1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34 
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37 
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43 
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49 
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54 
55 /**
56  * DOC: interrupt handling
57  *
58  * These functions provide the basic support for enabling and disabling the
59  * interrupt handling support. There's a lot more functionality in i915_irq.c
60  * and related files, but that will be described in separate chapters.
61  */
62 
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64 
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66 	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
67 };
68 
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70 	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71 };
72 
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74 	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75 };
76 
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78 	[HPD_CRT] = SDE_CRT_HOTPLUG,
79 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG,
83 };
84 
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86 	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87 	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
91 };
92 
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94 	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95 	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96 	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97 	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98 	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
99 };
100 
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102 	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
103 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
108 };
109 
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
117 };
118 
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120 	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121 	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122 	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123 	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124 	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125 	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
126 };
127 
128 static const u32 hpd_bxt[HPD_NUM_PINS] = {
129 	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
130 	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
131 	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
132 };
133 
134 static const u32 hpd_gen11[HPD_NUM_PINS] = {
135 	[HPD_PORT_TC1] = GEN11_TC_HOTPLUG(PORT_TC1) | GEN11_TBT_HOTPLUG(PORT_TC1),
136 	[HPD_PORT_TC2] = GEN11_TC_HOTPLUG(PORT_TC2) | GEN11_TBT_HOTPLUG(PORT_TC2),
137 	[HPD_PORT_TC3] = GEN11_TC_HOTPLUG(PORT_TC3) | GEN11_TBT_HOTPLUG(PORT_TC3),
138 	[HPD_PORT_TC4] = GEN11_TC_HOTPLUG(PORT_TC4) | GEN11_TBT_HOTPLUG(PORT_TC4),
139 	[HPD_PORT_TC5] = GEN11_TC_HOTPLUG(PORT_TC5) | GEN11_TBT_HOTPLUG(PORT_TC5),
140 	[HPD_PORT_TC6] = GEN11_TC_HOTPLUG(PORT_TC6) | GEN11_TBT_HOTPLUG(PORT_TC6),
141 };
142 
143 static const u32 hpd_icp[HPD_NUM_PINS] = {
144 	[HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
145 	[HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
146 	[HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
147 	[HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
148 	[HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
149 	[HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
150 	[HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
151 	[HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
152 	[HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
153 };
154 
intel_hpd_init_pins(struct drm_i915_private * dev_priv)155 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
156 {
157 	struct i915_hotplug *hpd = &dev_priv->hotplug;
158 
159 	if (HAS_GMCH(dev_priv)) {
160 		if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
161 		    IS_CHERRYVIEW(dev_priv))
162 			hpd->hpd = hpd_status_g4x;
163 		else
164 			hpd->hpd = hpd_status_i915;
165 		return;
166 	}
167 
168 	if (INTEL_GEN(dev_priv) >= 11)
169 		hpd->hpd = hpd_gen11;
170 	else if (IS_GEN9_LP(dev_priv))
171 		hpd->hpd = hpd_bxt;
172 	else if (INTEL_GEN(dev_priv) >= 8)
173 		hpd->hpd = hpd_bdw;
174 	else if (INTEL_GEN(dev_priv) >= 7)
175 		hpd->hpd = hpd_ivb;
176 	else
177 		hpd->hpd = hpd_ilk;
178 
179 	if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
180 		return;
181 
182 	if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
183 	    HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
184 		hpd->pch_hpd = hpd_icp;
185 	else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
186 		hpd->pch_hpd = hpd_spt;
187 	else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
188 		hpd->pch_hpd = hpd_cpt;
189 	else if (HAS_PCH_IBX(dev_priv))
190 		hpd->pch_hpd = hpd_ibx;
191 	else
192 		MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
193 }
194 
195 static void
intel_handle_vblank(struct drm_i915_private * dev_priv,enum pipe pipe)196 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
197 {
198 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
199 
200 	drm_crtc_handle_vblank(&crtc->base);
201 }
202 
gen3_irq_reset(struct intel_uncore * uncore,i915_reg_t imr,i915_reg_t iir,i915_reg_t ier)203 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
204 		    i915_reg_t iir, i915_reg_t ier)
205 {
206 	intel_uncore_write(uncore, imr, 0xffffffff);
207 	intel_uncore_posting_read(uncore, imr);
208 
209 	intel_uncore_write(uncore, ier, 0);
210 
211 	/* IIR can theoretically queue up two events. Be paranoid. */
212 	intel_uncore_write(uncore, iir, 0xffffffff);
213 	intel_uncore_posting_read(uncore, iir);
214 	intel_uncore_write(uncore, iir, 0xffffffff);
215 	intel_uncore_posting_read(uncore, iir);
216 }
217 
gen2_irq_reset(struct intel_uncore * uncore)218 void gen2_irq_reset(struct intel_uncore *uncore)
219 {
220 	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
221 	intel_uncore_posting_read16(uncore, GEN2_IMR);
222 
223 	intel_uncore_write16(uncore, GEN2_IER, 0);
224 
225 	/* IIR can theoretically queue up two events. Be paranoid. */
226 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
227 	intel_uncore_posting_read16(uncore, GEN2_IIR);
228 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
229 	intel_uncore_posting_read16(uncore, GEN2_IIR);
230 }
231 
232 /*
233  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
234  */
gen3_assert_iir_is_zero(struct intel_uncore * uncore,i915_reg_t reg)235 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
236 {
237 	u32 val = intel_uncore_read(uncore, reg);
238 
239 	if (val == 0)
240 		return;
241 
242 	drm_WARN(&uncore->i915->drm, 1,
243 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
244 		 i915_mmio_reg_offset(reg), val);
245 	intel_uncore_write(uncore, reg, 0xffffffff);
246 	intel_uncore_posting_read(uncore, reg);
247 	intel_uncore_write(uncore, reg, 0xffffffff);
248 	intel_uncore_posting_read(uncore, reg);
249 }
250 
gen2_assert_iir_is_zero(struct intel_uncore * uncore)251 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
252 {
253 	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
254 
255 	if (val == 0)
256 		return;
257 
258 	drm_WARN(&uncore->i915->drm, 1,
259 		 "Interrupt register 0x%x is not zero: 0x%08x\n",
260 		 i915_mmio_reg_offset(GEN2_IIR), val);
261 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
262 	intel_uncore_posting_read16(uncore, GEN2_IIR);
263 	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
264 	intel_uncore_posting_read16(uncore, GEN2_IIR);
265 }
266 
gen3_irq_init(struct intel_uncore * uncore,i915_reg_t imr,u32 imr_val,i915_reg_t ier,u32 ier_val,i915_reg_t iir)267 void gen3_irq_init(struct intel_uncore *uncore,
268 		   i915_reg_t imr, u32 imr_val,
269 		   i915_reg_t ier, u32 ier_val,
270 		   i915_reg_t iir)
271 {
272 	gen3_assert_iir_is_zero(uncore, iir);
273 
274 	intel_uncore_write(uncore, ier, ier_val);
275 	intel_uncore_write(uncore, imr, imr_val);
276 	intel_uncore_posting_read(uncore, imr);
277 }
278 
gen2_irq_init(struct intel_uncore * uncore,u32 imr_val,u32 ier_val)279 void gen2_irq_init(struct intel_uncore *uncore,
280 		   u32 imr_val, u32 ier_val)
281 {
282 	gen2_assert_iir_is_zero(uncore);
283 
284 	intel_uncore_write16(uncore, GEN2_IER, ier_val);
285 	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
286 	intel_uncore_posting_read16(uncore, GEN2_IMR);
287 }
288 
289 /* For display hotplug interrupt */
290 static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private * dev_priv,u32 mask,u32 bits)291 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
292 				     u32 mask,
293 				     u32 bits)
294 {
295 	u32 val;
296 
297 	lockdep_assert_held(&dev_priv->irq_lock);
298 	drm_WARN_ON(&dev_priv->drm, bits & ~mask);
299 
300 	val = I915_READ(PORT_HOTPLUG_EN);
301 	val &= ~mask;
302 	val |= bits;
303 	I915_WRITE(PORT_HOTPLUG_EN, val);
304 }
305 
306 /**
307  * i915_hotplug_interrupt_update - update hotplug interrupt enable
308  * @dev_priv: driver private
309  * @mask: bits to update
310  * @bits: bits to enable
311  * NOTE: the HPD enable bits are modified both inside and outside
312  * of an interrupt context. To avoid that read-modify-write cycles
313  * interfer, these bits are protected by a spinlock. Since this
314  * function is usually not called from a context where the lock is
315  * held already, this function acquires the lock itself. A non-locking
316  * version is also available.
317  */
i915_hotplug_interrupt_update(struct drm_i915_private * dev_priv,u32 mask,u32 bits)318 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
319 				   u32 mask,
320 				   u32 bits)
321 {
322 	spin_lock_irq(&dev_priv->irq_lock);
323 	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
324 	spin_unlock_irq(&dev_priv->irq_lock);
325 }
326 
327 /**
328  * ilk_update_display_irq - update DEIMR
329  * @dev_priv: driver private
330  * @interrupt_mask: mask of interrupt bits to update
331  * @enabled_irq_mask: mask of interrupt bits to enable
332  */
ilk_update_display_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)333 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
334 			    u32 interrupt_mask,
335 			    u32 enabled_irq_mask)
336 {
337 	u32 new_val;
338 
339 	lockdep_assert_held(&dev_priv->irq_lock);
340 
341 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
342 
343 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
344 		return;
345 
346 	new_val = dev_priv->irq_mask;
347 	new_val &= ~interrupt_mask;
348 	new_val |= (~enabled_irq_mask & interrupt_mask);
349 
350 	if (new_val != dev_priv->irq_mask) {
351 		dev_priv->irq_mask = new_val;
352 		I915_WRITE(DEIMR, dev_priv->irq_mask);
353 		POSTING_READ(DEIMR);
354 	}
355 }
356 
357 /**
358  * bdw_update_port_irq - update DE port interrupt
359  * @dev_priv: driver private
360  * @interrupt_mask: mask of interrupt bits to update
361  * @enabled_irq_mask: mask of interrupt bits to enable
362  */
bdw_update_port_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)363 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
364 				u32 interrupt_mask,
365 				u32 enabled_irq_mask)
366 {
367 	u32 new_val;
368 	u32 old_val;
369 
370 	lockdep_assert_held(&dev_priv->irq_lock);
371 
372 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
373 
374 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
375 		return;
376 
377 	old_val = I915_READ(GEN8_DE_PORT_IMR);
378 
379 	new_val = old_val;
380 	new_val &= ~interrupt_mask;
381 	new_val |= (~enabled_irq_mask & interrupt_mask);
382 
383 	if (new_val != old_val) {
384 		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
385 		POSTING_READ(GEN8_DE_PORT_IMR);
386 	}
387 }
388 
389 /**
390  * bdw_update_pipe_irq - update DE pipe interrupt
391  * @dev_priv: driver private
392  * @pipe: pipe whose interrupt to update
393  * @interrupt_mask: mask of interrupt bits to update
394  * @enabled_irq_mask: mask of interrupt bits to enable
395  */
bdw_update_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,u32 interrupt_mask,u32 enabled_irq_mask)396 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
397 			 enum pipe pipe,
398 			 u32 interrupt_mask,
399 			 u32 enabled_irq_mask)
400 {
401 	u32 new_val;
402 
403 	lockdep_assert_held(&dev_priv->irq_lock);
404 
405 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
406 
407 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
408 		return;
409 
410 	new_val = dev_priv->de_irq_mask[pipe];
411 	new_val &= ~interrupt_mask;
412 	new_val |= (~enabled_irq_mask & interrupt_mask);
413 
414 	if (new_val != dev_priv->de_irq_mask[pipe]) {
415 		dev_priv->de_irq_mask[pipe] = new_val;
416 		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
417 		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
418 	}
419 }
420 
421 /**
422  * ibx_display_interrupt_update - update SDEIMR
423  * @dev_priv: driver private
424  * @interrupt_mask: mask of interrupt bits to update
425  * @enabled_irq_mask: mask of interrupt bits to enable
426  */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)427 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
428 				  u32 interrupt_mask,
429 				  u32 enabled_irq_mask)
430 {
431 	u32 sdeimr = I915_READ(SDEIMR);
432 	sdeimr &= ~interrupt_mask;
433 	sdeimr |= (~enabled_irq_mask & interrupt_mask);
434 
435 	drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
436 
437 	lockdep_assert_held(&dev_priv->irq_lock);
438 
439 	if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
440 		return;
441 
442 	I915_WRITE(SDEIMR, sdeimr);
443 	POSTING_READ(SDEIMR);
444 }
445 
i915_pipestat_enable_mask(struct drm_i915_private * dev_priv,enum pipe pipe)446 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
447 			      enum pipe pipe)
448 {
449 	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
450 	u32 enable_mask = status_mask << 16;
451 
452 	lockdep_assert_held(&dev_priv->irq_lock);
453 
454 	if (INTEL_GEN(dev_priv) < 5)
455 		goto out;
456 
457 	/*
458 	 * On pipe A we don't support the PSR interrupt yet,
459 	 * on pipe B and C the same bit MBZ.
460 	 */
461 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
462 			     status_mask & PIPE_A_PSR_STATUS_VLV))
463 		return 0;
464 	/*
465 	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
466 	 * A the same bit is for perf counters which we don't use either.
467 	 */
468 	if (drm_WARN_ON_ONCE(&dev_priv->drm,
469 			     status_mask & PIPE_B_PSR_STATUS_VLV))
470 		return 0;
471 
472 	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
473 			 SPRITE0_FLIP_DONE_INT_EN_VLV |
474 			 SPRITE1_FLIP_DONE_INT_EN_VLV);
475 	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
476 		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
477 	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
478 		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
479 
480 out:
481 	drm_WARN_ONCE(&dev_priv->drm,
482 		      enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
483 		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
484 		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
485 		      pipe_name(pipe), enable_mask, status_mask);
486 
487 	return enable_mask;
488 }
489 
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)490 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
491 			  enum pipe pipe, u32 status_mask)
492 {
493 	i915_reg_t reg = PIPESTAT(pipe);
494 	u32 enable_mask;
495 
496 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
497 		      "pipe %c: status_mask=0x%x\n",
498 		      pipe_name(pipe), status_mask);
499 
500 	lockdep_assert_held(&dev_priv->irq_lock);
501 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
502 
503 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
504 		return;
505 
506 	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
507 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
508 
509 	I915_WRITE(reg, enable_mask | status_mask);
510 	POSTING_READ(reg);
511 }
512 
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)513 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
514 			   enum pipe pipe, u32 status_mask)
515 {
516 	i915_reg_t reg = PIPESTAT(pipe);
517 	u32 enable_mask;
518 
519 	drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
520 		      "pipe %c: status_mask=0x%x\n",
521 		      pipe_name(pipe), status_mask);
522 
523 	lockdep_assert_held(&dev_priv->irq_lock);
524 	drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
525 
526 	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
527 		return;
528 
529 	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
530 	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
531 
532 	I915_WRITE(reg, enable_mask | status_mask);
533 	POSTING_READ(reg);
534 }
535 
i915_has_asle(struct drm_i915_private * dev_priv)536 static bool i915_has_asle(struct drm_i915_private *dev_priv)
537 {
538 	if (!dev_priv->opregion.asle)
539 		return false;
540 
541 	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
542 }
543 
544 /**
545  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
546  * @dev_priv: i915 device private
547  */
i915_enable_asle_pipestat(struct drm_i915_private * dev_priv)548 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
549 {
550 	if (!i915_has_asle(dev_priv))
551 		return;
552 
553 	spin_lock_irq(&dev_priv->irq_lock);
554 
555 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
556 	if (INTEL_GEN(dev_priv) >= 4)
557 		i915_enable_pipestat(dev_priv, PIPE_A,
558 				     PIPE_LEGACY_BLC_EVENT_STATUS);
559 
560 	spin_unlock_irq(&dev_priv->irq_lock);
561 }
562 
563 /*
564  * This timing diagram depicts the video signal in and
565  * around the vertical blanking period.
566  *
567  * Assumptions about the fictitious mode used in this example:
568  *  vblank_start >= 3
569  *  vsync_start = vblank_start + 1
570  *  vsync_end = vblank_start + 2
571  *  vtotal = vblank_start + 3
572  *
573  *           start of vblank:
574  *           latch double buffered registers
575  *           increment frame counter (ctg+)
576  *           generate start of vblank interrupt (gen4+)
577  *           |
578  *           |          frame start:
579  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
580  *           |          may be shifted forward 1-3 extra lines via PIPECONF
581  *           |          |
582  *           |          |  start of vsync:
583  *           |          |  generate vsync interrupt
584  *           |          |  |
585  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
586  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
587  * ----va---> <-----------------vb--------------------> <--------va-------------
588  *       |          |       <----vs----->                     |
589  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
590  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
591  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
592  *       |          |                                         |
593  *       last visible pixel                                   first visible pixel
594  *                  |                                         increment frame counter (gen3/4)
595  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
596  *
597  * x  = horizontal active
598  * _  = horizontal blanking
599  * hs = horizontal sync
600  * va = vertical active
601  * vb = vertical blanking
602  * vs = vertical sync
603  * vbs = vblank_start (number)
604  *
605  * Summary:
606  * - most events happen at the start of horizontal sync
607  * - frame start happens at the start of horizontal blank, 1-4 lines
608  *   (depending on PIPECONF settings) after the start of vblank
609  * - gen3/4 pixel and frame counter are synchronized with the start
610  *   of horizontal active on the first line of vertical active
611  */
612 
613 /* Called from drm generic code, passed a 'crtc', which
614  * we use as a pipe index
615  */
i915_get_vblank_counter(struct drm_crtc * crtc)616 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
617 {
618 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
619 	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
620 	const struct drm_display_mode *mode = &vblank->hwmode;
621 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
622 	i915_reg_t high_frame, low_frame;
623 	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
624 	unsigned long irqflags;
625 
626 	/*
627 	 * On i965gm TV output the frame counter only works up to
628 	 * the point when we enable the TV encoder. After that the
629 	 * frame counter ceases to work and reads zero. We need a
630 	 * vblank wait before enabling the TV encoder and so we
631 	 * have to enable vblank interrupts while the frame counter
632 	 * is still in a working state. However the core vblank code
633 	 * does not like us returning non-zero frame counter values
634 	 * when we've told it that we don't have a working frame
635 	 * counter. Thus we must stop non-zero values leaking out.
636 	 */
637 	if (!vblank->max_vblank_count)
638 		return 0;
639 
640 	htotal = mode->crtc_htotal;
641 	hsync_start = mode->crtc_hsync_start;
642 	vbl_start = mode->crtc_vblank_start;
643 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
644 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
645 
646 	/* Convert to pixel count */
647 	vbl_start *= htotal;
648 
649 	/* Start of vblank event occurs at start of hsync */
650 	vbl_start -= htotal - hsync_start;
651 
652 	high_frame = PIPEFRAME(pipe);
653 	low_frame = PIPEFRAMEPIXEL(pipe);
654 
655 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
656 
657 	/*
658 	 * High & low register fields aren't synchronized, so make sure
659 	 * we get a low value that's stable across two reads of the high
660 	 * register.
661 	 */
662 	do {
663 		high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
664 		low   = intel_de_read_fw(dev_priv, low_frame);
665 		high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
666 	} while (high1 != high2);
667 
668 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
669 
670 	high1 >>= PIPE_FRAME_HIGH_SHIFT;
671 	pixel = low & PIPE_PIXEL_MASK;
672 	low >>= PIPE_FRAME_LOW_SHIFT;
673 
674 	/*
675 	 * The frame counter increments at beginning of active.
676 	 * Cook up a vblank counter by also checking the pixel
677 	 * counter against vblank start.
678 	 */
679 	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
680 }
681 
g4x_get_vblank_counter(struct drm_crtc * crtc)682 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
683 {
684 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
685 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
686 
687 	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
688 }
689 
690 /*
691  * On certain encoders on certain platforms, pipe
692  * scanline register will not work to get the scanline,
693  * since the timings are driven from the PORT or issues
694  * with scanline register updates.
695  * This function will use Framestamp and current
696  * timestamp registers to calculate the scanline.
697  */
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc * crtc)698 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
699 {
700 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
701 	struct drm_vblank_crtc *vblank =
702 		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
703 	const struct drm_display_mode *mode = &vblank->hwmode;
704 	u32 vblank_start = mode->crtc_vblank_start;
705 	u32 vtotal = mode->crtc_vtotal;
706 	u32 htotal = mode->crtc_htotal;
707 	u32 clock = mode->crtc_clock;
708 	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
709 
710 	/*
711 	 * To avoid the race condition where we might cross into the
712 	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
713 	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
714 	 * during the same frame.
715 	 */
716 	do {
717 		/*
718 		 * This field provides read back of the display
719 		 * pipe frame time stamp. The time stamp value
720 		 * is sampled at every start of vertical blank.
721 		 */
722 		scan_prev_time = intel_de_read_fw(dev_priv,
723 						  PIPE_FRMTMSTMP(crtc->pipe));
724 
725 		/*
726 		 * The TIMESTAMP_CTR register has the current
727 		 * time stamp value.
728 		 */
729 		scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
730 
731 		scan_post_time = intel_de_read_fw(dev_priv,
732 						  PIPE_FRMTMSTMP(crtc->pipe));
733 	} while (scan_post_time != scan_prev_time);
734 
735 	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
736 					clock), 1000 * htotal);
737 	scanline = min(scanline, vtotal - 1);
738 	scanline = (scanline + vblank_start) % vtotal;
739 
740 	return scanline;
741 }
742 
743 /*
744  * intel_de_read_fw(), only for fast reads of display block, no need for
745  * forcewake etc.
746  */
__intel_get_crtc_scanline(struct intel_crtc * crtc)747 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
748 {
749 	struct drm_device *dev = crtc->base.dev;
750 	struct drm_i915_private *dev_priv = to_i915(dev);
751 	const struct drm_display_mode *mode;
752 	struct drm_vblank_crtc *vblank;
753 	enum pipe pipe = crtc->pipe;
754 	int position, vtotal;
755 
756 	if (!crtc->active)
757 		return -1;
758 
759 	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
760 	mode = &vblank->hwmode;
761 
762 	if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
763 		return __intel_get_crtc_scanline_from_timestamp(crtc);
764 
765 	vtotal = mode->crtc_vtotal;
766 	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
767 		vtotal /= 2;
768 
769 	if (IS_GEN(dev_priv, 2))
770 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
771 	else
772 		position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
773 
774 	/*
775 	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
776 	 * read it just before the start of vblank.  So try it again
777 	 * so we don't accidentally end up spanning a vblank frame
778 	 * increment, causing the pipe_update_end() code to squak at us.
779 	 *
780 	 * The nature of this problem means we can't simply check the ISR
781 	 * bit and return the vblank start value; nor can we use the scanline
782 	 * debug register in the transcoder as it appears to have the same
783 	 * problem.  We may need to extend this to include other platforms,
784 	 * but so far testing only shows the problem on HSW.
785 	 */
786 	if (HAS_DDI(dev_priv) && !position) {
787 		int i, temp;
788 
789 		for (i = 0; i < 100; i++) {
790 			udelay(1);
791 			temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
792 			if (temp != position) {
793 				position = temp;
794 				break;
795 			}
796 		}
797 	}
798 
799 	/*
800 	 * See update_scanline_offset() for the details on the
801 	 * scanline_offset adjustment.
802 	 */
803 	return (position + crtc->scanline_offset) % vtotal;
804 }
805 
i915_get_crtc_scanoutpos(struct drm_crtc * _crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)806 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
807 				     bool in_vblank_irq,
808 				     int *vpos, int *hpos,
809 				     ktime_t *stime, ktime_t *etime,
810 				     const struct drm_display_mode *mode)
811 {
812 	struct drm_device *dev = _crtc->dev;
813 	struct drm_i915_private *dev_priv = to_i915(dev);
814 	struct intel_crtc *crtc = to_intel_crtc(_crtc);
815 	enum pipe pipe = crtc->pipe;
816 	int position;
817 	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
818 	unsigned long irqflags;
819 	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
820 		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
821 		crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
822 
823 	if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
824 		drm_dbg(&dev_priv->drm,
825 			"trying to get scanoutpos for disabled "
826 			"pipe %c\n", pipe_name(pipe));
827 		return false;
828 	}
829 
830 	htotal = mode->crtc_htotal;
831 	hsync_start = mode->crtc_hsync_start;
832 	vtotal = mode->crtc_vtotal;
833 	vbl_start = mode->crtc_vblank_start;
834 	vbl_end = mode->crtc_vblank_end;
835 
836 	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
837 		vbl_start = DIV_ROUND_UP(vbl_start, 2);
838 		vbl_end /= 2;
839 		vtotal /= 2;
840 	}
841 
842 	/*
843 	 * Lock uncore.lock, as we will do multiple timing critical raw
844 	 * register reads, potentially with preemption disabled, so the
845 	 * following code must not block on uncore.lock.
846 	 */
847 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
848 
849 	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
850 
851 	/* Get optional system timestamp before query. */
852 	if (stime)
853 		*stime = ktime_get();
854 
855 	if (use_scanline_counter) {
856 		/* No obvious pixelcount register. Only query vertical
857 		 * scanout position from Display scan line register.
858 		 */
859 		position = __intel_get_crtc_scanline(crtc);
860 	} else {
861 		/* Have access to pixelcount since start of frame.
862 		 * We can split this into vertical and horizontal
863 		 * scanout position.
864 		 */
865 		position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
866 
867 		/* convert to pixel counts */
868 		vbl_start *= htotal;
869 		vbl_end *= htotal;
870 		vtotal *= htotal;
871 
872 		/*
873 		 * In interlaced modes, the pixel counter counts all pixels,
874 		 * so one field will have htotal more pixels. In order to avoid
875 		 * the reported position from jumping backwards when the pixel
876 		 * counter is beyond the length of the shorter field, just
877 		 * clamp the position the length of the shorter field. This
878 		 * matches how the scanline counter based position works since
879 		 * the scanline counter doesn't count the two half lines.
880 		 */
881 		if (position >= vtotal)
882 			position = vtotal - 1;
883 
884 		/*
885 		 * Start of vblank interrupt is triggered at start of hsync,
886 		 * just prior to the first active line of vblank. However we
887 		 * consider lines to start at the leading edge of horizontal
888 		 * active. So, should we get here before we've crossed into
889 		 * the horizontal active of the first line in vblank, we would
890 		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
891 		 * always add htotal-hsync_start to the current pixel position.
892 		 */
893 		position = (position + htotal - hsync_start) % vtotal;
894 	}
895 
896 	/* Get optional system timestamp after query. */
897 	if (etime)
898 		*etime = ktime_get();
899 
900 	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
901 
902 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
903 
904 	/*
905 	 * While in vblank, position will be negative
906 	 * counting up towards 0 at vbl_end. And outside
907 	 * vblank, position will be positive counting
908 	 * up since vbl_end.
909 	 */
910 	if (position >= vbl_start)
911 		position -= vbl_end;
912 	else
913 		position += vtotal - vbl_end;
914 
915 	if (use_scanline_counter) {
916 		*vpos = position;
917 		*hpos = 0;
918 	} else {
919 		*vpos = position / htotal;
920 		*hpos = position - (*vpos * htotal);
921 	}
922 
923 	return true;
924 }
925 
intel_crtc_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)926 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
927 				     ktime_t *vblank_time, bool in_vblank_irq)
928 {
929 	return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
930 		crtc, max_error, vblank_time, in_vblank_irq,
931 		i915_get_crtc_scanoutpos);
932 }
933 
intel_get_crtc_scanline(struct intel_crtc * crtc)934 int intel_get_crtc_scanline(struct intel_crtc *crtc)
935 {
936 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
937 	unsigned long irqflags;
938 	int position;
939 
940 	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
941 	position = __intel_get_crtc_scanline(crtc);
942 	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
943 
944 	return position;
945 }
946 
947 /**
948  * ivb_parity_work - Workqueue called when a parity error interrupt
949  * occurred.
950  * @work: workqueue struct
951  *
952  * Doesn't actually do anything except notify userspace. As a consequence of
953  * this event, userspace should try to remap the bad rows since statistically
954  * it is likely the same row is more likely to go bad again.
955  */
ivb_parity_work(struct work_struct * work)956 static void ivb_parity_work(struct work_struct *work)
957 {
958 	struct drm_i915_private *dev_priv =
959 		container_of(work, typeof(*dev_priv), l3_parity.error_work);
960 	struct intel_gt *gt = &dev_priv->gt;
961 	u32 error_status, row, bank, subbank;
962 	char *parity_event[6];
963 	u32 misccpctl;
964 	u8 slice = 0;
965 
966 	/* We must turn off DOP level clock gating to access the L3 registers.
967 	 * In order to prevent a get/put style interface, acquire struct mutex
968 	 * any time we access those registers.
969 	 */
970 	mutex_lock(&dev_priv->drm.struct_mutex);
971 
972 	/* If we've screwed up tracking, just let the interrupt fire again */
973 	if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
974 		goto out;
975 
976 	misccpctl = I915_READ(GEN7_MISCCPCTL);
977 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
978 	POSTING_READ(GEN7_MISCCPCTL);
979 
980 	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
981 		i915_reg_t reg;
982 
983 		slice--;
984 		if (drm_WARN_ON_ONCE(&dev_priv->drm,
985 				     slice >= NUM_L3_SLICES(dev_priv)))
986 			break;
987 
988 		dev_priv->l3_parity.which_slice &= ~(1<<slice);
989 
990 		reg = GEN7_L3CDERRST1(slice);
991 
992 		error_status = I915_READ(reg);
993 		row = GEN7_PARITY_ERROR_ROW(error_status);
994 		bank = GEN7_PARITY_ERROR_BANK(error_status);
995 		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
996 
997 		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
998 		POSTING_READ(reg);
999 
1000 		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1001 		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1002 		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1003 		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1004 		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1005 		parity_event[5] = NULL;
1006 
1007 		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1008 				   KOBJ_CHANGE, parity_event);
1009 
1010 		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1011 			  slice, row, bank, subbank);
1012 
1013 		kfree(parity_event[4]);
1014 		kfree(parity_event[3]);
1015 		kfree(parity_event[2]);
1016 		kfree(parity_event[1]);
1017 	}
1018 
1019 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1020 
1021 out:
1022 	drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1023 	spin_lock_irq(&gt->irq_lock);
1024 	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1025 	spin_unlock_irq(&gt->irq_lock);
1026 
1027 	mutex_unlock(&dev_priv->drm.struct_mutex);
1028 }
1029 
gen11_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1030 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1031 {
1032 	switch (pin) {
1033 	case HPD_PORT_TC1:
1034 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1035 	case HPD_PORT_TC2:
1036 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1037 	case HPD_PORT_TC3:
1038 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1039 	case HPD_PORT_TC4:
1040 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1041 	case HPD_PORT_TC5:
1042 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1043 	case HPD_PORT_TC6:
1044 		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1045 	default:
1046 		return false;
1047 	}
1048 }
1049 
bxt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1050 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1051 {
1052 	switch (pin) {
1053 	case HPD_PORT_A:
1054 		return val & PORTA_HOTPLUG_LONG_DETECT;
1055 	case HPD_PORT_B:
1056 		return val & PORTB_HOTPLUG_LONG_DETECT;
1057 	case HPD_PORT_C:
1058 		return val & PORTC_HOTPLUG_LONG_DETECT;
1059 	default:
1060 		return false;
1061 	}
1062 }
1063 
icp_ddi_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1064 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066 	switch (pin) {
1067 	case HPD_PORT_A:
1068 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1069 	case HPD_PORT_B:
1070 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1071 	case HPD_PORT_C:
1072 		return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1073 	default:
1074 		return false;
1075 	}
1076 }
1077 
icp_tc_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1078 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1079 {
1080 	switch (pin) {
1081 	case HPD_PORT_TC1:
1082 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1083 	case HPD_PORT_TC2:
1084 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1085 	case HPD_PORT_TC3:
1086 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1087 	case HPD_PORT_TC4:
1088 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1089 	case HPD_PORT_TC5:
1090 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1091 	case HPD_PORT_TC6:
1092 		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1093 	default:
1094 		return false;
1095 	}
1096 }
1097 
spt_port_hotplug2_long_detect(enum hpd_pin pin,u32 val)1098 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 	switch (pin) {
1101 	case HPD_PORT_E:
1102 		return val & PORTE_HOTPLUG_LONG_DETECT;
1103 	default:
1104 		return false;
1105 	}
1106 }
1107 
spt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1108 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1109 {
1110 	switch (pin) {
1111 	case HPD_PORT_A:
1112 		return val & PORTA_HOTPLUG_LONG_DETECT;
1113 	case HPD_PORT_B:
1114 		return val & PORTB_HOTPLUG_LONG_DETECT;
1115 	case HPD_PORT_C:
1116 		return val & PORTC_HOTPLUG_LONG_DETECT;
1117 	case HPD_PORT_D:
1118 		return val & PORTD_HOTPLUG_LONG_DETECT;
1119 	default:
1120 		return false;
1121 	}
1122 }
1123 
ilk_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1124 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1125 {
1126 	switch (pin) {
1127 	case HPD_PORT_A:
1128 		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1129 	default:
1130 		return false;
1131 	}
1132 }
1133 
pch_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1134 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1135 {
1136 	switch (pin) {
1137 	case HPD_PORT_B:
1138 		return val & PORTB_HOTPLUG_LONG_DETECT;
1139 	case HPD_PORT_C:
1140 		return val & PORTC_HOTPLUG_LONG_DETECT;
1141 	case HPD_PORT_D:
1142 		return val & PORTD_HOTPLUG_LONG_DETECT;
1143 	default:
1144 		return false;
1145 	}
1146 }
1147 
i9xx_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1148 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150 	switch (pin) {
1151 	case HPD_PORT_B:
1152 		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1153 	case HPD_PORT_C:
1154 		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1155 	case HPD_PORT_D:
1156 		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1157 	default:
1158 		return false;
1159 	}
1160 }
1161 
1162 /*
1163  * Get a bit mask of pins that have triggered, and which ones may be long.
1164  * This can be called multiple times with the same masks to accumulate
1165  * hotplug detection results from several registers.
1166  *
1167  * Note that the caller is expected to zero out the masks initially.
1168  */
intel_get_hpd_pins(struct drm_i915_private * dev_priv,u32 * pin_mask,u32 * long_mask,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS],bool long_pulse_detect (enum hpd_pin pin,u32 val))1169 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1170 			       u32 *pin_mask, u32 *long_mask,
1171 			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1172 			       const u32 hpd[HPD_NUM_PINS],
1173 			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1174 {
1175 	enum hpd_pin pin;
1176 
1177 	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1178 
1179 	for_each_hpd_pin(pin) {
1180 		if ((hpd[pin] & hotplug_trigger) == 0)
1181 			continue;
1182 
1183 		*pin_mask |= BIT(pin);
1184 
1185 		if (long_pulse_detect(pin, dig_hotplug_reg))
1186 			*long_mask |= BIT(pin);
1187 	}
1188 
1189 	drm_dbg(&dev_priv->drm,
1190 		"hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1191 		hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1192 
1193 }
1194 
gmbus_irq_handler(struct drm_i915_private * dev_priv)1195 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1196 {
1197 	wake_up_all(&dev_priv->gmbus_wait_queue);
1198 }
1199 
dp_aux_irq_handler(struct drm_i915_private * dev_priv)1200 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1201 {
1202 	wake_up_all(&dev_priv->gmbus_wait_queue);
1203 }
1204 
1205 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1206 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1207 					 enum pipe pipe,
1208 					 u32 crc0, u32 crc1,
1209 					 u32 crc2, u32 crc3,
1210 					 u32 crc4)
1211 {
1212 	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1213 	struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1214 	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1215 
1216 	trace_intel_pipe_crc(crtc, crcs);
1217 
1218 	spin_lock(&pipe_crc->lock);
1219 	/*
1220 	 * For some not yet identified reason, the first CRC is
1221 	 * bonkers. So let's just wait for the next vblank and read
1222 	 * out the buggy result.
1223 	 *
1224 	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1225 	 * don't trust that one either.
1226 	 */
1227 	if (pipe_crc->skipped <= 0 ||
1228 	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1229 		pipe_crc->skipped++;
1230 		spin_unlock(&pipe_crc->lock);
1231 		return;
1232 	}
1233 	spin_unlock(&pipe_crc->lock);
1234 
1235 	drm_crtc_add_crc_entry(&crtc->base, true,
1236 				drm_crtc_accurate_vblank_count(&crtc->base),
1237 				crcs);
1238 }
1239 #else
1240 static inline void
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1241 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1242 			     enum pipe pipe,
1243 			     u32 crc0, u32 crc1,
1244 			     u32 crc2, u32 crc3,
1245 			     u32 crc4) {}
1246 #endif
1247 
1248 
hsw_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1249 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1250 				     enum pipe pipe)
1251 {
1252 	display_pipe_crc_irq_handler(dev_priv, pipe,
1253 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1254 				     0, 0, 0, 0);
1255 }
1256 
ivb_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1257 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1258 				     enum pipe pipe)
1259 {
1260 	display_pipe_crc_irq_handler(dev_priv, pipe,
1261 				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1262 				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1263 				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1264 				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1265 				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1266 }
1267 
i9xx_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1268 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1269 				      enum pipe pipe)
1270 {
1271 	u32 res1, res2;
1272 
1273 	if (INTEL_GEN(dev_priv) >= 3)
1274 		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1275 	else
1276 		res1 = 0;
1277 
1278 	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1279 		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1280 	else
1281 		res2 = 0;
1282 
1283 	display_pipe_crc_irq_handler(dev_priv, pipe,
1284 				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1285 				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1286 				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1287 				     res1, res2);
1288 }
1289 
i9xx_pipestat_irq_reset(struct drm_i915_private * dev_priv)1290 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1291 {
1292 	enum pipe pipe;
1293 
1294 	for_each_pipe(dev_priv, pipe) {
1295 		I915_WRITE(PIPESTAT(pipe),
1296 			   PIPESTAT_INT_STATUS_MASK |
1297 			   PIPE_FIFO_UNDERRUN_STATUS);
1298 
1299 		dev_priv->pipestat_irq_mask[pipe] = 0;
1300 	}
1301 }
1302 
i9xx_pipestat_irq_ack(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1303 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1304 				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1305 {
1306 	enum pipe pipe;
1307 
1308 	spin_lock(&dev_priv->irq_lock);
1309 
1310 	if (!dev_priv->display_irqs_enabled) {
1311 		spin_unlock(&dev_priv->irq_lock);
1312 		return;
1313 	}
1314 
1315 	for_each_pipe(dev_priv, pipe) {
1316 		i915_reg_t reg;
1317 		u32 status_mask, enable_mask, iir_bit = 0;
1318 
1319 		/*
1320 		 * PIPESTAT bits get signalled even when the interrupt is
1321 		 * disabled with the mask bits, and some of the status bits do
1322 		 * not generate interrupts at all (like the underrun bit). Hence
1323 		 * we need to be careful that we only handle what we want to
1324 		 * handle.
1325 		 */
1326 
1327 		/* fifo underruns are filterered in the underrun handler. */
1328 		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1329 
1330 		switch (pipe) {
1331 		default:
1332 		case PIPE_A:
1333 			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1334 			break;
1335 		case PIPE_B:
1336 			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1337 			break;
1338 		case PIPE_C:
1339 			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1340 			break;
1341 		}
1342 		if (iir & iir_bit)
1343 			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1344 
1345 		if (!status_mask)
1346 			continue;
1347 
1348 		reg = PIPESTAT(pipe);
1349 		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1350 		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1351 
1352 		/*
1353 		 * Clear the PIPE*STAT regs before the IIR
1354 		 *
1355 		 * Toggle the enable bits to make sure we get an
1356 		 * edge in the ISR pipe event bit if we don't clear
1357 		 * all the enabled status bits. Otherwise the edge
1358 		 * triggered IIR on i965/g4x wouldn't notice that
1359 		 * an interrupt is still pending.
1360 		 */
1361 		if (pipe_stats[pipe]) {
1362 			I915_WRITE(reg, pipe_stats[pipe]);
1363 			I915_WRITE(reg, enable_mask);
1364 		}
1365 	}
1366 	spin_unlock(&dev_priv->irq_lock);
1367 }
1368 
i8xx_pipestat_irq_handler(struct drm_i915_private * dev_priv,u16 iir,u32 pipe_stats[I915_MAX_PIPES])1369 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1370 				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1371 {
1372 	enum pipe pipe;
1373 
1374 	for_each_pipe(dev_priv, pipe) {
1375 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1376 			intel_handle_vblank(dev_priv, pipe);
1377 
1378 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1379 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1380 
1381 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1382 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1383 	}
1384 }
1385 
i915_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1386 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1387 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1388 {
1389 	bool blc_event = false;
1390 	enum pipe pipe;
1391 
1392 	for_each_pipe(dev_priv, pipe) {
1393 		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1394 			intel_handle_vblank(dev_priv, pipe);
1395 
1396 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1397 			blc_event = true;
1398 
1399 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1400 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1401 
1402 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1403 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1404 	}
1405 
1406 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1407 		intel_opregion_asle_intr(dev_priv);
1408 }
1409 
i965_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1410 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1411 				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1412 {
1413 	bool blc_event = false;
1414 	enum pipe pipe;
1415 
1416 	for_each_pipe(dev_priv, pipe) {
1417 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1418 			intel_handle_vblank(dev_priv, pipe);
1419 
1420 		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1421 			blc_event = true;
1422 
1423 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1424 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1425 
1426 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1427 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1428 	}
1429 
1430 	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1431 		intel_opregion_asle_intr(dev_priv);
1432 
1433 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1434 		gmbus_irq_handler(dev_priv);
1435 }
1436 
valleyview_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 pipe_stats[I915_MAX_PIPES])1437 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1438 					    u32 pipe_stats[I915_MAX_PIPES])
1439 {
1440 	enum pipe pipe;
1441 
1442 	for_each_pipe(dev_priv, pipe) {
1443 		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1444 			intel_handle_vblank(dev_priv, pipe);
1445 
1446 		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1447 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1448 
1449 		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1450 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1451 	}
1452 
1453 	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1454 		gmbus_irq_handler(dev_priv);
1455 }
1456 
i9xx_hpd_irq_ack(struct drm_i915_private * dev_priv)1457 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1458 {
1459 	u32 hotplug_status = 0, hotplug_status_mask;
1460 	int i;
1461 
1462 	if (IS_G4X(dev_priv) ||
1463 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1464 		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1465 			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1466 	else
1467 		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1468 
1469 	/*
1470 	 * We absolutely have to clear all the pending interrupt
1471 	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1472 	 * interrupt bit won't have an edge, and the i965/g4x
1473 	 * edge triggered IIR will not notice that an interrupt
1474 	 * is still pending. We can't use PORT_HOTPLUG_EN to
1475 	 * guarantee the edge as the act of toggling the enable
1476 	 * bits can itself generate a new hotplug interrupt :(
1477 	 */
1478 	for (i = 0; i < 10; i++) {
1479 		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1480 
1481 		if (tmp == 0)
1482 			return hotplug_status;
1483 
1484 		hotplug_status |= tmp;
1485 		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1486 	}
1487 
1488 	drm_WARN_ONCE(&dev_priv->drm, 1,
1489 		      "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1490 		      I915_READ(PORT_HOTPLUG_STAT));
1491 
1492 	return hotplug_status;
1493 }
1494 
i9xx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_status)1495 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1496 				 u32 hotplug_status)
1497 {
1498 	u32 pin_mask = 0, long_mask = 0;
1499 	u32 hotplug_trigger;
1500 
1501 	if (IS_G4X(dev_priv) ||
1502 	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1503 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1504 	else
1505 		hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1506 
1507 	if (hotplug_trigger) {
1508 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1509 				   hotplug_trigger, hotplug_trigger,
1510 				   dev_priv->hotplug.hpd,
1511 				   i9xx_port_hotplug_long_detect);
1512 
1513 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1514 	}
1515 
1516 	if ((IS_G4X(dev_priv) ||
1517 	     IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1518 	    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1519 		dp_aux_irq_handler(dev_priv);
1520 }
1521 
valleyview_irq_handler(int irq,void * arg)1522 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1523 {
1524 	struct drm_i915_private *dev_priv = arg;
1525 	irqreturn_t ret = IRQ_NONE;
1526 
1527 	if (!intel_irqs_enabled(dev_priv))
1528 		return IRQ_NONE;
1529 
1530 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1531 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1532 
1533 	do {
1534 		u32 iir, gt_iir, pm_iir;
1535 		u32 pipe_stats[I915_MAX_PIPES] = {};
1536 		u32 hotplug_status = 0;
1537 		u32 ier = 0;
1538 
1539 		gt_iir = I915_READ(GTIIR);
1540 		pm_iir = I915_READ(GEN6_PMIIR);
1541 		iir = I915_READ(VLV_IIR);
1542 
1543 		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1544 			break;
1545 
1546 		ret = IRQ_HANDLED;
1547 
1548 		/*
1549 		 * Theory on interrupt generation, based on empirical evidence:
1550 		 *
1551 		 * x = ((VLV_IIR & VLV_IER) ||
1552 		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1553 		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1554 		 *
1555 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1556 		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1557 		 * guarantee the CPU interrupt will be raised again even if we
1558 		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1559 		 * bits this time around.
1560 		 */
1561 		I915_WRITE(VLV_MASTER_IER, 0);
1562 		ier = I915_READ(VLV_IER);
1563 		I915_WRITE(VLV_IER, 0);
1564 
1565 		if (gt_iir)
1566 			I915_WRITE(GTIIR, gt_iir);
1567 		if (pm_iir)
1568 			I915_WRITE(GEN6_PMIIR, pm_iir);
1569 
1570 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1571 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1572 
1573 		/* Call regardless, as some status bits might not be
1574 		 * signalled in iir */
1575 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1576 
1577 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1578 			   I915_LPE_PIPE_B_INTERRUPT))
1579 			intel_lpe_audio_irq_handler(dev_priv);
1580 
1581 		/*
1582 		 * VLV_IIR is single buffered, and reflects the level
1583 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1584 		 */
1585 		if (iir)
1586 			I915_WRITE(VLV_IIR, iir);
1587 
1588 		I915_WRITE(VLV_IER, ier);
1589 		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1590 
1591 		if (gt_iir)
1592 			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1593 		if (pm_iir)
1594 			gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1595 
1596 		if (hotplug_status)
1597 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1598 
1599 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1600 	} while (0);
1601 
1602 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1603 
1604 	return ret;
1605 }
1606 
cherryview_irq_handler(int irq,void * arg)1607 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1608 {
1609 	struct drm_i915_private *dev_priv = arg;
1610 	irqreturn_t ret = IRQ_NONE;
1611 
1612 	if (!intel_irqs_enabled(dev_priv))
1613 		return IRQ_NONE;
1614 
1615 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1616 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1617 
1618 	do {
1619 		u32 master_ctl, iir;
1620 		u32 pipe_stats[I915_MAX_PIPES] = {};
1621 		u32 hotplug_status = 0;
1622 		u32 ier = 0;
1623 
1624 		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1625 		iir = I915_READ(VLV_IIR);
1626 
1627 		if (master_ctl == 0 && iir == 0)
1628 			break;
1629 
1630 		ret = IRQ_HANDLED;
1631 
1632 		/*
1633 		 * Theory on interrupt generation, based on empirical evidence:
1634 		 *
1635 		 * x = ((VLV_IIR & VLV_IER) ||
1636 		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1637 		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1638 		 *
1639 		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1640 		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1641 		 * guarantee the CPU interrupt will be raised again even if we
1642 		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1643 		 * bits this time around.
1644 		 */
1645 		I915_WRITE(GEN8_MASTER_IRQ, 0);
1646 		ier = I915_READ(VLV_IER);
1647 		I915_WRITE(VLV_IER, 0);
1648 
1649 		gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1650 
1651 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1652 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1653 
1654 		/* Call regardless, as some status bits might not be
1655 		 * signalled in iir */
1656 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1657 
1658 		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1659 			   I915_LPE_PIPE_B_INTERRUPT |
1660 			   I915_LPE_PIPE_C_INTERRUPT))
1661 			intel_lpe_audio_irq_handler(dev_priv);
1662 
1663 		/*
1664 		 * VLV_IIR is single buffered, and reflects the level
1665 		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1666 		 */
1667 		if (iir)
1668 			I915_WRITE(VLV_IIR, iir);
1669 
1670 		I915_WRITE(VLV_IER, ier);
1671 		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1672 
1673 		if (hotplug_status)
1674 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1675 
1676 		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1677 	} while (0);
1678 
1679 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1680 
1681 	return ret;
1682 }
1683 
ibx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)1684 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1685 				u32 hotplug_trigger)
1686 {
1687 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1688 
1689 	/*
1690 	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1691 	 * unless we touch the hotplug register, even if hotplug_trigger is
1692 	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1693 	 * errors.
1694 	 */
1695 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1696 	if (!hotplug_trigger) {
1697 		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1698 			PORTD_HOTPLUG_STATUS_MASK |
1699 			PORTC_HOTPLUG_STATUS_MASK |
1700 			PORTB_HOTPLUG_STATUS_MASK;
1701 		dig_hotplug_reg &= ~mask;
1702 	}
1703 
1704 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1705 	if (!hotplug_trigger)
1706 		return;
1707 
1708 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1709 			   hotplug_trigger, dig_hotplug_reg,
1710 			   dev_priv->hotplug.pch_hpd,
1711 			   pch_port_hotplug_long_detect);
1712 
1713 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1714 }
1715 
ibx_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1716 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1717 {
1718 	enum pipe pipe;
1719 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1720 
1721 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1722 
1723 	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1724 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1725 			       SDE_AUDIO_POWER_SHIFT);
1726 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1727 			port_name(port));
1728 	}
1729 
1730 	if (pch_iir & SDE_AUX_MASK)
1731 		dp_aux_irq_handler(dev_priv);
1732 
1733 	if (pch_iir & SDE_GMBUS)
1734 		gmbus_irq_handler(dev_priv);
1735 
1736 	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1737 		drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1738 
1739 	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1740 		drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1741 
1742 	if (pch_iir & SDE_POISON)
1743 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1744 
1745 	if (pch_iir & SDE_FDI_MASK) {
1746 		for_each_pipe(dev_priv, pipe)
1747 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1748 				pipe_name(pipe),
1749 				I915_READ(FDI_RX_IIR(pipe)));
1750 	}
1751 
1752 	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1753 		drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1754 
1755 	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1756 		drm_dbg(&dev_priv->drm,
1757 			"PCH transcoder CRC error interrupt\n");
1758 
1759 	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1760 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1761 
1762 	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1763 		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1764 }
1765 
ivb_err_int_handler(struct drm_i915_private * dev_priv)1766 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1767 {
1768 	u32 err_int = I915_READ(GEN7_ERR_INT);
1769 	enum pipe pipe;
1770 
1771 	if (err_int & ERR_INT_POISON)
1772 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1773 
1774 	for_each_pipe(dev_priv, pipe) {
1775 		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1776 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1777 
1778 		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1779 			if (IS_IVYBRIDGE(dev_priv))
1780 				ivb_pipe_crc_irq_handler(dev_priv, pipe);
1781 			else
1782 				hsw_pipe_crc_irq_handler(dev_priv, pipe);
1783 		}
1784 	}
1785 
1786 	I915_WRITE(GEN7_ERR_INT, err_int);
1787 }
1788 
cpt_serr_int_handler(struct drm_i915_private * dev_priv)1789 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1790 {
1791 	u32 serr_int = I915_READ(SERR_INT);
1792 	enum pipe pipe;
1793 
1794 	if (serr_int & SERR_INT_POISON)
1795 		drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1796 
1797 	for_each_pipe(dev_priv, pipe)
1798 		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1799 			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1800 
1801 	I915_WRITE(SERR_INT, serr_int);
1802 }
1803 
cpt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1804 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1805 {
1806 	enum pipe pipe;
1807 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1808 
1809 	ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1810 
1811 	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1812 		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1813 			       SDE_AUDIO_POWER_SHIFT_CPT);
1814 		drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1815 			port_name(port));
1816 	}
1817 
1818 	if (pch_iir & SDE_AUX_MASK_CPT)
1819 		dp_aux_irq_handler(dev_priv);
1820 
1821 	if (pch_iir & SDE_GMBUS_CPT)
1822 		gmbus_irq_handler(dev_priv);
1823 
1824 	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1825 		drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1826 
1827 	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1828 		drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1829 
1830 	if (pch_iir & SDE_FDI_MASK_CPT) {
1831 		for_each_pipe(dev_priv, pipe)
1832 			drm_dbg(&dev_priv->drm, "  pipe %c FDI IIR: 0x%08x\n",
1833 				pipe_name(pipe),
1834 				I915_READ(FDI_RX_IIR(pipe)));
1835 	}
1836 
1837 	if (pch_iir & SDE_ERROR_CPT)
1838 		cpt_serr_int_handler(dev_priv);
1839 }
1840 
icp_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1841 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1842 {
1843 	u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1844 	u32 pin_mask = 0, long_mask = 0;
1845 
1846 	if (HAS_PCH_TGP(dev_priv)) {
1847 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1848 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1849 	} else if (HAS_PCH_JSP(dev_priv)) {
1850 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1851 		tc_hotplug_trigger = 0;
1852 	} else if (HAS_PCH_MCC(dev_priv)) {
1853 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1854 		tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1855 	} else {
1856 		drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1857 			 "Unrecognized PCH type 0x%x\n",
1858 			 INTEL_PCH_TYPE(dev_priv));
1859 
1860 		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1861 		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1862 	}
1863 
1864 	if (ddi_hotplug_trigger) {
1865 		u32 dig_hotplug_reg;
1866 
1867 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1868 		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1869 
1870 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1871 				   ddi_hotplug_trigger, dig_hotplug_reg,
1872 				   dev_priv->hotplug.pch_hpd,
1873 				   icp_ddi_port_hotplug_long_detect);
1874 	}
1875 
1876 	if (tc_hotplug_trigger) {
1877 		u32 dig_hotplug_reg;
1878 
1879 		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1880 		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1881 
1882 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1883 				   tc_hotplug_trigger, dig_hotplug_reg,
1884 				   dev_priv->hotplug.pch_hpd,
1885 				   icp_tc_port_hotplug_long_detect);
1886 	}
1887 
1888 	if (pin_mask)
1889 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1890 
1891 	if (pch_iir & SDE_GMBUS_ICP)
1892 		gmbus_irq_handler(dev_priv);
1893 }
1894 
spt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1895 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1896 {
1897 	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1898 		~SDE_PORTE_HOTPLUG_SPT;
1899 	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1900 	u32 pin_mask = 0, long_mask = 0;
1901 
1902 	if (hotplug_trigger) {
1903 		u32 dig_hotplug_reg;
1904 
1905 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1906 		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1907 
1908 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1909 				   hotplug_trigger, dig_hotplug_reg,
1910 				   dev_priv->hotplug.pch_hpd,
1911 				   spt_port_hotplug_long_detect);
1912 	}
1913 
1914 	if (hotplug2_trigger) {
1915 		u32 dig_hotplug_reg;
1916 
1917 		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1918 		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1919 
1920 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1921 				   hotplug2_trigger, dig_hotplug_reg,
1922 				   dev_priv->hotplug.pch_hpd,
1923 				   spt_port_hotplug2_long_detect);
1924 	}
1925 
1926 	if (pin_mask)
1927 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1928 
1929 	if (pch_iir & SDE_GMBUS_CPT)
1930 		gmbus_irq_handler(dev_priv);
1931 }
1932 
ilk_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)1933 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1934 				u32 hotplug_trigger)
1935 {
1936 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1937 
1938 	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1939 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1940 
1941 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1942 			   hotplug_trigger, dig_hotplug_reg,
1943 			   dev_priv->hotplug.hpd,
1944 			   ilk_port_hotplug_long_detect);
1945 
1946 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1947 }
1948 
ilk_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)1949 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1950 				    u32 de_iir)
1951 {
1952 	enum pipe pipe;
1953 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1954 
1955 	if (hotplug_trigger)
1956 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
1957 
1958 	if (de_iir & DE_AUX_CHANNEL_A)
1959 		dp_aux_irq_handler(dev_priv);
1960 
1961 	if (de_iir & DE_GSE)
1962 		intel_opregion_asle_intr(dev_priv);
1963 
1964 	if (de_iir & DE_POISON)
1965 		drm_err(&dev_priv->drm, "Poison interrupt\n");
1966 
1967 	for_each_pipe(dev_priv, pipe) {
1968 		if (de_iir & DE_PIPE_VBLANK(pipe))
1969 			intel_handle_vblank(dev_priv, pipe);
1970 
1971 		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1972 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1973 
1974 		if (de_iir & DE_PIPE_CRC_DONE(pipe))
1975 			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1976 	}
1977 
1978 	/* check event from PCH */
1979 	if (de_iir & DE_PCH_EVENT) {
1980 		u32 pch_iir = I915_READ(SDEIIR);
1981 
1982 		if (HAS_PCH_CPT(dev_priv))
1983 			cpt_irq_handler(dev_priv, pch_iir);
1984 		else
1985 			ibx_irq_handler(dev_priv, pch_iir);
1986 
1987 		/* should clear PCH hotplug event before clear CPU irq */
1988 		I915_WRITE(SDEIIR, pch_iir);
1989 	}
1990 
1991 	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
1992 		gen5_rps_irq_handler(&dev_priv->gt.rps);
1993 }
1994 
ivb_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)1995 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
1996 				    u32 de_iir)
1997 {
1998 	enum pipe pipe;
1999 	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2000 
2001 	if (hotplug_trigger)
2002 		ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2003 
2004 	if (de_iir & DE_ERR_INT_IVB)
2005 		ivb_err_int_handler(dev_priv);
2006 
2007 	if (de_iir & DE_EDP_PSR_INT_HSW) {
2008 		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2009 
2010 		intel_psr_irq_handler(dev_priv, psr_iir);
2011 		I915_WRITE(EDP_PSR_IIR, psr_iir);
2012 	}
2013 
2014 	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2015 		dp_aux_irq_handler(dev_priv);
2016 
2017 	if (de_iir & DE_GSE_IVB)
2018 		intel_opregion_asle_intr(dev_priv);
2019 
2020 	for_each_pipe(dev_priv, pipe) {
2021 		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2022 			intel_handle_vblank(dev_priv, pipe);
2023 	}
2024 
2025 	/* check event from PCH */
2026 	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2027 		u32 pch_iir = I915_READ(SDEIIR);
2028 
2029 		cpt_irq_handler(dev_priv, pch_iir);
2030 
2031 		/* clear PCH hotplug event before clear CPU irq */
2032 		I915_WRITE(SDEIIR, pch_iir);
2033 	}
2034 }
2035 
2036 /*
2037  * To handle irqs with the minimum potential races with fresh interrupts, we:
2038  * 1 - Disable Master Interrupt Control.
2039  * 2 - Find the source(s) of the interrupt.
2040  * 3 - Clear the Interrupt Identity bits (IIR).
2041  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2042  * 5 - Re-enable Master Interrupt Control.
2043  */
ilk_irq_handler(int irq,void * arg)2044 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2045 {
2046 	struct drm_i915_private *i915 = arg;
2047 	void __iomem * const regs = i915->uncore.regs;
2048 	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2049 	irqreturn_t ret = IRQ_NONE;
2050 
2051 	if (unlikely(!intel_irqs_enabled(i915)))
2052 		return IRQ_NONE;
2053 
2054 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2055 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2056 
2057 	/* disable master interrupt before clearing iir  */
2058 	de_ier = raw_reg_read(regs, DEIER);
2059 	raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2060 
2061 	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2062 	 * interrupts will will be stored on its back queue, and then we'll be
2063 	 * able to process them after we restore SDEIER (as soon as we restore
2064 	 * it, we'll get an interrupt if SDEIIR still has something to process
2065 	 * due to its back queue). */
2066 	if (!HAS_PCH_NOP(i915)) {
2067 		sde_ier = raw_reg_read(regs, SDEIER);
2068 		raw_reg_write(regs, SDEIER, 0);
2069 	}
2070 
2071 	/* Find, clear, then process each source of interrupt */
2072 
2073 	gt_iir = raw_reg_read(regs, GTIIR);
2074 	if (gt_iir) {
2075 		raw_reg_write(regs, GTIIR, gt_iir);
2076 		if (INTEL_GEN(i915) >= 6)
2077 			gen6_gt_irq_handler(&i915->gt, gt_iir);
2078 		else
2079 			gen5_gt_irq_handler(&i915->gt, gt_iir);
2080 		ret = IRQ_HANDLED;
2081 	}
2082 
2083 	de_iir = raw_reg_read(regs, DEIIR);
2084 	if (de_iir) {
2085 		raw_reg_write(regs, DEIIR, de_iir);
2086 		if (INTEL_GEN(i915) >= 7)
2087 			ivb_display_irq_handler(i915, de_iir);
2088 		else
2089 			ilk_display_irq_handler(i915, de_iir);
2090 		ret = IRQ_HANDLED;
2091 	}
2092 
2093 	if (INTEL_GEN(i915) >= 6) {
2094 		u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2095 		if (pm_iir) {
2096 			raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2097 			gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2098 			ret = IRQ_HANDLED;
2099 		}
2100 	}
2101 
2102 	raw_reg_write(regs, DEIER, de_ier);
2103 	if (sde_ier)
2104 		raw_reg_write(regs, SDEIER, sde_ier);
2105 
2106 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2107 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2108 
2109 	return ret;
2110 }
2111 
bxt_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)2112 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2113 				u32 hotplug_trigger)
2114 {
2115 	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2116 
2117 	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118 	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2119 
2120 	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2121 			   hotplug_trigger, dig_hotplug_reg,
2122 			   dev_priv->hotplug.hpd,
2123 			   bxt_port_hotplug_long_detect);
2124 
2125 	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2126 }
2127 
gen11_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2128 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2129 {
2130 	u32 pin_mask = 0, long_mask = 0;
2131 	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2132 	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2133 
2134 	if (trigger_tc) {
2135 		u32 dig_hotplug_reg;
2136 
2137 		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2138 		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2139 
2140 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2141 				   trigger_tc, dig_hotplug_reg,
2142 				   dev_priv->hotplug.hpd,
2143 				   gen11_port_hotplug_long_detect);
2144 	}
2145 
2146 	if (trigger_tbt) {
2147 		u32 dig_hotplug_reg;
2148 
2149 		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2150 		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2151 
2152 		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2153 				   trigger_tbt, dig_hotplug_reg,
2154 				   dev_priv->hotplug.hpd,
2155 				   gen11_port_hotplug_long_detect);
2156 	}
2157 
2158 	if (pin_mask)
2159 		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2160 	else
2161 		drm_err(&dev_priv->drm,
2162 			"Unexpected DE HPD interrupt 0x%08x\n", iir);
2163 }
2164 
gen8_de_port_aux_mask(struct drm_i915_private * dev_priv)2165 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2166 {
2167 	u32 mask;
2168 
2169 	if (INTEL_GEN(dev_priv) >= 12)
2170 		return TGL_DE_PORT_AUX_DDIA |
2171 			TGL_DE_PORT_AUX_DDIB |
2172 			TGL_DE_PORT_AUX_DDIC |
2173 			TGL_DE_PORT_AUX_USBC1 |
2174 			TGL_DE_PORT_AUX_USBC2 |
2175 			TGL_DE_PORT_AUX_USBC3 |
2176 			TGL_DE_PORT_AUX_USBC4 |
2177 			TGL_DE_PORT_AUX_USBC5 |
2178 			TGL_DE_PORT_AUX_USBC6;
2179 
2180 
2181 	mask = GEN8_AUX_CHANNEL_A;
2182 	if (INTEL_GEN(dev_priv) >= 9)
2183 		mask |= GEN9_AUX_CHANNEL_B |
2184 			GEN9_AUX_CHANNEL_C |
2185 			GEN9_AUX_CHANNEL_D;
2186 
2187 	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2188 		mask |= CNL_AUX_CHANNEL_F;
2189 
2190 	if (IS_GEN(dev_priv, 11))
2191 		mask |= ICL_AUX_CHANNEL_E;
2192 
2193 	return mask;
2194 }
2195 
gen8_de_pipe_fault_mask(struct drm_i915_private * dev_priv)2196 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2197 {
2198 	if (IS_ROCKETLAKE(dev_priv))
2199 		return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2200 	else if (INTEL_GEN(dev_priv) >= 11)
2201 		return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2202 	else if (INTEL_GEN(dev_priv) >= 9)
2203 		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2204 	else
2205 		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2206 }
2207 
2208 static void
gen8_de_misc_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2209 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2210 {
2211 	bool found = false;
2212 
2213 	if (iir & GEN8_DE_MISC_GSE) {
2214 		intel_opregion_asle_intr(dev_priv);
2215 		found = true;
2216 	}
2217 
2218 	if (iir & GEN8_DE_EDP_PSR) {
2219 		u32 psr_iir;
2220 		i915_reg_t iir_reg;
2221 
2222 		if (INTEL_GEN(dev_priv) >= 12)
2223 			iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2224 		else
2225 			iir_reg = EDP_PSR_IIR;
2226 
2227 		psr_iir = I915_READ(iir_reg);
2228 		I915_WRITE(iir_reg, psr_iir);
2229 
2230 		if (psr_iir)
2231 			found = true;
2232 
2233 		intel_psr_irq_handler(dev_priv, psr_iir);
2234 	}
2235 
2236 	if (!found)
2237 		drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2238 }
2239 
2240 static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private * dev_priv,u32 master_ctl)2241 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2242 {
2243 	irqreturn_t ret = IRQ_NONE;
2244 	u32 iir;
2245 	enum pipe pipe;
2246 
2247 	if (master_ctl & GEN8_DE_MISC_IRQ) {
2248 		iir = I915_READ(GEN8_DE_MISC_IIR);
2249 		if (iir) {
2250 			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2251 			ret = IRQ_HANDLED;
2252 			gen8_de_misc_irq_handler(dev_priv, iir);
2253 		} else {
2254 			drm_err(&dev_priv->drm,
2255 				"The master control interrupt lied (DE MISC)!\n");
2256 		}
2257 	}
2258 
2259 	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2260 		iir = I915_READ(GEN11_DE_HPD_IIR);
2261 		if (iir) {
2262 			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2263 			ret = IRQ_HANDLED;
2264 			gen11_hpd_irq_handler(dev_priv, iir);
2265 		} else {
2266 			drm_err(&dev_priv->drm,
2267 				"The master control interrupt lied, (DE HPD)!\n");
2268 		}
2269 	}
2270 
2271 	if (master_ctl & GEN8_DE_PORT_IRQ) {
2272 		iir = I915_READ(GEN8_DE_PORT_IIR);
2273 		if (iir) {
2274 			u32 tmp_mask;
2275 			bool found = false;
2276 
2277 			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2278 			ret = IRQ_HANDLED;
2279 
2280 			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2281 				dp_aux_irq_handler(dev_priv);
2282 				found = true;
2283 			}
2284 
2285 			if (IS_GEN9_LP(dev_priv)) {
2286 				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2287 				if (tmp_mask) {
2288 					bxt_hpd_irq_handler(dev_priv, tmp_mask);
2289 					found = true;
2290 				}
2291 			} else if (IS_BROADWELL(dev_priv)) {
2292 				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2293 				if (tmp_mask) {
2294 					ilk_hpd_irq_handler(dev_priv, tmp_mask);
2295 					found = true;
2296 				}
2297 			}
2298 
2299 			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2300 				gmbus_irq_handler(dev_priv);
2301 				found = true;
2302 			}
2303 
2304 			if (!found)
2305 				drm_err(&dev_priv->drm,
2306 					"Unexpected DE Port interrupt\n");
2307 		}
2308 		else
2309 			drm_err(&dev_priv->drm,
2310 				"The master control interrupt lied (DE PORT)!\n");
2311 	}
2312 
2313 	for_each_pipe(dev_priv, pipe) {
2314 		u32 fault_errors;
2315 
2316 		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2317 			continue;
2318 
2319 		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2320 		if (!iir) {
2321 			drm_err(&dev_priv->drm,
2322 				"The master control interrupt lied (DE PIPE)!\n");
2323 			continue;
2324 		}
2325 
2326 		ret = IRQ_HANDLED;
2327 		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2328 
2329 		if (iir & GEN8_PIPE_VBLANK)
2330 			intel_handle_vblank(dev_priv, pipe);
2331 
2332 		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2333 			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2334 
2335 		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2336 			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2337 
2338 		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2339 		if (fault_errors)
2340 			drm_err(&dev_priv->drm,
2341 				"Fault errors on pipe %c: 0x%08x\n",
2342 				pipe_name(pipe),
2343 				fault_errors);
2344 	}
2345 
2346 	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2347 	    master_ctl & GEN8_DE_PCH_IRQ) {
2348 		/*
2349 		 * FIXME(BDW): Assume for now that the new interrupt handling
2350 		 * scheme also closed the SDE interrupt handling race we've seen
2351 		 * on older pch-split platforms. But this needs testing.
2352 		 */
2353 		iir = I915_READ(SDEIIR);
2354 		if (iir) {
2355 			I915_WRITE(SDEIIR, iir);
2356 			ret = IRQ_HANDLED;
2357 
2358 			if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2359 				icp_irq_handler(dev_priv, iir);
2360 			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2361 				spt_irq_handler(dev_priv, iir);
2362 			else
2363 				cpt_irq_handler(dev_priv, iir);
2364 		} else {
2365 			/*
2366 			 * Like on previous PCH there seems to be something
2367 			 * fishy going on with forwarding PCH interrupts.
2368 			 */
2369 			drm_dbg(&dev_priv->drm,
2370 				"The master control interrupt lied (SDE)!\n");
2371 		}
2372 	}
2373 
2374 	return ret;
2375 }
2376 
gen8_master_intr_disable(void __iomem * const regs)2377 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2378 {
2379 	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2380 
2381 	/*
2382 	 * Now with master disabled, get a sample of level indications
2383 	 * for this interrupt. Indications will be cleared on related acks.
2384 	 * New indications can and will light up during processing,
2385 	 * and will generate new interrupt after enabling master.
2386 	 */
2387 	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2388 }
2389 
gen8_master_intr_enable(void __iomem * const regs)2390 static inline void gen8_master_intr_enable(void __iomem * const regs)
2391 {
2392 	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2393 }
2394 
gen8_irq_handler(int irq,void * arg)2395 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2396 {
2397 	struct drm_i915_private *dev_priv = arg;
2398 	void __iomem * const regs = dev_priv->uncore.regs;
2399 	u32 master_ctl;
2400 
2401 	if (!intel_irqs_enabled(dev_priv))
2402 		return IRQ_NONE;
2403 
2404 	master_ctl = gen8_master_intr_disable(regs);
2405 	if (!master_ctl) {
2406 		gen8_master_intr_enable(regs);
2407 		return IRQ_NONE;
2408 	}
2409 
2410 	/* Find, queue (onto bottom-halves), then clear each source */
2411 	gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2412 
2413 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2414 	if (master_ctl & ~GEN8_GT_IRQS) {
2415 		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2416 		gen8_de_irq_handler(dev_priv, master_ctl);
2417 		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2418 	}
2419 
2420 	gen8_master_intr_enable(regs);
2421 
2422 	return IRQ_HANDLED;
2423 }
2424 
2425 static u32
gen11_gu_misc_irq_ack(struct intel_gt * gt,const u32 master_ctl)2426 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2427 {
2428 	void __iomem * const regs = gt->uncore->regs;
2429 	u32 iir;
2430 
2431 	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2432 		return 0;
2433 
2434 	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2435 	if (likely(iir))
2436 		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2437 
2438 	return iir;
2439 }
2440 
2441 static void
gen11_gu_misc_irq_handler(struct intel_gt * gt,const u32 iir)2442 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2443 {
2444 	if (iir & GEN11_GU_MISC_GSE)
2445 		intel_opregion_asle_intr(gt->i915);
2446 }
2447 
gen11_master_intr_disable(void __iomem * const regs)2448 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2449 {
2450 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2451 
2452 	/*
2453 	 * Now with master disabled, get a sample of level indications
2454 	 * for this interrupt. Indications will be cleared on related acks.
2455 	 * New indications can and will light up during processing,
2456 	 * and will generate new interrupt after enabling master.
2457 	 */
2458 	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2459 }
2460 
gen11_master_intr_enable(void __iomem * const regs)2461 static inline void gen11_master_intr_enable(void __iomem * const regs)
2462 {
2463 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2464 }
2465 
2466 static void
gen11_display_irq_handler(struct drm_i915_private * i915)2467 gen11_display_irq_handler(struct drm_i915_private *i915)
2468 {
2469 	void __iomem * const regs = i915->uncore.regs;
2470 	const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2471 
2472 	disable_rpm_wakeref_asserts(&i915->runtime_pm);
2473 	/*
2474 	 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2475 	 * for the display related bits.
2476 	 */
2477 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2478 	gen8_de_irq_handler(i915, disp_ctl);
2479 	raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2480 		      GEN11_DISPLAY_IRQ_ENABLE);
2481 
2482 	enable_rpm_wakeref_asserts(&i915->runtime_pm);
2483 }
2484 
2485 static __always_inline irqreturn_t
__gen11_irq_handler(struct drm_i915_private * const i915,u32 (* intr_disable)(void __iomem * const regs),void (* intr_enable)(void __iomem * const regs))2486 __gen11_irq_handler(struct drm_i915_private * const i915,
2487 		    u32 (*intr_disable)(void __iomem * const regs),
2488 		    void (*intr_enable)(void __iomem * const regs))
2489 {
2490 	void __iomem * const regs = i915->uncore.regs;
2491 	struct intel_gt *gt = &i915->gt;
2492 	u32 master_ctl;
2493 	u32 gu_misc_iir;
2494 
2495 	if (!intel_irqs_enabled(i915))
2496 		return IRQ_NONE;
2497 
2498 	master_ctl = intr_disable(regs);
2499 	if (!master_ctl) {
2500 		intr_enable(regs);
2501 		return IRQ_NONE;
2502 	}
2503 
2504 	/* Find, queue (onto bottom-halves), then clear each source */
2505 	gen11_gt_irq_handler(gt, master_ctl);
2506 
2507 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2508 	if (master_ctl & GEN11_DISPLAY_IRQ)
2509 		gen11_display_irq_handler(i915);
2510 
2511 	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2512 
2513 	intr_enable(regs);
2514 
2515 	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2516 
2517 	return IRQ_HANDLED;
2518 }
2519 
gen11_irq_handler(int irq,void * arg)2520 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2521 {
2522 	return __gen11_irq_handler(arg,
2523 				   gen11_master_intr_disable,
2524 				   gen11_master_intr_enable);
2525 }
2526 
dg1_master_intr_disable_and_ack(void __iomem * const regs)2527 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2528 {
2529 	u32 val;
2530 
2531 	/* First disable interrupts */
2532 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2533 
2534 	/* Get the indication levels and ack the master unit */
2535 	val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2536 	if (unlikely(!val))
2537 		return 0;
2538 
2539 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2540 
2541 	/*
2542 	 * Now with master disabled, get a sample of level indications
2543 	 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2544 	 * out as this bit doesn't exist anymore for DG1
2545 	 */
2546 	val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2547 	if (unlikely(!val))
2548 		return 0;
2549 
2550 	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2551 
2552 	return val;
2553 }
2554 
dg1_master_intr_enable(void __iomem * const regs)2555 static inline void dg1_master_intr_enable(void __iomem * const regs)
2556 {
2557 	raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2558 }
2559 
dg1_irq_handler(int irq,void * arg)2560 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2561 {
2562 	return __gen11_irq_handler(arg,
2563 				   dg1_master_intr_disable_and_ack,
2564 				   dg1_master_intr_enable);
2565 }
2566 
2567 /* Called from drm generic code, passed 'crtc' which
2568  * we use as a pipe index
2569  */
i8xx_enable_vblank(struct drm_crtc * crtc)2570 int i8xx_enable_vblank(struct drm_crtc *crtc)
2571 {
2572 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2573 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2574 	unsigned long irqflags;
2575 
2576 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2577 	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2578 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2579 
2580 	return 0;
2581 }
2582 
i915gm_enable_vblank(struct drm_crtc * crtc)2583 int i915gm_enable_vblank(struct drm_crtc *crtc)
2584 {
2585 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2586 
2587 	/*
2588 	 * Vblank interrupts fail to wake the device up from C2+.
2589 	 * Disabling render clock gating during C-states avoids
2590 	 * the problem. There is a small power cost so we do this
2591 	 * only when vblank interrupts are actually enabled.
2592 	 */
2593 	if (dev_priv->vblank_enabled++ == 0)
2594 		I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2595 
2596 	return i8xx_enable_vblank(crtc);
2597 }
2598 
i965_enable_vblank(struct drm_crtc * crtc)2599 int i965_enable_vblank(struct drm_crtc *crtc)
2600 {
2601 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2602 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2603 	unsigned long irqflags;
2604 
2605 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2606 	i915_enable_pipestat(dev_priv, pipe,
2607 			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2608 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2609 
2610 	return 0;
2611 }
2612 
ilk_enable_vblank(struct drm_crtc * crtc)2613 int ilk_enable_vblank(struct drm_crtc *crtc)
2614 {
2615 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2616 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2617 	unsigned long irqflags;
2618 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2619 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2620 
2621 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2622 	ilk_enable_display_irq(dev_priv, bit);
2623 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2624 
2625 	/* Even though there is no DMC, frame counter can get stuck when
2626 	 * PSR is active as no frames are generated.
2627 	 */
2628 	if (HAS_PSR(dev_priv))
2629 		drm_crtc_vblank_restore(crtc);
2630 
2631 	return 0;
2632 }
2633 
bdw_enable_vblank(struct drm_crtc * crtc)2634 int bdw_enable_vblank(struct drm_crtc *crtc)
2635 {
2636 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2637 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2638 	unsigned long irqflags;
2639 
2640 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2641 	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2642 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2643 
2644 	/* Even if there is no DMC, frame counter can get stuck when
2645 	 * PSR is active as no frames are generated, so check only for PSR.
2646 	 */
2647 	if (HAS_PSR(dev_priv))
2648 		drm_crtc_vblank_restore(crtc);
2649 
2650 	return 0;
2651 }
2652 
2653 /* Called from drm generic code, passed 'crtc' which
2654  * we use as a pipe index
2655  */
i8xx_disable_vblank(struct drm_crtc * crtc)2656 void i8xx_disable_vblank(struct drm_crtc *crtc)
2657 {
2658 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2659 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2660 	unsigned long irqflags;
2661 
2662 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2663 	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2664 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665 }
2666 
i915gm_disable_vblank(struct drm_crtc * crtc)2667 void i915gm_disable_vblank(struct drm_crtc *crtc)
2668 {
2669 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2670 
2671 	i8xx_disable_vblank(crtc);
2672 
2673 	if (--dev_priv->vblank_enabled == 0)
2674 		I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2675 }
2676 
i965_disable_vblank(struct drm_crtc * crtc)2677 void i965_disable_vblank(struct drm_crtc *crtc)
2678 {
2679 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2680 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2681 	unsigned long irqflags;
2682 
2683 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2684 	i915_disable_pipestat(dev_priv, pipe,
2685 			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2686 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2687 }
2688 
ilk_disable_vblank(struct drm_crtc * crtc)2689 void ilk_disable_vblank(struct drm_crtc *crtc)
2690 {
2691 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2692 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2693 	unsigned long irqflags;
2694 	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2695 		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2696 
2697 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2698 	ilk_disable_display_irq(dev_priv, bit);
2699 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2700 }
2701 
bdw_disable_vblank(struct drm_crtc * crtc)2702 void bdw_disable_vblank(struct drm_crtc *crtc)
2703 {
2704 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2705 	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2706 	unsigned long irqflags;
2707 
2708 	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709 	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2710 	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2711 }
2712 
ibx_irq_reset(struct drm_i915_private * dev_priv)2713 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2714 {
2715 	struct intel_uncore *uncore = &dev_priv->uncore;
2716 
2717 	if (HAS_PCH_NOP(dev_priv))
2718 		return;
2719 
2720 	GEN3_IRQ_RESET(uncore, SDE);
2721 
2722 	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2723 		I915_WRITE(SERR_INT, 0xffffffff);
2724 }
2725 
2726 /*
2727  * SDEIER is also touched by the interrupt handler to work around missed PCH
2728  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2729  * instead we unconditionally enable all PCH interrupt sources here, but then
2730  * only unmask them as needed with SDEIMR.
2731  *
2732  * This function needs to be called before interrupts are enabled.
2733  */
ibx_irq_pre_postinstall(struct drm_i915_private * dev_priv)2734 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2735 {
2736 	if (HAS_PCH_NOP(dev_priv))
2737 		return;
2738 
2739 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2740 	I915_WRITE(SDEIER, 0xffffffff);
2741 	POSTING_READ(SDEIER);
2742 }
2743 
vlv_display_irq_reset(struct drm_i915_private * dev_priv)2744 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2745 {
2746 	struct intel_uncore *uncore = &dev_priv->uncore;
2747 
2748 	if (IS_CHERRYVIEW(dev_priv))
2749 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2750 	else
2751 		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2752 
2753 	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2754 	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2755 
2756 	i9xx_pipestat_irq_reset(dev_priv);
2757 
2758 	GEN3_IRQ_RESET(uncore, VLV_);
2759 	dev_priv->irq_mask = ~0u;
2760 }
2761 
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)2762 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2763 {
2764 	struct intel_uncore *uncore = &dev_priv->uncore;
2765 
2766 	u32 pipestat_mask;
2767 	u32 enable_mask;
2768 	enum pipe pipe;
2769 
2770 	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2771 
2772 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2773 	for_each_pipe(dev_priv, pipe)
2774 		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2775 
2776 	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2777 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2778 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2779 		I915_LPE_PIPE_A_INTERRUPT |
2780 		I915_LPE_PIPE_B_INTERRUPT;
2781 
2782 	if (IS_CHERRYVIEW(dev_priv))
2783 		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2784 			I915_LPE_PIPE_C_INTERRUPT;
2785 
2786 	drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2787 
2788 	dev_priv->irq_mask = ~enable_mask;
2789 
2790 	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2791 }
2792 
2793 /* drm_dma.h hooks
2794 */
ilk_irq_reset(struct drm_i915_private * dev_priv)2795 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2796 {
2797 	struct intel_uncore *uncore = &dev_priv->uncore;
2798 
2799 	GEN3_IRQ_RESET(uncore, DE);
2800 	if (IS_GEN(dev_priv, 7))
2801 		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2802 
2803 	if (IS_HASWELL(dev_priv)) {
2804 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2805 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2806 	}
2807 
2808 	gen5_gt_irq_reset(&dev_priv->gt);
2809 
2810 	ibx_irq_reset(dev_priv);
2811 }
2812 
valleyview_irq_reset(struct drm_i915_private * dev_priv)2813 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2814 {
2815 	I915_WRITE(VLV_MASTER_IER, 0);
2816 	POSTING_READ(VLV_MASTER_IER);
2817 
2818 	gen5_gt_irq_reset(&dev_priv->gt);
2819 
2820 	spin_lock_irq(&dev_priv->irq_lock);
2821 	if (dev_priv->display_irqs_enabled)
2822 		vlv_display_irq_reset(dev_priv);
2823 	spin_unlock_irq(&dev_priv->irq_lock);
2824 }
2825 
gen8_irq_reset(struct drm_i915_private * dev_priv)2826 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2827 {
2828 	struct intel_uncore *uncore = &dev_priv->uncore;
2829 	enum pipe pipe;
2830 
2831 	gen8_master_intr_disable(dev_priv->uncore.regs);
2832 
2833 	gen8_gt_irq_reset(&dev_priv->gt);
2834 
2835 	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2836 	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2837 
2838 	for_each_pipe(dev_priv, pipe)
2839 		if (intel_display_power_is_enabled(dev_priv,
2840 						   POWER_DOMAIN_PIPE(pipe)))
2841 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2842 
2843 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2844 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2845 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2846 
2847 	if (HAS_PCH_SPLIT(dev_priv))
2848 		ibx_irq_reset(dev_priv);
2849 }
2850 
gen11_display_irq_reset(struct drm_i915_private * dev_priv)2851 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2852 {
2853 	struct intel_uncore *uncore = &dev_priv->uncore;
2854 	enum pipe pipe;
2855 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2856 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2857 
2858 	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2859 
2860 	if (INTEL_GEN(dev_priv) >= 12) {
2861 		enum transcoder trans;
2862 
2863 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2864 			enum intel_display_power_domain domain;
2865 
2866 			domain = POWER_DOMAIN_TRANSCODER(trans);
2867 			if (!intel_display_power_is_enabled(dev_priv, domain))
2868 				continue;
2869 
2870 			intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2871 			intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2872 		}
2873 	} else {
2874 		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2875 		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2876 	}
2877 
2878 	for_each_pipe(dev_priv, pipe)
2879 		if (intel_display_power_is_enabled(dev_priv,
2880 						   POWER_DOMAIN_PIPE(pipe)))
2881 			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2882 
2883 	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2884 	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2885 	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2886 
2887 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2888 		GEN3_IRQ_RESET(uncore, SDE);
2889 
2890 	/* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
2891 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
2892 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2893 				 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2894 		intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2895 				 SBCLK_RUN_REFCLK_DIS, 0);
2896 	}
2897 }
2898 
gen11_irq_reset(struct drm_i915_private * dev_priv)2899 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2900 {
2901 	struct intel_uncore *uncore = &dev_priv->uncore;
2902 
2903 	if (HAS_MASTER_UNIT_IRQ(dev_priv))
2904 		dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
2905 	else
2906 		gen11_master_intr_disable(dev_priv->uncore.regs);
2907 
2908 	gen11_gt_irq_reset(&dev_priv->gt);
2909 	gen11_display_irq_reset(dev_priv);
2910 
2911 	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2912 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2913 }
2914 
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,u8 pipe_mask)2915 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2916 				     u8 pipe_mask)
2917 {
2918 	struct intel_uncore *uncore = &dev_priv->uncore;
2919 
2920 	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2921 	enum pipe pipe;
2922 
2923 	spin_lock_irq(&dev_priv->irq_lock);
2924 
2925 	if (!intel_irqs_enabled(dev_priv)) {
2926 		spin_unlock_irq(&dev_priv->irq_lock);
2927 		return;
2928 	}
2929 
2930 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2931 		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2932 				  dev_priv->de_irq_mask[pipe],
2933 				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
2934 
2935 	spin_unlock_irq(&dev_priv->irq_lock);
2936 }
2937 
gen8_irq_power_well_pre_disable(struct drm_i915_private * dev_priv,u8 pipe_mask)2938 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2939 				     u8 pipe_mask)
2940 {
2941 	struct intel_uncore *uncore = &dev_priv->uncore;
2942 	enum pipe pipe;
2943 
2944 	spin_lock_irq(&dev_priv->irq_lock);
2945 
2946 	if (!intel_irqs_enabled(dev_priv)) {
2947 		spin_unlock_irq(&dev_priv->irq_lock);
2948 		return;
2949 	}
2950 
2951 	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2952 		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2953 
2954 	spin_unlock_irq(&dev_priv->irq_lock);
2955 
2956 	/* make sure we're done processing display irqs */
2957 	intel_synchronize_irq(dev_priv);
2958 }
2959 
cherryview_irq_reset(struct drm_i915_private * dev_priv)2960 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2961 {
2962 	struct intel_uncore *uncore = &dev_priv->uncore;
2963 
2964 	I915_WRITE(GEN8_MASTER_IRQ, 0);
2965 	POSTING_READ(GEN8_MASTER_IRQ);
2966 
2967 	gen8_gt_irq_reset(&dev_priv->gt);
2968 
2969 	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2970 
2971 	spin_lock_irq(&dev_priv->irq_lock);
2972 	if (dev_priv->display_irqs_enabled)
2973 		vlv_display_irq_reset(dev_priv);
2974 	spin_unlock_irq(&dev_priv->irq_lock);
2975 }
2976 
intel_hpd_enabled_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])2977 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2978 				  const u32 hpd[HPD_NUM_PINS])
2979 {
2980 	struct intel_encoder *encoder;
2981 	u32 enabled_irqs = 0;
2982 
2983 	for_each_intel_encoder(&dev_priv->drm, encoder)
2984 		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2985 			enabled_irqs |= hpd[encoder->hpd_pin];
2986 
2987 	return enabled_irqs;
2988 }
2989 
intel_hpd_hotplug_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])2990 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
2991 				  const u32 hpd[HPD_NUM_PINS])
2992 {
2993 	struct intel_encoder *encoder;
2994 	u32 hotplug_irqs = 0;
2995 
2996 	for_each_intel_encoder(&dev_priv->drm, encoder)
2997 		hotplug_irqs |= hpd[encoder->hpd_pin];
2998 
2999 	return hotplug_irqs;
3000 }
3001 
ibx_hpd_detection_setup(struct drm_i915_private * dev_priv)3002 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3003 {
3004 	u32 hotplug;
3005 
3006 	/*
3007 	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3008 	 * duration to 2ms (which is the minimum in the Display Port spec).
3009 	 * The pulse duration bits are reserved on LPT+.
3010 	 */
3011 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3012 	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3013 		     PORTC_PULSE_DURATION_MASK |
3014 		     PORTD_PULSE_DURATION_MASK);
3015 	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3016 	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3017 	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3018 	/*
3019 	 * When CPU and PCH are on the same package, port A
3020 	 * HPD must be enabled in both north and south.
3021 	 */
3022 	if (HAS_PCH_LPT_LP(dev_priv))
3023 		hotplug |= PORTA_HOTPLUG_ENABLE;
3024 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3025 }
3026 
ibx_hpd_irq_setup(struct drm_i915_private * dev_priv)3027 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3028 {
3029 	u32 hotplug_irqs, enabled_irqs;
3030 
3031 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3032 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3033 
3034 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3035 
3036 	ibx_hpd_detection_setup(dev_priv);
3037 }
3038 
icp_ddi_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enable_mask)3039 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv,
3040 					u32 enable_mask)
3041 {
3042 	u32 hotplug;
3043 
3044 	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3045 	hotplug |= enable_mask;
3046 	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3047 }
3048 
icp_tc_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enable_mask)3049 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv,
3050 				       u32 enable_mask)
3051 {
3052 	u32 hotplug;
3053 
3054 	hotplug = I915_READ(SHOTPLUG_CTL_TC);
3055 	hotplug |= enable_mask;
3056 	I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3057 }
3058 
icp_hpd_irq_setup(struct drm_i915_private * dev_priv,u32 ddi_enable_mask,u32 tc_enable_mask)3059 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3060 			      u32 ddi_enable_mask, u32 tc_enable_mask)
3061 {
3062 	u32 hotplug_irqs, enabled_irqs;
3063 
3064 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3065 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3066 
3067 	if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3068 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3069 
3070 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3071 
3072 	icp_ddi_hpd_detection_setup(dev_priv, ddi_enable_mask);
3073 	if (tc_enable_mask)
3074 		icp_tc_hpd_detection_setup(dev_priv, tc_enable_mask);
3075 }
3076 
3077 /*
3078  * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3079  * equivalent of SDE.
3080  */
mcc_hpd_irq_setup(struct drm_i915_private * dev_priv)3081 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3082 {
3083 	icp_hpd_irq_setup(dev_priv,
3084 			  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3085 }
3086 
3087 /*
3088  * JSP behaves exactly the same as MCC above except that port C is mapped to
3089  * the DDI-C pins instead of the TC1 pins.  This means we should follow TGP's
3090  * masks & tables rather than ICP's masks & tables.
3091  */
jsp_hpd_irq_setup(struct drm_i915_private * dev_priv)3092 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 	icp_hpd_irq_setup(dev_priv,
3095 			  TGP_DDI_HPD_ENABLE_MASK, 0);
3096 }
3097 
gen11_hpd_detection_setup(struct drm_i915_private * dev_priv)3098 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3099 {
3100 	u32 hotplug;
3101 
3102 	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3103 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3104 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3105 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3106 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) |
3107 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) |
3108 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6);
3109 	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3110 
3111 	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3112 	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3113 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3114 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3115 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) |
3116 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) |
3117 		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6);
3118 	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3119 }
3120 
gen11_hpd_irq_setup(struct drm_i915_private * dev_priv)3121 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3122 {
3123 	u32 hotplug_irqs, enabled_irqs;
3124 	u32 val;
3125 
3126 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3127 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3128 
3129 	val = I915_READ(GEN11_DE_HPD_IMR);
3130 	val &= ~hotplug_irqs;
3131 	val |= ~enabled_irqs & hotplug_irqs;
3132 	I915_WRITE(GEN11_DE_HPD_IMR, val);
3133 	POSTING_READ(GEN11_DE_HPD_IMR);
3134 
3135 	gen11_hpd_detection_setup(dev_priv);
3136 
3137 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3138 		icp_hpd_irq_setup(dev_priv,
3139 				  TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3140 	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3141 		icp_hpd_irq_setup(dev_priv,
3142 				  ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3143 }
3144 
spt_hpd_detection_setup(struct drm_i915_private * dev_priv)3145 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3146 {
3147 	u32 val, hotplug;
3148 
3149 	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3150 	if (HAS_PCH_CNP(dev_priv)) {
3151 		val = I915_READ(SOUTH_CHICKEN1);
3152 		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3153 		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3154 		I915_WRITE(SOUTH_CHICKEN1, val);
3155 	}
3156 
3157 	/* Enable digital hotplug on the PCH */
3158 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3159 	hotplug |= PORTA_HOTPLUG_ENABLE |
3160 		   PORTB_HOTPLUG_ENABLE |
3161 		   PORTC_HOTPLUG_ENABLE |
3162 		   PORTD_HOTPLUG_ENABLE;
3163 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3164 
3165 	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3166 	hotplug |= PORTE_HOTPLUG_ENABLE;
3167 	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3168 }
3169 
spt_hpd_irq_setup(struct drm_i915_private * dev_priv)3170 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3171 {
3172 	u32 hotplug_irqs, enabled_irqs;
3173 
3174 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3175 		I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3176 
3177 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3178 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3179 
3180 	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3181 
3182 	spt_hpd_detection_setup(dev_priv);
3183 }
3184 
ilk_hpd_detection_setup(struct drm_i915_private * dev_priv)3185 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3186 {
3187 	u32 hotplug;
3188 
3189 	/*
3190 	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3191 	 * duration to 2ms (which is the minimum in the Display Port spec)
3192 	 * The pulse duration bits are reserved on HSW+.
3193 	 */
3194 	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3195 	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3196 	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3197 		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3198 	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3199 }
3200 
ilk_hpd_irq_setup(struct drm_i915_private * dev_priv)3201 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3202 {
3203 	u32 hotplug_irqs, enabled_irqs;
3204 
3205 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3206 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3207 
3208 	if (INTEL_GEN(dev_priv) >= 8)
3209 		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3210 	else
3211 		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3212 
3213 	ilk_hpd_detection_setup(dev_priv);
3214 
3215 	ibx_hpd_irq_setup(dev_priv);
3216 }
3217 
__bxt_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enabled_irqs)3218 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3219 				      u32 enabled_irqs)
3220 {
3221 	u32 hotplug;
3222 
3223 	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3224 	hotplug |= PORTA_HOTPLUG_ENABLE |
3225 		   PORTB_HOTPLUG_ENABLE |
3226 		   PORTC_HOTPLUG_ENABLE;
3227 
3228 	drm_dbg_kms(&dev_priv->drm,
3229 		    "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3230 		    hotplug, enabled_irqs);
3231 	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3232 
3233 	/*
3234 	 * For BXT invert bit has to be set based on AOB design
3235 	 * for HPD detection logic, update it based on VBT fields.
3236 	 */
3237 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3238 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3239 		hotplug |= BXT_DDIA_HPD_INVERT;
3240 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3241 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3242 		hotplug |= BXT_DDIB_HPD_INVERT;
3243 	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3244 	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3245 		hotplug |= BXT_DDIC_HPD_INVERT;
3246 
3247 	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3248 }
3249 
bxt_hpd_detection_setup(struct drm_i915_private * dev_priv)3250 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3251 {
3252 	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3253 }
3254 
bxt_hpd_irq_setup(struct drm_i915_private * dev_priv)3255 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3256 {
3257 	u32 hotplug_irqs, enabled_irqs;
3258 
3259 	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3260 	hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3261 
3262 	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3263 
3264 	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3265 }
3266 
ibx_irq_postinstall(struct drm_i915_private * dev_priv)3267 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3268 {
3269 	u32 mask;
3270 
3271 	if (HAS_PCH_NOP(dev_priv))
3272 		return;
3273 
3274 	if (HAS_PCH_IBX(dev_priv))
3275 		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3276 	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3277 		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3278 	else
3279 		mask = SDE_GMBUS_CPT;
3280 
3281 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3282 	I915_WRITE(SDEIMR, ~mask);
3283 
3284 	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3285 	    HAS_PCH_LPT(dev_priv))
3286 		ibx_hpd_detection_setup(dev_priv);
3287 	else
3288 		spt_hpd_detection_setup(dev_priv);
3289 }
3290 
ilk_irq_postinstall(struct drm_i915_private * dev_priv)3291 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3292 {
3293 	struct intel_uncore *uncore = &dev_priv->uncore;
3294 	u32 display_mask, extra_mask;
3295 
3296 	if (INTEL_GEN(dev_priv) >= 7) {
3297 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3298 				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3299 		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3300 			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3301 			      DE_DP_A_HOTPLUG_IVB);
3302 	} else {
3303 		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3304 				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3305 				DE_PIPEA_CRC_DONE | DE_POISON);
3306 		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3307 			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3308 			      DE_DP_A_HOTPLUG);
3309 	}
3310 
3311 	if (IS_HASWELL(dev_priv)) {
3312 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3313 		display_mask |= DE_EDP_PSR_INT_HSW;
3314 	}
3315 
3316 	dev_priv->irq_mask = ~display_mask;
3317 
3318 	ibx_irq_pre_postinstall(dev_priv);
3319 
3320 	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3321 		      display_mask | extra_mask);
3322 
3323 	gen5_gt_irq_postinstall(&dev_priv->gt);
3324 
3325 	ilk_hpd_detection_setup(dev_priv);
3326 
3327 	ibx_irq_postinstall(dev_priv);
3328 
3329 	if (IS_IRONLAKE_M(dev_priv)) {
3330 		/* Enable PCU event interrupts
3331 		 *
3332 		 * spinlocking not required here for correctness since interrupt
3333 		 * setup is guaranteed to run in single-threaded context. But we
3334 		 * need it to make the assert_spin_locked happy. */
3335 		spin_lock_irq(&dev_priv->irq_lock);
3336 		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3337 		spin_unlock_irq(&dev_priv->irq_lock);
3338 	}
3339 }
3340 
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3341 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3342 {
3343 	lockdep_assert_held(&dev_priv->irq_lock);
3344 
3345 	if (dev_priv->display_irqs_enabled)
3346 		return;
3347 
3348 	dev_priv->display_irqs_enabled = true;
3349 
3350 	if (intel_irqs_enabled(dev_priv)) {
3351 		vlv_display_irq_reset(dev_priv);
3352 		vlv_display_irq_postinstall(dev_priv);
3353 	}
3354 }
3355 
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3356 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3357 {
3358 	lockdep_assert_held(&dev_priv->irq_lock);
3359 
3360 	if (!dev_priv->display_irqs_enabled)
3361 		return;
3362 
3363 	dev_priv->display_irqs_enabled = false;
3364 
3365 	if (intel_irqs_enabled(dev_priv))
3366 		vlv_display_irq_reset(dev_priv);
3367 }
3368 
3369 
valleyview_irq_postinstall(struct drm_i915_private * dev_priv)3370 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3371 {
3372 	gen5_gt_irq_postinstall(&dev_priv->gt);
3373 
3374 	spin_lock_irq(&dev_priv->irq_lock);
3375 	if (dev_priv->display_irqs_enabled)
3376 		vlv_display_irq_postinstall(dev_priv);
3377 	spin_unlock_irq(&dev_priv->irq_lock);
3378 
3379 	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3380 	POSTING_READ(VLV_MASTER_IER);
3381 }
3382 
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3383 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3384 {
3385 	struct intel_uncore *uncore = &dev_priv->uncore;
3386 
3387 	u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3388 		GEN8_PIPE_CDCLK_CRC_DONE;
3389 	u32 de_pipe_enables;
3390 	u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3391 	u32 de_port_enables;
3392 	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3393 	u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3394 		BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3395 	enum pipe pipe;
3396 
3397 	if (INTEL_GEN(dev_priv) <= 10)
3398 		de_misc_masked |= GEN8_DE_MISC_GSE;
3399 
3400 	if (IS_GEN9_LP(dev_priv))
3401 		de_port_masked |= BXT_DE_PORT_GMBUS;
3402 
3403 	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3404 					   GEN8_PIPE_FIFO_UNDERRUN;
3405 
3406 	de_port_enables = de_port_masked;
3407 	if (IS_GEN9_LP(dev_priv))
3408 		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3409 	else if (IS_BROADWELL(dev_priv))
3410 		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3411 
3412 	if (INTEL_GEN(dev_priv) >= 12) {
3413 		enum transcoder trans;
3414 
3415 		for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3416 			enum intel_display_power_domain domain;
3417 
3418 			domain = POWER_DOMAIN_TRANSCODER(trans);
3419 			if (!intel_display_power_is_enabled(dev_priv, domain))
3420 				continue;
3421 
3422 			gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3423 		}
3424 	} else {
3425 		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3426 	}
3427 
3428 	for_each_pipe(dev_priv, pipe) {
3429 		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3430 
3431 		if (intel_display_power_is_enabled(dev_priv,
3432 				POWER_DOMAIN_PIPE(pipe)))
3433 			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3434 					  dev_priv->de_irq_mask[pipe],
3435 					  de_pipe_enables);
3436 	}
3437 
3438 	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3439 	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3440 
3441 	if (INTEL_GEN(dev_priv) >= 11) {
3442 		u32 de_hpd_masked = 0;
3443 		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3444 				     GEN11_DE_TBT_HOTPLUG_MASK;
3445 
3446 		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3447 			      de_hpd_enables);
3448 		gen11_hpd_detection_setup(dev_priv);
3449 	} else if (IS_GEN9_LP(dev_priv)) {
3450 		bxt_hpd_detection_setup(dev_priv);
3451 	} else if (IS_BROADWELL(dev_priv)) {
3452 		ilk_hpd_detection_setup(dev_priv);
3453 	}
3454 }
3455 
gen8_irq_postinstall(struct drm_i915_private * dev_priv)3456 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3457 {
3458 	if (HAS_PCH_SPLIT(dev_priv))
3459 		ibx_irq_pre_postinstall(dev_priv);
3460 
3461 	gen8_gt_irq_postinstall(&dev_priv->gt);
3462 	gen8_de_irq_postinstall(dev_priv);
3463 
3464 	if (HAS_PCH_SPLIT(dev_priv))
3465 		ibx_irq_postinstall(dev_priv);
3466 
3467 	gen8_master_intr_enable(dev_priv->uncore.regs);
3468 }
3469 
icp_irq_postinstall(struct drm_i915_private * dev_priv)3470 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3471 {
3472 	u32 mask = SDE_GMBUS_ICP;
3473 
3474 	drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3475 	I915_WRITE(SDEIER, 0xffffffff);
3476 	POSTING_READ(SDEIER);
3477 
3478 	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3479 	I915_WRITE(SDEIMR, ~mask);
3480 
3481 	if (HAS_PCH_TGP(dev_priv)) {
3482 		icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK);
3483 		icp_tc_hpd_detection_setup(dev_priv, TGP_TC_HPD_ENABLE_MASK);
3484 	} else if (HAS_PCH_JSP(dev_priv)) {
3485 		icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK);
3486 	} else if (HAS_PCH_MCC(dev_priv)) {
3487 		icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK);
3488 		icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE(PORT_TC1));
3489 	} else {
3490 		icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK);
3491 		icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE_MASK);
3492 	}
3493 }
3494 
gen11_irq_postinstall(struct drm_i915_private * dev_priv)3495 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3496 {
3497 	struct intel_uncore *uncore = &dev_priv->uncore;
3498 	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3499 
3500 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3501 		icp_irq_postinstall(dev_priv);
3502 
3503 	gen11_gt_irq_postinstall(&dev_priv->gt);
3504 	gen8_de_irq_postinstall(dev_priv);
3505 
3506 	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3507 
3508 	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3509 
3510 	if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3511 		dg1_master_intr_enable(uncore->regs);
3512 		POSTING_READ(DG1_MSTR_UNIT_INTR);
3513 	} else {
3514 		gen11_master_intr_enable(uncore->regs);
3515 		POSTING_READ(GEN11_GFX_MSTR_IRQ);
3516 	}
3517 }
3518 
cherryview_irq_postinstall(struct drm_i915_private * dev_priv)3519 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3520 {
3521 	gen8_gt_irq_postinstall(&dev_priv->gt);
3522 
3523 	spin_lock_irq(&dev_priv->irq_lock);
3524 	if (dev_priv->display_irqs_enabled)
3525 		vlv_display_irq_postinstall(dev_priv);
3526 	spin_unlock_irq(&dev_priv->irq_lock);
3527 
3528 	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3529 	POSTING_READ(GEN8_MASTER_IRQ);
3530 }
3531 
i8xx_irq_reset(struct drm_i915_private * dev_priv)3532 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3533 {
3534 	struct intel_uncore *uncore = &dev_priv->uncore;
3535 
3536 	i9xx_pipestat_irq_reset(dev_priv);
3537 
3538 	GEN2_IRQ_RESET(uncore);
3539 }
3540 
i8xx_irq_postinstall(struct drm_i915_private * dev_priv)3541 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3542 {
3543 	struct intel_uncore *uncore = &dev_priv->uncore;
3544 	u16 enable_mask;
3545 
3546 	intel_uncore_write16(uncore,
3547 			     EMR,
3548 			     ~(I915_ERROR_PAGE_TABLE |
3549 			       I915_ERROR_MEMORY_REFRESH));
3550 
3551 	/* Unmask the interrupts that we always want on. */
3552 	dev_priv->irq_mask =
3553 		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3554 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3555 		  I915_MASTER_ERROR_INTERRUPT);
3556 
3557 	enable_mask =
3558 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3559 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3560 		I915_MASTER_ERROR_INTERRUPT |
3561 		I915_USER_INTERRUPT;
3562 
3563 	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3564 
3565 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3566 	 * just to make the assert_spin_locked check happy. */
3567 	spin_lock_irq(&dev_priv->irq_lock);
3568 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3569 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3570 	spin_unlock_irq(&dev_priv->irq_lock);
3571 }
3572 
i8xx_error_irq_ack(struct drm_i915_private * i915,u16 * eir,u16 * eir_stuck)3573 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3574 			       u16 *eir, u16 *eir_stuck)
3575 {
3576 	struct intel_uncore *uncore = &i915->uncore;
3577 	u16 emr;
3578 
3579 	*eir = intel_uncore_read16(uncore, EIR);
3580 
3581 	if (*eir)
3582 		intel_uncore_write16(uncore, EIR, *eir);
3583 
3584 	*eir_stuck = intel_uncore_read16(uncore, EIR);
3585 	if (*eir_stuck == 0)
3586 		return;
3587 
3588 	/*
3589 	 * Toggle all EMR bits to make sure we get an edge
3590 	 * in the ISR master error bit if we don't clear
3591 	 * all the EIR bits. Otherwise the edge triggered
3592 	 * IIR on i965/g4x wouldn't notice that an interrupt
3593 	 * is still pending. Also some EIR bits can't be
3594 	 * cleared except by handling the underlying error
3595 	 * (or by a GPU reset) so we mask any bit that
3596 	 * remains set.
3597 	 */
3598 	emr = intel_uncore_read16(uncore, EMR);
3599 	intel_uncore_write16(uncore, EMR, 0xffff);
3600 	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3601 }
3602 
i8xx_error_irq_handler(struct drm_i915_private * dev_priv,u16 eir,u16 eir_stuck)3603 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3604 				   u16 eir, u16 eir_stuck)
3605 {
3606 	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3607 
3608 	if (eir_stuck)
3609 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3610 			eir_stuck);
3611 }
3612 
i9xx_error_irq_ack(struct drm_i915_private * dev_priv,u32 * eir,u32 * eir_stuck)3613 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3614 			       u32 *eir, u32 *eir_stuck)
3615 {
3616 	u32 emr;
3617 
3618 	*eir = I915_READ(EIR);
3619 
3620 	I915_WRITE(EIR, *eir);
3621 
3622 	*eir_stuck = I915_READ(EIR);
3623 	if (*eir_stuck == 0)
3624 		return;
3625 
3626 	/*
3627 	 * Toggle all EMR bits to make sure we get an edge
3628 	 * in the ISR master error bit if we don't clear
3629 	 * all the EIR bits. Otherwise the edge triggered
3630 	 * IIR on i965/g4x wouldn't notice that an interrupt
3631 	 * is still pending. Also some EIR bits can't be
3632 	 * cleared except by handling the underlying error
3633 	 * (or by a GPU reset) so we mask any bit that
3634 	 * remains set.
3635 	 */
3636 	emr = I915_READ(EMR);
3637 	I915_WRITE(EMR, 0xffffffff);
3638 	I915_WRITE(EMR, emr | *eir_stuck);
3639 }
3640 
i9xx_error_irq_handler(struct drm_i915_private * dev_priv,u32 eir,u32 eir_stuck)3641 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3642 				   u32 eir, u32 eir_stuck)
3643 {
3644 	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3645 
3646 	if (eir_stuck)
3647 		drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3648 			eir_stuck);
3649 }
3650 
i8xx_irq_handler(int irq,void * arg)3651 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3652 {
3653 	struct drm_i915_private *dev_priv = arg;
3654 	irqreturn_t ret = IRQ_NONE;
3655 
3656 	if (!intel_irqs_enabled(dev_priv))
3657 		return IRQ_NONE;
3658 
3659 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3660 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3661 
3662 	do {
3663 		u32 pipe_stats[I915_MAX_PIPES] = {};
3664 		u16 eir = 0, eir_stuck = 0;
3665 		u16 iir;
3666 
3667 		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3668 		if (iir == 0)
3669 			break;
3670 
3671 		ret = IRQ_HANDLED;
3672 
3673 		/* Call regardless, as some status bits might not be
3674 		 * signalled in iir */
3675 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3676 
3677 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3678 			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3679 
3680 		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3681 
3682 		if (iir & I915_USER_INTERRUPT)
3683 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3684 
3685 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3686 			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3687 
3688 		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3689 	} while (0);
3690 
3691 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3692 
3693 	return ret;
3694 }
3695 
i915_irq_reset(struct drm_i915_private * dev_priv)3696 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3697 {
3698 	struct intel_uncore *uncore = &dev_priv->uncore;
3699 
3700 	if (I915_HAS_HOTPLUG(dev_priv)) {
3701 		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3702 		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3703 	}
3704 
3705 	i9xx_pipestat_irq_reset(dev_priv);
3706 
3707 	GEN3_IRQ_RESET(uncore, GEN2_);
3708 }
3709 
i915_irq_postinstall(struct drm_i915_private * dev_priv)3710 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3711 {
3712 	struct intel_uncore *uncore = &dev_priv->uncore;
3713 	u32 enable_mask;
3714 
3715 	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3716 			  I915_ERROR_MEMORY_REFRESH));
3717 
3718 	/* Unmask the interrupts that we always want on. */
3719 	dev_priv->irq_mask =
3720 		~(I915_ASLE_INTERRUPT |
3721 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3722 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3723 		  I915_MASTER_ERROR_INTERRUPT);
3724 
3725 	enable_mask =
3726 		I915_ASLE_INTERRUPT |
3727 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3728 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3729 		I915_MASTER_ERROR_INTERRUPT |
3730 		I915_USER_INTERRUPT;
3731 
3732 	if (I915_HAS_HOTPLUG(dev_priv)) {
3733 		/* Enable in IER... */
3734 		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3735 		/* and unmask in IMR */
3736 		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3737 	}
3738 
3739 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3740 
3741 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3742 	 * just to make the assert_spin_locked check happy. */
3743 	spin_lock_irq(&dev_priv->irq_lock);
3744 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3745 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3746 	spin_unlock_irq(&dev_priv->irq_lock);
3747 
3748 	i915_enable_asle_pipestat(dev_priv);
3749 }
3750 
i915_irq_handler(int irq,void * arg)3751 static irqreturn_t i915_irq_handler(int irq, void *arg)
3752 {
3753 	struct drm_i915_private *dev_priv = arg;
3754 	irqreturn_t ret = IRQ_NONE;
3755 
3756 	if (!intel_irqs_enabled(dev_priv))
3757 		return IRQ_NONE;
3758 
3759 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3760 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3761 
3762 	do {
3763 		u32 pipe_stats[I915_MAX_PIPES] = {};
3764 		u32 eir = 0, eir_stuck = 0;
3765 		u32 hotplug_status = 0;
3766 		u32 iir;
3767 
3768 		iir = I915_READ(GEN2_IIR);
3769 		if (iir == 0)
3770 			break;
3771 
3772 		ret = IRQ_HANDLED;
3773 
3774 		if (I915_HAS_HOTPLUG(dev_priv) &&
3775 		    iir & I915_DISPLAY_PORT_INTERRUPT)
3776 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3777 
3778 		/* Call regardless, as some status bits might not be
3779 		 * signalled in iir */
3780 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3781 
3782 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3783 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3784 
3785 		I915_WRITE(GEN2_IIR, iir);
3786 
3787 		if (iir & I915_USER_INTERRUPT)
3788 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3789 
3790 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3791 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3792 
3793 		if (hotplug_status)
3794 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3795 
3796 		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3797 	} while (0);
3798 
3799 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3800 
3801 	return ret;
3802 }
3803 
i965_irq_reset(struct drm_i915_private * dev_priv)3804 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3805 {
3806 	struct intel_uncore *uncore = &dev_priv->uncore;
3807 
3808 	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3809 	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3810 
3811 	i9xx_pipestat_irq_reset(dev_priv);
3812 
3813 	GEN3_IRQ_RESET(uncore, GEN2_);
3814 }
3815 
i965_irq_postinstall(struct drm_i915_private * dev_priv)3816 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3817 {
3818 	struct intel_uncore *uncore = &dev_priv->uncore;
3819 	u32 enable_mask;
3820 	u32 error_mask;
3821 
3822 	/*
3823 	 * Enable some error detection, note the instruction error mask
3824 	 * bit is reserved, so we leave it masked.
3825 	 */
3826 	if (IS_G4X(dev_priv)) {
3827 		error_mask = ~(GM45_ERROR_PAGE_TABLE |
3828 			       GM45_ERROR_MEM_PRIV |
3829 			       GM45_ERROR_CP_PRIV |
3830 			       I915_ERROR_MEMORY_REFRESH);
3831 	} else {
3832 		error_mask = ~(I915_ERROR_PAGE_TABLE |
3833 			       I915_ERROR_MEMORY_REFRESH);
3834 	}
3835 	I915_WRITE(EMR, error_mask);
3836 
3837 	/* Unmask the interrupts that we always want on. */
3838 	dev_priv->irq_mask =
3839 		~(I915_ASLE_INTERRUPT |
3840 		  I915_DISPLAY_PORT_INTERRUPT |
3841 		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3842 		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3843 		  I915_MASTER_ERROR_INTERRUPT);
3844 
3845 	enable_mask =
3846 		I915_ASLE_INTERRUPT |
3847 		I915_DISPLAY_PORT_INTERRUPT |
3848 		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849 		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850 		I915_MASTER_ERROR_INTERRUPT |
3851 		I915_USER_INTERRUPT;
3852 
3853 	if (IS_G4X(dev_priv))
3854 		enable_mask |= I915_BSD_USER_INTERRUPT;
3855 
3856 	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3857 
3858 	/* Interrupt setup is already guaranteed to be single-threaded, this is
3859 	 * just to make the assert_spin_locked check happy. */
3860 	spin_lock_irq(&dev_priv->irq_lock);
3861 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3862 	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3863 	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3864 	spin_unlock_irq(&dev_priv->irq_lock);
3865 
3866 	i915_enable_asle_pipestat(dev_priv);
3867 }
3868 
i915_hpd_irq_setup(struct drm_i915_private * dev_priv)3869 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3870 {
3871 	u32 hotplug_en;
3872 
3873 	lockdep_assert_held(&dev_priv->irq_lock);
3874 
3875 	/* Note HDMI and DP share hotplug bits */
3876 	/* enable bits are the same for all generations */
3877 	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3878 	/* Programming the CRT detection parameters tends
3879 	   to generate a spurious hotplug event about three
3880 	   seconds later.  So just do it once.
3881 	*/
3882 	if (IS_G4X(dev_priv))
3883 		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3884 	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3885 
3886 	/* Ignore TV since it's buggy */
3887 	i915_hotplug_interrupt_update_locked(dev_priv,
3888 					     HOTPLUG_INT_EN_MASK |
3889 					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3890 					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3891 					     hotplug_en);
3892 }
3893 
i965_irq_handler(int irq,void * arg)3894 static irqreturn_t i965_irq_handler(int irq, void *arg)
3895 {
3896 	struct drm_i915_private *dev_priv = arg;
3897 	irqreturn_t ret = IRQ_NONE;
3898 
3899 	if (!intel_irqs_enabled(dev_priv))
3900 		return IRQ_NONE;
3901 
3902 	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
3903 	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3904 
3905 	do {
3906 		u32 pipe_stats[I915_MAX_PIPES] = {};
3907 		u32 eir = 0, eir_stuck = 0;
3908 		u32 hotplug_status = 0;
3909 		u32 iir;
3910 
3911 		iir = I915_READ(GEN2_IIR);
3912 		if (iir == 0)
3913 			break;
3914 
3915 		ret = IRQ_HANDLED;
3916 
3917 		if (iir & I915_DISPLAY_PORT_INTERRUPT)
3918 			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3919 
3920 		/* Call regardless, as some status bits might not be
3921 		 * signalled in iir */
3922 		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3923 
3924 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3925 			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3926 
3927 		I915_WRITE(GEN2_IIR, iir);
3928 
3929 		if (iir & I915_USER_INTERRUPT)
3930 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3931 
3932 		if (iir & I915_BSD_USER_INTERRUPT)
3933 			intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3934 
3935 		if (iir & I915_MASTER_ERROR_INTERRUPT)
3936 			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3937 
3938 		if (hotplug_status)
3939 			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3940 
3941 		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3942 	} while (0);
3943 
3944 	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3945 
3946 	return ret;
3947 }
3948 
3949 /**
3950  * intel_irq_init - initializes irq support
3951  * @dev_priv: i915 device instance
3952  *
3953  * This function initializes all the irq support including work items, timers
3954  * and all the vtables. It does not setup the interrupt itself though.
3955  */
intel_irq_init(struct drm_i915_private * dev_priv)3956 void intel_irq_init(struct drm_i915_private *dev_priv)
3957 {
3958 	struct drm_device *dev = &dev_priv->drm;
3959 	int i;
3960 
3961 	intel_hpd_init_pins(dev_priv);
3962 
3963 	intel_hpd_init_work(dev_priv);
3964 
3965 	INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3966 	for (i = 0; i < MAX_L3_SLICES; ++i)
3967 		dev_priv->l3_parity.remap_info[i] = NULL;
3968 
3969 	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3970 	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3971 		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3972 
3973 	dev->vblank_disable_immediate = true;
3974 
3975 	/* Most platforms treat the display irq block as an always-on
3976 	 * power domain. vlv/chv can disable it at runtime and need
3977 	 * special care to avoid writing any of the display block registers
3978 	 * outside of the power domain. We defer setting up the display irqs
3979 	 * in this case to the runtime pm.
3980 	 */
3981 	dev_priv->display_irqs_enabled = true;
3982 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3983 		dev_priv->display_irqs_enabled = false;
3984 
3985 	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3986 	/* If we have MST support, we want to avoid doing short HPD IRQ storm
3987 	 * detection, as short HPD storms will occur as a natural part of
3988 	 * sideband messaging with MST.
3989 	 * On older platforms however, IRQ storms can occur with both long and
3990 	 * short pulses, as seen on some G4x systems.
3991 	 */
3992 	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3993 
3994 	if (HAS_GMCH(dev_priv)) {
3995 		if (I915_HAS_HOTPLUG(dev_priv))
3996 			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3997 	} else {
3998 		if (HAS_PCH_JSP(dev_priv))
3999 			dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4000 		else if (HAS_PCH_MCC(dev_priv))
4001 			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4002 		else if (INTEL_GEN(dev_priv) >= 11)
4003 			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4004 		else if (IS_GEN9_LP(dev_priv))
4005 			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4006 		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4007 			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4008 		else
4009 			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4010 	}
4011 }
4012 
4013 /**
4014  * intel_irq_fini - deinitializes IRQ support
4015  * @i915: i915 device instance
4016  *
4017  * This function deinitializes all the IRQ support.
4018  */
intel_irq_fini(struct drm_i915_private * i915)4019 void intel_irq_fini(struct drm_i915_private *i915)
4020 {
4021 	int i;
4022 
4023 	for (i = 0; i < MAX_L3_SLICES; ++i)
4024 		kfree(i915->l3_parity.remap_info[i]);
4025 }
4026 
intel_irq_handler(struct drm_i915_private * dev_priv)4027 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4028 {
4029 	if (HAS_GMCH(dev_priv)) {
4030 		if (IS_CHERRYVIEW(dev_priv))
4031 			return cherryview_irq_handler;
4032 		else if (IS_VALLEYVIEW(dev_priv))
4033 			return valleyview_irq_handler;
4034 		else if (IS_GEN(dev_priv, 4))
4035 			return i965_irq_handler;
4036 		else if (IS_GEN(dev_priv, 3))
4037 			return i915_irq_handler;
4038 		else
4039 			return i8xx_irq_handler;
4040 	} else {
4041 		if (HAS_MASTER_UNIT_IRQ(dev_priv))
4042 			return dg1_irq_handler;
4043 		if (INTEL_GEN(dev_priv) >= 11)
4044 			return gen11_irq_handler;
4045 		else if (INTEL_GEN(dev_priv) >= 8)
4046 			return gen8_irq_handler;
4047 		else
4048 			return ilk_irq_handler;
4049 	}
4050 }
4051 
intel_irq_reset(struct drm_i915_private * dev_priv)4052 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4053 {
4054 	if (HAS_GMCH(dev_priv)) {
4055 		if (IS_CHERRYVIEW(dev_priv))
4056 			cherryview_irq_reset(dev_priv);
4057 		else if (IS_VALLEYVIEW(dev_priv))
4058 			valleyview_irq_reset(dev_priv);
4059 		else if (IS_GEN(dev_priv, 4))
4060 			i965_irq_reset(dev_priv);
4061 		else if (IS_GEN(dev_priv, 3))
4062 			i915_irq_reset(dev_priv);
4063 		else
4064 			i8xx_irq_reset(dev_priv);
4065 	} else {
4066 		if (INTEL_GEN(dev_priv) >= 11)
4067 			gen11_irq_reset(dev_priv);
4068 		else if (INTEL_GEN(dev_priv) >= 8)
4069 			gen8_irq_reset(dev_priv);
4070 		else
4071 			ilk_irq_reset(dev_priv);
4072 	}
4073 }
4074 
intel_irq_postinstall(struct drm_i915_private * dev_priv)4075 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4076 {
4077 	if (HAS_GMCH(dev_priv)) {
4078 		if (IS_CHERRYVIEW(dev_priv))
4079 			cherryview_irq_postinstall(dev_priv);
4080 		else if (IS_VALLEYVIEW(dev_priv))
4081 			valleyview_irq_postinstall(dev_priv);
4082 		else if (IS_GEN(dev_priv, 4))
4083 			i965_irq_postinstall(dev_priv);
4084 		else if (IS_GEN(dev_priv, 3))
4085 			i915_irq_postinstall(dev_priv);
4086 		else
4087 			i8xx_irq_postinstall(dev_priv);
4088 	} else {
4089 		if (INTEL_GEN(dev_priv) >= 11)
4090 			gen11_irq_postinstall(dev_priv);
4091 		else if (INTEL_GEN(dev_priv) >= 8)
4092 			gen8_irq_postinstall(dev_priv);
4093 		else
4094 			ilk_irq_postinstall(dev_priv);
4095 	}
4096 }
4097 
4098 /**
4099  * intel_irq_install - enables the hardware interrupt
4100  * @dev_priv: i915 device instance
4101  *
4102  * This function enables the hardware interrupt handling, but leaves the hotplug
4103  * handling still disabled. It is called after intel_irq_init().
4104  *
4105  * In the driver load and resume code we need working interrupts in a few places
4106  * but don't want to deal with the hassle of concurrent probe and hotplug
4107  * workers. Hence the split into this two-stage approach.
4108  */
intel_irq_install(struct drm_i915_private * dev_priv)4109 int intel_irq_install(struct drm_i915_private *dev_priv)
4110 {
4111 	int irq = dev_priv->drm.pdev->irq;
4112 	int ret;
4113 
4114 	/*
4115 	 * We enable some interrupt sources in our postinstall hooks, so mark
4116 	 * interrupts as enabled _before_ actually enabling them to avoid
4117 	 * special cases in our ordering checks.
4118 	 */
4119 	dev_priv->runtime_pm.irqs_enabled = true;
4120 
4121 	dev_priv->drm.irq_enabled = true;
4122 
4123 	intel_irq_reset(dev_priv);
4124 
4125 	ret = request_irq(irq, intel_irq_handler(dev_priv),
4126 			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4127 	if (ret < 0) {
4128 		dev_priv->drm.irq_enabled = false;
4129 		return ret;
4130 	}
4131 
4132 	intel_irq_postinstall(dev_priv);
4133 
4134 	return ret;
4135 }
4136 
4137 /**
4138  * intel_irq_uninstall - finilizes all irq handling
4139  * @dev_priv: i915 device instance
4140  *
4141  * This stops interrupt and hotplug handling and unregisters and frees all
4142  * resources acquired in the init functions.
4143  */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4144 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4145 {
4146 	int irq = dev_priv->drm.pdev->irq;
4147 
4148 	/*
4149 	 * FIXME we can get called twice during driver probe
4150 	 * error handling as well as during driver remove due to
4151 	 * intel_modeset_driver_remove() calling us out of sequence.
4152 	 * Would be nice if it didn't do that...
4153 	 */
4154 	if (!dev_priv->drm.irq_enabled)
4155 		return;
4156 
4157 	dev_priv->drm.irq_enabled = false;
4158 
4159 	intel_irq_reset(dev_priv);
4160 
4161 	free_irq(irq, dev_priv);
4162 
4163 	intel_hpd_cancel_work(dev_priv);
4164 	dev_priv->runtime_pm.irqs_enabled = false;
4165 }
4166 
4167 /**
4168  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4169  * @dev_priv: i915 device instance
4170  *
4171  * This function is used to disable interrupts at runtime, both in the runtime
4172  * pm and the system suspend/resume code.
4173  */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4174 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4175 {
4176 	intel_irq_reset(dev_priv);
4177 	dev_priv->runtime_pm.irqs_enabled = false;
4178 	intel_synchronize_irq(dev_priv);
4179 }
4180 
4181 /**
4182  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4183  * @dev_priv: i915 device instance
4184  *
4185  * This function is used to enable interrupts at runtime, both in the runtime
4186  * pm and the system suspend/resume code.
4187  */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4188 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4189 {
4190 	dev_priv->runtime_pm.irqs_enabled = true;
4191 	intel_irq_reset(dev_priv);
4192 	intel_irq_postinstall(dev_priv);
4193 }
4194 
intel_irqs_enabled(struct drm_i915_private * dev_priv)4195 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4196 {
4197 	/*
4198 	 * We only use drm_irq_uninstall() at unload and VT switch, so
4199 	 * this is the only thing we need to check.
4200 	 */
4201 	return dev_priv->runtime_pm.irqs_enabled;
4202 }
4203 
intel_synchronize_irq(struct drm_i915_private * i915)4204 void intel_synchronize_irq(struct drm_i915_private *i915)
4205 {
4206 	synchronize_irq(i915->drm.pdev->irq);
4207 }
4208