1 /*
2 * SPDX-License-Identifier: MIT
3 *
4 * Copyright © 2019 Intel Corporation
5 */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17
18 /*
19 * Active refs memory management
20 *
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
24 */
25 static struct i915_global_active {
26 struct i915_global base;
27 struct kmem_cache *slab_cache;
28 } global;
29
30 struct active_node {
31 struct rb_node node;
32 struct i915_active_fence base;
33 struct i915_active *ref;
34 u64 timeline;
35 };
36
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38
39 static inline struct active_node *
node_from_active(struct i915_active_fence * active)40 node_from_active(struct i915_active_fence *active)
41 {
42 return container_of(active, struct active_node, base);
43 }
44
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46
is_barrier(const struct i915_active_fence * active)47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49 return IS_ERR(rcu_access_pointer(active->fence));
50 }
51
barrier_to_ll(struct active_node * node)52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54 GEM_BUG_ON(!is_barrier(&node->base));
55 return (struct llist_node *)&node->base.cb.node;
56 }
57
58 static inline struct intel_engine_cs *
__barrier_to_engine(struct active_node * node)59 __barrier_to_engine(struct active_node *node)
60 {
61 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63
64 static inline struct intel_engine_cs *
barrier_to_engine(struct active_node * node)65 barrier_to_engine(struct active_node *node)
66 {
67 GEM_BUG_ON(!is_barrier(&node->base));
68 return __barrier_to_engine(node);
69 }
70
barrier_from_ll(struct llist_node * x)71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73 return container_of((struct list_head *)x,
74 struct active_node, base.cb.node);
75 }
76
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78
active_debug_hint(void * addr)79 static void *active_debug_hint(void *addr)
80 {
81 struct i915_active *ref = addr;
82
83 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85
86 static const struct debug_obj_descr active_debug_desc = {
87 .name = "i915_active",
88 .debug_hint = active_debug_hint,
89 };
90
debug_active_init(struct i915_active * ref)91 static void debug_active_init(struct i915_active *ref)
92 {
93 debug_object_init(ref, &active_debug_desc);
94 }
95
debug_active_activate(struct i915_active * ref)96 static void debug_active_activate(struct i915_active *ref)
97 {
98 lockdep_assert_held(&ref->tree_lock);
99 if (!atomic_read(&ref->count)) /* before the first inc */
100 debug_object_activate(ref, &active_debug_desc);
101 }
102
debug_active_deactivate(struct i915_active * ref)103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105 lockdep_assert_held(&ref->tree_lock);
106 if (!atomic_read(&ref->count)) /* after the last dec */
107 debug_object_deactivate(ref, &active_debug_desc);
108 }
109
debug_active_fini(struct i915_active * ref)110 static void debug_active_fini(struct i915_active *ref)
111 {
112 debug_object_free(ref, &active_debug_desc);
113 }
114
debug_active_assert(struct i915_active * ref)115 static void debug_active_assert(struct i915_active *ref)
116 {
117 debug_object_assert_init(ref, &active_debug_desc);
118 }
119
120 #else
121
debug_active_init(struct i915_active * ref)122 static inline void debug_active_init(struct i915_active *ref) { }
debug_active_activate(struct i915_active * ref)123 static inline void debug_active_activate(struct i915_active *ref) { }
debug_active_deactivate(struct i915_active * ref)124 static inline void debug_active_deactivate(struct i915_active *ref) { }
debug_active_fini(struct i915_active * ref)125 static inline void debug_active_fini(struct i915_active *ref) { }
debug_active_assert(struct i915_active * ref)126 static inline void debug_active_assert(struct i915_active *ref) { }
127
128 #endif
129
130 static void
__active_retire(struct i915_active * ref)131 __active_retire(struct i915_active *ref)
132 {
133 struct rb_root root = RB_ROOT;
134 struct active_node *it, *n;
135 unsigned long flags;
136
137 GEM_BUG_ON(i915_active_is_idle(ref));
138
139 /* return the unused nodes to our slabcache -- flushing the allocator */
140 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 return;
142
143 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144 debug_active_deactivate(ref);
145
146 /* Even if we have not used the cache, we may still have a barrier */
147 if (!ref->cache)
148 ref->cache = fetch_node(ref->tree.rb_node);
149
150 /* Keep the MRU cached node for reuse */
151 if (ref->cache) {
152 /* Discard all other nodes in the tree */
153 rb_erase(&ref->cache->node, &ref->tree);
154 root = ref->tree;
155
156 /* Rebuild the tree with only the cached node */
157 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158 rb_insert_color(&ref->cache->node, &ref->tree);
159 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160
161 /* Make the cached node available for reuse with any timeline */
162 if (IS_ENABLED(CONFIG_64BIT))
163 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
164 }
165
166 spin_unlock_irqrestore(&ref->tree_lock, flags);
167
168 /* After the final retire, the entire struct may be freed */
169 if (ref->retire)
170 ref->retire(ref);
171
172 /* ... except if you wait on it, you must manage your own references! */
173 wake_up_var(ref);
174
175 /* Finally free the discarded timeline tree */
176 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
177 GEM_BUG_ON(i915_active_fence_isset(&it->base));
178 kmem_cache_free(global.slab_cache, it);
179 }
180 }
181
182 static void
active_work(struct work_struct * wrk)183 active_work(struct work_struct *wrk)
184 {
185 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
186
187 GEM_BUG_ON(!atomic_read(&ref->count));
188 if (atomic_add_unless(&ref->count, -1, 1))
189 return;
190
191 __active_retire(ref);
192 }
193
194 static void
active_retire(struct i915_active * ref)195 active_retire(struct i915_active *ref)
196 {
197 GEM_BUG_ON(!atomic_read(&ref->count));
198 if (atomic_add_unless(&ref->count, -1, 1))
199 return;
200
201 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
202 queue_work(system_unbound_wq, &ref->work);
203 return;
204 }
205
206 __active_retire(ref);
207 }
208
209 static inline struct dma_fence **
__active_fence_slot(struct i915_active_fence * active)210 __active_fence_slot(struct i915_active_fence *active)
211 {
212 return (struct dma_fence ** __force)&active->fence;
213 }
214
215 static inline bool
active_fence_cb(struct dma_fence * fence,struct dma_fence_cb * cb)216 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
217 {
218 struct i915_active_fence *active =
219 container_of(cb, typeof(*active), cb);
220
221 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
222 }
223
224 static void
node_retire(struct dma_fence * fence,struct dma_fence_cb * cb)225 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
226 {
227 if (active_fence_cb(fence, cb))
228 active_retire(container_of(cb, struct active_node, base.cb)->ref);
229 }
230
231 static void
excl_retire(struct dma_fence * fence,struct dma_fence_cb * cb)232 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
233 {
234 if (active_fence_cb(fence, cb))
235 active_retire(container_of(cb, struct i915_active, excl.cb));
236 }
237
__active_lookup(struct i915_active * ref,u64 idx)238 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
239 {
240 struct active_node *it;
241
242 GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
243
244 /*
245 * We track the most recently used timeline to skip a rbtree search
246 * for the common case, under typical loads we never need the rbtree
247 * at all. We can reuse the last slot if it is empty, that is
248 * after the previous activity has been retired, or if it matches the
249 * current timeline.
250 */
251 it = READ_ONCE(ref->cache);
252 if (it) {
253 u64 cached = READ_ONCE(it->timeline);
254
255 /* Once claimed, this slot will only belong to this idx */
256 if (cached == idx)
257 return it;
258
259 #ifdef CONFIG_64BIT /* for cmpxchg(u64) */
260 /*
261 * An unclaimed cache [.timeline=0] can only be claimed once.
262 *
263 * If the value is already non-zero, some other thread has
264 * claimed the cache and we know that is does not match our
265 * idx. If, and only if, the timeline is currently zero is it
266 * worth competing to claim it atomically for ourselves (for
267 * only the winner of that race will cmpxchg return the old
268 * value of 0).
269 */
270 if (!cached && !cmpxchg(&it->timeline, 0, idx))
271 return it;
272 #endif
273 }
274
275 BUILD_BUG_ON(offsetof(typeof(*it), node));
276
277 /* While active, the tree can only be built; not destroyed */
278 GEM_BUG_ON(i915_active_is_idle(ref));
279
280 it = fetch_node(ref->tree.rb_node);
281 while (it) {
282 if (it->timeline < idx) {
283 it = fetch_node(it->node.rb_right);
284 } else if (it->timeline > idx) {
285 it = fetch_node(it->node.rb_left);
286 } else {
287 WRITE_ONCE(ref->cache, it);
288 break;
289 }
290 }
291
292 /* NB: If the tree rotated beneath us, we may miss our target. */
293 return it;
294 }
295
296 static struct i915_active_fence *
active_instance(struct i915_active * ref,u64 idx)297 active_instance(struct i915_active *ref, u64 idx)
298 {
299 struct active_node *node, *prealloc;
300 struct rb_node **p, *parent;
301
302 node = __active_lookup(ref, idx);
303 if (likely(node))
304 return &node->base;
305
306 /* Preallocate a replacement, just in case */
307 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
308 if (!prealloc)
309 return NULL;
310
311 spin_lock_irq(&ref->tree_lock);
312 GEM_BUG_ON(i915_active_is_idle(ref));
313
314 parent = NULL;
315 p = &ref->tree.rb_node;
316 while (*p) {
317 parent = *p;
318
319 node = rb_entry(parent, struct active_node, node);
320 if (node->timeline == idx) {
321 kmem_cache_free(global.slab_cache, prealloc);
322 goto out;
323 }
324
325 if (node->timeline < idx)
326 p = &parent->rb_right;
327 else
328 p = &parent->rb_left;
329 }
330
331 node = prealloc;
332 __i915_active_fence_init(&node->base, NULL, node_retire);
333 node->ref = ref;
334 node->timeline = idx;
335
336 rb_link_node(&node->node, parent, p);
337 rb_insert_color(&node->node, &ref->tree);
338
339 out:
340 WRITE_ONCE(ref->cache, node);
341 spin_unlock_irq(&ref->tree_lock);
342
343 return &node->base;
344 }
345
__i915_active_init(struct i915_active * ref,int (* active)(struct i915_active * ref),void (* retire)(struct i915_active * ref),struct lock_class_key * mkey,struct lock_class_key * wkey)346 void __i915_active_init(struct i915_active *ref,
347 int (*active)(struct i915_active *ref),
348 void (*retire)(struct i915_active *ref),
349 struct lock_class_key *mkey,
350 struct lock_class_key *wkey)
351 {
352 unsigned long bits;
353
354 debug_active_init(ref);
355
356 ref->flags = 0;
357 ref->active = active;
358 ref->retire = ptr_unpack_bits(retire, &bits, 2);
359 if (bits & I915_ACTIVE_MAY_SLEEP)
360 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
361
362 spin_lock_init(&ref->tree_lock);
363 ref->tree = RB_ROOT;
364 ref->cache = NULL;
365
366 init_llist_head(&ref->preallocated_barriers);
367 atomic_set(&ref->count, 0);
368 __mutex_init(&ref->mutex, "i915_active", mkey);
369 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
370 INIT_WORK(&ref->work, active_work);
371 #if IS_ENABLED(CONFIG_LOCKDEP)
372 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
373 #endif
374 }
375
____active_del_barrier(struct i915_active * ref,struct active_node * node,struct intel_engine_cs * engine)376 static bool ____active_del_barrier(struct i915_active *ref,
377 struct active_node *node,
378 struct intel_engine_cs *engine)
379
380 {
381 struct llist_node *head = NULL, *tail = NULL;
382 struct llist_node *pos, *next;
383
384 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
385
386 /*
387 * Rebuild the llist excluding our node. We may perform this
388 * outside of the kernel_context timeline mutex and so someone
389 * else may be manipulating the engine->barrier_tasks, in
390 * which case either we or they will be upset :)
391 *
392 * A second __active_del_barrier() will report failure to claim
393 * the active_node and the caller will just shrug and know not to
394 * claim ownership of its node.
395 *
396 * A concurrent i915_request_add_active_barriers() will miss adding
397 * any of the tasks, but we will try again on the next -- and since
398 * we are actively using the barrier, we know that there will be
399 * at least another opportunity when we idle.
400 */
401 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
402 if (node == barrier_from_ll(pos)) {
403 node = NULL;
404 continue;
405 }
406
407 pos->next = head;
408 head = pos;
409 if (!tail)
410 tail = pos;
411 }
412 if (head)
413 llist_add_batch(head, tail, &engine->barrier_tasks);
414
415 return !node;
416 }
417
418 static bool
__active_del_barrier(struct i915_active * ref,struct active_node * node)419 __active_del_barrier(struct i915_active *ref, struct active_node *node)
420 {
421 return ____active_del_barrier(ref, node, barrier_to_engine(node));
422 }
423
424 static bool
replace_barrier(struct i915_active * ref,struct i915_active_fence * active)425 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
426 {
427 if (!is_barrier(active)) /* proto-node used by our idle barrier? */
428 return false;
429
430 /*
431 * This request is on the kernel_context timeline, and so
432 * we can use it to substitute for the pending idle-barrer
433 * request that we want to emit on the kernel_context.
434 */
435 __active_del_barrier(ref, node_from_active(active));
436 return true;
437 }
438
i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)439 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
440 {
441 struct i915_active_fence *active;
442 int err;
443
444 /* Prevent reaping in case we malloc/wait while building the tree */
445 err = i915_active_acquire(ref);
446 if (err)
447 return err;
448
449 active = active_instance(ref, idx);
450 if (!active) {
451 err = -ENOMEM;
452 goto out;
453 }
454
455 if (replace_barrier(ref, active)) {
456 RCU_INIT_POINTER(active->fence, NULL);
457 atomic_dec(&ref->count);
458 }
459 if (!__i915_active_fence_set(active, fence))
460 __i915_active_acquire(ref);
461
462 out:
463 i915_active_release(ref);
464 return err;
465 }
466
467 static struct dma_fence *
__i915_active_set_fence(struct i915_active * ref,struct i915_active_fence * active,struct dma_fence * fence)468 __i915_active_set_fence(struct i915_active *ref,
469 struct i915_active_fence *active,
470 struct dma_fence *fence)
471 {
472 struct dma_fence *prev;
473
474 if (replace_barrier(ref, active)) {
475 RCU_INIT_POINTER(active->fence, fence);
476 return NULL;
477 }
478
479 rcu_read_lock();
480 prev = __i915_active_fence_set(active, fence);
481 if (prev)
482 prev = dma_fence_get_rcu(prev);
483 else
484 __i915_active_acquire(ref);
485 rcu_read_unlock();
486
487 return prev;
488 }
489
490 static struct i915_active_fence *
__active_fence(struct i915_active * ref,u64 idx)491 __active_fence(struct i915_active *ref, u64 idx)
492 {
493 struct active_node *it;
494
495 it = __active_lookup(ref, idx);
496 if (unlikely(!it)) { /* Contention with parallel tree builders! */
497 spin_lock_irq(&ref->tree_lock);
498 it = __active_lookup(ref, idx);
499 spin_unlock_irq(&ref->tree_lock);
500 }
501 GEM_BUG_ON(!it); /* slot must be preallocated */
502
503 return &it->base;
504 }
505
506 struct dma_fence *
__i915_active_ref(struct i915_active * ref,u64 idx,struct dma_fence * fence)507 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
508 {
509 /* Only valid while active, see i915_active_acquire_for_context() */
510 return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
511 }
512
513 struct dma_fence *
i915_active_set_exclusive(struct i915_active * ref,struct dma_fence * f)514 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
515 {
516 /* We expect the caller to manage the exclusive timeline ordering */
517 return __i915_active_set_fence(ref, &ref->excl, f);
518 }
519
i915_active_acquire_if_busy(struct i915_active * ref)520 bool i915_active_acquire_if_busy(struct i915_active *ref)
521 {
522 debug_active_assert(ref);
523 return atomic_add_unless(&ref->count, 1, 0);
524 }
525
__i915_active_activate(struct i915_active * ref)526 static void __i915_active_activate(struct i915_active *ref)
527 {
528 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
529 if (!atomic_fetch_inc(&ref->count))
530 debug_active_activate(ref);
531 spin_unlock_irq(&ref->tree_lock);
532 }
533
i915_active_acquire(struct i915_active * ref)534 int i915_active_acquire(struct i915_active *ref)
535 {
536 int err;
537
538 if (i915_active_acquire_if_busy(ref))
539 return 0;
540
541 if (!ref->active) {
542 __i915_active_activate(ref);
543 return 0;
544 }
545
546 err = mutex_lock_interruptible(&ref->mutex);
547 if (err)
548 return err;
549
550 if (likely(!i915_active_acquire_if_busy(ref))) {
551 err = ref->active(ref);
552 if (!err)
553 __i915_active_activate(ref);
554 }
555
556 mutex_unlock(&ref->mutex);
557
558 return err;
559 }
560
i915_active_acquire_for_context(struct i915_active * ref,u64 idx)561 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
562 {
563 struct i915_active_fence *active;
564 int err;
565
566 err = i915_active_acquire(ref);
567 if (err)
568 return err;
569
570 active = active_instance(ref, idx);
571 if (!active) {
572 i915_active_release(ref);
573 return -ENOMEM;
574 }
575
576 return 0; /* return with active ref */
577 }
578
i915_active_release(struct i915_active * ref)579 void i915_active_release(struct i915_active *ref)
580 {
581 debug_active_assert(ref);
582 active_retire(ref);
583 }
584
enable_signaling(struct i915_active_fence * active)585 static void enable_signaling(struct i915_active_fence *active)
586 {
587 struct dma_fence *fence;
588
589 if (unlikely(is_barrier(active)))
590 return;
591
592 fence = i915_active_fence_get(active);
593 if (!fence)
594 return;
595
596 dma_fence_enable_sw_signaling(fence);
597 dma_fence_put(fence);
598 }
599
flush_barrier(struct active_node * it)600 static int flush_barrier(struct active_node *it)
601 {
602 struct intel_engine_cs *engine;
603
604 if (likely(!is_barrier(&it->base)))
605 return 0;
606
607 engine = __barrier_to_engine(it);
608 smp_rmb(); /* serialise with add_active_barriers */
609 if (!is_barrier(&it->base))
610 return 0;
611
612 return intel_engine_flush_barriers(engine);
613 }
614
flush_lazy_signals(struct i915_active * ref)615 static int flush_lazy_signals(struct i915_active *ref)
616 {
617 struct active_node *it, *n;
618 int err = 0;
619
620 enable_signaling(&ref->excl);
621 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
622 err = flush_barrier(it); /* unconnected idle barrier? */
623 if (err)
624 break;
625
626 enable_signaling(&it->base);
627 }
628
629 return err;
630 }
631
__i915_active_wait(struct i915_active * ref,int state)632 int __i915_active_wait(struct i915_active *ref, int state)
633 {
634 int err;
635
636 might_sleep();
637
638 if (!i915_active_acquire_if_busy(ref))
639 return 0;
640
641 /* Any fence added after the wait begins will not be auto-signaled */
642 err = flush_lazy_signals(ref);
643 i915_active_release(ref);
644 if (err)
645 return err;
646
647 if (!i915_active_is_idle(ref) &&
648 ___wait_var_event(ref, i915_active_is_idle(ref),
649 state, 0, 0, schedule()))
650 return -EINTR;
651
652 flush_work(&ref->work);
653 return 0;
654 }
655
__await_active(struct i915_active_fence * active,int (* fn)(void * arg,struct dma_fence * fence),void * arg)656 static int __await_active(struct i915_active_fence *active,
657 int (*fn)(void *arg, struct dma_fence *fence),
658 void *arg)
659 {
660 struct dma_fence *fence;
661
662 if (is_barrier(active)) /* XXX flush the barrier? */
663 return 0;
664
665 fence = i915_active_fence_get(active);
666 if (fence) {
667 int err;
668
669 err = fn(arg, fence);
670 dma_fence_put(fence);
671 if (err < 0)
672 return err;
673 }
674
675 return 0;
676 }
677
678 struct wait_barrier {
679 struct wait_queue_entry base;
680 struct i915_active *ref;
681 };
682
683 static int
barrier_wake(wait_queue_entry_t * wq,unsigned int mode,int flags,void * key)684 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
685 {
686 struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
687
688 if (i915_active_is_idle(wb->ref)) {
689 list_del(&wq->entry);
690 i915_sw_fence_complete(wq->private);
691 kfree(wq);
692 }
693
694 return 0;
695 }
696
__await_barrier(struct i915_active * ref,struct i915_sw_fence * fence)697 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
698 {
699 struct wait_barrier *wb;
700
701 wb = kmalloc(sizeof(*wb), GFP_KERNEL);
702 if (unlikely(!wb))
703 return -ENOMEM;
704
705 GEM_BUG_ON(i915_active_is_idle(ref));
706 if (!i915_sw_fence_await(fence)) {
707 kfree(wb);
708 return -EINVAL;
709 }
710
711 wb->base.flags = 0;
712 wb->base.func = barrier_wake;
713 wb->base.private = fence;
714 wb->ref = ref;
715
716 add_wait_queue(__var_waitqueue(ref), &wb->base);
717 return 0;
718 }
719
await_active(struct i915_active * ref,unsigned int flags,int (* fn)(void * arg,struct dma_fence * fence),void * arg,struct i915_sw_fence * barrier)720 static int await_active(struct i915_active *ref,
721 unsigned int flags,
722 int (*fn)(void *arg, struct dma_fence *fence),
723 void *arg, struct i915_sw_fence *barrier)
724 {
725 int err = 0;
726
727 if (!i915_active_acquire_if_busy(ref))
728 return 0;
729
730 if (flags & I915_ACTIVE_AWAIT_EXCL &&
731 rcu_access_pointer(ref->excl.fence)) {
732 err = __await_active(&ref->excl, fn, arg);
733 if (err)
734 goto out;
735 }
736
737 if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
738 struct active_node *it, *n;
739
740 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
741 err = __await_active(&it->base, fn, arg);
742 if (err)
743 goto out;
744 }
745 }
746
747 if (flags & I915_ACTIVE_AWAIT_BARRIER) {
748 err = flush_lazy_signals(ref);
749 if (err)
750 goto out;
751
752 err = __await_barrier(ref, barrier);
753 if (err)
754 goto out;
755 }
756
757 out:
758 i915_active_release(ref);
759 return err;
760 }
761
rq_await_fence(void * arg,struct dma_fence * fence)762 static int rq_await_fence(void *arg, struct dma_fence *fence)
763 {
764 return i915_request_await_dma_fence(arg, fence);
765 }
766
i915_request_await_active(struct i915_request * rq,struct i915_active * ref,unsigned int flags)767 int i915_request_await_active(struct i915_request *rq,
768 struct i915_active *ref,
769 unsigned int flags)
770 {
771 return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
772 }
773
sw_await_fence(void * arg,struct dma_fence * fence)774 static int sw_await_fence(void *arg, struct dma_fence *fence)
775 {
776 return i915_sw_fence_await_dma_fence(arg, fence, 0,
777 GFP_NOWAIT | __GFP_NOWARN);
778 }
779
i915_sw_fence_await_active(struct i915_sw_fence * fence,struct i915_active * ref,unsigned int flags)780 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
781 struct i915_active *ref,
782 unsigned int flags)
783 {
784 return await_active(ref, flags, sw_await_fence, fence, fence);
785 }
786
i915_active_fini(struct i915_active * ref)787 void i915_active_fini(struct i915_active *ref)
788 {
789 debug_active_fini(ref);
790 GEM_BUG_ON(atomic_read(&ref->count));
791 GEM_BUG_ON(work_pending(&ref->work));
792 mutex_destroy(&ref->mutex);
793
794 if (ref->cache)
795 kmem_cache_free(global.slab_cache, ref->cache);
796 }
797
is_idle_barrier(struct active_node * node,u64 idx)798 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
799 {
800 return node->timeline == idx && !i915_active_fence_isset(&node->base);
801 }
802
reuse_idle_barrier(struct i915_active * ref,u64 idx)803 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
804 {
805 struct rb_node *prev, *p;
806
807 if (RB_EMPTY_ROOT(&ref->tree))
808 return NULL;
809
810 GEM_BUG_ON(i915_active_is_idle(ref));
811
812 /*
813 * Try to reuse any existing barrier nodes already allocated for this
814 * i915_active, due to overlapping active phases there is likely a
815 * node kept alive (as we reuse before parking). We prefer to reuse
816 * completely idle barriers (less hassle in manipulating the llists),
817 * but otherwise any will do.
818 */
819 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
820 p = &ref->cache->node;
821 goto match;
822 }
823
824 prev = NULL;
825 p = ref->tree.rb_node;
826 while (p) {
827 struct active_node *node =
828 rb_entry(p, struct active_node, node);
829
830 if (is_idle_barrier(node, idx))
831 goto match;
832
833 prev = p;
834 if (node->timeline < idx)
835 p = READ_ONCE(p->rb_right);
836 else
837 p = READ_ONCE(p->rb_left);
838 }
839
840 /*
841 * No quick match, but we did find the leftmost rb_node for the
842 * kernel_context. Walk the rb_tree in-order to see if there were
843 * any idle-barriers on this timeline that we missed, or just use
844 * the first pending barrier.
845 */
846 for (p = prev; p; p = rb_next(p)) {
847 struct active_node *node =
848 rb_entry(p, struct active_node, node);
849 struct intel_engine_cs *engine;
850
851 if (node->timeline > idx)
852 break;
853
854 if (node->timeline < idx)
855 continue;
856
857 if (is_idle_barrier(node, idx))
858 goto match;
859
860 /*
861 * The list of pending barriers is protected by the
862 * kernel_context timeline, which notably we do not hold
863 * here. i915_request_add_active_barriers() may consume
864 * the barrier before we claim it, so we have to check
865 * for success.
866 */
867 engine = __barrier_to_engine(node);
868 smp_rmb(); /* serialise with add_active_barriers */
869 if (is_barrier(&node->base) &&
870 ____active_del_barrier(ref, node, engine))
871 goto match;
872 }
873
874 return NULL;
875
876 match:
877 spin_lock_irq(&ref->tree_lock);
878 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
879 if (p == &ref->cache->node)
880 WRITE_ONCE(ref->cache, NULL);
881 spin_unlock_irq(&ref->tree_lock);
882
883 return rb_entry(p, struct active_node, node);
884 }
885
i915_active_acquire_preallocate_barrier(struct i915_active * ref,struct intel_engine_cs * engine)886 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
887 struct intel_engine_cs *engine)
888 {
889 intel_engine_mask_t tmp, mask = engine->mask;
890 struct llist_node *first = NULL, *last = NULL;
891 struct intel_gt *gt = engine->gt;
892
893 GEM_BUG_ON(i915_active_is_idle(ref));
894
895 /* Wait until the previous preallocation is completed */
896 while (!llist_empty(&ref->preallocated_barriers))
897 cond_resched();
898
899 /*
900 * Preallocate a node for each physical engine supporting the target
901 * engine (remember virtual engines have more than one sibling).
902 * We can then use the preallocated nodes in
903 * i915_active_acquire_barrier()
904 */
905 GEM_BUG_ON(!mask);
906 for_each_engine_masked(engine, gt, mask, tmp) {
907 u64 idx = engine->kernel_context->timeline->fence_context;
908 struct llist_node *prev = first;
909 struct active_node *node;
910
911 rcu_read_lock();
912 node = reuse_idle_barrier(ref, idx);
913 rcu_read_unlock();
914 if (!node) {
915 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
916 if (!node)
917 goto unwind;
918
919 RCU_INIT_POINTER(node->base.fence, NULL);
920 node->base.cb.func = node_retire;
921 node->timeline = idx;
922 node->ref = ref;
923 }
924
925 if (!i915_active_fence_isset(&node->base)) {
926 /*
927 * Mark this as being *our* unconnected proto-node.
928 *
929 * Since this node is not in any list, and we have
930 * decoupled it from the rbtree, we can reuse the
931 * request to indicate this is an idle-barrier node
932 * and then we can use the rb_node and list pointers
933 * for our tracking of the pending barrier.
934 */
935 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
936 node->base.cb.node.prev = (void *)engine;
937 __i915_active_acquire(ref);
938 }
939 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
940
941 GEM_BUG_ON(barrier_to_engine(node) != engine);
942 first = barrier_to_ll(node);
943 first->next = prev;
944 if (!last)
945 last = first;
946 intel_engine_pm_get(engine);
947 }
948
949 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
950 llist_add_batch(first, last, &ref->preallocated_barriers);
951
952 return 0;
953
954 unwind:
955 while (first) {
956 struct active_node *node = barrier_from_ll(first);
957
958 first = first->next;
959
960 atomic_dec(&ref->count);
961 intel_engine_pm_put(barrier_to_engine(node));
962
963 kmem_cache_free(global.slab_cache, node);
964 }
965 return -ENOMEM;
966 }
967
i915_active_acquire_barrier(struct i915_active * ref)968 void i915_active_acquire_barrier(struct i915_active *ref)
969 {
970 struct llist_node *pos, *next;
971 unsigned long flags;
972
973 GEM_BUG_ON(i915_active_is_idle(ref));
974
975 /*
976 * Transfer the list of preallocated barriers into the
977 * i915_active rbtree, but only as proto-nodes. They will be
978 * populated by i915_request_add_active_barriers() to point to the
979 * request that will eventually release them.
980 */
981 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
982 struct active_node *node = barrier_from_ll(pos);
983 struct intel_engine_cs *engine = barrier_to_engine(node);
984 struct rb_node **p, *parent;
985
986 spin_lock_irqsave_nested(&ref->tree_lock, flags,
987 SINGLE_DEPTH_NESTING);
988 parent = NULL;
989 p = &ref->tree.rb_node;
990 while (*p) {
991 struct active_node *it;
992
993 parent = *p;
994
995 it = rb_entry(parent, struct active_node, node);
996 if (it->timeline < node->timeline)
997 p = &parent->rb_right;
998 else
999 p = &parent->rb_left;
1000 }
1001 rb_link_node(&node->node, parent, p);
1002 rb_insert_color(&node->node, &ref->tree);
1003 spin_unlock_irqrestore(&ref->tree_lock, flags);
1004
1005 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1006 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1007 intel_engine_pm_put_delay(engine, 1);
1008 }
1009 }
1010
ll_to_fence_slot(struct llist_node * node)1011 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1012 {
1013 return __active_fence_slot(&barrier_from_ll(node)->base);
1014 }
1015
i915_request_add_active_barriers(struct i915_request * rq)1016 void i915_request_add_active_barriers(struct i915_request *rq)
1017 {
1018 struct intel_engine_cs *engine = rq->engine;
1019 struct llist_node *node, *next;
1020 unsigned long flags;
1021
1022 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1023 GEM_BUG_ON(intel_engine_is_virtual(engine));
1024 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1025
1026 node = llist_del_all(&engine->barrier_tasks);
1027 if (!node)
1028 return;
1029 /*
1030 * Attach the list of proto-fences to the in-flight request such
1031 * that the parent i915_active will be released when this request
1032 * is retired.
1033 */
1034 spin_lock_irqsave(&rq->lock, flags);
1035 llist_for_each_safe(node, next, node) {
1036 /* serialise with reuse_idle_barrier */
1037 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1038 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1039 }
1040 spin_unlock_irqrestore(&rq->lock, flags);
1041 }
1042
1043 /*
1044 * __i915_active_fence_set: Update the last active fence along its timeline
1045 * @active: the active tracker
1046 * @fence: the new fence (under construction)
1047 *
1048 * Records the new @fence as the last active fence along its timeline in
1049 * this active tracker, moving the tracking callbacks from the previous
1050 * fence onto this one. Returns the previous fence (if not already completed),
1051 * which the caller must ensure is executed before the new fence. To ensure
1052 * that the order of fences within the timeline of the i915_active_fence is
1053 * understood, it should be locked by the caller.
1054 */
1055 struct dma_fence *
__i915_active_fence_set(struct i915_active_fence * active,struct dma_fence * fence)1056 __i915_active_fence_set(struct i915_active_fence *active,
1057 struct dma_fence *fence)
1058 {
1059 struct dma_fence *prev;
1060 unsigned long flags;
1061
1062 if (fence == rcu_access_pointer(active->fence))
1063 return fence;
1064
1065 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1066
1067 /*
1068 * Consider that we have two threads arriving (A and B), with
1069 * C already resident as the active->fence.
1070 *
1071 * A does the xchg first, and so it sees C or NULL depending
1072 * on the timing of the interrupt handler. If it is NULL, the
1073 * previous fence must have been signaled and we know that
1074 * we are first on the timeline. If it is still present,
1075 * we acquire the lock on that fence and serialise with the interrupt
1076 * handler, in the process removing it from any future interrupt
1077 * callback. A will then wait on C before executing (if present).
1078 *
1079 * As B is second, it sees A as the previous fence and so waits for
1080 * it to complete its transition and takes over the occupancy for
1081 * itself -- remembering that it needs to wait on A before executing.
1082 *
1083 * Note the strong ordering of the timeline also provides consistent
1084 * nesting rules for the fence->lock; the inner lock is always the
1085 * older lock.
1086 */
1087 spin_lock_irqsave(fence->lock, flags);
1088 prev = xchg(__active_fence_slot(active), fence);
1089 if (prev) {
1090 GEM_BUG_ON(prev == fence);
1091 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1092 __list_del_entry(&active->cb.node);
1093 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1094 }
1095 list_add_tail(&active->cb.node, &fence->cb_list);
1096 spin_unlock_irqrestore(fence->lock, flags);
1097
1098 return prev;
1099 }
1100
i915_active_fence_set(struct i915_active_fence * active,struct i915_request * rq)1101 int i915_active_fence_set(struct i915_active_fence *active,
1102 struct i915_request *rq)
1103 {
1104 struct dma_fence *fence;
1105 int err = 0;
1106
1107 /* Must maintain timeline ordering wrt previous active requests */
1108 rcu_read_lock();
1109 fence = __i915_active_fence_set(active, &rq->fence);
1110 if (fence) /* but the previous fence may not belong to that timeline! */
1111 fence = dma_fence_get_rcu(fence);
1112 rcu_read_unlock();
1113 if (fence) {
1114 err = i915_request_await_dma_fence(rq, fence);
1115 dma_fence_put(fence);
1116 }
1117
1118 return err;
1119 }
1120
i915_active_noop(struct dma_fence * fence,struct dma_fence_cb * cb)1121 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1122 {
1123 active_fence_cb(fence, cb);
1124 }
1125
1126 struct auto_active {
1127 struct i915_active base;
1128 struct kref ref;
1129 };
1130
i915_active_get(struct i915_active * ref)1131 struct i915_active *i915_active_get(struct i915_active *ref)
1132 {
1133 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1134
1135 kref_get(&aa->ref);
1136 return &aa->base;
1137 }
1138
auto_release(struct kref * ref)1139 static void auto_release(struct kref *ref)
1140 {
1141 struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1142
1143 i915_active_fini(&aa->base);
1144 kfree(aa);
1145 }
1146
i915_active_put(struct i915_active * ref)1147 void i915_active_put(struct i915_active *ref)
1148 {
1149 struct auto_active *aa = container_of(ref, typeof(*aa), base);
1150
1151 kref_put(&aa->ref, auto_release);
1152 }
1153
auto_active(struct i915_active * ref)1154 static int auto_active(struct i915_active *ref)
1155 {
1156 i915_active_get(ref);
1157 return 0;
1158 }
1159
auto_retire(struct i915_active * ref)1160 static void auto_retire(struct i915_active *ref)
1161 {
1162 i915_active_put(ref);
1163 }
1164
i915_active_create(void)1165 struct i915_active *i915_active_create(void)
1166 {
1167 struct auto_active *aa;
1168
1169 aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1170 if (!aa)
1171 return NULL;
1172
1173 kref_init(&aa->ref);
1174 i915_active_init(&aa->base, auto_active, auto_retire);
1175
1176 return &aa->base;
1177 }
1178
1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180 #include "selftests/i915_active.c"
1181 #endif
1182
i915_global_active_shrink(void)1183 static void i915_global_active_shrink(void)
1184 {
1185 kmem_cache_shrink(global.slab_cache);
1186 }
1187
i915_global_active_exit(void)1188 static void i915_global_active_exit(void)
1189 {
1190 kmem_cache_destroy(global.slab_cache);
1191 }
1192
1193 static struct i915_global_active global = { {
1194 .shrink = i915_global_active_shrink,
1195 .exit = i915_global_active_exit,
1196 } };
1197
i915_global_active_init(void)1198 int __init i915_global_active_init(void)
1199 {
1200 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1201 if (!global.slab_cache)
1202 return -ENOMEM;
1203
1204 i915_global_register(&global.base);
1205 return 0;
1206 }
1207