->has_llc = HAS_LLC(i915);
1079 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
1080 cache->has_fence = cache->graphics_ver < 4;
1081 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
1082 cache->node.flags = 0;
1083 }
1084
unmask_page(unsigned long p)1085 static inline void *unmask_page(unsigned long p)
1086 {
1087 return (void *)(uintptr_t)(p & PAGE_MASK);
1088 }
1089
unmask_flags(unsigned long p)1090 static inline unsigned int unmask_flags(unsigned long p)
1091 {
1092 return p & ~PAGE_MASK;
1093 }
1094
1095 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
1096
cache_to_ggtt(struct reloc_cache * cache)1097 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
1098 {
1099 struct drm_i915_private *i915 =
1100 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
1101 return to_gt(i915)->ggtt;
1102 }
1103
reloc_cache_unmap(struct reloc_cache * cache)1104 static void reloc_cache_unmap(struct reloc_cache *cache)
1105 {
1106 void *vaddr;
1107
1108 if (!cache->vaddr)
1109 return;
1110
1111 vaddr = unmask_page(cache->vaddr);
1112 if (cache->vaddr & KMAP)
1113 kunmap_atomic(vaddr);
1114 else
1115 io_mapping_unmap_atomic((void __iomem *)vaddr);
1116 }
1117
reloc_cache_remap(struct reloc_cache * cache,struct drm_i915_gem_object * obj)1118 static void reloc_cache_remap(struct reloc_cache *cache,
1119 struct drm_i915_gem_object *obj)
1120 {
1121 void *vaddr;
1122
1123 if (!cache->vaddr)
1124 return;
1125
1126 if (cache->vaddr & KMAP) {
1127 struct page *page = i915_gem_object_get_page(obj, cache->page);
1128
1129 vaddr = kmap_atomic(page);
1130 cache->vaddr = unmask_flags(cache->vaddr) |
1131 (unsigned long)vaddr;
1132 } else {
1133 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1134 unsigned long offset;
1135
1136 offset = cache->node.start;
1137 if (!drm_mm_node_allocated(&cache->node))
1138 offset += cache->page << PAGE_SHIFT;
1139
1140 cache->vaddr = (unsigned long)
1141 io_mapping_map_atomic_wc(&ggtt->iomap, offset);
1142 }
1143 }
1144
reloc_cache_reset(struct reloc_cache * cache,struct i915_execbuffer * eb)1145 static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb)
1146 {
1147 void *vaddr;
1148
1149 if (!cache->vaddr)
1150 return;
1151
1152 vaddr = unmask_page(cache->vaddr);
1153 if (cache->vaddr & KMAP) {
1154 struct drm_i915_gem_object *obj =
1155 (struct drm_i915_gem_object *)cache->node.mm;
1156 if (cache->vaddr & CLFLUSH_AFTER)
1157 mb();
1158
1159 kunmap_atomic(vaddr);
1160 i915_gem_object_finish_access(obj);
1161 } else {
1162 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1163
1164 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1165 io_mapping_unmap_atomic((void __iomem *)vaddr);
1166
1167 if (drm_mm_node_allocated(&cache->node)) {
1168 ggtt->vm.clear_range(&ggtt->vm,
1169 cache->node.start,
1170 cache->node.size);
1171 mutex_lock(&ggtt->vm.mutex);
1172 drm_mm_remove_node(&cache->node);
1173 mutex_unlock(&ggtt->vm.mutex);
1174 } else {
1175 i915_vma_unpin((struct i915_vma *)cache->node.mm);
1176 }
1177 }
1178
1179 cache->vaddr = 0;
1180 cache->page = -1;
1181 }
1182
reloc_kmap(struct drm_i915_gem_object * obj,struct reloc_cache * cache,unsigned long pageno)1183 static void *reloc_kmap(struct drm_i915_gem_object *obj,
1184 struct reloc_cache *cache,
1185 unsigned long pageno)
1186 {
1187 void *vaddr;
1188 struct page *page;
1189
1190 if (cache->vaddr) {
1191 kunmap_atomic(unmask_page(cache->vaddr));
1192 } else {
1193 unsigned int flushes;
1194 int err;
1195
1196 err = i915_gem_object_prepare_write(obj, &flushes);
1197 if (err)
1198 return ERR_PTR(err);
1199
1200 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
1201 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
1202
1203 cache->vaddr = flushes | KMAP;
1204 cache->node.mm = (void *)obj;
1205 if (flushes)
1206 mb();
1207 }
1208
1209 page = i915_gem_object_get_page(obj, pageno);
1210 if (!obj->mm.dirty)
1211 set_page_dirty(page);
1212
1213 vaddr = kmap_atomic(page);
1214 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
1215 cache->page = pageno;
1216
1217 return vaddr;
1218 }
1219
reloc_iomap(struct i915_vma * batch,struct i915_execbuffer * eb,unsigned long page)1220 static void *reloc_iomap(struct i915_vma *batch,
1221 struct i915_execbuffer *eb,
1222 unsigned long page)
1223 {
1224 struct drm_i915_gem_object *obj = batch->obj;
1225 struct reloc_cache *cache = &eb->reloc_cache;
1226 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
1227 unsigned long offset;
1228 void *vaddr;
1229
1230 if (cache->vaddr) {
1231 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
1232 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
1233 } else {
1234 struct i915_vma *vma = ERR_PTR(-ENODEV);
1235 int err;
1236
1237 if (i915_gem_object_is_tiled(obj))
1238 return ERR_PTR(-EINVAL);
1239
1240 if (use_cpu_reloc(cache, obj))
1241 return NULL;
1242
1243 err = i915_gem_object_set_to_gtt_domain(obj, true);
1244 if (err)
1245 return ERR_PTR(err);
1246
1247 /*
1248 * i915_gem_object_ggtt_pin_ww may attempt to remove the batch
1249 * VMA from the object list because we no longer pin.
1250 *
1251 * Only attempt to pin the batch buffer to ggtt if the current batch
1252 * is not inside ggtt, or the batch buffer is not misplaced.
1253 */
1254 if (!i915_is_ggtt(batch->vm) ||
1255 !i915_vma_misplaced(batch, 0, 0, PIN_MAPPABLE)) {
1256 vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0,
1257 PIN_MAPPABLE |
1258 PIN_NONBLOCK /* NOWARN */ |
1259 PIN_NOEVICT);
1260 }
1261
1262 if (vma == ERR_PTR(-EDEADLK))
1263 return vma;
1264
1265 if (IS_ERR(vma)) {
1266 memset(&cache->node, 0, sizeof(cache->node));
1267 mutex_lock(&ggtt->vm.mutex);
1268 err = drm_mm_insert_node_in_range
1269 (&ggtt->vm.mm, &cache->node,
1270 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1271 0, ggtt->mappable_end,
1272 DRM_MM_INSERT_LOW);
1273 mutex_unlock(&ggtt->vm.mutex);
1274 if (err) /* no inactive aperture space, use cpu reloc */
1275 return NULL;
1276 } else {
1277 cache->node.start = vma->node.start;
1278 cache->node.mm = (void *)vma;
1279 }
1280 }
1281
1282 offset = cache->node.start;
1283 if (drm_mm_node_allocated(&cache->node)) {
1284 ggtt->vm.insert_page(&ggtt->vm,
1285 i915_gem_object_get_dma_address(obj, page),
1286 offset, I915_CACHE_NONE, 0);
1287 } else {
1288 offset += page << PAGE_SHIFT;
1289 }
1290
1291 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1292 offset);
1293 cache->page = page;
1294 cache->vaddr = (unsigned long)vaddr;
1295
1296 return vaddr;
1297 }
1298
reloc_vaddr(struct i915_vma * vma,struct i915_execbuffer * eb,unsigned long page)1299 static void *reloc_vaddr(struct i915_vma *vma,
1300 struct i915_execbuffer *eb,
1301 unsigned long page)
1302 {
1303 struct reloc_cache *cache = &eb->reloc_cache;
1304 void *vaddr;
1305
1306 if (cache->page == page) {
1307 vaddr = unmask_page(cache->vaddr);
1308 } else {
1309 vaddr = NULL;
1310 if ((cache->vaddr & KMAP) == 0)
1311 vaddr = reloc_iomap(vma, eb, page);
1312 if (!vaddr)
1313 vaddr = reloc_kmap(vma->obj, cache, page);
1314 }
1315
1316 return vaddr;
1317 }
1318
clflush_write32(u32 * addr,u32 value,unsigned int flushes)1319 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1320 {
1321 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1322 if (flushes & CLFLUSH_BEFORE)
1323 drm_clflush_virt_range(addr, sizeof(*addr));
1324
1325 *addr = value;
1326
1327 /*
1328 * Writes to the same cacheline are serialised by the CPU
1329 * (including clflush). On the write path, we only require
1330 * that it hits memory in an orderly fashion and place
1331 * mb barriers at the start and end of the relocation phase
1332 * to ensure ordering of clflush wrt to the system.
1333 */
1334 if (flushes & CLFLUSH_AFTER)
1335 drm_clflush_virt_range(addr, sizeof(*addr));
1336 } else
1337 *addr = value;
1338 }
1339
1340 static u64
relocate_entry(struct i915_vma * vma,const struct drm_i915_gem_relocation_entry * reloc,struct i915_execbuffer * eb,const struct i915_vma * target)1341 relocate_entry(struct i915_vma *vma,
1342 const struct drm_i915_gem_relocation_entry *reloc,
1343 struct i915_execbuffer *eb,
1344 const struct i915_vma *target)
1345 {
1346 u64 target_addr = relocation_target(reloc, target);
1347 u64 offset = reloc->offset;
1348 bool wide = eb->reloc_cache.use_64bit_reloc;
1349 void *vaddr;
1350
1351 repeat:
1352 vaddr = reloc_vaddr(vma, eb,
1353 offset >> PAGE_SHIFT);
1354 if (IS_ERR(vaddr))
1355 return PTR_ERR(vaddr);
1356
1357 GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32)));
1358 clflush_write32(vaddr + offset_in_page(offset),
1359 lower_32_bits(target_addr),
1360 eb->reloc_cache.vaddr);
1361
1362 if (wide) {
1363 offset += sizeof(u32);
1364 target_addr >>= 32;
1365 wide = false;
1366 goto repeat;
1367 }
1368
1369 return target->node.start | UPDATE;
1370 }
1371
1372 static u64
eb_relocate_entry(struct i915_execbuffer * eb,struct eb_vma * ev,const struct drm_i915_gem_relocation_entry * reloc)1373 eb_relocate_entry(struct i915_execbuffer *eb,
1374 struct eb_vma *ev,
1375 const struct drm_i915_gem_relocation_entry *reloc)
1376 {
1377 struct drm_i915_private *i915 = eb->i915;
1378 struct eb_vma *target;
1379 int err;
1380
1381 /* we've already hold a reference to all valid objects */
1382 target = eb_get_vma(eb, reloc->target_handle);
1383 if (unlikely(!target))
1384 return -ENOENT;
1385
1386 /* Validate that the target is in a valid r/w GPU domain */
1387 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1388 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1389 "target %d offset %d "
1390 "read %08x write %08x",
1391 reloc->target_handle,
1392 (int) reloc->offset,
1393 reloc->read_domains,
1394 reloc->write_domain);
1395 return -EINVAL;
1396 }
1397 if (unlikely((reloc->write_domain | reloc->read_domains)
1398 & ~I915_GEM_GPU_DOMAINS)) {
1399 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1400 "target %d offset %d "
1401 "read %08x write %08x",
1402 reloc->target_handle,
1403 (int) reloc->offset,
1404 reloc->read_domains,
1405 reloc->write_domain);
1406 return -EINVAL;
1407 }
1408
1409 if (reloc->write_domain) {
1410 target->flags |= EXEC_OBJECT_WRITE;
1411
1412 /*
1413 * Sandybridge PPGTT errata: We need a global gtt mapping
1414 * for MI and pipe_control writes because the gpu doesn't
1415 * properly redirect them through the ppgtt for non_secure
1416 * batchbuffers.
1417 */
1418 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1419 GRAPHICS_VER(eb->i915) == 6 &&
1420 !i915_vma_is_bound(target->vma, I915_VMA_GLOBAL_BIND)) {
1421 struct i915_vma *vma = target->vma;
1422
1423 reloc_cache_unmap(&eb->reloc_cache);
1424 mutex_lock(&vma->vm->mutex);
1425 err = i915_vma_bind(target->vma,
1426 target->vma->obj->cache_level,
1427 PIN_GLOBAL, NULL, NULL);
1428 mutex_unlock(&vma->vm->mutex);
1429 reloc_cache_remap(&eb->reloc_cache, ev->vma->obj);
1430 if (err)
1431 return err;
1432 }
1433 }
1434
1435 /*
1436 * If the relocation already has the right value in it, no
1437 * more work needs to be done.
1438 */
1439 if (!DBG_FORCE_RELOC &&
1440 gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1441 return 0;
1442
1443 /* Check that the relocation address is valid... */
1444 if (unlikely(reloc->offset >
1445 ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1446 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1447 "target %d offset %d size %d.\n",
1448 reloc->target_handle,
1449 (int)reloc->offset,
1450 (int)ev->vma->size);
1451 return -EINVAL;
1452 }
1453 if (unlikely(reloc->offset & 3)) {
1454 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1455 "target %d offset %d.\n",
1456 reloc->target_handle,
1457 (int)reloc->offset);
1458 return -EINVAL;
1459 }
1460
1461 /*
1462 * If we write into the object, we need to force the synchronisation
1463 * barrier, either with an asynchronous clflush or if we executed the
1464 * patching using the GPU (though that should be serialised by the
1465 * timeline). To be completely sure, and since we are required to
1466 * do relocations we are already stalling, disable the user's opt
1467 * out of our synchronisation.
1468 */
1469 ev->flags &= ~EXEC_OBJECT_ASYNC;
1470
1471 /* and update the user's relocation entry */
1472 return relocate_entry(ev->vma, reloc, eb, target->vma);
1473 }
1474
eb_relocate_vma(struct i915_execbuffer * eb,struct eb_vma * ev)1475 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1476 {
1477 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1478 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1479 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1480 struct drm_i915_gem_relocation_entry __user *urelocs =
1481 u64_to_user_ptr(entry->relocs_ptr);
1482 unsigned long remain = entry->relocation_count;
1483
1484 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1485 return -EINVAL;
1486
1487 /*
1488 * We must check that the entire relocation array is safe
1489 * to read. However, if the array is not writable the user loses
1490 * the updated relocation values.
1491 */
1492 if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs))))
1493 return -EFAULT;
1494
1495 do {
1496 struct drm_i915_gem_relocation_entry *r = stack;
1497 unsigned int count =
1498 min_t(unsigned long, remain, ARRAY_SIZE(stack));
1499 unsigned int copied;
1500
1501 /*
1502 * This is the fast path and we cannot handle a pagefault
1503 * whilst holding the struct mutex lest the user pass in the
1504 * relocations contained within a mmaped bo. For in such a case
1505 * we, the page fault handler would call i915_gem_fault() and
1506 * we would try to acquire the struct mutex again. Obviously
1507 * this is bad and so lockdep complains vehemently.
1508 */
1509 pagefault_disable();
1510 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1511 pagefault_enable();
1512 if (unlikely(copied)) {
1513 remain = -EFAULT;
1514 goto out;
1515 }
1516
1517 remain -= count;
1518 do {
1519 u64 offset = eb_relocate_entry(eb, ev, r);
1520
1521 if (likely(offset == 0)) {
1522 } else if ((s64)offset < 0) {
1523 remain = (int)offset;
1524 goto out;
1525 } else {
1526 /*
1527 * Note that reporting an error now
1528 * leaves everything in an inconsistent
1529 * state as we have *already* changed
1530 * the relocation value inside the
1531 * object. As we have not changed the
1532 * reloc.presumed_offset or will not
1533 * change the execobject.offset, on the
1534 * call we may not rewrite the value
1535 * inside the object, leaving it
1536 * dangling and causing a GPU hang. Unless
1537 * userspace dynamically rebuilds the
1538 * relocations on each execbuf rather than
1539 * presume a static tree.
1540 *
1541 * We did previously check if the relocations
1542 * were writable (access_ok), an error now
1543 * would be a strange race with mprotect,
1544 * having already demonstrated that we
1545 * can read from this userspace address.
1546 */
1547 offset = gen8_canonical_addr(offset & ~UPDATE);
1548 __put_user(offset,
1549 &urelocs[r - stack].presumed_offset);
1550 }
1551 } while (r++, --count);
1552 urelocs += ARRAY_SIZE(stack);
1553 } while (remain);
1554 out:
1555 reloc_cache_reset(&eb->reloc_cache, eb);
1556 return remain;
1557 }
1558
1559 static int
eb_relocate_vma_slow(struct i915_execbuffer * eb,struct eb_vma * ev)1560 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev)
1561 {
1562 const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1563 struct drm_i915_gem_relocation_entry *relocs =
1564 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1565 unsigned int i;
1566 int err;
1567
1568 for (i = 0; i < entry->relocation_count; i++) {
1569 u64 offset = eb_relocate_entry(eb, ev, &relocs[i]);
1570
1571 if ((s64)offset < 0) {
1572 err = (int)offset;
1573 goto err;
1574 }
1575 }
1576 err = 0;
1577 err:
1578 reloc_cache_reset(&eb->reloc_cache, eb);
1579 return err;
1580 }
1581
check_relocations(const struct drm_i915_gem_exec_object2 * entry)1582 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1583 {
1584 const char __user *addr, *end;
1585 unsigned long size;
1586 char __maybe_unused c;
1587
1588 size = entry->relocation_count;
1589 if (size == 0)
1590 return 0;
1591
1592 if (size > N_RELOC(ULONG_MAX))
1593 return -EINVAL;
1594
1595 addr = u64_to_user_ptr(entry->relocs_ptr);
1596 size *= sizeof(struct drm_i915_gem_relocation_entry);
1597 if (!access_ok(addr, size))
1598 return -EFAULT;
1599
1600 end = addr + size;
1601 for (; addr < end; addr += PAGE_SIZE) {
1602 int err = __get_user(c, addr);
1603 if (err)
1604 return err;
1605 }
1606 return __get_user(c, end - 1);
1607 }
1608
eb_copy_relocations(const struct i915_execbuffer * eb)1609 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1610 {
1611 struct drm_i915_gem_relocation_entry *relocs;
1612 const unsigned int count = eb->buffer_count;
1613 unsigned int i;
1614 int err;
1615
1616 for (i = 0; i < count; i++) {
1617 const unsigned int nreloc = eb->exec[i].relocation_count;
1618 struct drm_i915_gem_relocation_entry __user *urelocs;
1619 unsigned long size;
1620 unsigned long copied;
1621
1622 if (nreloc == 0)
1623 continue;
1624
1625 err = check_relocations(&eb->exec[i]);
1626 if (err)
1627 goto err;
1628
1629 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1630 size = nreloc * sizeof(*relocs);
1631
1632 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1633 if (!relocs) {
1634 err = -ENOMEM;
1635 goto err;
1636 }
1637
1638 /* copy_from_user is limited to < 4GiB */
1639 copied = 0;
1640 do {
1641 unsigned int len =
1642 min_t(u64, BIT_ULL(31), size - copied);
1643
1644 if (__copy_from_user((char *)relocs + copied,
1645 (char __user *)urelocs + copied,
1646 len))
1647 goto end;
1648
1649 copied += len;
1650 } while (copied < size);
1651
1652 /*
1653 * As we do not update the known relocation offsets after
1654 * relocating (due to the complexities in lock handling),
1655 * we need to mark them as invalid now so that we force the
1656 * relocation processing next time. Just in case the target
1657 * object is evicted and then rebound into its old
1658 * presumed_offset before the next execbuffer - if that
1659 * happened we would make the mistake of assuming that the
1660 * relocations were valid.
1661 */
1662 if (!user_access_begin(urelocs, size))
1663 goto end;
1664
1665 for (copied = 0; copied < nreloc; copied++)
1666 unsafe_put_user(-1,
1667 &urelocs[copied].presumed_offset,
1668 end_user);
1669 user_access_end();
1670
1671 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1672 }
1673
1674 return 0;
1675
1676 end_user:
1677 user_access_end();
1678 end:
1679 kvfree(relocs);
1680 err = -EFAULT;
1681 err:
1682 while (i--) {
1683 relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1684 if (eb->exec[i].relocation_count)
1685 kvfree(relocs);
1686 }
1687 return err;
1688 }
1689
eb_prefault_relocations(const struct i915_execbuffer * eb)1690 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1691 {
1692 const unsigned int count = eb->buffer_count;
1693 unsigned int i;
1694
1695 for (i = 0; i < count; i++) {
1696 int err;
1697
1698 err = check_relocations(&eb->exec[i]);
1699 if (err)
1700 return err;
1701 }
1702
1703 return 0;
1704 }
1705
eb_reinit_userptr(struct i915_execbuffer * eb)1706 static int eb_reinit_userptr(struct i915_execbuffer *eb)
1707 {
1708 const unsigned int count = eb->buffer_count;
1709 unsigned int i;
1710 int ret;
1711
1712 if (likely(!(eb->args->flags & __EXEC_USERPTR_USED)))
1713 return 0;
1714
1715 for (i = 0; i < count; i++) {
1716 struct eb_vma *ev = &eb->vma[i];
1717
1718 if (!i915_gem_object_is_userptr(ev->vma->obj))
1719 continue;
1720
1721 ret = i915_gem_object_userptr_submit_init(ev->vma->obj);
1722 if (ret)
1723 return ret;
1724
1725 ev->flags |= __EXEC_OBJECT_USERPTR_INIT;
1726 }
1727
1728 return 0;
1729 }
1730
eb_relocate_parse_slow(struct i915_execbuffer * eb)1731 static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb)
1732 {
1733 bool have_copy = false;
1734 struct eb_vma *ev;
1735 int err = 0;
1736
1737 repeat:
1738 if (signal_pending(current)) {
1739 err = -ERESTARTSYS;
1740 goto out;
1741 }
1742
1743 /* We may process another execbuffer during the unlock... */
1744 eb_release_vmas(eb, false);
1745 i915_gem_ww_ctx_fini(&eb->ww);
1746
1747 /*
1748 * We take 3 passes through the slowpatch.
1749 *
1750 * 1 - we try to just prefault all the user relocation entries and
1751 * then attempt to reuse the atomic pagefault disabled fast path again.
1752 *
1753 * 2 - we copy the user entries to a local buffer here outside of the
1754 * local and allow ourselves to wait upon any rendering before
1755 * relocations
1756 *
1757 * 3 - we already have a local copy of the relocation entries, but
1758 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1759 */
1760 if (!err) {
1761 err = eb_prefault_relocations(eb);
1762 } else if (!have_copy) {
1763 err = eb_copy_relocations(eb);
1764 have_copy = err == 0;
1765 } else {
1766 cond_resched();
1767 err = 0;
1768 }
1769
1770 if (!err)
1771 err = eb_reinit_userptr(eb);
1772
1773 i915_gem_ww_ctx_init(&eb->ww, true);
1774 if (err)
1775 goto out;
1776
1777 /* reacquire the objects */
1778 repeat_validate:
1779 err = eb_pin_engine(eb, false);
1780 if (err)
1781 goto err;
1782
1783 err = eb_validate_vmas(eb);
1784 if (err)
1785 goto err;
1786
1787 GEM_BUG_ON(!eb->batches[0]);
1788
1789 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1790 if (!have_copy) {
1791 err = eb_relocate_vma(eb, ev);
1792 if (err)
1793 break;
1794 } else {
1795 err = eb_relocate_vma_slow(eb, ev);
1796 if (err)
1797 break;
1798 }
1799 }
1800
1801 if (err == -EDEADLK)
1802 goto err;
1803
1804 if (err && !have_copy)
1805 goto repeat;
1806
1807 if (err)
1808 goto err;
1809
1810 /* as last step, parse the command buffer */
1811 err = eb_parse(eb);
1812 if (err)
1813 goto err;
1814
1815 /*
1816 * Leave the user relocations as are, this is the painfully slow path,
1817 * and we want to avoid the complication of dropping the lock whilst
1818 * having buffers reserved in the aperture and so causing spurious
1819 * ENOSPC for random operations.
1820 */
1821
1822 err:
1823 if (err == -EDEADLK) {
1824 eb_release_vmas(eb, false);
1825 err = i915_gem_ww_ctx_backoff(&eb->ww);
1826 if (!err)
1827 goto repeat_validate;
1828 }
1829
1830 if (err == -EAGAIN)
1831 goto repeat;
1832
1833 out:
1834 if (have_copy) {
1835 const unsigned int count = eb->buffer_count;
1836 unsigned int i;
1837
1838 for (i = 0; i < count; i++) {
1839 const struct drm_i915_gem_exec_object2 *entry =
1840 &eb->exec[i];
1841 struct drm_i915_gem_relocation_entry *relocs;
1842
1843 if (!entry->relocation_count)
1844 continue;
1845
1846 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1847 kvfree(relocs);
1848 }
1849 }
1850
1851 return err;
1852 }
1853
eb_relocate_parse(struct i915_execbuffer * eb)1854 static int eb_relocate_parse(struct i915_execbuffer *eb)
1855 {
1856 int err;
1857 bool throttle = true;
1858
1859 retry:
1860 err = eb_pin_engine(eb, throttle);
1861 if (err) {
1862 if (err != -EDEADLK)
1863 return err;
1864
1865 goto err;
1866 }
1867
1868 /* only throttle once, even if we didn't need to throttle */
1869 throttle = false;
1870
1871 err = eb_validate_vmas(eb);
1872 if (err == -EAGAIN)
1873 goto slow;
1874 else if (err)
1875 goto err;
1876
1877 /* The objects are in their final locations, apply the relocations. */
1878 if (eb->args->flags & __EXEC_HAS_RELOC) {
1879 struct eb_vma *ev;
1880
1881 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1882 err = eb_relocate_vma(eb, ev);
1883 if (err)
1884 break;
1885 }
1886
1887 if (err == -EDEADLK)
1888 goto err;
1889 else if (err)
1890 goto slow;
1891 }
1892
1893 if (!err)
1894 err = eb_parse(eb);
1895
1896 err:
1897 if (err == -EDEADLK) {
1898 eb_release_vmas(eb, false);
1899 err = i915_gem_ww_ctx_backoff(&eb->ww);
1900 if (!err)
1901 goto retry;
1902 }
1903
1904 return err;
1905
1906 slow:
1907 err = eb_relocate_parse_slow(eb);
1908 if (err)
1909 /*
1910 * If the user expects the execobject.offset and
1911 * reloc.presumed_offset to be an exact match,
1912 * as for using NO_RELOC, then we cannot update
1913 * the execobject.offset until we have completed
1914 * relocation.
1915 */
1916 eb->args->flags &= ~__EXEC_HAS_RELOC;
1917
1918 return err;
1919 }
1920
1921 /*
1922 * Using two helper loops for the order of which requests / batches are created
1923 * and added the to backend. Requests are created in order from the parent to
1924 * the last child. Requests are added in the reverse order, from the last child
1925 * to parent. This is done for locking reasons as the timeline lock is acquired
1926 * during request creation and released when the request is added to the
1927 * backend. To make lockdep happy (see intel_context_timeline_lock) this must be
1928 * the ordering.
1929 */
1930 #define for_each_batch_create_order(_eb, _i) \
1931 for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i))
1932 #define for_each_batch_add_order(_eb, _i) \
1933 BUILD_BUG_ON(!typecheck(int, _i)); \
1934 for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i))
1935
1936 static struct i915_request *
eb_find_first_request_added(struct i915_execbuffer * eb)1937 eb_find_first_request_added(struct i915_execbuffer *eb)
1938 {
1939 int i;
1940
1941 for_each_batch_add_order(eb, i)
1942 if (eb->requests[i])
1943 return eb->requests[i];
1944
1945 GEM_BUG_ON("Request not found");
1946
1947 return NULL;
1948 }
1949
1950 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1951
1952 /* Stage with GFP_KERNEL allocations before we enter the signaling critical path */
eb_capture_stage(struct i915_execbuffer * eb)1953 static int eb_capture_stage(struct i915_execbuffer *eb)
1954 {
1955 const unsigned int count = eb->buffer_count;
1956 unsigned int i = count, j;
1957
1958 while (i--) {
1959 struct eb_vma *ev = &eb->vma[i];
1960 struct i915_vma *vma = ev->vma;
1961 unsigned int flags = ev->flags;
1962
1963 if (!(flags & EXEC_OBJECT_CAPTURE))
1964 continue;
1965
1966 if (i915_gem_context_is_recoverable(eb->gem_context) &&
1967 (IS_DGFX(eb->i915) || GRAPHICS_VER_FULL(eb->i915) > IP_VER(12, 0)))
1968 return -EINVAL;
1969
1970 for_each_batch_create_order(eb, j) {
1971 struct i915_capture_list *capture;
1972
1973 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1974 if (!capture)
1975 continue;
1976
1977 capture->next = eb->capture_lists[j];
1978 capture->vma_res = i915_vma_resource_get(vma->resource);
1979 eb->capture_lists[j] = capture;
1980 }
1981 }
1982
1983 return 0;
1984 }
1985
1986 /* Commit once we're in the critical path */
eb_capture_commit(struct i915_execbuffer * eb)1987 static void eb_capture_commit(struct i915_execbuffer *eb)
1988 {
1989 unsigned int j;
1990
1991 for_each_batch_create_order(eb, j) {
1992 struct i915_request *rq = eb->requests[j];
1993
1994 if (!rq)
1995 break;
1996
1997 rq->capture_list = eb->capture_lists[j];
1998 eb->capture_lists[j] = NULL;
1999 }
2000 }
2001
2002 /*
2003 * Release anything that didn't get committed due to errors.
2004 * The capture_list will otherwise be freed at request retire.
2005 */
eb_capture_release(struct i915_execbuffer * eb)2006 static void eb_capture_release(struct i915_execbuffer *eb)
2007 {
2008 unsigned int j;
2009
2010 for_each_batch_create_order(eb, j) {
2011 if (eb->capture_lists[j]) {
2012 i915_request_free_capture_list(eb->capture_lists[j]);
2013 eb->capture_lists[j] = NULL;
2014 }
2015 }
2016 }
2017
eb_capture_list_clear(struct i915_execbuffer * eb)2018 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2019 {
2020 memset(eb->capture_lists, 0, sizeof(eb->capture_lists));
2021 }
2022
2023 #else
2024
eb_capture_stage(struct i915_execbuffer * eb)2025 static int eb_capture_stage(struct i915_execbuffer *eb)
2026 {
2027 return 0;
2028 }
2029
eb_capture_commit(struct i915_execbuffer * eb)2030 static void eb_capture_commit(struct i915_execbuffer *eb)
2031 {
2032 }
2033
eb_capture_release(struct i915_execbuffer * eb)2034 static void eb_capture_release(struct i915_execbuffer *eb)
2035 {
2036 }
2037
eb_capture_list_clear(struct i915_execbuffer * eb)2038 static void eb_capture_list_clear(struct i915_execbuffer *eb)
2039 {
2040 }
2041
2042 #endif
2043
eb_move_to_gpu(struct i915_execbuffer * eb)2044 static int eb_move_to_gpu(struct i915_execbuffer *eb)
2045 {
2046 const unsigned int count = eb->buffer_count;
2047 unsigned int i = count;
2048 int err = 0, j;
2049
2050 while (i--) {
2051 struct eb_vma *ev = &eb->vma[i];
2052 struct i915_vma *vma = ev->vma;
2053 unsigned int flags = ev->flags;
2054 struct drm_i915_gem_object *obj = vma->obj;
2055
2056 assert_vma_held(vma);
2057
2058 /*
2059 * If the GPU is not _reading_ through the CPU cache, we need
2060 * to make sure that any writes (both previous GPU writes from
2061 * before a change in snooping levels and normal CPU writes)
2062 * caught in that cache are flushed to main memory.
2063 *
2064 * We want to say
2065 * obj->cache_dirty &&
2066 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
2067 * but gcc's optimiser doesn't handle that as well and emits
2068 * two jumps instead of one. Maybe one day...
2069 *
2070 * FIXME: There is also sync flushing in set_pages(), which
2071 * serves a different purpose(some of the time at least).
2072 *
2073 * We should consider:
2074 *
2075 * 1. Rip out the async flush code.
2076 *
2077 * 2. Or make the sync flushing use the async clflush path
2078 * using mandatory fences underneath. Currently the below
2079 * async flush happens after we bind the object.
2080 */
2081 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
2082 if (i915_gem_clflush_object(obj, 0))
2083 flags &= ~EXEC_OBJECT_ASYNC;
2084 }
2085
2086 /* We only need to await on the first request */
2087 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
2088 err = i915_request_await_object
2089 (eb_find_first_request_added(eb), obj,
2090 flags & EXEC_OBJECT_WRITE);
2091 }
2092
2093 for_each_batch_add_order(eb, j) {
2094 if (err)
2095 break;
2096 if (!eb->requests[j])
2097 continue;
2098
2099 err = _i915_vma_move_to_active(vma, eb->requests[j],
2100 j ? NULL :
2101 eb->composite_fence ?
2102 eb->composite_fence :
2103 &eb->requests[j]->fence,
2104 flags | __EXEC_OBJECT_NO_RESERVE);
2105 }
2106 }
2107
2108 #ifdef CONFIG_MMU_NOTIFIER
2109 if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) {
2110 read_lock(&eb->i915->mm.notifier_lock);
2111
2112 /*
2113 * count is always at least 1, otherwise __EXEC_USERPTR_USED
2114 * could not have been set
2115 */
2116 for (i = 0; i < count; i++) {
2117 struct eb_vma *ev = &eb->vma[i];
2118 struct drm_i915_gem_object *obj = ev->vma->obj;
2119
2120 if (!i915_gem_object_is_userptr(obj))
2121 continue;
2122
2123 err = i915_gem_object_userptr_submit_done(obj);
2124 if (err)
2125 break;
2126 }
2127
2128 read_unlock(&eb->i915->mm.notifier_lock);
2129 }
2130 #endif
2131
2132 if (unlikely(err))
2133 goto err_skip;
2134
2135 /* Unconditionally flush any chipset caches (for streaming writes). */
2136 intel_gt_chipset_flush(eb->gt);
2137 eb_capture_commit(eb);
2138
2139 return 0;
2140
2141 err_skip:
2142 for_each_batch_create_order(eb, j) {
2143 if (!eb->requests[j])
2144 break;
2145
2146 i915_request_set_error_once(eb->requests[j], err);
2147 }
2148 return err;
2149 }
2150
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 * exec)2151 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
2152 {
2153 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
2154 return -EINVAL;
2155
2156 /* Kernel clipping was a DRI1 misfeature */
2157 if (!(exec->flags & (I915_EXEC_FENCE_ARRAY |
2158 I915_EXEC_USE_EXTENSIONS))) {
2159 if (exec->num_cliprects || exec->cliprects_ptr)
2160 return -EINVAL;
2161 }
2162
2163 if (exec->DR4 == 0xffffffff) {
2164 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
2165 exec->DR4 = 0;
2166 }
2167 if (exec->DR1 || exec->DR4)
2168 return -EINVAL;
2169
2170 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
2171 return -EINVAL;
2172
2173 return 0;
2174 }
2175
i915_reset_gen7_sol_offsets(struct i915_request * rq)2176 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
2177 {
2178 u32 *cs;
2179 int i;
2180
2181 if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) {
2182 drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n");
2183 return -EINVAL;
2184 }
2185
2186 cs = intel_ring_begin(rq, 4 * 2 + 2);
2187 if (IS_ERR(cs))
2188 return PTR_ERR(cs);
2189
2190 *cs++ = MI_LOAD_REGISTER_IMM(4);
2191 for (i = 0; i < 4; i++) {
2192 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
2193 *cs++ = 0;
2194 }
2195 *cs++ = MI_NOOP;
2196 intel_ring_advance(rq, cs);
2197
2198 return 0;
2199 }
2200
2201 static struct i915_vma *
shadow_batch_pin(struct i915_execbuffer * eb,struct drm_i915_gem_object * obj,struct i915_address_space * vm,unsigned int flags)2202 shadow_batch_pin(struct i915_execbuffer *eb,
2203 struct drm_i915_gem_object *obj,
2204 struct i915_address_space *vm,
2205 unsigned int flags)
2206 {
2207 struct i915_vma *vma;
2208 int err;
2209
2210 vma = i915_vma_instance(obj, vm, NULL);
2211 if (IS_ERR(vma))
2212 return vma;
2213
2214 err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags | PIN_VALIDATE);
2215 if (err)
2216 return ERR_PTR(err);
2217
2218 return vma;
2219 }
2220
eb_dispatch_secure(struct i915_execbuffer * eb,struct i915_vma * vma)2221 static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma)
2222 {
2223 /*
2224 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2225 * batch" bit. Hence we need to pin secure batches into the global gtt.
2226 * hsw should have this fixed, but bdw mucks it up again. */
2227 if (eb->batch_flags & I915_DISPATCH_SECURE)
2228 return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, PIN_VALIDATE);
2229
2230 return NULL;
2231 }
2232
eb_parse(struct i915_execbuffer * eb)2233 static int eb_parse(struct i915_execbuffer *eb)
2234 {
2235 struct drm_i915_private *i915 = eb->i915;
2236 struct intel_gt_buffer_pool_node *pool = eb->batch_pool;
2237 struct i915_vma *shadow, *trampoline, *batch;
2238 unsigned long len;
2239 int err;
2240
2241 if (!eb_use_cmdparser(eb)) {
2242 batch = eb_dispatch_secure(eb, eb->batches[0]->vma);
2243 if (IS_ERR(batch))
2244 return PTR_ERR(batch);
2245
2246 goto secure_batch;
2247 }
2248
2249 if (intel_context_is_parallel(eb->context))
2250 return -EINVAL;
2251
2252 len = eb->batch_len[0];
2253 if (!CMDPARSER_USES_GGTT(eb->i915)) {
2254 /*
2255 * ppGTT backed shadow buffers must be mapped RO, to prevent
2256 * post-scan tampering
2257 */
2258 if (!eb->context->vm->has_read_only) {
2259 drm_dbg(&i915->drm,
2260 "Cannot prevent post-scan tampering without RO capable vm\n");
2261 return -EINVAL;
2262 }
2263 } else {
2264 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
2265 }
2266 if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */
2267 return -EINVAL;
2268
2269 if (!pool) {
2270 pool = intel_gt_get_buffer_pool(eb->gt, len,
2271 I915_MAP_WB);
2272 if (IS_ERR(pool))
2273 return PTR_ERR(pool);
2274 eb->batch_pool = pool;
2275 }
2276
2277 err = i915_gem_object_lock(pool->obj, &eb->ww);
2278 if (err)
2279 return err;
2280
2281 shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER);
2282 if (IS_ERR(shadow))
2283 return PTR_ERR(shadow);
2284
2285 intel_gt_buffer_pool_mark_used(pool);
2286 i915_gem_object_set_readonly(shadow->obj);
2287 shadow->private = pool;
2288
2289 trampoline = NULL;
2290 if (CMDPARSER_USES_GGTT(eb->i915)) {
2291 trampoline = shadow;
2292
2293 shadow = shadow_batch_pin(eb, pool->obj,
2294 &eb->gt->ggtt->vm,
2295 PIN_GLOBAL);
2296 if (IS_ERR(shadow))
2297 return PTR_ERR(shadow);
2298
2299 shadow->private = pool;
2300
2301 eb->batch_flags |= I915_DISPATCH_SECURE;
2302 }
2303
2304 batch = eb_dispatch_secure(eb, shadow);
2305 if (IS_ERR(batch))
2306 return PTR_ERR(batch);
2307
2308 err = dma_resv_reserve_fences(shadow->obj->base.resv, 1);
2309 if (err)
2310 return err;
2311
2312 err = intel_engine_cmd_parser(eb->context->engine,
2313 eb->batches[0]->vma,
2314 eb->batch_start_offset,
2315 eb->batch_len[0],
2316 shadow, trampoline);
2317 if (err)
2318 return err;
2319
2320 eb->batches[0] = &eb->vma[eb->buffer_count++];
2321 eb->batches[0]->vma = i915_vma_get(shadow);
2322 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2323
2324 eb->trampoline = trampoline;
2325 eb->batch_start_offset = 0;
2326
2327 secure_batch:
2328 if (batch) {
2329 if (intel_context_is_parallel(eb->context))
2330 return -EINVAL;
2331
2332 eb->batches[0] = &eb->vma[eb->buffer_count++];
2333 eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN;
2334 eb->batches[0]->vma = i915_vma_get(batch);
2335 }
2336 return 0;
2337 }
2338
eb_request_submit(struct i915_execbuffer * eb,struct i915_request * rq,struct i915_vma * batch,u64 batch_len)2339 static int eb_request_submit(struct i915_execbuffer *eb,
2340 struct i915_request *rq,
2341 struct i915_vma *batch,
2342 u64 batch_len)
2343 {
2344 int err;
2345
2346 if (intel_context_nopreempt(rq->context))
2347 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags);
2348
2349 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
2350 err = i915_reset_gen7_sol_offsets(rq);
2351 if (err)
2352 return err;
2353 }
2354
2355 /*
2356 * After we completed waiting for other engines (using HW semaphores)
2357 * then we can signal that this request/batch is ready to run. This
2358 * allows us to determine if the batch is still waiting on the GPU
2359 * or actually running by checking the breadcrumb.
2360 */
2361 if (rq->context->engine->emit_init_breadcrumb) {
2362 err = rq->context->engine->emit_init_breadcrumb(rq);
2363 if (err)
2364 return err;
2365 }
2366
2367 err = rq->context->engine->emit_bb_start(rq,
2368 batch->node.start +
2369 eb->batch_start_offset,
2370 batch_len,
2371 eb->batch_flags);
2372 if (err)
2373 return err;
2374
2375 if (eb->trampoline) {
2376 GEM_BUG_ON(intel_context_is_parallel(rq->context));
2377 GEM_BUG_ON(eb->batch_start_offset);
2378 err = rq->context->engine->emit_bb_start(rq,
2379 eb->trampoline->node.start +
2380 batch_len, 0, 0);
2381 if (err)
2382 return err;
2383 }
2384
2385 return 0;
2386 }
2387
eb_submit(struct i915_execbuffer * eb)2388 static int eb_submit(struct i915_execbuffer *eb)
2389 {
2390 unsigned int i;
2391 int err;
2392
2393 err = eb_move_to_gpu(eb);
2394
2395 for_each_batch_create_order(eb, i) {
2396 if (!eb->requests[i])
2397 break;
2398
2399 trace_i915_request_queue(eb->requests[i], eb->batch_flags);
2400 if (!err)
2401 err = eb_request_submit(eb, eb->requests[i],
2402 eb->batches[i]->vma,
2403 eb->batch_len[i]);
2404 }
2405
2406 return err;
2407 }
2408
num_vcs_engines(struct drm_i915_private * i915)2409 static int num_vcs_engines(struct drm_i915_private *i915)
2410 {
2411 return hweight_long(VDBOX_MASK(to_gt(i915)));
2412 }
2413
2414 /*
2415 * Find one BSD ring to dispatch the corresponding BSD command.
2416 * The engine index is returned.
2417 */
2418 static unsigned int
gen8_dispatch_bsd_engine(struct drm_i915_private * dev_priv,struct drm_file * file)2419 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
2420 struct drm_file *file)
2421 {
2422 struct drm_i915_file_private *file_priv = file->driver_priv;
2423
2424 /* Check whether the file_priv has already selected one ring. */
2425 if ((int)file_priv->bsd_engine < 0)
2426 file_priv->bsd_engine =
2427 prandom_u32_max(num_vcs_engines(dev_priv));
2428
2429 return file_priv->bsd_engine;
2430 }
2431
2432 static const enum intel_engine_id user_ring_map[] = {
2433 [I915_EXEC_DEFAULT] = RCS0,
2434 [I915_EXEC_RENDER] = RCS0,
2435 [I915_EXEC_BLT] = BCS0,
2436 [I915_EXEC_BSD] = VCS0,
2437 [I915_EXEC_VEBOX] = VECS0
2438 };
2439
eb_throttle(struct i915_execbuffer * eb,struct intel_context * ce)2440 static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce)
2441 {
2442 struct intel_ring *ring = ce->ring;
2443 struct intel_timeline *tl = ce->timeline;
2444 struct i915_request *rq;
2445
2446 /*
2447 * Completely unscientific finger-in-the-air estimates for suitable
2448 * maximum user request size (to avoid blocking) and then backoff.
2449 */
2450 if (intel_ring_update_space(ring) >= PAGE_SIZE)
2451 return NULL;
2452
2453 /*
2454 * Find a request that after waiting upon, there will be at least half
2455 * the ring available. The hysteresis allows us to compete for the
2456 * shared ring and should mean that we sleep less often prior to
2457 * claiming our resources, but not so long that the ring completely
2458 * drains before we can submit our next request.
2459 */
2460 list_for_each_entry(rq, &tl->requests, link) {
2461 if (rq->ring != ring)
2462 continue;
2463
2464 if (__intel_ring_space(rq->postfix,
2465 ring->emit, ring->size) > ring->size / 2)
2466 break;
2467 }
2468 if (&rq->link == &tl->requests)
2469 return NULL; /* weird, we will check again later for real */
2470
2471 return i915_request_get(rq);
2472 }
2473
eb_pin_timeline(struct i915_execbuffer * eb,struct intel_context * ce,bool throttle)2474 static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce,
2475 bool throttle)
2476 {
2477 struct intel_timeline *tl;
2478 struct i915_request *rq = NULL;
2479
2480 /*
2481 * Take a local wakeref for preparing to dispatch the execbuf as
2482 * we expect to access the hardware fairly frequently in the
2483 * process, and require the engine to be kept awake between accesses.
2484 * Upon dispatch, we acquire another prolonged wakeref that we hold
2485 * until the timeline is idle, which in turn releases the wakeref
2486 * taken on the engine, and the parent device.
2487 */
2488 tl = intel_context_timeline_lock(ce);
2489 if (IS_ERR(tl))
2490 return PTR_ERR(tl);
2491
2492 intel_context_enter(ce);
2493 if (throttle)
2494 rq = eb_throttle(eb, ce);
2495 intel_context_timeline_unlock(tl);
2496
2497 if (rq) {
2498 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2499 long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT;
2500
2501 if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE,
2502 timeout) < 0) {
2503 i915_request_put(rq);
2504
2505 /*
2506 * Error path, cannot use intel_context_timeline_lock as
2507 * that is user interruptable and this clean up step
2508 * must be done.
2509 */
2510 mutex_lock(&ce->timeline->mutex);
2511 intel_context_exit(ce);
2512 mutex_unlock(&ce->timeline->mutex);
2513
2514 if (nonblock)
2515 return -EWOULDBLOCK;
2516 else
2517 return -EINTR;
2518 }
2519 i915_request_put(rq);
2520 }
2521
2522 return 0;
2523 }
2524
eb_pin_engine(struct i915_execbuffer * eb,bool throttle)2525 static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle)
2526 {
2527 struct intel_context *ce = eb->context, *child;
2528 int err;
2529 int i = 0, j = 0;
2530
2531 GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED);
2532
2533 if (unlikely(intel_context_is_banned(ce)))
2534 return -EIO;
2535
2536 /*
2537 * Pinning the contexts may generate requests in order to acquire
2538 * GGTT space, so do this first before we reserve a seqno for
2539 * ourselves.
2540 */
2541 err = intel_context_pin_ww(ce, &eb->ww);
2542 if (err)
2543 return err;
2544 for_each_child(ce, child) {
2545 err = intel_context_pin_ww(child, &eb->ww);
2546 GEM_BUG_ON(err); /* perma-pinned should incr a counter */
2547 }
2548
2549 for_each_child(ce, child) {
2550 err = eb_pin_timeline(eb, child, throttle);
2551 if (err)
2552 goto unwind;
2553 ++i;
2554 }
2555 err = eb_pin_timeline(eb, ce, throttle);
2556 if (err)
2557 goto unwind;
2558
2559 eb->args->flags |= __EXEC_ENGINE_PINNED;
2560 return 0;
2561
2562 unwind:
2563 for_each_child(ce, child) {
2564 if (j++ < i) {
2565 mutex_lock(&child->timeline->mutex);
2566 intel_context_exit(child);
2567 mutex_unlock(&child->timeline->mutex);
2568 }
2569 }
2570 for_each_child(ce, child)
2571 intel_context_unpin(child);
2572 intel_context_unpin(ce);
2573 return err;
2574 }
2575
eb_unpin_engine(struct i915_execbuffer * eb)2576 static void eb_unpin_engine(struct i915_execbuffer *eb)
2577 {
2578 struct intel_context *ce = eb->context, *child;
2579
2580 if (!(eb->args->flags & __EXEC_ENGINE_PINNED))
2581 return;
2582
2583 eb->args->flags &= ~__EXEC_ENGINE_PINNED;
2584
2585 for_each_child(ce, child) {
2586 mutex_lock(&child->timeline->mutex);
2587 intel_context_exit(child);
2588 mutex_unlock(&child->timeline->mutex);
2589
2590 intel_context_unpin(child);
2591 }
2592
2593 mutex_lock(&ce->timeline->mutex);
2594 intel_context_exit(ce);
2595 mutex_unlock(&ce->timeline->mutex);
2596
2597 intel_context_unpin(ce);
2598 }
2599
2600 static unsigned int
eb_select_legacy_ring(struct i915_execbuffer * eb)2601 eb_select_legacy_ring(struct i915_execbuffer *eb)
2602 {
2603 struct drm_i915_private *i915 = eb->i915;
2604 struct drm_i915_gem_execbuffer2 *args = eb->args;
2605 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2606
2607 if (user_ring_id != I915_EXEC_BSD &&
2608 (args->flags & I915_EXEC_BSD_MASK)) {
2609 drm_dbg(&i915->drm,
2610 "execbuf with non bsd ring but with invalid "
2611 "bsd dispatch flags: %d\n", (int)(args->flags));
2612 return -1;
2613 }
2614
2615 if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2616 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2617
2618 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2619 bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file);
2620 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2621 bsd_idx <= I915_EXEC_BSD_RING2) {
2622 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2623 bsd_idx--;
2624 } else {
2625 drm_dbg(&i915->drm,
2626 "execbuf with unknown bsd ring: %u\n",
2627 bsd_idx);
2628 return -1;
2629 }
2630
2631 return _VCS(bsd_idx);
2632 }
2633
2634 if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2635 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2636 user_ring_id);
2637 return -1;
2638 }
2639
2640 return user_ring_map[user_ring_id];
2641 }
2642
2643 static int
eb_select_engine(struct i915_execbuffer * eb)2644 eb_select_engine(struct i915_execbuffer *eb)
2645 {
2646 struct intel_context *ce, *child;
2647 unsigned int idx;
2648 int err;
2649
2650 if (i915_gem_context_user_engines(eb->gem_context))
2651 idx = eb->args->flags & I915_EXEC_RING_MASK;
2652 else
2653 idx = eb_select_legacy_ring(eb);
2654
2655 ce = i915_gem_context_get_engine(eb->gem_context, idx);
2656 if (IS_ERR(ce))
2657 return PTR_ERR(ce);
2658
2659 if (intel_context_is_parallel(ce)) {
2660 if (eb->buffer_count < ce->parallel.number_children + 1) {
2661 intel_context_put(ce);
2662 return -EINVAL;
2663 }
2664 if (eb->batch_start_offset || eb->args->batch_len) {
2665 intel_context_put(ce);
2666 return -EINVAL;
2667 }
2668 }
2669 eb->num_batches = ce->parallel.number_children + 1;
2670
2671 for_each_child(ce, child)
2672 intel_context_get(child);
2673 intel_gt_pm_get(ce->engine->gt);
2674
2675 if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) {
2676 err = intel_context_alloc_state(ce);
2677 if (err)
2678 goto err;
2679 }
2680 for_each_child(ce, child) {
2681 if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) {
2682 err = intel_context_alloc_state(child);
2683 if (err)
2684 goto err;
2685 }
2686 }
2687
2688 /*
2689 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2690 * EIO if the GPU is already wedged.
2691 */
2692 err = intel_gt_terminally_wedged(ce->engine->gt);
2693 if (err)
2694 goto err;
2695
2696 if (!i915_vm_tryget(ce->vm)) {
2697 err = -ENOENT;
2698 goto err;
2699 }
2700
2701 eb->context = ce;
2702 eb->gt = ce->engine->gt;
2703
2704 /*
2705 * Make sure engine pool stays alive even if we call intel_context_put
2706 * during ww handling. The pool is destroyed when last pm reference
2707 * is dropped, which breaks our -EDEADLK handling.
2708 */
2709 return err;
2710
2711 err:
2712 intel_gt_pm_put(ce->engine->gt);
2713 for_each_child(ce, child)
2714 intel_context_put(child);
2715 intel_context_put(ce);
2716 return err;
2717 }
2718
2719 static void
eb_put_engine(struct i915_execbuffer * eb)2720 eb_put_engine(struct i915_execbuffer *eb)
2721 {
2722 struct intel_context *child;
2723
2724 i915_vm_put(eb->context->vm);
2725 intel_gt_pm_put(eb->gt);
2726 for_each_child(eb->context, child)
2727 intel_context_put(child);
2728 intel_context_put(eb->context);
2729 }
2730
2731 static void
__free_fence_array(struct eb_fence * fences,unsigned int n)2732 __free_fence_array(struct eb_fence *fences, unsigned int n)
2733 {
2734 while (n--) {
2735 drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2));
2736 dma_fence_put(fences[n].dma_fence);
2737 dma_fence_chain_free(fences[n].chain_fence);
2738 }
2739 kvfree(fences);
2740 }
2741
2742 static int
add_timeline_fence_array(struct i915_execbuffer * eb,const struct drm_i915_gem_execbuffer_ext_timeline_fences * timeline_fences)2743 add_timeline_fence_array(struct i915_execbuffer *eb,
2744 const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences)
2745 {
2746 struct drm_i915_gem_exec_fence __user *user_fences;
2747 u64 __user *user_values;
2748 struct eb_fence *f;
2749 u64 nfences;
2750 int err = 0;
2751
2752 nfences = timeline_fences->fence_count;
2753 if (!nfences)
2754 return 0;
2755
2756 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2757 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2758 if (nfences > min_t(unsigned long,
2759 ULONG_MAX / sizeof(*user_fences),
2760 SIZE_MAX / sizeof(*f)) - eb->num_fences)
2761 return -EINVAL;
2762
2763 user_fences = u64_to_user_ptr(timeline_fences->handles_ptr);
2764 if (!access_ok(user_fences, nfences * sizeof(*user_fences)))
2765 return -EFAULT;
2766
2767 user_values = u64_to_user_ptr(timeline_fences->values_ptr);
2768 if (!access_ok(user_values, nfences * sizeof(*user_values)))
2769 return -EFAULT;
2770
2771 f = krealloc(eb->fences,
2772 (eb->num_fences + nfences) * sizeof(*f),
2773 __GFP_NOWARN | GFP_KERNEL);
2774 if (!f)
2775 return -ENOMEM;
2776
2777 eb->fences = f;
2778 f += eb->num_fences;
2779
2780 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2781 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2782
2783 while (nfences--) {
2784 struct drm_i915_gem_exec_fence user_fence;
2785 struct drm_syncobj *syncobj;
2786 struct dma_fence *fence = NULL;
2787 u64 point;
2788
2789 if (__copy_from_user(&user_fence,
2790 user_fences++,
2791 sizeof(user_fence)))
2792 return -EFAULT;
2793
2794 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2795 return -EINVAL;
2796
2797 if (__get_user(point, user_values++))
2798 return -EFAULT;
2799
2800 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2801 if (!syncobj) {
2802 DRM_DEBUG("Invalid syncobj handle provided\n");
2803 return -ENOENT;
2804 }
2805
2806 fence = drm_syncobj_fence_get(syncobj);
2807
2808 if (!fence && user_fence.flags &&
2809 !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2810 DRM_DEBUG("Syncobj handle has no fence\n");
2811 drm_syncobj_put(syncobj);
2812 return -EINVAL;
2813 }
2814
2815 if (fence)
2816 err = dma_fence_chain_find_seqno(&fence, point);
2817
2818 if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2819 DRM_DEBUG("Syncobj handle missing requested point %llu\n", point);
2820 dma_fence_put(fence);
2821 drm_syncobj_put(syncobj);
2822 return err;
2823 }
2824
2825 /*
2826 * A point might have been signaled already and
2827 * garbage collected from the timeline. In this case
2828 * just ignore the point and carry on.
2829 */
2830 if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) {
2831 drm_syncobj_put(syncobj);
2832 continue;
2833 }
2834
2835 /*
2836 * For timeline syncobjs we need to preallocate chains for
2837 * later signaling.
2838 */
2839 if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) {
2840 /*
2841 * Waiting and signaling the same point (when point !=
2842 * 0) would break the timeline.
2843 */
2844 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2845 DRM_DEBUG("Trying to wait & signal the same timeline point.\n");
2846 dma_fence_put(fence);
2847 drm_syncobj_put(syncobj);
2848 return -EINVAL;
2849 }
2850
2851 f->chain_fence = dma_fence_chain_alloc();
2852 if (!f->chain_fence) {
2853 drm_syncobj_put(syncobj);
2854 dma_fence_put(fence);
2855 return -ENOMEM;
2856 }
2857 } else {
2858 f->chain_fence = NULL;
2859 }
2860
2861 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2862 f->dma_fence = fence;
2863 f->value = point;
2864 f++;
2865 eb->num_fences++;
2866 }
2867
2868 return 0;
2869 }
2870
add_fence_array(struct i915_execbuffer * eb)2871 static int add_fence_array(struct i915_execbuffer *eb)
2872 {
2873 struct drm_i915_gem_execbuffer2 *args = eb->args;
2874 struct drm_i915_gem_exec_fence __user *user;
2875 unsigned long num_fences = args->num_cliprects;
2876 struct eb_fence *f;
2877
2878 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2879 return 0;
2880
2881 if (!num_fences)
2882 return 0;
2883
2884 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2885 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2886 if (num_fences > min_t(unsigned long,
2887 ULONG_MAX / sizeof(*user),
2888 SIZE_MAX / sizeof(*f) - eb->num_fences))
2889 return -EINVAL;
2890
2891 user = u64_to_user_ptr(args->cliprects_ptr);
2892 if (!access_ok(user, num_fences * sizeof(*user)))
2893 return -EFAULT;
2894
2895 f = krealloc(eb->fences,
2896 (eb->num_fences + num_fences) * sizeof(*f),
2897 __GFP_NOWARN | GFP_KERNEL);
2898 if (!f)
2899 return -ENOMEM;
2900
2901 eb->fences = f;
2902 f += eb->num_fences;
2903 while (num_fences--) {
2904 struct drm_i915_gem_exec_fence user_fence;
2905 struct drm_syncobj *syncobj;
2906 struct dma_fence *fence = NULL;
2907
2908 if (__copy_from_user(&user_fence, user++, sizeof(user_fence)))
2909 return -EFAULT;
2910
2911 if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS)
2912 return -EINVAL;
2913
2914 syncobj = drm_syncobj_find(eb->file, user_fence.handle);
2915 if (!syncobj) {
2916 DRM_DEBUG("Invalid syncobj handle provided\n");
2917 return -ENOENT;
2918 }
2919
2920 if (user_fence.flags & I915_EXEC_FENCE_WAIT) {
2921 fence = drm_syncobj_fence_get(syncobj);
2922 if (!fence) {
2923 DRM_DEBUG("Syncobj handle has no fence\n");
2924 drm_syncobj_put(syncobj);
2925 return -EINVAL;
2926 }
2927 }
2928
2929 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2930 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2931
2932 f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2);
2933 f->dma_fence = fence;
2934 f->value = 0;
2935 f->chain_fence = NULL;
2936 f++;
2937 eb->num_fences++;
2938 }
2939
2940 return 0;
2941 }
2942
put_fence_array(struct eb_fence * fences,int num_fences)2943 static void put_fence_array(struct eb_fence *fences, int num_fences)
2944 {
2945 if (fences)
2946 __free_fence_array(fences, num_fences);
2947 }
2948
2949 static int
await_fence_array(struct i915_execbuffer * eb,struct i915_request * rq)2950 await_fence_array(struct i915_execbuffer *eb,
2951 struct i915_request *rq)
2952 {
2953 unsigned int n;
2954 int err;
2955
2956 for (n = 0; n < eb->num_fences; n++) {
2957 struct drm_syncobj *syncobj;
2958 unsigned int flags;
2959
2960 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2961
2962 if (!eb->fences[n].dma_fence)
2963 continue;
2964
2965 err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence);
2966 if (err < 0)
2967 return err;
2968 }
2969
2970 return 0;
2971 }
2972
signal_fence_array(const struct i915_execbuffer * eb,struct dma_fence * const fence)2973 static void signal_fence_array(const struct i915_execbuffer *eb,
2974 struct dma_fence * const fence)
2975 {
2976 unsigned int n;
2977
2978 for (n = 0; n < eb->num_fences; n++) {
2979 struct drm_syncobj *syncobj;
2980 unsigned int flags;
2981
2982 syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2);
2983 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2984 continue;
2985
2986 if (eb->fences[n].chain_fence) {
2987 drm_syncobj_add_point(syncobj,
2988 eb->fences[n].chain_fence,
2989 fence,
2990 eb->fences[n].value);
2991 /*
2992 * The chain's ownership is transferred to the
2993 * timeline.
2994 */
2995 eb->fences[n].chain_fence = NULL;
2996 } else {
2997 drm_syncobj_replace_fence(syncobj, fence);
2998 }
2999 }
3000 }
3001
3002 static int
parse_timeline_fences(struct i915_user_extension __user * ext,void * data)3003 parse_timeline_fences(struct i915_user_extension __user *ext, void *data)
3004 {
3005 struct i915_execbuffer *eb = data;
3006 struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences;
3007
3008 if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences)))
3009 return -EFAULT;
3010
3011 return add_timeline_fence_array(eb, &timeline_fences);
3012 }
3013
retire_requests(struct intel_timeline * tl,struct i915_request * end)3014 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
3015 {
3016 struct i915_request *rq, *rn;
3017
3018 list_for_each_entry_safe(rq, rn, &tl->requests, link)
3019 if (rq == end || !i915_request_retire(rq))
3020 break;
3021 }
3022
eb_request_add(struct i915_execbuffer * eb,struct i915_request * rq,int err,bool last_parallel)3023 static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq,
3024 int err, bool last_parallel)
3025 {
3026 struct intel_timeline * const tl = i915_request_timeline(rq);
3027 struct i915_sched_attr attr = {};
3028 struct i915_request *prev;
3029
3030 lockdep_assert_held(&tl->mutex);
3031 lockdep_unpin_lock(&tl->mutex, rq->cookie);
3032
3033 trace_i915_request_add(rq);
3034
3035 prev = __i915_request_commit(rq);
3036
3037 /* Check that the context wasn't destroyed before submission */
3038 if (likely(!intel_context_is_closed(eb->context))) {
3039 attr = eb->gem_context->sched;
3040 } else {
3041 /* Serialise with context_close via the add_to_timeline */
3042 i915_request_set_error_once(rq, -ENOENT);
3043 __i915_request_skip(rq);
3044 err = -ENOENT; /* override any transient errors */
3045 }
3046
3047 if (intel_context_is_parallel(eb->context)) {
3048 if (err) {
3049 __i915_request_skip(rq);
3050 set_bit(I915_FENCE_FLAG_SKIP_PARALLEL,
3051 &rq->fence.flags);
3052 }
3053 if (last_parallel)
3054 set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL,
3055 &rq->fence.flags);
3056 }
3057
3058 __i915_request_queue(rq, &attr);
3059
3060 /* Try to clean up the client's timeline after submitting the request */
3061 if (prev)
3062 retire_requests(tl, prev);
3063
3064 mutex_unlock(&tl->mutex);
3065
3066 return err;
3067 }
3068
eb_requests_add(struct i915_execbuffer * eb,int err)3069 static int eb_requests_add(struct i915_execbuffer *eb, int err)
3070 {
3071 int i;
3072
3073 /*
3074 * We iterate in reverse order of creation to release timeline mutexes in
3075 * same order.
3076 */
3077 for_each_batch_add_order(eb, i) {
3078 struct i915_request *rq = eb->requests[i];
3079
3080 if (!rq)
3081 continue;
3082 err |= eb_request_add(eb, rq, err, i == 0);
3083 }
3084
3085 return err;
3086 }
3087
3088 static const i915_user_extension_fn execbuf_extensions[] = {
3089 [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences,
3090 };
3091
3092 static int
parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 * args,struct i915_execbuffer * eb)3093 parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args,
3094 struct i915_execbuffer *eb)
3095 {
3096 if (!(args->flags & I915_EXEC_USE_EXTENSIONS))
3097 return 0;
3098
3099 /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot
3100 * have another flag also using it at the same time.
3101 */
3102 if (eb->args->flags & I915_EXEC_FENCE_ARRAY)
3103 return -EINVAL;
3104
3105 if (args->num_cliprects != 0)
3106 return -EINVAL;
3107
3108 return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr),
3109 execbuf_extensions,
3110 ARRAY_SIZE(execbuf_extensions),
3111 eb);
3112 }
3113
eb_requests_get(struct i915_execbuffer * eb)3114 static void eb_requests_get(struct i915_execbuffer *eb)
3115 {
3116 unsigned int i;
3117
3118 for_each_batch_create_order(eb, i) {
3119 if (!eb->requests[i])
3120 break;
3121
3122 i915_request_get(eb->requests[i]);
3123 }
3124 }
3125
eb_requests_put(struct i915_execbuffer * eb)3126 static void eb_requests_put(struct i915_execbuffer *eb)
3127 {
3128 unsigned int i;
3129
3130 for_each_batch_create_order(eb, i) {
3131 if (!eb->requests[i])
3132 break;
3133
3134 i915_request_put(eb->requests[i]);
3135 }
3136 }
3137
3138 static struct sync_file *
eb_composite_fence_create(struct i915_execbuffer * eb,int out_fence_fd)3139 eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd)
3140 {
3141 struct sync_file *out_fence = NULL;
3142 struct dma_fence_array *fence_array;
3143 struct dma_fence **fences;
3144 unsigned int i;
3145
3146 GEM_BUG_ON(!intel_context_is_parent(eb->context));
3147
3148 fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL);
3149 if (!fences)
3150 return ERR_PTR(-ENOMEM);
3151
3152 for_each_batch_create_order(eb, i) {
3153 fences[i] = &eb->requests[i]->fence;
3154 __set_bit(I915_FENCE_FLAG_COMPOSITE,
3155 &eb->requests[i]->fence.flags);
3156 }
3157
3158 fence_array = dma_fence_array_create(eb->num_batches,
3159 fences,
3160 eb->context->parallel.fence_context,
3161 eb->context->parallel.seqno++,
3162 false);
3163 if (!fence_array) {
3164 kfree(fences);
3165 return ERR_PTR(-ENOMEM);
3166 }
3167
3168 /* Move ownership to the dma_fence_array created above */
3169 for_each_batch_create_order(eb, i)
3170 dma_fence_get(fences[i]);
3171
3172 if (out_fence_fd != -1) {
3173 out_fence = sync_file_create(&fence_array->base);
3174 /* sync_file now owns fence_arry, drop creation ref */
3175 dma_fence_put(&fence_array->base);
3176 if (!out_fence)
3177 return ERR_PTR(-ENOMEM);
3178 }
3179
3180 eb->composite_fence = &fence_array->base;
3181
3182 return out_fence;
3183 }
3184
3185 static struct sync_file *
eb_fences_add(struct i915_execbuffer * eb,struct i915_request * rq,struct dma_fence * in_fence,int out_fence_fd)3186 eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq,
3187 struct dma_fence *in_fence, int out_fence_fd)
3188 {
3189 struct sync_file *out_fence = NULL;
3190 int err;
3191
3192 if (unlikely(eb->gem_context->syncobj)) {
3193 struct dma_fence *fence;
3194
3195 fence = drm_syncobj_fence_get(eb->gem_context->syncobj);
3196 err = i915_request_await_dma_fence(rq, fence);
3197 dma_fence_put(fence);
3198 if (err)
3199 return ERR_PTR(err);
3200 }
3201
3202 if (in_fence) {
3203 if (eb->args->flags & I915_EXEC_FENCE_SUBMIT)
3204 err = i915_request_await_execution(rq, in_fence);
3205 else
3206 err = i915_request_await_dma_fence(rq, in_fence);
3207 if (err < 0)
3208 return ERR_PTR(err);
3209 }
3210
3211 if (eb->fences) {
3212 err = await_fence_array(eb, rq);
3213 if (err)
3214 return ERR_PTR(err);
3215 }
3216
3217 if (intel_context_is_parallel(eb->context)) {
3218 out_fence = eb_composite_fence_create(eb, out_fence_fd);
3219 if (IS_ERR(out_fence))
3220 return ERR_PTR(-ENOMEM);
3221 } else if (out_fence_fd != -1) {
3222 out_fence = sync_file_create(&rq->fence);
3223 if (!out_fence)
3224 return ERR_PTR(-ENOMEM);
3225 }
3226
3227 return out_fence;
3228 }
3229
3230 static struct intel_context *
eb_find_context(struct i915_execbuffer * eb,unsigned int context_number)3231 eb_find_context(struct i915_execbuffer *eb, unsigned int context_number)
3232 {
3233 struct intel_context *child;
3234
3235 if (likely(context_number == 0))
3236 return eb->context;
3237
3238 for_each_child(eb->context, child)
3239 if (!--context_number)
3240 return child;
3241
3242 GEM_BUG_ON("Context not found");
3243
3244 return NULL;
3245 }
3246
3247 static struct sync_file *
eb_requests_create(struct i915_execbuffer * eb,struct dma_fence * in_fence,int out_fence_fd)3248 eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence,
3249 int out_fence_fd)
3250 {
3251 struct sync_file *out_fence = NULL;
3252 unsigned int i;
3253
3254 for_each_batch_create_order(eb, i) {
3255 /* Allocate a request for this batch buffer nice and early. */
3256 eb->requests[i] = i915_request_create(eb_find_context(eb, i));
3257 if (IS_ERR(eb->requests[i])) {
3258 out_fence = ERR_CAST(eb->requests[i]);
3259 eb->requests[i] = NULL;
3260 return out_fence;
3261 }
3262
3263 /*
3264 * Only the first request added (committed to backend) has to
3265 * take the in fences into account as all subsequent requests
3266 * will have fences inserted inbetween them.
3267 */
3268 if (i + 1 == eb->num_batches) {
3269 out_fence = eb_fences_add(eb, eb->requests[i],
3270 in_fence, out_fence_fd);
3271 if (IS_ERR(out_fence))
3272 return out_fence;
3273 }
3274
3275 /*
3276 * Not really on stack, but we don't want to call
3277 * kfree on the batch_snapshot when we put it, so use the
3278 * _onstack interface.
3279 */
3280 if (eb->batches[i]->vma)
3281 eb->requests[i]->batch_res =
3282 i915_vma_resource_get(eb->batches[i]->vma->resource);
3283 if (eb->batch_pool) {
3284 GEM_BUG_ON(intel_context_is_parallel(eb->context));
3285 intel_gt_buffer_pool_mark_active(eb->batch_pool,
3286 eb->requests[i]);
3287 }
3288 }
3289
3290 return out_fence;
3291 }
3292
3293 static int
i915_gem_do_execbuffer(struct drm_device * dev,struct drm_file * file,struct drm_i915_gem_execbuffer2 * args,struct drm_i915_gem_exec_object2 * exec)3294 i915_gem_do_execbuffer(struct drm_device *dev,
3295 struct drm_file *file,
3296 struct drm_i915_gem_execbuffer2 *args,
3297 struct drm_i915_gem_exec_object2 *exec)
3298 {
3299 struct drm_i915_private *i915 = to_i915(dev);
3300 struct i915_execbuffer eb;
3301 struct dma_fence *in_fence = NULL;
3302 struct sync_file *out_fence = NULL;
3303 int out_fence_fd = -1;
3304 int err;
3305
3306 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
3307 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
3308 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
3309
3310 eb.i915 = i915;
3311 eb.file = file;
3312 eb.args = args;
3313 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
3314 args->flags |= __EXEC_HAS_RELOC;
3315
3316 eb.exec = exec;
3317 eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
3318 eb.vma[0].vma = NULL;
3319 eb.batch_pool = NULL;
3320
3321 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
3322 reloc_cache_init(&eb.reloc_cache, eb.i915);
3323
3324 eb.buffer_count = args->buffer_count;
3325 eb.batch_start_offset = args->batch_start_offset;
3326 eb.trampoline = NULL;
3327
3328 eb.fences = NULL;
3329 eb.num_fences = 0;
3330
3331 eb_capture_list_clear(&eb);
3332
3333 memset(eb.requests, 0, sizeof(struct i915_request *) *
3334 ARRAY_SIZE(eb.requests));
3335 eb.composite_fence = NULL;
3336
3337 eb.batch_flags = 0;
3338 if (args->flags & I915_EXEC_SECURE) {
3339 if (GRAPHICS_VER(i915) >= 11)
3340 return -ENODEV;
3341
3342 /* Return -EPERM to trigger fallback code on old binaries. */
3343 if (!HAS_SECURE_BATCHES(i915))
3344 return -EPERM;
3345
3346 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
3347 return -EPERM;
3348
3349 eb.batch_flags |= I915_DISPATCH_SECURE;
3350 }
3351 if (args->flags & I915_EXEC_IS_PINNED)
3352 eb.batch_flags |= I915_DISPATCH_PINNED;
3353
3354 err = parse_execbuf2_extensions(args, &eb);
3355 if (err)
3356 goto err_ext;
3357
3358 err = add_fence_array(&eb);
3359 if (err)
3360 goto err_ext;
3361
3362 #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT)
3363 if (args->flags & IN_FENCES) {
3364 if ((args->flags & IN_FENCES) == IN_FENCES)
3365 return -EINVAL;
3366
3367 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
3368 if (!in_fence) {
3369 err = -EINVAL;
3370 goto err_ext;
3371 }
3372 }
3373 #undef IN_FENCES
3374
3375 if (args->flags & I915_EXEC_FENCE_OUT) {
3376 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
3377 if (out_fence_fd < 0) {
3378 err = out_fence_fd;
3379 goto err_in_fence;
3380 }
3381 }
3382
3383 err = eb_create(&eb);
3384 if (err)
3385 goto err_out_fence;
3386
3387 GEM_BUG_ON(!eb.lut_size);
3388
3389 err = eb_select_context(&eb);
3390 if (unlikely(err))
3391 goto err_destroy;
3392
3393 err = eb_select_engine(&eb);
3394 if (unlikely(err))
3395 goto err_context;
3396
3397 err = eb_lookup_vmas(&eb);
3398 if (err) {
3399 eb_release_vmas(&eb, true);
3400 goto err_engine;
3401 }
3402
3403 i915_gem_ww_ctx_init(&eb.ww, true);
3404
3405 err = eb_relocate_parse(&eb);
3406 if (err) {
3407 /*
3408 * If the user expects the execobject.offset and
3409 * reloc.presumed_offset to be an exact match,
3410 * as for using NO_RELOC, then we cannot update
3411 * the execobject.offset until we have completed
3412 * relocation.
3413 */
3414 args->flags &= ~__EXEC_HAS_RELOC;
3415 goto err_vma;
3416 }
3417
3418 ww_acquire_done(&eb.ww.ctx);
3419 err = eb_capture_stage(&eb);
3420 if (err)
3421 goto err_vma;
3422
3423 out_fence = eb_requests_create(&eb, in_fence, out_fence_fd);
3424 if (IS_ERR(out_fence)) {
3425 err = PTR_ERR(out_fence);
3426 out_fence = NULL;
3427 if (eb.requests[0])
3428 goto err_request;
3429 else
3430 goto err_vma;
3431 }
3432
3433 err = eb_submit(&eb);
3434
3435 err_request:
3436 eb_requests_get(&eb);
3437 err = eb_requests_add(&eb, err);
3438
3439 if (eb.fences)
3440 signal_fence_array(&eb, eb.composite_fence ?
3441 eb.composite_fence :
3442 &eb.requests[0]->fence);
3443
3444 if (out_fence) {
3445 if (err == 0) {
3446 fd_install(out_fence_fd, out_fence->file);
3447 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
3448 args->rsvd2 |= (u64)out_fence_fd << 32;
3449 out_fence_fd = -1;
3450 } else {
3451 fput(out_fence->file);
3452 }
3453 }
3454
3455 if (unlikely(eb.gem_context->syncobj)) {
3456 drm_syncobj_replace_fence(eb.gem_context->syncobj,
3457 eb.composite_fence ?
3458 eb.composite_fence :
3459 &eb.requests[0]->fence);
3460 }
3461
3462 if (!out_fence && eb.composite_fence)
3463 dma_fence_put(eb.composite_fence);
3464
3465 eb_requests_put(&eb);
3466
3467 err_vma:
3468 eb_release_vmas(&eb, true);
3469 WARN_ON(err == -EDEADLK);
3470 i915_gem_ww_ctx_fini(&eb.ww);
3471
3472 if (eb.batch_pool)
3473 intel_gt_buffer_pool_put(eb.batch_pool);
3474 err_engine:
3475 eb_put_engine(&eb);
3476 err_context:
3477 i915_gem_context_put(eb.gem_context);
3478 err_destroy:
3479 eb_destroy(&eb);
3480 err_out_fence:
3481 if (out_fence_fd != -1)
3482 put_unused_fd(out_fence_fd);
3483 err_in_fence:
3484 dma_fence_put(in_fence);
3485 err_ext:
3486 put_fence_array(eb.fences, eb.num_fences);
3487 return err;
3488 }
3489
eb_element_size(void)3490 static size_t eb_element_size(void)
3491 {
3492 return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
3493 }
3494
check_buffer_count(size_t count)3495 static bool check_buffer_count(size_t count)
3496 {
3497 const size_t sz = eb_element_size();
3498
3499 /*
3500 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
3501 * array size (see eb_create()). Otherwise, we can accept an array as
3502 * large as can be addressed (though use large arrays at your peril)!
3503 */
3504
3505 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
3506 }
3507
3508 int
i915_gem_execbuffer2_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3509 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
3510 struct drm_file *file)
3511 {
3512 struct drm_i915_private *i915 = to_i915(dev);
3513 struct drm_i915_gem_execbuffer2 *args = data;
3514 struct drm_i915_gem_exec_object2 *exec2_list;
3515 const size_t count = args->buffer_count;
3516 int err;
3517
3518 if (!check_buffer_count(count)) {
3519 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
3520 return -EINVAL;
3521 }
3522
3523 err = i915_gem_check_execbuffer(args);
3524 if (err)
3525 return err;
3526
3527 /* Allocate extra slots for use by the command parser */
3528 exec2_list = kvmalloc_array(count + 2, eb_element_size(),
3529 __GFP_NOWARN | GFP_KERNEL);
3530 if (exec2_list == NULL) {
3531 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
3532 count);
3533 return -ENOMEM;
3534 }
3535 if (copy_from_user(exec2_list,
3536 u64_to_user_ptr(args->buffers_ptr),
3537 sizeof(*exec2_list) * count)) {
3538 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
3539 kvfree(exec2_list);
3540 return -EFAULT;
3541 }
3542
3543 err = i915_gem_do_execbuffer(dev, file, args, exec2_list);
3544
3545 /*
3546 * Now that we have begun execution of the batchbuffer, we ignore
3547 * any new error after this point. Also given that we have already
3548 * updated the associated relocations, we try to write out the current
3549 * object locations irrespective of any error.
3550 */
3551 if (args->flags & __EXEC_HAS_RELOC) {
3552 struct drm_i915_gem_exec_object2 __user *user_exec_list =
3553 u64_to_user_ptr(args->buffers_ptr);
3554 unsigned int i;
3555
3556 /* Copy the new buffer offsets back to the user's exec list. */
3557 /*
3558 * Note: count * sizeof(*user_exec_list) does not overflow,
3559 * because we checked 'count' in check_buffer_count().
3560 *
3561 * And this range already got effectively checked earlier
3562 * when we did the "copy_from_user()" above.
3563 */
3564 if (!user_write_access_begin(user_exec_list,
3565 count * sizeof(*user_exec_list)))
3566 goto end;
3567
3568 for (i = 0; i < args->buffer_count; i++) {
3569 if (!(exec2_list[i].offset & UPDATE))
3570 continue;
3571
3572 exec2_list[i].offset =
3573 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
3574 unsafe_put_user(exec2_list[i].offset,
3575 &user_exec_list[i].offset,
3576 end_user);
3577 }
3578 end_user:
3579 user_write_access_end();
3580 end:;
3581 }
3582
3583 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
3584 kvfree(exec2_list);
3585 return err;
3586 }
3587