1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3 /*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/circ_buf.h>
32 #include <linux/slab.h>
33 #include <linux/sysrq.h>
34
35 #include <drm/drm_drv.h>
36 #include <drm/drm_irq.h>
37
38 #include "display/intel_display_types.h"
39 #include "display/intel_fifo_underrun.h"
40 #include "display/intel_hotplug.h"
41 #include "display/intel_lpe_audio.h"
42 #include "display/intel_psr.h"
43
44 #include "gt/intel_breadcrumbs.h"
45 #include "gt/intel_gt.h"
46 #include "gt/intel_gt_irq.h"
47 #include "gt/intel_gt_pm_irq.h"
48 #include "gt/intel_rps.h"
49
50 #include "i915_drv.h"
51 #include "i915_irq.h"
52 #include "i915_trace.h"
53 #include "intel_pm.h"
54
55 /**
56 * DOC: interrupt handling
57 *
58 * These functions provide the basic support for enabling and disabling the
59 * interrupt handling support. There's a lot more functionality in i915_irq.c
60 * and related files, but that will be described in separate chapters.
61 */
62
63 typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
64
65 static const u32 hpd_ilk[HPD_NUM_PINS] = {
66 [HPD_PORT_A] = DE_DP_A_HOTPLUG,
67 };
68
69 static const u32 hpd_ivb[HPD_NUM_PINS] = {
70 [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
71 };
72
73 static const u32 hpd_bdw[HPD_NUM_PINS] = {
74 [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
75 };
76
77 static const u32 hpd_ibx[HPD_NUM_PINS] = {
78 [HPD_CRT] = SDE_CRT_HOTPLUG,
79 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
80 [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
81 [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
82 [HPD_PORT_D] = SDE_PORTD_HOTPLUG,
83 };
84
85 static const u32 hpd_cpt[HPD_NUM_PINS] = {
86 [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
87 [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
88 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
89 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
90 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
91 };
92
93 static const u32 hpd_spt[HPD_NUM_PINS] = {
94 [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
95 [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
96 [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
97 [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
98 [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT,
99 };
100
101 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
102 [HPD_CRT] = CRT_HOTPLUG_INT_EN,
103 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
104 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
105 [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
106 [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
107 [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN,
108 };
109
110 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
111 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
112 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
113 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
114 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
115 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
116 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
117 };
118
119 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
120 [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
121 [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
122 [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
123 [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
124 [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
125 [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS,
126 };
127
128 static const u32 hpd_bxt[HPD_NUM_PINS] = {
129 [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
130 [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
131 [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC,
132 };
133
134 static const u32 hpd_gen11[HPD_NUM_PINS] = {
135 [HPD_PORT_TC1] = GEN11_TC_HOTPLUG(PORT_TC1) | GEN11_TBT_HOTPLUG(PORT_TC1),
136 [HPD_PORT_TC2] = GEN11_TC_HOTPLUG(PORT_TC2) | GEN11_TBT_HOTPLUG(PORT_TC2),
137 [HPD_PORT_TC3] = GEN11_TC_HOTPLUG(PORT_TC3) | GEN11_TBT_HOTPLUG(PORT_TC3),
138 [HPD_PORT_TC4] = GEN11_TC_HOTPLUG(PORT_TC4) | GEN11_TBT_HOTPLUG(PORT_TC4),
139 [HPD_PORT_TC5] = GEN11_TC_HOTPLUG(PORT_TC5) | GEN11_TBT_HOTPLUG(PORT_TC5),
140 [HPD_PORT_TC6] = GEN11_TC_HOTPLUG(PORT_TC6) | GEN11_TBT_HOTPLUG(PORT_TC6),
141 };
142
143 static const u32 hpd_icp[HPD_NUM_PINS] = {
144 [HPD_PORT_A] = SDE_DDI_HOTPLUG_ICP(PORT_A),
145 [HPD_PORT_B] = SDE_DDI_HOTPLUG_ICP(PORT_B),
146 [HPD_PORT_C] = SDE_DDI_HOTPLUG_ICP(PORT_C),
147 [HPD_PORT_TC1] = SDE_TC_HOTPLUG_ICP(PORT_TC1),
148 [HPD_PORT_TC2] = SDE_TC_HOTPLUG_ICP(PORT_TC2),
149 [HPD_PORT_TC3] = SDE_TC_HOTPLUG_ICP(PORT_TC3),
150 [HPD_PORT_TC4] = SDE_TC_HOTPLUG_ICP(PORT_TC4),
151 [HPD_PORT_TC5] = SDE_TC_HOTPLUG_ICP(PORT_TC5),
152 [HPD_PORT_TC6] = SDE_TC_HOTPLUG_ICP(PORT_TC6),
153 };
154
intel_hpd_init_pins(struct drm_i915_private * dev_priv)155 static void intel_hpd_init_pins(struct drm_i915_private *dev_priv)
156 {
157 struct i915_hotplug *hpd = &dev_priv->hotplug;
158
159 if (HAS_GMCH(dev_priv)) {
160 if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
161 IS_CHERRYVIEW(dev_priv))
162 hpd->hpd = hpd_status_g4x;
163 else
164 hpd->hpd = hpd_status_i915;
165 return;
166 }
167
168 if (INTEL_GEN(dev_priv) >= 11)
169 hpd->hpd = hpd_gen11;
170 else if (IS_GEN9_LP(dev_priv))
171 hpd->hpd = hpd_bxt;
172 else if (INTEL_GEN(dev_priv) >= 8)
173 hpd->hpd = hpd_bdw;
174 else if (INTEL_GEN(dev_priv) >= 7)
175 hpd->hpd = hpd_ivb;
176 else
177 hpd->hpd = hpd_ilk;
178
179 if (!HAS_PCH_SPLIT(dev_priv) || HAS_PCH_NOP(dev_priv))
180 return;
181
182 if (HAS_PCH_TGP(dev_priv) || HAS_PCH_JSP(dev_priv) ||
183 HAS_PCH_ICP(dev_priv) || HAS_PCH_MCC(dev_priv))
184 hpd->pch_hpd = hpd_icp;
185 else if (HAS_PCH_CNP(dev_priv) || HAS_PCH_SPT(dev_priv))
186 hpd->pch_hpd = hpd_spt;
187 else if (HAS_PCH_LPT(dev_priv) || HAS_PCH_CPT(dev_priv))
188 hpd->pch_hpd = hpd_cpt;
189 else if (HAS_PCH_IBX(dev_priv))
190 hpd->pch_hpd = hpd_ibx;
191 else
192 MISSING_CASE(INTEL_PCH_TYPE(dev_priv));
193 }
194
195 static void
intel_handle_vblank(struct drm_i915_private * dev_priv,enum pipe pipe)196 intel_handle_vblank(struct drm_i915_private *dev_priv, enum pipe pipe)
197 {
198 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
199
200 drm_crtc_handle_vblank(&crtc->base);
201 }
202
gen3_irq_reset(struct intel_uncore * uncore,i915_reg_t imr,i915_reg_t iir,i915_reg_t ier)203 void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
204 i915_reg_t iir, i915_reg_t ier)
205 {
206 intel_uncore_write(uncore, imr, 0xffffffff);
207 intel_uncore_posting_read(uncore, imr);
208
209 intel_uncore_write(uncore, ier, 0);
210
211 /* IIR can theoretically queue up two events. Be paranoid. */
212 intel_uncore_write(uncore, iir, 0xffffffff);
213 intel_uncore_posting_read(uncore, iir);
214 intel_uncore_write(uncore, iir, 0xffffffff);
215 intel_uncore_posting_read(uncore, iir);
216 }
217
gen2_irq_reset(struct intel_uncore * uncore)218 void gen2_irq_reset(struct intel_uncore *uncore)
219 {
220 intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
221 intel_uncore_posting_read16(uncore, GEN2_IMR);
222
223 intel_uncore_write16(uncore, GEN2_IER, 0);
224
225 /* IIR can theoretically queue up two events. Be paranoid. */
226 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
227 intel_uncore_posting_read16(uncore, GEN2_IIR);
228 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
229 intel_uncore_posting_read16(uncore, GEN2_IIR);
230 }
231
232 /*
233 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
234 */
gen3_assert_iir_is_zero(struct intel_uncore * uncore,i915_reg_t reg)235 static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
236 {
237 u32 val = intel_uncore_read(uncore, reg);
238
239 if (val == 0)
240 return;
241
242 drm_WARN(&uncore->i915->drm, 1,
243 "Interrupt register 0x%x is not zero: 0x%08x\n",
244 i915_mmio_reg_offset(reg), val);
245 intel_uncore_write(uncore, reg, 0xffffffff);
246 intel_uncore_posting_read(uncore, reg);
247 intel_uncore_write(uncore, reg, 0xffffffff);
248 intel_uncore_posting_read(uncore, reg);
249 }
250
gen2_assert_iir_is_zero(struct intel_uncore * uncore)251 static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
252 {
253 u16 val = intel_uncore_read16(uncore, GEN2_IIR);
254
255 if (val == 0)
256 return;
257
258 drm_WARN(&uncore->i915->drm, 1,
259 "Interrupt register 0x%x is not zero: 0x%08x\n",
260 i915_mmio_reg_offset(GEN2_IIR), val);
261 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
262 intel_uncore_posting_read16(uncore, GEN2_IIR);
263 intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
264 intel_uncore_posting_read16(uncore, GEN2_IIR);
265 }
266
gen3_irq_init(struct intel_uncore * uncore,i915_reg_t imr,u32 imr_val,i915_reg_t ier,u32 ier_val,i915_reg_t iir)267 void gen3_irq_init(struct intel_uncore *uncore,
268 i915_reg_t imr, u32 imr_val,
269 i915_reg_t ier, u32 ier_val,
270 i915_reg_t iir)
271 {
272 gen3_assert_iir_is_zero(uncore, iir);
273
274 intel_uncore_write(uncore, ier, ier_val);
275 intel_uncore_write(uncore, imr, imr_val);
276 intel_uncore_posting_read(uncore, imr);
277 }
278
gen2_irq_init(struct intel_uncore * uncore,u32 imr_val,u32 ier_val)279 void gen2_irq_init(struct intel_uncore *uncore,
280 u32 imr_val, u32 ier_val)
281 {
282 gen2_assert_iir_is_zero(uncore);
283
284 intel_uncore_write16(uncore, GEN2_IER, ier_val);
285 intel_uncore_write16(uncore, GEN2_IMR, imr_val);
286 intel_uncore_posting_read16(uncore, GEN2_IMR);
287 }
288
289 /* For display hotplug interrupt */
290 static inline void
i915_hotplug_interrupt_update_locked(struct drm_i915_private * dev_priv,u32 mask,u32 bits)291 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
292 u32 mask,
293 u32 bits)
294 {
295 u32 val;
296
297 lockdep_assert_held(&dev_priv->irq_lock);
298 drm_WARN_ON(&dev_priv->drm, bits & ~mask);
299
300 val = I915_READ(PORT_HOTPLUG_EN);
301 val &= ~mask;
302 val |= bits;
303 I915_WRITE(PORT_HOTPLUG_EN, val);
304 }
305
306 /**
307 * i915_hotplug_interrupt_update - update hotplug interrupt enable
308 * @dev_priv: driver private
309 * @mask: bits to update
310 * @bits: bits to enable
311 * NOTE: the HPD enable bits are modified both inside and outside
312 * of an interrupt context. To avoid that read-modify-write cycles
313 * interfer, these bits are protected by a spinlock. Since this
314 * function is usually not called from a context where the lock is
315 * held already, this function acquires the lock itself. A non-locking
316 * version is also available.
317 */
i915_hotplug_interrupt_update(struct drm_i915_private * dev_priv,u32 mask,u32 bits)318 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
319 u32 mask,
320 u32 bits)
321 {
322 spin_lock_irq(&dev_priv->irq_lock);
323 i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
324 spin_unlock_irq(&dev_priv->irq_lock);
325 }
326
327 /**
328 * ilk_update_display_irq - update DEIMR
329 * @dev_priv: driver private
330 * @interrupt_mask: mask of interrupt bits to update
331 * @enabled_irq_mask: mask of interrupt bits to enable
332 */
ilk_update_display_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)333 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
334 u32 interrupt_mask,
335 u32 enabled_irq_mask)
336 {
337 u32 new_val;
338
339 lockdep_assert_held(&dev_priv->irq_lock);
340
341 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
342
343 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
344 return;
345
346 new_val = dev_priv->irq_mask;
347 new_val &= ~interrupt_mask;
348 new_val |= (~enabled_irq_mask & interrupt_mask);
349
350 if (new_val != dev_priv->irq_mask) {
351 dev_priv->irq_mask = new_val;
352 I915_WRITE(DEIMR, dev_priv->irq_mask);
353 POSTING_READ(DEIMR);
354 }
355 }
356
357 /**
358 * bdw_update_port_irq - update DE port interrupt
359 * @dev_priv: driver private
360 * @interrupt_mask: mask of interrupt bits to update
361 * @enabled_irq_mask: mask of interrupt bits to enable
362 */
bdw_update_port_irq(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)363 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
364 u32 interrupt_mask,
365 u32 enabled_irq_mask)
366 {
367 u32 new_val;
368 u32 old_val;
369
370 lockdep_assert_held(&dev_priv->irq_lock);
371
372 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
373
374 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
375 return;
376
377 old_val = I915_READ(GEN8_DE_PORT_IMR);
378
379 new_val = old_val;
380 new_val &= ~interrupt_mask;
381 new_val |= (~enabled_irq_mask & interrupt_mask);
382
383 if (new_val != old_val) {
384 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
385 POSTING_READ(GEN8_DE_PORT_IMR);
386 }
387 }
388
389 /**
390 * bdw_update_pipe_irq - update DE pipe interrupt
391 * @dev_priv: driver private
392 * @pipe: pipe whose interrupt to update
393 * @interrupt_mask: mask of interrupt bits to update
394 * @enabled_irq_mask: mask of interrupt bits to enable
395 */
bdw_update_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,u32 interrupt_mask,u32 enabled_irq_mask)396 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
397 enum pipe pipe,
398 u32 interrupt_mask,
399 u32 enabled_irq_mask)
400 {
401 u32 new_val;
402
403 lockdep_assert_held(&dev_priv->irq_lock);
404
405 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
406
407 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
408 return;
409
410 new_val = dev_priv->de_irq_mask[pipe];
411 new_val &= ~interrupt_mask;
412 new_val |= (~enabled_irq_mask & interrupt_mask);
413
414 if (new_val != dev_priv->de_irq_mask[pipe]) {
415 dev_priv->de_irq_mask[pipe] = new_val;
416 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
417 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
418 }
419 }
420
421 /**
422 * ibx_display_interrupt_update - update SDEIMR
423 * @dev_priv: driver private
424 * @interrupt_mask: mask of interrupt bits to update
425 * @enabled_irq_mask: mask of interrupt bits to enable
426 */
ibx_display_interrupt_update(struct drm_i915_private * dev_priv,u32 interrupt_mask,u32 enabled_irq_mask)427 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
428 u32 interrupt_mask,
429 u32 enabled_irq_mask)
430 {
431 u32 sdeimr = I915_READ(SDEIMR);
432 sdeimr &= ~interrupt_mask;
433 sdeimr |= (~enabled_irq_mask & interrupt_mask);
434
435 drm_WARN_ON(&dev_priv->drm, enabled_irq_mask & ~interrupt_mask);
436
437 lockdep_assert_held(&dev_priv->irq_lock);
438
439 if (drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv)))
440 return;
441
442 I915_WRITE(SDEIMR, sdeimr);
443 POSTING_READ(SDEIMR);
444 }
445
i915_pipestat_enable_mask(struct drm_i915_private * dev_priv,enum pipe pipe)446 u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
447 enum pipe pipe)
448 {
449 u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
450 u32 enable_mask = status_mask << 16;
451
452 lockdep_assert_held(&dev_priv->irq_lock);
453
454 if (INTEL_GEN(dev_priv) < 5)
455 goto out;
456
457 /*
458 * On pipe A we don't support the PSR interrupt yet,
459 * on pipe B and C the same bit MBZ.
460 */
461 if (drm_WARN_ON_ONCE(&dev_priv->drm,
462 status_mask & PIPE_A_PSR_STATUS_VLV))
463 return 0;
464 /*
465 * On pipe B and C we don't support the PSR interrupt yet, on pipe
466 * A the same bit is for perf counters which we don't use either.
467 */
468 if (drm_WARN_ON_ONCE(&dev_priv->drm,
469 status_mask & PIPE_B_PSR_STATUS_VLV))
470 return 0;
471
472 enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
473 SPRITE0_FLIP_DONE_INT_EN_VLV |
474 SPRITE1_FLIP_DONE_INT_EN_VLV);
475 if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
476 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
477 if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
478 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
479
480 out:
481 drm_WARN_ONCE(&dev_priv->drm,
482 enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
483 status_mask & ~PIPESTAT_INT_STATUS_MASK,
484 "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
485 pipe_name(pipe), enable_mask, status_mask);
486
487 return enable_mask;
488 }
489
i915_enable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)490 void i915_enable_pipestat(struct drm_i915_private *dev_priv,
491 enum pipe pipe, u32 status_mask)
492 {
493 i915_reg_t reg = PIPESTAT(pipe);
494 u32 enable_mask;
495
496 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
497 "pipe %c: status_mask=0x%x\n",
498 pipe_name(pipe), status_mask);
499
500 lockdep_assert_held(&dev_priv->irq_lock);
501 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
502
503 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
504 return;
505
506 dev_priv->pipestat_irq_mask[pipe] |= status_mask;
507 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
508
509 I915_WRITE(reg, enable_mask | status_mask);
510 POSTING_READ(reg);
511 }
512
i915_disable_pipestat(struct drm_i915_private * dev_priv,enum pipe pipe,u32 status_mask)513 void i915_disable_pipestat(struct drm_i915_private *dev_priv,
514 enum pipe pipe, u32 status_mask)
515 {
516 i915_reg_t reg = PIPESTAT(pipe);
517 u32 enable_mask;
518
519 drm_WARN_ONCE(&dev_priv->drm, status_mask & ~PIPESTAT_INT_STATUS_MASK,
520 "pipe %c: status_mask=0x%x\n",
521 pipe_name(pipe), status_mask);
522
523 lockdep_assert_held(&dev_priv->irq_lock);
524 drm_WARN_ON(&dev_priv->drm, !intel_irqs_enabled(dev_priv));
525
526 if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
527 return;
528
529 dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
530 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
531
532 I915_WRITE(reg, enable_mask | status_mask);
533 POSTING_READ(reg);
534 }
535
i915_has_asle(struct drm_i915_private * dev_priv)536 static bool i915_has_asle(struct drm_i915_private *dev_priv)
537 {
538 if (!dev_priv->opregion.asle)
539 return false;
540
541 return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
542 }
543
544 /**
545 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
546 * @dev_priv: i915 device private
547 */
i915_enable_asle_pipestat(struct drm_i915_private * dev_priv)548 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
549 {
550 if (!i915_has_asle(dev_priv))
551 return;
552
553 spin_lock_irq(&dev_priv->irq_lock);
554
555 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
556 if (INTEL_GEN(dev_priv) >= 4)
557 i915_enable_pipestat(dev_priv, PIPE_A,
558 PIPE_LEGACY_BLC_EVENT_STATUS);
559
560 spin_unlock_irq(&dev_priv->irq_lock);
561 }
562
563 /*
564 * This timing diagram depicts the video signal in and
565 * around the vertical blanking period.
566 *
567 * Assumptions about the fictitious mode used in this example:
568 * vblank_start >= 3
569 * vsync_start = vblank_start + 1
570 * vsync_end = vblank_start + 2
571 * vtotal = vblank_start + 3
572 *
573 * start of vblank:
574 * latch double buffered registers
575 * increment frame counter (ctg+)
576 * generate start of vblank interrupt (gen4+)
577 * |
578 * | frame start:
579 * | generate frame start interrupt (aka. vblank interrupt) (gmch)
580 * | may be shifted forward 1-3 extra lines via PIPECONF
581 * | |
582 * | | start of vsync:
583 * | | generate vsync interrupt
584 * | | |
585 * ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx___ ___xxxx
586 * . \hs/ . \hs/ \hs/ \hs/ . \hs/
587 * ----va---> <-----------------vb--------------------> <--------va-------------
588 * | | <----vs-----> |
589 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
590 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
591 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
592 * | | |
593 * last visible pixel first visible pixel
594 * | increment frame counter (gen3/4)
595 * pixel counter = vblank_start * htotal pixel counter = 0 (gen3/4)
596 *
597 * x = horizontal active
598 * _ = horizontal blanking
599 * hs = horizontal sync
600 * va = vertical active
601 * vb = vertical blanking
602 * vs = vertical sync
603 * vbs = vblank_start (number)
604 *
605 * Summary:
606 * - most events happen at the start of horizontal sync
607 * - frame start happens at the start of horizontal blank, 1-4 lines
608 * (depending on PIPECONF settings) after the start of vblank
609 * - gen3/4 pixel and frame counter are synchronized with the start
610 * of horizontal active on the first line of vertical active
611 */
612
613 /* Called from drm generic code, passed a 'crtc', which
614 * we use as a pipe index
615 */
i915_get_vblank_counter(struct drm_crtc * crtc)616 u32 i915_get_vblank_counter(struct drm_crtc *crtc)
617 {
618 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
619 struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
620 const struct drm_display_mode *mode = &vblank->hwmode;
621 enum pipe pipe = to_intel_crtc(crtc)->pipe;
622 i915_reg_t high_frame, low_frame;
623 u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
624 unsigned long irqflags;
625
626 /*
627 * On i965gm TV output the frame counter only works up to
628 * the point when we enable the TV encoder. After that the
629 * frame counter ceases to work and reads zero. We need a
630 * vblank wait before enabling the TV encoder and so we
631 * have to enable vblank interrupts while the frame counter
632 * is still in a working state. However the core vblank code
633 * does not like us returning non-zero frame counter values
634 * when we've told it that we don't have a working frame
635 * counter. Thus we must stop non-zero values leaking out.
636 */
637 if (!vblank->max_vblank_count)
638 return 0;
639
640 htotal = mode->crtc_htotal;
641 hsync_start = mode->crtc_hsync_start;
642 vbl_start = mode->crtc_vblank_start;
643 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
644 vbl_start = DIV_ROUND_UP(vbl_start, 2);
645
646 /* Convert to pixel count */
647 vbl_start *= htotal;
648
649 /* Start of vblank event occurs at start of hsync */
650 vbl_start -= htotal - hsync_start;
651
652 high_frame = PIPEFRAME(pipe);
653 low_frame = PIPEFRAMEPIXEL(pipe);
654
655 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
656
657 /*
658 * High & low register fields aren't synchronized, so make sure
659 * we get a low value that's stable across two reads of the high
660 * register.
661 */
662 do {
663 high1 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
664 low = intel_de_read_fw(dev_priv, low_frame);
665 high2 = intel_de_read_fw(dev_priv, high_frame) & PIPE_FRAME_HIGH_MASK;
666 } while (high1 != high2);
667
668 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
669
670 high1 >>= PIPE_FRAME_HIGH_SHIFT;
671 pixel = low & PIPE_PIXEL_MASK;
672 low >>= PIPE_FRAME_LOW_SHIFT;
673
674 /*
675 * The frame counter increments at beginning of active.
676 * Cook up a vblank counter by also checking the pixel
677 * counter against vblank start.
678 */
679 return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
680 }
681
g4x_get_vblank_counter(struct drm_crtc * crtc)682 u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
683 {
684 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
685 enum pipe pipe = to_intel_crtc(crtc)->pipe;
686
687 return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
688 }
689
690 /*
691 * On certain encoders on certain platforms, pipe
692 * scanline register will not work to get the scanline,
693 * since the timings are driven from the PORT or issues
694 * with scanline register updates.
695 * This function will use Framestamp and current
696 * timestamp registers to calculate the scanline.
697 */
__intel_get_crtc_scanline_from_timestamp(struct intel_crtc * crtc)698 static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
699 {
700 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
701 struct drm_vblank_crtc *vblank =
702 &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
703 const struct drm_display_mode *mode = &vblank->hwmode;
704 u32 vblank_start = mode->crtc_vblank_start;
705 u32 vtotal = mode->crtc_vtotal;
706 u32 htotal = mode->crtc_htotal;
707 u32 clock = mode->crtc_clock;
708 u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
709
710 /*
711 * To avoid the race condition where we might cross into the
712 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
713 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
714 * during the same frame.
715 */
716 do {
717 /*
718 * This field provides read back of the display
719 * pipe frame time stamp. The time stamp value
720 * is sampled at every start of vertical blank.
721 */
722 scan_prev_time = intel_de_read_fw(dev_priv,
723 PIPE_FRMTMSTMP(crtc->pipe));
724
725 /*
726 * The TIMESTAMP_CTR register has the current
727 * time stamp value.
728 */
729 scan_curr_time = intel_de_read_fw(dev_priv, IVB_TIMESTAMP_CTR);
730
731 scan_post_time = intel_de_read_fw(dev_priv,
732 PIPE_FRMTMSTMP(crtc->pipe));
733 } while (scan_post_time != scan_prev_time);
734
735 scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
736 clock), 1000 * htotal);
737 scanline = min(scanline, vtotal - 1);
738 scanline = (scanline + vblank_start) % vtotal;
739
740 return scanline;
741 }
742
743 /*
744 * intel_de_read_fw(), only for fast reads of display block, no need for
745 * forcewake etc.
746 */
__intel_get_crtc_scanline(struct intel_crtc * crtc)747 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
748 {
749 struct drm_device *dev = crtc->base.dev;
750 struct drm_i915_private *dev_priv = to_i915(dev);
751 const struct drm_display_mode *mode;
752 struct drm_vblank_crtc *vblank;
753 enum pipe pipe = crtc->pipe;
754 int position, vtotal;
755
756 if (!crtc->active)
757 return -1;
758
759 vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
760 mode = &vblank->hwmode;
761
762 if (crtc->mode_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
763 return __intel_get_crtc_scanline_from_timestamp(crtc);
764
765 vtotal = mode->crtc_vtotal;
766 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
767 vtotal /= 2;
768
769 if (IS_GEN(dev_priv, 2))
770 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
771 else
772 position = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
773
774 /*
775 * On HSW, the DSL reg (0x70000) appears to return 0 if we
776 * read it just before the start of vblank. So try it again
777 * so we don't accidentally end up spanning a vblank frame
778 * increment, causing the pipe_update_end() code to squak at us.
779 *
780 * The nature of this problem means we can't simply check the ISR
781 * bit and return the vblank start value; nor can we use the scanline
782 * debug register in the transcoder as it appears to have the same
783 * problem. We may need to extend this to include other platforms,
784 * but so far testing only shows the problem on HSW.
785 */
786 if (HAS_DDI(dev_priv) && !position) {
787 int i, temp;
788
789 for (i = 0; i < 100; i++) {
790 udelay(1);
791 temp = intel_de_read_fw(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
792 if (temp != position) {
793 position = temp;
794 break;
795 }
796 }
797 }
798
799 /*
800 * See update_scanline_offset() for the details on the
801 * scanline_offset adjustment.
802 */
803 return (position + crtc->scanline_offset) % vtotal;
804 }
805
i915_get_crtc_scanoutpos(struct drm_crtc * _crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)806 static bool i915_get_crtc_scanoutpos(struct drm_crtc *_crtc,
807 bool in_vblank_irq,
808 int *vpos, int *hpos,
809 ktime_t *stime, ktime_t *etime,
810 const struct drm_display_mode *mode)
811 {
812 struct drm_device *dev = _crtc->dev;
813 struct drm_i915_private *dev_priv = to_i915(dev);
814 struct intel_crtc *crtc = to_intel_crtc(_crtc);
815 enum pipe pipe = crtc->pipe;
816 int position;
817 int vbl_start, vbl_end, hsync_start, htotal, vtotal;
818 unsigned long irqflags;
819 bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
820 IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
821 crtc->mode_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
822
823 if (drm_WARN_ON(&dev_priv->drm, !mode->crtc_clock)) {
824 drm_dbg(&dev_priv->drm,
825 "trying to get scanoutpos for disabled "
826 "pipe %c\n", pipe_name(pipe));
827 return false;
828 }
829
830 htotal = mode->crtc_htotal;
831 hsync_start = mode->crtc_hsync_start;
832 vtotal = mode->crtc_vtotal;
833 vbl_start = mode->crtc_vblank_start;
834 vbl_end = mode->crtc_vblank_end;
835
836 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
837 vbl_start = DIV_ROUND_UP(vbl_start, 2);
838 vbl_end /= 2;
839 vtotal /= 2;
840 }
841
842 /*
843 * Lock uncore.lock, as we will do multiple timing critical raw
844 * register reads, potentially with preemption disabled, so the
845 * following code must not block on uncore.lock.
846 */
847 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
848
849 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
850
851 /* Get optional system timestamp before query. */
852 if (stime)
853 *stime = ktime_get();
854
855 if (use_scanline_counter) {
856 /* No obvious pixelcount register. Only query vertical
857 * scanout position from Display scan line register.
858 */
859 position = __intel_get_crtc_scanline(crtc);
860 } else {
861 /* Have access to pixelcount since start of frame.
862 * We can split this into vertical and horizontal
863 * scanout position.
864 */
865 position = (intel_de_read_fw(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
866
867 /* convert to pixel counts */
868 vbl_start *= htotal;
869 vbl_end *= htotal;
870 vtotal *= htotal;
871
872 /*
873 * In interlaced modes, the pixel counter counts all pixels,
874 * so one field will have htotal more pixels. In order to avoid
875 * the reported position from jumping backwards when the pixel
876 * counter is beyond the length of the shorter field, just
877 * clamp the position the length of the shorter field. This
878 * matches how the scanline counter based position works since
879 * the scanline counter doesn't count the two half lines.
880 */
881 if (position >= vtotal)
882 position = vtotal - 1;
883
884 /*
885 * Start of vblank interrupt is triggered at start of hsync,
886 * just prior to the first active line of vblank. However we
887 * consider lines to start at the leading edge of horizontal
888 * active. So, should we get here before we've crossed into
889 * the horizontal active of the first line in vblank, we would
890 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
891 * always add htotal-hsync_start to the current pixel position.
892 */
893 position = (position + htotal - hsync_start) % vtotal;
894 }
895
896 /* Get optional system timestamp after query. */
897 if (etime)
898 *etime = ktime_get();
899
900 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
901
902 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
903
904 /*
905 * While in vblank, position will be negative
906 * counting up towards 0 at vbl_end. And outside
907 * vblank, position will be positive counting
908 * up since vbl_end.
909 */
910 if (position >= vbl_start)
911 position -= vbl_end;
912 else
913 position += vtotal - vbl_end;
914
915 if (use_scanline_counter) {
916 *vpos = position;
917 *hpos = 0;
918 } else {
919 *vpos = position / htotal;
920 *hpos = position - (*vpos * htotal);
921 }
922
923 return true;
924 }
925
intel_crtc_get_vblank_timestamp(struct drm_crtc * crtc,int * max_error,ktime_t * vblank_time,bool in_vblank_irq)926 bool intel_crtc_get_vblank_timestamp(struct drm_crtc *crtc, int *max_error,
927 ktime_t *vblank_time, bool in_vblank_irq)
928 {
929 return drm_crtc_vblank_helper_get_vblank_timestamp_internal(
930 crtc, max_error, vblank_time, in_vblank_irq,
931 i915_get_crtc_scanoutpos);
932 }
933
intel_get_crtc_scanline(struct intel_crtc * crtc)934 int intel_get_crtc_scanline(struct intel_crtc *crtc)
935 {
936 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
937 unsigned long irqflags;
938 int position;
939
940 spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
941 position = __intel_get_crtc_scanline(crtc);
942 spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
943
944 return position;
945 }
946
947 /**
948 * ivb_parity_work - Workqueue called when a parity error interrupt
949 * occurred.
950 * @work: workqueue struct
951 *
952 * Doesn't actually do anything except notify userspace. As a consequence of
953 * this event, userspace should try to remap the bad rows since statistically
954 * it is likely the same row is more likely to go bad again.
955 */
ivb_parity_work(struct work_struct * work)956 static void ivb_parity_work(struct work_struct *work)
957 {
958 struct drm_i915_private *dev_priv =
959 container_of(work, typeof(*dev_priv), l3_parity.error_work);
960 struct intel_gt *gt = &dev_priv->gt;
961 u32 error_status, row, bank, subbank;
962 char *parity_event[6];
963 u32 misccpctl;
964 u8 slice = 0;
965
966 /* We must turn off DOP level clock gating to access the L3 registers.
967 * In order to prevent a get/put style interface, acquire struct mutex
968 * any time we access those registers.
969 */
970 mutex_lock(&dev_priv->drm.struct_mutex);
971
972 /* If we've screwed up tracking, just let the interrupt fire again */
973 if (drm_WARN_ON(&dev_priv->drm, !dev_priv->l3_parity.which_slice))
974 goto out;
975
976 misccpctl = I915_READ(GEN7_MISCCPCTL);
977 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
978 POSTING_READ(GEN7_MISCCPCTL);
979
980 while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
981 i915_reg_t reg;
982
983 slice--;
984 if (drm_WARN_ON_ONCE(&dev_priv->drm,
985 slice >= NUM_L3_SLICES(dev_priv)))
986 break;
987
988 dev_priv->l3_parity.which_slice &= ~(1<<slice);
989
990 reg = GEN7_L3CDERRST1(slice);
991
992 error_status = I915_READ(reg);
993 row = GEN7_PARITY_ERROR_ROW(error_status);
994 bank = GEN7_PARITY_ERROR_BANK(error_status);
995 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
996
997 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
998 POSTING_READ(reg);
999
1000 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1001 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1002 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1003 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1004 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1005 parity_event[5] = NULL;
1006
1007 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1008 KOBJ_CHANGE, parity_event);
1009
1010 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1011 slice, row, bank, subbank);
1012
1013 kfree(parity_event[4]);
1014 kfree(parity_event[3]);
1015 kfree(parity_event[2]);
1016 kfree(parity_event[1]);
1017 }
1018
1019 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1020
1021 out:
1022 drm_WARN_ON(&dev_priv->drm, dev_priv->l3_parity.which_slice);
1023 spin_lock_irq(>->irq_lock);
1024 gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1025 spin_unlock_irq(>->irq_lock);
1026
1027 mutex_unlock(&dev_priv->drm.struct_mutex);
1028 }
1029
gen11_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1030 static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1031 {
1032 switch (pin) {
1033 case HPD_PORT_TC1:
1034 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1035 case HPD_PORT_TC2:
1036 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1037 case HPD_PORT_TC3:
1038 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1039 case HPD_PORT_TC4:
1040 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1041 case HPD_PORT_TC5:
1042 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1043 case HPD_PORT_TC6:
1044 return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1045 default:
1046 return false;
1047 }
1048 }
1049
bxt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1050 static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1051 {
1052 switch (pin) {
1053 case HPD_PORT_A:
1054 return val & PORTA_HOTPLUG_LONG_DETECT;
1055 case HPD_PORT_B:
1056 return val & PORTB_HOTPLUG_LONG_DETECT;
1057 case HPD_PORT_C:
1058 return val & PORTC_HOTPLUG_LONG_DETECT;
1059 default:
1060 return false;
1061 }
1062 }
1063
icp_ddi_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1064 static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1065 {
1066 switch (pin) {
1067 case HPD_PORT_A:
1068 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_A);
1069 case HPD_PORT_B:
1070 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_B);
1071 case HPD_PORT_C:
1072 return val & SHOTPLUG_CTL_DDI_HPD_LONG_DETECT(PORT_C);
1073 default:
1074 return false;
1075 }
1076 }
1077
icp_tc_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1078 static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1079 {
1080 switch (pin) {
1081 case HPD_PORT_TC1:
1082 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1083 case HPD_PORT_TC2:
1084 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1085 case HPD_PORT_TC3:
1086 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1087 case HPD_PORT_TC4:
1088 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1089 case HPD_PORT_TC5:
1090 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1091 case HPD_PORT_TC6:
1092 return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1093 default:
1094 return false;
1095 }
1096 }
1097
spt_port_hotplug2_long_detect(enum hpd_pin pin,u32 val)1098 static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1099 {
1100 switch (pin) {
1101 case HPD_PORT_E:
1102 return val & PORTE_HOTPLUG_LONG_DETECT;
1103 default:
1104 return false;
1105 }
1106 }
1107
spt_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1108 static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1109 {
1110 switch (pin) {
1111 case HPD_PORT_A:
1112 return val & PORTA_HOTPLUG_LONG_DETECT;
1113 case HPD_PORT_B:
1114 return val & PORTB_HOTPLUG_LONG_DETECT;
1115 case HPD_PORT_C:
1116 return val & PORTC_HOTPLUG_LONG_DETECT;
1117 case HPD_PORT_D:
1118 return val & PORTD_HOTPLUG_LONG_DETECT;
1119 default:
1120 return false;
1121 }
1122 }
1123
ilk_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1124 static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1125 {
1126 switch (pin) {
1127 case HPD_PORT_A:
1128 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1129 default:
1130 return false;
1131 }
1132 }
1133
pch_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1134 static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1135 {
1136 switch (pin) {
1137 case HPD_PORT_B:
1138 return val & PORTB_HOTPLUG_LONG_DETECT;
1139 case HPD_PORT_C:
1140 return val & PORTC_HOTPLUG_LONG_DETECT;
1141 case HPD_PORT_D:
1142 return val & PORTD_HOTPLUG_LONG_DETECT;
1143 default:
1144 return false;
1145 }
1146 }
1147
i9xx_port_hotplug_long_detect(enum hpd_pin pin,u32 val)1148 static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1149 {
1150 switch (pin) {
1151 case HPD_PORT_B:
1152 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1153 case HPD_PORT_C:
1154 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1155 case HPD_PORT_D:
1156 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1157 default:
1158 return false;
1159 }
1160 }
1161
1162 /*
1163 * Get a bit mask of pins that have triggered, and which ones may be long.
1164 * This can be called multiple times with the same masks to accumulate
1165 * hotplug detection results from several registers.
1166 *
1167 * Note that the caller is expected to zero out the masks initially.
1168 */
intel_get_hpd_pins(struct drm_i915_private * dev_priv,u32 * pin_mask,u32 * long_mask,u32 hotplug_trigger,u32 dig_hotplug_reg,const u32 hpd[HPD_NUM_PINS],bool long_pulse_detect (enum hpd_pin pin,u32 val))1169 static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1170 u32 *pin_mask, u32 *long_mask,
1171 u32 hotplug_trigger, u32 dig_hotplug_reg,
1172 const u32 hpd[HPD_NUM_PINS],
1173 bool long_pulse_detect(enum hpd_pin pin, u32 val))
1174 {
1175 enum hpd_pin pin;
1176
1177 BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1178
1179 for_each_hpd_pin(pin) {
1180 if ((hpd[pin] & hotplug_trigger) == 0)
1181 continue;
1182
1183 *pin_mask |= BIT(pin);
1184
1185 if (long_pulse_detect(pin, dig_hotplug_reg))
1186 *long_mask |= BIT(pin);
1187 }
1188
1189 drm_dbg(&dev_priv->drm,
1190 "hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1191 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1192
1193 }
1194
gmbus_irq_handler(struct drm_i915_private * dev_priv)1195 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1196 {
1197 wake_up_all(&dev_priv->gmbus_wait_queue);
1198 }
1199
dp_aux_irq_handler(struct drm_i915_private * dev_priv)1200 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1201 {
1202 wake_up_all(&dev_priv->gmbus_wait_queue);
1203 }
1204
1205 #if defined(CONFIG_DEBUG_FS)
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1206 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1207 enum pipe pipe,
1208 u32 crc0, u32 crc1,
1209 u32 crc2, u32 crc3,
1210 u32 crc4)
1211 {
1212 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1213 struct intel_pipe_crc *pipe_crc = &crtc->pipe_crc;
1214 u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1215
1216 trace_intel_pipe_crc(crtc, crcs);
1217
1218 spin_lock(&pipe_crc->lock);
1219 /*
1220 * For some not yet identified reason, the first CRC is
1221 * bonkers. So let's just wait for the next vblank and read
1222 * out the buggy result.
1223 *
1224 * On GEN8+ sometimes the second CRC is bonkers as well, so
1225 * don't trust that one either.
1226 */
1227 if (pipe_crc->skipped <= 0 ||
1228 (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1229 pipe_crc->skipped++;
1230 spin_unlock(&pipe_crc->lock);
1231 return;
1232 }
1233 spin_unlock(&pipe_crc->lock);
1234
1235 drm_crtc_add_crc_entry(&crtc->base, true,
1236 drm_crtc_accurate_vblank_count(&crtc->base),
1237 crcs);
1238 }
1239 #else
1240 static inline void
display_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe,u32 crc0,u32 crc1,u32 crc2,u32 crc3,u32 crc4)1241 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1242 enum pipe pipe,
1243 u32 crc0, u32 crc1,
1244 u32 crc2, u32 crc3,
1245 u32 crc4) {}
1246 #endif
1247
1248
hsw_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1249 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1250 enum pipe pipe)
1251 {
1252 display_pipe_crc_irq_handler(dev_priv, pipe,
1253 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1254 0, 0, 0, 0);
1255 }
1256
ivb_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1257 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1258 enum pipe pipe)
1259 {
1260 display_pipe_crc_irq_handler(dev_priv, pipe,
1261 I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1262 I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1263 I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1264 I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1265 I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1266 }
1267
i9xx_pipe_crc_irq_handler(struct drm_i915_private * dev_priv,enum pipe pipe)1268 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1269 enum pipe pipe)
1270 {
1271 u32 res1, res2;
1272
1273 if (INTEL_GEN(dev_priv) >= 3)
1274 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1275 else
1276 res1 = 0;
1277
1278 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1279 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1280 else
1281 res2 = 0;
1282
1283 display_pipe_crc_irq_handler(dev_priv, pipe,
1284 I915_READ(PIPE_CRC_RES_RED(pipe)),
1285 I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1286 I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1287 res1, res2);
1288 }
1289
i9xx_pipestat_irq_reset(struct drm_i915_private * dev_priv)1290 static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1291 {
1292 enum pipe pipe;
1293
1294 for_each_pipe(dev_priv, pipe) {
1295 I915_WRITE(PIPESTAT(pipe),
1296 PIPESTAT_INT_STATUS_MASK |
1297 PIPE_FIFO_UNDERRUN_STATUS);
1298
1299 dev_priv->pipestat_irq_mask[pipe] = 0;
1300 }
1301 }
1302
i9xx_pipestat_irq_ack(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1303 static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1304 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1305 {
1306 enum pipe pipe;
1307
1308 spin_lock(&dev_priv->irq_lock);
1309
1310 if (!dev_priv->display_irqs_enabled) {
1311 spin_unlock(&dev_priv->irq_lock);
1312 return;
1313 }
1314
1315 for_each_pipe(dev_priv, pipe) {
1316 i915_reg_t reg;
1317 u32 status_mask, enable_mask, iir_bit = 0;
1318
1319 /*
1320 * PIPESTAT bits get signalled even when the interrupt is
1321 * disabled with the mask bits, and some of the status bits do
1322 * not generate interrupts at all (like the underrun bit). Hence
1323 * we need to be careful that we only handle what we want to
1324 * handle.
1325 */
1326
1327 /* fifo underruns are filterered in the underrun handler. */
1328 status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1329
1330 switch (pipe) {
1331 default:
1332 case PIPE_A:
1333 iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1334 break;
1335 case PIPE_B:
1336 iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1337 break;
1338 case PIPE_C:
1339 iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1340 break;
1341 }
1342 if (iir & iir_bit)
1343 status_mask |= dev_priv->pipestat_irq_mask[pipe];
1344
1345 if (!status_mask)
1346 continue;
1347
1348 reg = PIPESTAT(pipe);
1349 pipe_stats[pipe] = I915_READ(reg) & status_mask;
1350 enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1351
1352 /*
1353 * Clear the PIPE*STAT regs before the IIR
1354 *
1355 * Toggle the enable bits to make sure we get an
1356 * edge in the ISR pipe event bit if we don't clear
1357 * all the enabled status bits. Otherwise the edge
1358 * triggered IIR on i965/g4x wouldn't notice that
1359 * an interrupt is still pending.
1360 */
1361 if (pipe_stats[pipe]) {
1362 I915_WRITE(reg, pipe_stats[pipe]);
1363 I915_WRITE(reg, enable_mask);
1364 }
1365 }
1366 spin_unlock(&dev_priv->irq_lock);
1367 }
1368
i8xx_pipestat_irq_handler(struct drm_i915_private * dev_priv,u16 iir,u32 pipe_stats[I915_MAX_PIPES])1369 static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1370 u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1371 {
1372 enum pipe pipe;
1373
1374 for_each_pipe(dev_priv, pipe) {
1375 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1376 intel_handle_vblank(dev_priv, pipe);
1377
1378 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1379 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1380
1381 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1382 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1383 }
1384 }
1385
i915_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1386 static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1387 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1388 {
1389 bool blc_event = false;
1390 enum pipe pipe;
1391
1392 for_each_pipe(dev_priv, pipe) {
1393 if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1394 intel_handle_vblank(dev_priv, pipe);
1395
1396 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1397 blc_event = true;
1398
1399 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1400 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1401
1402 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1403 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1404 }
1405
1406 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1407 intel_opregion_asle_intr(dev_priv);
1408 }
1409
i965_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 iir,u32 pipe_stats[I915_MAX_PIPES])1410 static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1411 u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1412 {
1413 bool blc_event = false;
1414 enum pipe pipe;
1415
1416 for_each_pipe(dev_priv, pipe) {
1417 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1418 intel_handle_vblank(dev_priv, pipe);
1419
1420 if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1421 blc_event = true;
1422
1423 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1424 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1425
1426 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1427 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1428 }
1429
1430 if (blc_event || (iir & I915_ASLE_INTERRUPT))
1431 intel_opregion_asle_intr(dev_priv);
1432
1433 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1434 gmbus_irq_handler(dev_priv);
1435 }
1436
valleyview_pipestat_irq_handler(struct drm_i915_private * dev_priv,u32 pipe_stats[I915_MAX_PIPES])1437 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1438 u32 pipe_stats[I915_MAX_PIPES])
1439 {
1440 enum pipe pipe;
1441
1442 for_each_pipe(dev_priv, pipe) {
1443 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1444 intel_handle_vblank(dev_priv, pipe);
1445
1446 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1447 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1448
1449 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1450 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1451 }
1452
1453 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1454 gmbus_irq_handler(dev_priv);
1455 }
1456
i9xx_hpd_irq_ack(struct drm_i915_private * dev_priv)1457 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1458 {
1459 u32 hotplug_status = 0, hotplug_status_mask;
1460 int i;
1461
1462 if (IS_G4X(dev_priv) ||
1463 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1464 hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1465 DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1466 else
1467 hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1468
1469 /*
1470 * We absolutely have to clear all the pending interrupt
1471 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1472 * interrupt bit won't have an edge, and the i965/g4x
1473 * edge triggered IIR will not notice that an interrupt
1474 * is still pending. We can't use PORT_HOTPLUG_EN to
1475 * guarantee the edge as the act of toggling the enable
1476 * bits can itself generate a new hotplug interrupt :(
1477 */
1478 for (i = 0; i < 10; i++) {
1479 u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1480
1481 if (tmp == 0)
1482 return hotplug_status;
1483
1484 hotplug_status |= tmp;
1485 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1486 }
1487
1488 drm_WARN_ONCE(&dev_priv->drm, 1,
1489 "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1490 I915_READ(PORT_HOTPLUG_STAT));
1491
1492 return hotplug_status;
1493 }
1494
i9xx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_status)1495 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1496 u32 hotplug_status)
1497 {
1498 u32 pin_mask = 0, long_mask = 0;
1499 u32 hotplug_trigger;
1500
1501 if (IS_G4X(dev_priv) ||
1502 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1503 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1504 else
1505 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1506
1507 if (hotplug_trigger) {
1508 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1509 hotplug_trigger, hotplug_trigger,
1510 dev_priv->hotplug.hpd,
1511 i9xx_port_hotplug_long_detect);
1512
1513 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1514 }
1515
1516 if ((IS_G4X(dev_priv) ||
1517 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1518 hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1519 dp_aux_irq_handler(dev_priv);
1520 }
1521
valleyview_irq_handler(int irq,void * arg)1522 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1523 {
1524 struct drm_i915_private *dev_priv = arg;
1525 irqreturn_t ret = IRQ_NONE;
1526
1527 if (!intel_irqs_enabled(dev_priv))
1528 return IRQ_NONE;
1529
1530 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1531 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1532
1533 do {
1534 u32 iir, gt_iir, pm_iir;
1535 u32 pipe_stats[I915_MAX_PIPES] = {};
1536 u32 hotplug_status = 0;
1537 u32 ier = 0;
1538
1539 gt_iir = I915_READ(GTIIR);
1540 pm_iir = I915_READ(GEN6_PMIIR);
1541 iir = I915_READ(VLV_IIR);
1542
1543 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1544 break;
1545
1546 ret = IRQ_HANDLED;
1547
1548 /*
1549 * Theory on interrupt generation, based on empirical evidence:
1550 *
1551 * x = ((VLV_IIR & VLV_IER) ||
1552 * (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1553 * (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1554 *
1555 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1556 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1557 * guarantee the CPU interrupt will be raised again even if we
1558 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1559 * bits this time around.
1560 */
1561 I915_WRITE(VLV_MASTER_IER, 0);
1562 ier = I915_READ(VLV_IER);
1563 I915_WRITE(VLV_IER, 0);
1564
1565 if (gt_iir)
1566 I915_WRITE(GTIIR, gt_iir);
1567 if (pm_iir)
1568 I915_WRITE(GEN6_PMIIR, pm_iir);
1569
1570 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1571 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1572
1573 /* Call regardless, as some status bits might not be
1574 * signalled in iir */
1575 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1576
1577 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1578 I915_LPE_PIPE_B_INTERRUPT))
1579 intel_lpe_audio_irq_handler(dev_priv);
1580
1581 /*
1582 * VLV_IIR is single buffered, and reflects the level
1583 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1584 */
1585 if (iir)
1586 I915_WRITE(VLV_IIR, iir);
1587
1588 I915_WRITE(VLV_IER, ier);
1589 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1590
1591 if (gt_iir)
1592 gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
1593 if (pm_iir)
1594 gen6_rps_irq_handler(&dev_priv->gt.rps, pm_iir);
1595
1596 if (hotplug_status)
1597 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1598
1599 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1600 } while (0);
1601
1602 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1603
1604 return ret;
1605 }
1606
cherryview_irq_handler(int irq,void * arg)1607 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1608 {
1609 struct drm_i915_private *dev_priv = arg;
1610 irqreturn_t ret = IRQ_NONE;
1611
1612 if (!intel_irqs_enabled(dev_priv))
1613 return IRQ_NONE;
1614
1615 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1616 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1617
1618 do {
1619 u32 master_ctl, iir;
1620 u32 pipe_stats[I915_MAX_PIPES] = {};
1621 u32 hotplug_status = 0;
1622 u32 ier = 0;
1623
1624 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1625 iir = I915_READ(VLV_IIR);
1626
1627 if (master_ctl == 0 && iir == 0)
1628 break;
1629
1630 ret = IRQ_HANDLED;
1631
1632 /*
1633 * Theory on interrupt generation, based on empirical evidence:
1634 *
1635 * x = ((VLV_IIR & VLV_IER) ||
1636 * ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1637 * (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1638 *
1639 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1640 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1641 * guarantee the CPU interrupt will be raised again even if we
1642 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1643 * bits this time around.
1644 */
1645 I915_WRITE(GEN8_MASTER_IRQ, 0);
1646 ier = I915_READ(VLV_IER);
1647 I915_WRITE(VLV_IER, 0);
1648
1649 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
1650
1651 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1652 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1653
1654 /* Call regardless, as some status bits might not be
1655 * signalled in iir */
1656 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1657
1658 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1659 I915_LPE_PIPE_B_INTERRUPT |
1660 I915_LPE_PIPE_C_INTERRUPT))
1661 intel_lpe_audio_irq_handler(dev_priv);
1662
1663 /*
1664 * VLV_IIR is single buffered, and reflects the level
1665 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1666 */
1667 if (iir)
1668 I915_WRITE(VLV_IIR, iir);
1669
1670 I915_WRITE(VLV_IER, ier);
1671 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1672
1673 if (hotplug_status)
1674 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1675
1676 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1677 } while (0);
1678
1679 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1680
1681 return ret;
1682 }
1683
ibx_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)1684 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1685 u32 hotplug_trigger)
1686 {
1687 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1688
1689 /*
1690 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1691 * unless we touch the hotplug register, even if hotplug_trigger is
1692 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1693 * errors.
1694 */
1695 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1696 if (!hotplug_trigger) {
1697 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1698 PORTD_HOTPLUG_STATUS_MASK |
1699 PORTC_HOTPLUG_STATUS_MASK |
1700 PORTB_HOTPLUG_STATUS_MASK;
1701 dig_hotplug_reg &= ~mask;
1702 }
1703
1704 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1705 if (!hotplug_trigger)
1706 return;
1707
1708 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1709 hotplug_trigger, dig_hotplug_reg,
1710 dev_priv->hotplug.pch_hpd,
1711 pch_port_hotplug_long_detect);
1712
1713 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1714 }
1715
ibx_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1716 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1717 {
1718 enum pipe pipe;
1719 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1720
1721 ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1722
1723 if (pch_iir & SDE_AUDIO_POWER_MASK) {
1724 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1725 SDE_AUDIO_POWER_SHIFT);
1726 drm_dbg(&dev_priv->drm, "PCH audio power change on port %d\n",
1727 port_name(port));
1728 }
1729
1730 if (pch_iir & SDE_AUX_MASK)
1731 dp_aux_irq_handler(dev_priv);
1732
1733 if (pch_iir & SDE_GMBUS)
1734 gmbus_irq_handler(dev_priv);
1735
1736 if (pch_iir & SDE_AUDIO_HDCP_MASK)
1737 drm_dbg(&dev_priv->drm, "PCH HDCP audio interrupt\n");
1738
1739 if (pch_iir & SDE_AUDIO_TRANS_MASK)
1740 drm_dbg(&dev_priv->drm, "PCH transcoder audio interrupt\n");
1741
1742 if (pch_iir & SDE_POISON)
1743 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1744
1745 if (pch_iir & SDE_FDI_MASK) {
1746 for_each_pipe(dev_priv, pipe)
1747 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1748 pipe_name(pipe),
1749 I915_READ(FDI_RX_IIR(pipe)));
1750 }
1751
1752 if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1753 drm_dbg(&dev_priv->drm, "PCH transcoder CRC done interrupt\n");
1754
1755 if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1756 drm_dbg(&dev_priv->drm,
1757 "PCH transcoder CRC error interrupt\n");
1758
1759 if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1760 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
1761
1762 if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1763 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
1764 }
1765
ivb_err_int_handler(struct drm_i915_private * dev_priv)1766 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
1767 {
1768 u32 err_int = I915_READ(GEN7_ERR_INT);
1769 enum pipe pipe;
1770
1771 if (err_int & ERR_INT_POISON)
1772 drm_err(&dev_priv->drm, "Poison interrupt\n");
1773
1774 for_each_pipe(dev_priv, pipe) {
1775 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1776 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1777
1778 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1779 if (IS_IVYBRIDGE(dev_priv))
1780 ivb_pipe_crc_irq_handler(dev_priv, pipe);
1781 else
1782 hsw_pipe_crc_irq_handler(dev_priv, pipe);
1783 }
1784 }
1785
1786 I915_WRITE(GEN7_ERR_INT, err_int);
1787 }
1788
cpt_serr_int_handler(struct drm_i915_private * dev_priv)1789 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
1790 {
1791 u32 serr_int = I915_READ(SERR_INT);
1792 enum pipe pipe;
1793
1794 if (serr_int & SERR_INT_POISON)
1795 drm_err(&dev_priv->drm, "PCH poison interrupt\n");
1796
1797 for_each_pipe(dev_priv, pipe)
1798 if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
1799 intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
1800
1801 I915_WRITE(SERR_INT, serr_int);
1802 }
1803
cpt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1804 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1805 {
1806 enum pipe pipe;
1807 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1808
1809 ibx_hpd_irq_handler(dev_priv, hotplug_trigger);
1810
1811 if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1812 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1813 SDE_AUDIO_POWER_SHIFT_CPT);
1814 drm_dbg(&dev_priv->drm, "PCH audio power change on port %c\n",
1815 port_name(port));
1816 }
1817
1818 if (pch_iir & SDE_AUX_MASK_CPT)
1819 dp_aux_irq_handler(dev_priv);
1820
1821 if (pch_iir & SDE_GMBUS_CPT)
1822 gmbus_irq_handler(dev_priv);
1823
1824 if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1825 drm_dbg(&dev_priv->drm, "Audio CP request interrupt\n");
1826
1827 if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1828 drm_dbg(&dev_priv->drm, "Audio CP change interrupt\n");
1829
1830 if (pch_iir & SDE_FDI_MASK_CPT) {
1831 for_each_pipe(dev_priv, pipe)
1832 drm_dbg(&dev_priv->drm, " pipe %c FDI IIR: 0x%08x\n",
1833 pipe_name(pipe),
1834 I915_READ(FDI_RX_IIR(pipe)));
1835 }
1836
1837 if (pch_iir & SDE_ERROR_CPT)
1838 cpt_serr_int_handler(dev_priv);
1839 }
1840
icp_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1841 static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1842 {
1843 u32 ddi_hotplug_trigger, tc_hotplug_trigger;
1844 u32 pin_mask = 0, long_mask = 0;
1845
1846 if (HAS_PCH_TGP(dev_priv)) {
1847 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1848 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
1849 } else if (HAS_PCH_JSP(dev_priv)) {
1850 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
1851 tc_hotplug_trigger = 0;
1852 } else if (HAS_PCH_MCC(dev_priv)) {
1853 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1854 tc_hotplug_trigger = pch_iir & SDE_TC_HOTPLUG_ICP(PORT_TC1);
1855 } else {
1856 drm_WARN(&dev_priv->drm, !HAS_PCH_ICP(dev_priv),
1857 "Unrecognized PCH type 0x%x\n",
1858 INTEL_PCH_TYPE(dev_priv));
1859
1860 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
1861 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
1862 }
1863
1864 if (ddi_hotplug_trigger) {
1865 u32 dig_hotplug_reg;
1866
1867 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
1868 I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
1869
1870 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1871 ddi_hotplug_trigger, dig_hotplug_reg,
1872 dev_priv->hotplug.pch_hpd,
1873 icp_ddi_port_hotplug_long_detect);
1874 }
1875
1876 if (tc_hotplug_trigger) {
1877 u32 dig_hotplug_reg;
1878
1879 dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
1880 I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
1881
1882 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1883 tc_hotplug_trigger, dig_hotplug_reg,
1884 dev_priv->hotplug.pch_hpd,
1885 icp_tc_port_hotplug_long_detect);
1886 }
1887
1888 if (pin_mask)
1889 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1890
1891 if (pch_iir & SDE_GMBUS_ICP)
1892 gmbus_irq_handler(dev_priv);
1893 }
1894
spt_irq_handler(struct drm_i915_private * dev_priv,u32 pch_iir)1895 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
1896 {
1897 u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
1898 ~SDE_PORTE_HOTPLUG_SPT;
1899 u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
1900 u32 pin_mask = 0, long_mask = 0;
1901
1902 if (hotplug_trigger) {
1903 u32 dig_hotplug_reg;
1904
1905 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1906 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1907
1908 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1909 hotplug_trigger, dig_hotplug_reg,
1910 dev_priv->hotplug.pch_hpd,
1911 spt_port_hotplug_long_detect);
1912 }
1913
1914 if (hotplug2_trigger) {
1915 u32 dig_hotplug_reg;
1916
1917 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
1918 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
1919
1920 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1921 hotplug2_trigger, dig_hotplug_reg,
1922 dev_priv->hotplug.pch_hpd,
1923 spt_port_hotplug2_long_detect);
1924 }
1925
1926 if (pin_mask)
1927 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1928
1929 if (pch_iir & SDE_GMBUS_CPT)
1930 gmbus_irq_handler(dev_priv);
1931 }
1932
ilk_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)1933 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
1934 u32 hotplug_trigger)
1935 {
1936 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1937
1938 dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
1939 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
1940
1941 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1942 hotplug_trigger, dig_hotplug_reg,
1943 dev_priv->hotplug.hpd,
1944 ilk_port_hotplug_long_detect);
1945
1946 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1947 }
1948
ilk_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)1949 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
1950 u32 de_iir)
1951 {
1952 enum pipe pipe;
1953 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
1954
1955 if (hotplug_trigger)
1956 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
1957
1958 if (de_iir & DE_AUX_CHANNEL_A)
1959 dp_aux_irq_handler(dev_priv);
1960
1961 if (de_iir & DE_GSE)
1962 intel_opregion_asle_intr(dev_priv);
1963
1964 if (de_iir & DE_POISON)
1965 drm_err(&dev_priv->drm, "Poison interrupt\n");
1966
1967 for_each_pipe(dev_priv, pipe) {
1968 if (de_iir & DE_PIPE_VBLANK(pipe))
1969 intel_handle_vblank(dev_priv, pipe);
1970
1971 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
1972 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1973
1974 if (de_iir & DE_PIPE_CRC_DONE(pipe))
1975 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1976 }
1977
1978 /* check event from PCH */
1979 if (de_iir & DE_PCH_EVENT) {
1980 u32 pch_iir = I915_READ(SDEIIR);
1981
1982 if (HAS_PCH_CPT(dev_priv))
1983 cpt_irq_handler(dev_priv, pch_iir);
1984 else
1985 ibx_irq_handler(dev_priv, pch_iir);
1986
1987 /* should clear PCH hotplug event before clear CPU irq */
1988 I915_WRITE(SDEIIR, pch_iir);
1989 }
1990
1991 if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
1992 gen5_rps_irq_handler(&dev_priv->gt.rps);
1993 }
1994
ivb_display_irq_handler(struct drm_i915_private * dev_priv,u32 de_iir)1995 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
1996 u32 de_iir)
1997 {
1998 enum pipe pipe;
1999 u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2000
2001 if (hotplug_trigger)
2002 ilk_hpd_irq_handler(dev_priv, hotplug_trigger);
2003
2004 if (de_iir & DE_ERR_INT_IVB)
2005 ivb_err_int_handler(dev_priv);
2006
2007 if (de_iir & DE_EDP_PSR_INT_HSW) {
2008 u32 psr_iir = I915_READ(EDP_PSR_IIR);
2009
2010 intel_psr_irq_handler(dev_priv, psr_iir);
2011 I915_WRITE(EDP_PSR_IIR, psr_iir);
2012 }
2013
2014 if (de_iir & DE_AUX_CHANNEL_A_IVB)
2015 dp_aux_irq_handler(dev_priv);
2016
2017 if (de_iir & DE_GSE_IVB)
2018 intel_opregion_asle_intr(dev_priv);
2019
2020 for_each_pipe(dev_priv, pipe) {
2021 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2022 intel_handle_vblank(dev_priv, pipe);
2023 }
2024
2025 /* check event from PCH */
2026 if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2027 u32 pch_iir = I915_READ(SDEIIR);
2028
2029 cpt_irq_handler(dev_priv, pch_iir);
2030
2031 /* clear PCH hotplug event before clear CPU irq */
2032 I915_WRITE(SDEIIR, pch_iir);
2033 }
2034 }
2035
2036 /*
2037 * To handle irqs with the minimum potential races with fresh interrupts, we:
2038 * 1 - Disable Master Interrupt Control.
2039 * 2 - Find the source(s) of the interrupt.
2040 * 3 - Clear the Interrupt Identity bits (IIR).
2041 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2042 * 5 - Re-enable Master Interrupt Control.
2043 */
ilk_irq_handler(int irq,void * arg)2044 static irqreturn_t ilk_irq_handler(int irq, void *arg)
2045 {
2046 struct drm_i915_private *i915 = arg;
2047 void __iomem * const regs = i915->uncore.regs;
2048 u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2049 irqreturn_t ret = IRQ_NONE;
2050
2051 if (unlikely(!intel_irqs_enabled(i915)))
2052 return IRQ_NONE;
2053
2054 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2055 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2056
2057 /* disable master interrupt before clearing iir */
2058 de_ier = raw_reg_read(regs, DEIER);
2059 raw_reg_write(regs, DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2060
2061 /* Disable south interrupts. We'll only write to SDEIIR once, so further
2062 * interrupts will will be stored on its back queue, and then we'll be
2063 * able to process them after we restore SDEIER (as soon as we restore
2064 * it, we'll get an interrupt if SDEIIR still has something to process
2065 * due to its back queue). */
2066 if (!HAS_PCH_NOP(i915)) {
2067 sde_ier = raw_reg_read(regs, SDEIER);
2068 raw_reg_write(regs, SDEIER, 0);
2069 }
2070
2071 /* Find, clear, then process each source of interrupt */
2072
2073 gt_iir = raw_reg_read(regs, GTIIR);
2074 if (gt_iir) {
2075 raw_reg_write(regs, GTIIR, gt_iir);
2076 if (INTEL_GEN(i915) >= 6)
2077 gen6_gt_irq_handler(&i915->gt, gt_iir);
2078 else
2079 gen5_gt_irq_handler(&i915->gt, gt_iir);
2080 ret = IRQ_HANDLED;
2081 }
2082
2083 de_iir = raw_reg_read(regs, DEIIR);
2084 if (de_iir) {
2085 raw_reg_write(regs, DEIIR, de_iir);
2086 if (INTEL_GEN(i915) >= 7)
2087 ivb_display_irq_handler(i915, de_iir);
2088 else
2089 ilk_display_irq_handler(i915, de_iir);
2090 ret = IRQ_HANDLED;
2091 }
2092
2093 if (INTEL_GEN(i915) >= 6) {
2094 u32 pm_iir = raw_reg_read(regs, GEN6_PMIIR);
2095 if (pm_iir) {
2096 raw_reg_write(regs, GEN6_PMIIR, pm_iir);
2097 gen6_rps_irq_handler(&i915->gt.rps, pm_iir);
2098 ret = IRQ_HANDLED;
2099 }
2100 }
2101
2102 raw_reg_write(regs, DEIER, de_ier);
2103 if (sde_ier)
2104 raw_reg_write(regs, SDEIER, sde_ier);
2105
2106 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2107 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2108
2109 return ret;
2110 }
2111
bxt_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 hotplug_trigger)2112 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2113 u32 hotplug_trigger)
2114 {
2115 u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2116
2117 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2119
2120 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2121 hotplug_trigger, dig_hotplug_reg,
2122 dev_priv->hotplug.hpd,
2123 bxt_port_hotplug_long_detect);
2124
2125 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2126 }
2127
gen11_hpd_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2128 static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2129 {
2130 u32 pin_mask = 0, long_mask = 0;
2131 u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2132 u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2133
2134 if (trigger_tc) {
2135 u32 dig_hotplug_reg;
2136
2137 dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2138 I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2139
2140 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2141 trigger_tc, dig_hotplug_reg,
2142 dev_priv->hotplug.hpd,
2143 gen11_port_hotplug_long_detect);
2144 }
2145
2146 if (trigger_tbt) {
2147 u32 dig_hotplug_reg;
2148
2149 dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2150 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2151
2152 intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2153 trigger_tbt, dig_hotplug_reg,
2154 dev_priv->hotplug.hpd,
2155 gen11_port_hotplug_long_detect);
2156 }
2157
2158 if (pin_mask)
2159 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2160 else
2161 drm_err(&dev_priv->drm,
2162 "Unexpected DE HPD interrupt 0x%08x\n", iir);
2163 }
2164
gen8_de_port_aux_mask(struct drm_i915_private * dev_priv)2165 static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2166 {
2167 u32 mask;
2168
2169 if (INTEL_GEN(dev_priv) >= 12)
2170 return TGL_DE_PORT_AUX_DDIA |
2171 TGL_DE_PORT_AUX_DDIB |
2172 TGL_DE_PORT_AUX_DDIC |
2173 TGL_DE_PORT_AUX_USBC1 |
2174 TGL_DE_PORT_AUX_USBC2 |
2175 TGL_DE_PORT_AUX_USBC3 |
2176 TGL_DE_PORT_AUX_USBC4 |
2177 TGL_DE_PORT_AUX_USBC5 |
2178 TGL_DE_PORT_AUX_USBC6;
2179
2180
2181 mask = GEN8_AUX_CHANNEL_A;
2182 if (INTEL_GEN(dev_priv) >= 9)
2183 mask |= GEN9_AUX_CHANNEL_B |
2184 GEN9_AUX_CHANNEL_C |
2185 GEN9_AUX_CHANNEL_D;
2186
2187 if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2188 mask |= CNL_AUX_CHANNEL_F;
2189
2190 if (IS_GEN(dev_priv, 11))
2191 mask |= ICL_AUX_CHANNEL_E;
2192
2193 return mask;
2194 }
2195
gen8_de_pipe_fault_mask(struct drm_i915_private * dev_priv)2196 static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2197 {
2198 if (IS_ROCKETLAKE(dev_priv))
2199 return RKL_DE_PIPE_IRQ_FAULT_ERRORS;
2200 else if (INTEL_GEN(dev_priv) >= 11)
2201 return GEN11_DE_PIPE_IRQ_FAULT_ERRORS;
2202 else if (INTEL_GEN(dev_priv) >= 9)
2203 return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2204 else
2205 return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2206 }
2207
2208 static void
gen8_de_misc_irq_handler(struct drm_i915_private * dev_priv,u32 iir)2209 gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2210 {
2211 bool found = false;
2212
2213 if (iir & GEN8_DE_MISC_GSE) {
2214 intel_opregion_asle_intr(dev_priv);
2215 found = true;
2216 }
2217
2218 if (iir & GEN8_DE_EDP_PSR) {
2219 u32 psr_iir;
2220 i915_reg_t iir_reg;
2221
2222 if (INTEL_GEN(dev_priv) >= 12)
2223 iir_reg = TRANS_PSR_IIR(dev_priv->psr.transcoder);
2224 else
2225 iir_reg = EDP_PSR_IIR;
2226
2227 psr_iir = I915_READ(iir_reg);
2228 I915_WRITE(iir_reg, psr_iir);
2229
2230 if (psr_iir)
2231 found = true;
2232
2233 intel_psr_irq_handler(dev_priv, psr_iir);
2234 }
2235
2236 if (!found)
2237 drm_err(&dev_priv->drm, "Unexpected DE Misc interrupt\n");
2238 }
2239
2240 static irqreturn_t
gen8_de_irq_handler(struct drm_i915_private * dev_priv,u32 master_ctl)2241 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2242 {
2243 irqreturn_t ret = IRQ_NONE;
2244 u32 iir;
2245 enum pipe pipe;
2246
2247 if (master_ctl & GEN8_DE_MISC_IRQ) {
2248 iir = I915_READ(GEN8_DE_MISC_IIR);
2249 if (iir) {
2250 I915_WRITE(GEN8_DE_MISC_IIR, iir);
2251 ret = IRQ_HANDLED;
2252 gen8_de_misc_irq_handler(dev_priv, iir);
2253 } else {
2254 drm_err(&dev_priv->drm,
2255 "The master control interrupt lied (DE MISC)!\n");
2256 }
2257 }
2258
2259 if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2260 iir = I915_READ(GEN11_DE_HPD_IIR);
2261 if (iir) {
2262 I915_WRITE(GEN11_DE_HPD_IIR, iir);
2263 ret = IRQ_HANDLED;
2264 gen11_hpd_irq_handler(dev_priv, iir);
2265 } else {
2266 drm_err(&dev_priv->drm,
2267 "The master control interrupt lied, (DE HPD)!\n");
2268 }
2269 }
2270
2271 if (master_ctl & GEN8_DE_PORT_IRQ) {
2272 iir = I915_READ(GEN8_DE_PORT_IIR);
2273 if (iir) {
2274 u32 tmp_mask;
2275 bool found = false;
2276
2277 I915_WRITE(GEN8_DE_PORT_IIR, iir);
2278 ret = IRQ_HANDLED;
2279
2280 if (iir & gen8_de_port_aux_mask(dev_priv)) {
2281 dp_aux_irq_handler(dev_priv);
2282 found = true;
2283 }
2284
2285 if (IS_GEN9_LP(dev_priv)) {
2286 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2287 if (tmp_mask) {
2288 bxt_hpd_irq_handler(dev_priv, tmp_mask);
2289 found = true;
2290 }
2291 } else if (IS_BROADWELL(dev_priv)) {
2292 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2293 if (tmp_mask) {
2294 ilk_hpd_irq_handler(dev_priv, tmp_mask);
2295 found = true;
2296 }
2297 }
2298
2299 if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2300 gmbus_irq_handler(dev_priv);
2301 found = true;
2302 }
2303
2304 if (!found)
2305 drm_err(&dev_priv->drm,
2306 "Unexpected DE Port interrupt\n");
2307 }
2308 else
2309 drm_err(&dev_priv->drm,
2310 "The master control interrupt lied (DE PORT)!\n");
2311 }
2312
2313 for_each_pipe(dev_priv, pipe) {
2314 u32 fault_errors;
2315
2316 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2317 continue;
2318
2319 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2320 if (!iir) {
2321 drm_err(&dev_priv->drm,
2322 "The master control interrupt lied (DE PIPE)!\n");
2323 continue;
2324 }
2325
2326 ret = IRQ_HANDLED;
2327 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2328
2329 if (iir & GEN8_PIPE_VBLANK)
2330 intel_handle_vblank(dev_priv, pipe);
2331
2332 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2333 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2334
2335 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2336 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2337
2338 fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
2339 if (fault_errors)
2340 drm_err(&dev_priv->drm,
2341 "Fault errors on pipe %c: 0x%08x\n",
2342 pipe_name(pipe),
2343 fault_errors);
2344 }
2345
2346 if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2347 master_ctl & GEN8_DE_PCH_IRQ) {
2348 /*
2349 * FIXME(BDW): Assume for now that the new interrupt handling
2350 * scheme also closed the SDE interrupt handling race we've seen
2351 * on older pch-split platforms. But this needs testing.
2352 */
2353 iir = I915_READ(SDEIIR);
2354 if (iir) {
2355 I915_WRITE(SDEIIR, iir);
2356 ret = IRQ_HANDLED;
2357
2358 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2359 icp_irq_handler(dev_priv, iir);
2360 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2361 spt_irq_handler(dev_priv, iir);
2362 else
2363 cpt_irq_handler(dev_priv, iir);
2364 } else {
2365 /*
2366 * Like on previous PCH there seems to be something
2367 * fishy going on with forwarding PCH interrupts.
2368 */
2369 drm_dbg(&dev_priv->drm,
2370 "The master control interrupt lied (SDE)!\n");
2371 }
2372 }
2373
2374 return ret;
2375 }
2376
gen8_master_intr_disable(void __iomem * const regs)2377 static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2378 {
2379 raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2380
2381 /*
2382 * Now with master disabled, get a sample of level indications
2383 * for this interrupt. Indications will be cleared on related acks.
2384 * New indications can and will light up during processing,
2385 * and will generate new interrupt after enabling master.
2386 */
2387 return raw_reg_read(regs, GEN8_MASTER_IRQ);
2388 }
2389
gen8_master_intr_enable(void __iomem * const regs)2390 static inline void gen8_master_intr_enable(void __iomem * const regs)
2391 {
2392 raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2393 }
2394
gen8_irq_handler(int irq,void * arg)2395 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2396 {
2397 struct drm_i915_private *dev_priv = arg;
2398 void __iomem * const regs = dev_priv->uncore.regs;
2399 u32 master_ctl;
2400
2401 if (!intel_irqs_enabled(dev_priv))
2402 return IRQ_NONE;
2403
2404 master_ctl = gen8_master_intr_disable(regs);
2405 if (!master_ctl) {
2406 gen8_master_intr_enable(regs);
2407 return IRQ_NONE;
2408 }
2409
2410 /* Find, queue (onto bottom-halves), then clear each source */
2411 gen8_gt_irq_handler(&dev_priv->gt, master_ctl);
2412
2413 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2414 if (master_ctl & ~GEN8_GT_IRQS) {
2415 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2416 gen8_de_irq_handler(dev_priv, master_ctl);
2417 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2418 }
2419
2420 gen8_master_intr_enable(regs);
2421
2422 return IRQ_HANDLED;
2423 }
2424
2425 static u32
gen11_gu_misc_irq_ack(struct intel_gt * gt,const u32 master_ctl)2426 gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2427 {
2428 void __iomem * const regs = gt->uncore->regs;
2429 u32 iir;
2430
2431 if (!(master_ctl & GEN11_GU_MISC_IRQ))
2432 return 0;
2433
2434 iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2435 if (likely(iir))
2436 raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2437
2438 return iir;
2439 }
2440
2441 static void
gen11_gu_misc_irq_handler(struct intel_gt * gt,const u32 iir)2442 gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
2443 {
2444 if (iir & GEN11_GU_MISC_GSE)
2445 intel_opregion_asle_intr(gt->i915);
2446 }
2447
gen11_master_intr_disable(void __iomem * const regs)2448 static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2449 {
2450 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2451
2452 /*
2453 * Now with master disabled, get a sample of level indications
2454 * for this interrupt. Indications will be cleared on related acks.
2455 * New indications can and will light up during processing,
2456 * and will generate new interrupt after enabling master.
2457 */
2458 return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
2459 }
2460
gen11_master_intr_enable(void __iomem * const regs)2461 static inline void gen11_master_intr_enable(void __iomem * const regs)
2462 {
2463 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2464 }
2465
2466 static void
gen11_display_irq_handler(struct drm_i915_private * i915)2467 gen11_display_irq_handler(struct drm_i915_private *i915)
2468 {
2469 void __iomem * const regs = i915->uncore.regs;
2470 const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
2471
2472 disable_rpm_wakeref_asserts(&i915->runtime_pm);
2473 /*
2474 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2475 * for the display related bits.
2476 */
2477 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL, 0x0);
2478 gen8_de_irq_handler(i915, disp_ctl);
2479 raw_reg_write(regs, GEN11_DISPLAY_INT_CTL,
2480 GEN11_DISPLAY_IRQ_ENABLE);
2481
2482 enable_rpm_wakeref_asserts(&i915->runtime_pm);
2483 }
2484
2485 static __always_inline irqreturn_t
__gen11_irq_handler(struct drm_i915_private * const i915,u32 (* intr_disable)(void __iomem * const regs),void (* intr_enable)(void __iomem * const regs))2486 __gen11_irq_handler(struct drm_i915_private * const i915,
2487 u32 (*intr_disable)(void __iomem * const regs),
2488 void (*intr_enable)(void __iomem * const regs))
2489 {
2490 void __iomem * const regs = i915->uncore.regs;
2491 struct intel_gt *gt = &i915->gt;
2492 u32 master_ctl;
2493 u32 gu_misc_iir;
2494
2495 if (!intel_irqs_enabled(i915))
2496 return IRQ_NONE;
2497
2498 master_ctl = intr_disable(regs);
2499 if (!master_ctl) {
2500 intr_enable(regs);
2501 return IRQ_NONE;
2502 }
2503
2504 /* Find, queue (onto bottom-halves), then clear each source */
2505 gen11_gt_irq_handler(gt, master_ctl);
2506
2507 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2508 if (master_ctl & GEN11_DISPLAY_IRQ)
2509 gen11_display_irq_handler(i915);
2510
2511 gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
2512
2513 intr_enable(regs);
2514
2515 gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2516
2517 return IRQ_HANDLED;
2518 }
2519
gen11_irq_handler(int irq,void * arg)2520 static irqreturn_t gen11_irq_handler(int irq, void *arg)
2521 {
2522 return __gen11_irq_handler(arg,
2523 gen11_master_intr_disable,
2524 gen11_master_intr_enable);
2525 }
2526
dg1_master_intr_disable_and_ack(void __iomem * const regs)2527 static u32 dg1_master_intr_disable_and_ack(void __iomem * const regs)
2528 {
2529 u32 val;
2530
2531 /* First disable interrupts */
2532 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, 0);
2533
2534 /* Get the indication levels and ack the master unit */
2535 val = raw_reg_read(regs, DG1_MSTR_UNIT_INTR);
2536 if (unlikely(!val))
2537 return 0;
2538
2539 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, val);
2540
2541 /*
2542 * Now with master disabled, get a sample of level indications
2543 * for this interrupt and ack them right away - we keep GEN11_MASTER_IRQ
2544 * out as this bit doesn't exist anymore for DG1
2545 */
2546 val = raw_reg_read(regs, GEN11_GFX_MSTR_IRQ) & ~GEN11_MASTER_IRQ;
2547 if (unlikely(!val))
2548 return 0;
2549
2550 raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, val);
2551
2552 return val;
2553 }
2554
dg1_master_intr_enable(void __iomem * const regs)2555 static inline void dg1_master_intr_enable(void __iomem * const regs)
2556 {
2557 raw_reg_write(regs, DG1_MSTR_UNIT_INTR, DG1_MSTR_IRQ);
2558 }
2559
dg1_irq_handler(int irq,void * arg)2560 static irqreturn_t dg1_irq_handler(int irq, void *arg)
2561 {
2562 return __gen11_irq_handler(arg,
2563 dg1_master_intr_disable_and_ack,
2564 dg1_master_intr_enable);
2565 }
2566
2567 /* Called from drm generic code, passed 'crtc' which
2568 * we use as a pipe index
2569 */
i8xx_enable_vblank(struct drm_crtc * crtc)2570 int i8xx_enable_vblank(struct drm_crtc *crtc)
2571 {
2572 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2573 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2574 unsigned long irqflags;
2575
2576 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2577 i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2578 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2579
2580 return 0;
2581 }
2582
i915gm_enable_vblank(struct drm_crtc * crtc)2583 int i915gm_enable_vblank(struct drm_crtc *crtc)
2584 {
2585 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2586
2587 /*
2588 * Vblank interrupts fail to wake the device up from C2+.
2589 * Disabling render clock gating during C-states avoids
2590 * the problem. There is a small power cost so we do this
2591 * only when vblank interrupts are actually enabled.
2592 */
2593 if (dev_priv->vblank_enabled++ == 0)
2594 I915_WRITE(SCPD0, _MASKED_BIT_ENABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2595
2596 return i8xx_enable_vblank(crtc);
2597 }
2598
i965_enable_vblank(struct drm_crtc * crtc)2599 int i965_enable_vblank(struct drm_crtc *crtc)
2600 {
2601 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2602 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2603 unsigned long irqflags;
2604
2605 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2606 i915_enable_pipestat(dev_priv, pipe,
2607 PIPE_START_VBLANK_INTERRUPT_STATUS);
2608 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2609
2610 return 0;
2611 }
2612
ilk_enable_vblank(struct drm_crtc * crtc)2613 int ilk_enable_vblank(struct drm_crtc *crtc)
2614 {
2615 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2616 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2617 unsigned long irqflags;
2618 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2619 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2620
2621 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2622 ilk_enable_display_irq(dev_priv, bit);
2623 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2624
2625 /* Even though there is no DMC, frame counter can get stuck when
2626 * PSR is active as no frames are generated.
2627 */
2628 if (HAS_PSR(dev_priv))
2629 drm_crtc_vblank_restore(crtc);
2630
2631 return 0;
2632 }
2633
bdw_enable_vblank(struct drm_crtc * crtc)2634 int bdw_enable_vblank(struct drm_crtc *crtc)
2635 {
2636 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2637 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2638 unsigned long irqflags;
2639
2640 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2641 bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2642 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2643
2644 /* Even if there is no DMC, frame counter can get stuck when
2645 * PSR is active as no frames are generated, so check only for PSR.
2646 */
2647 if (HAS_PSR(dev_priv))
2648 drm_crtc_vblank_restore(crtc);
2649
2650 return 0;
2651 }
2652
2653 /* Called from drm generic code, passed 'crtc' which
2654 * we use as a pipe index
2655 */
i8xx_disable_vblank(struct drm_crtc * crtc)2656 void i8xx_disable_vblank(struct drm_crtc *crtc)
2657 {
2658 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2659 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2660 unsigned long irqflags;
2661
2662 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2663 i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2664 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2665 }
2666
i915gm_disable_vblank(struct drm_crtc * crtc)2667 void i915gm_disable_vblank(struct drm_crtc *crtc)
2668 {
2669 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2670
2671 i8xx_disable_vblank(crtc);
2672
2673 if (--dev_priv->vblank_enabled == 0)
2674 I915_WRITE(SCPD0, _MASKED_BIT_DISABLE(CSTATE_RENDER_CLOCK_GATE_DISABLE));
2675 }
2676
i965_disable_vblank(struct drm_crtc * crtc)2677 void i965_disable_vblank(struct drm_crtc *crtc)
2678 {
2679 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2680 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2681 unsigned long irqflags;
2682
2683 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2684 i915_disable_pipestat(dev_priv, pipe,
2685 PIPE_START_VBLANK_INTERRUPT_STATUS);
2686 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2687 }
2688
ilk_disable_vblank(struct drm_crtc * crtc)2689 void ilk_disable_vblank(struct drm_crtc *crtc)
2690 {
2691 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2692 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2693 unsigned long irqflags;
2694 u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2695 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2696
2697 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2698 ilk_disable_display_irq(dev_priv, bit);
2699 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2700 }
2701
bdw_disable_vblank(struct drm_crtc * crtc)2702 void bdw_disable_vblank(struct drm_crtc *crtc)
2703 {
2704 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2705 enum pipe pipe = to_intel_crtc(crtc)->pipe;
2706 unsigned long irqflags;
2707
2708 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709 bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2710 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2711 }
2712
ibx_irq_reset(struct drm_i915_private * dev_priv)2713 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2714 {
2715 struct intel_uncore *uncore = &dev_priv->uncore;
2716
2717 if (HAS_PCH_NOP(dev_priv))
2718 return;
2719
2720 GEN3_IRQ_RESET(uncore, SDE);
2721
2722 if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2723 I915_WRITE(SERR_INT, 0xffffffff);
2724 }
2725
2726 /*
2727 * SDEIER is also touched by the interrupt handler to work around missed PCH
2728 * interrupts. Hence we can't update it after the interrupt handler is enabled -
2729 * instead we unconditionally enable all PCH interrupt sources here, but then
2730 * only unmask them as needed with SDEIMR.
2731 *
2732 * This function needs to be called before interrupts are enabled.
2733 */
ibx_irq_pre_postinstall(struct drm_i915_private * dev_priv)2734 static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
2735 {
2736 if (HAS_PCH_NOP(dev_priv))
2737 return;
2738
2739 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
2740 I915_WRITE(SDEIER, 0xffffffff);
2741 POSTING_READ(SDEIER);
2742 }
2743
vlv_display_irq_reset(struct drm_i915_private * dev_priv)2744 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2745 {
2746 struct intel_uncore *uncore = &dev_priv->uncore;
2747
2748 if (IS_CHERRYVIEW(dev_priv))
2749 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2750 else
2751 intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
2752
2753 i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2754 intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2755
2756 i9xx_pipestat_irq_reset(dev_priv);
2757
2758 GEN3_IRQ_RESET(uncore, VLV_);
2759 dev_priv->irq_mask = ~0u;
2760 }
2761
vlv_display_irq_postinstall(struct drm_i915_private * dev_priv)2762 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2763 {
2764 struct intel_uncore *uncore = &dev_priv->uncore;
2765
2766 u32 pipestat_mask;
2767 u32 enable_mask;
2768 enum pipe pipe;
2769
2770 pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
2771
2772 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2773 for_each_pipe(dev_priv, pipe)
2774 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2775
2776 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2777 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2778 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2779 I915_LPE_PIPE_A_INTERRUPT |
2780 I915_LPE_PIPE_B_INTERRUPT;
2781
2782 if (IS_CHERRYVIEW(dev_priv))
2783 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2784 I915_LPE_PIPE_C_INTERRUPT;
2785
2786 drm_WARN_ON(&dev_priv->drm, dev_priv->irq_mask != ~0u);
2787
2788 dev_priv->irq_mask = ~enable_mask;
2789
2790 GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
2791 }
2792
2793 /* drm_dma.h hooks
2794 */
ilk_irq_reset(struct drm_i915_private * dev_priv)2795 static void ilk_irq_reset(struct drm_i915_private *dev_priv)
2796 {
2797 struct intel_uncore *uncore = &dev_priv->uncore;
2798
2799 GEN3_IRQ_RESET(uncore, DE);
2800 if (IS_GEN(dev_priv, 7))
2801 intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
2802
2803 if (IS_HASWELL(dev_priv)) {
2804 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2805 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2806 }
2807
2808 gen5_gt_irq_reset(&dev_priv->gt);
2809
2810 ibx_irq_reset(dev_priv);
2811 }
2812
valleyview_irq_reset(struct drm_i915_private * dev_priv)2813 static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
2814 {
2815 I915_WRITE(VLV_MASTER_IER, 0);
2816 POSTING_READ(VLV_MASTER_IER);
2817
2818 gen5_gt_irq_reset(&dev_priv->gt);
2819
2820 spin_lock_irq(&dev_priv->irq_lock);
2821 if (dev_priv->display_irqs_enabled)
2822 vlv_display_irq_reset(dev_priv);
2823 spin_unlock_irq(&dev_priv->irq_lock);
2824 }
2825
gen8_irq_reset(struct drm_i915_private * dev_priv)2826 static void gen8_irq_reset(struct drm_i915_private *dev_priv)
2827 {
2828 struct intel_uncore *uncore = &dev_priv->uncore;
2829 enum pipe pipe;
2830
2831 gen8_master_intr_disable(dev_priv->uncore.regs);
2832
2833 gen8_gt_irq_reset(&dev_priv->gt);
2834
2835 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2836 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2837
2838 for_each_pipe(dev_priv, pipe)
2839 if (intel_display_power_is_enabled(dev_priv,
2840 POWER_DOMAIN_PIPE(pipe)))
2841 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2842
2843 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2844 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2845 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2846
2847 if (HAS_PCH_SPLIT(dev_priv))
2848 ibx_irq_reset(dev_priv);
2849 }
2850
gen11_display_irq_reset(struct drm_i915_private * dev_priv)2851 static void gen11_display_irq_reset(struct drm_i915_private *dev_priv)
2852 {
2853 struct intel_uncore *uncore = &dev_priv->uncore;
2854 enum pipe pipe;
2855 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
2856 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
2857
2858 intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
2859
2860 if (INTEL_GEN(dev_priv) >= 12) {
2861 enum transcoder trans;
2862
2863 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
2864 enum intel_display_power_domain domain;
2865
2866 domain = POWER_DOMAIN_TRANSCODER(trans);
2867 if (!intel_display_power_is_enabled(dev_priv, domain))
2868 continue;
2869
2870 intel_uncore_write(uncore, TRANS_PSR_IMR(trans), 0xffffffff);
2871 intel_uncore_write(uncore, TRANS_PSR_IIR(trans), 0xffffffff);
2872 }
2873 } else {
2874 intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
2875 intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
2876 }
2877
2878 for_each_pipe(dev_priv, pipe)
2879 if (intel_display_power_is_enabled(dev_priv,
2880 POWER_DOMAIN_PIPE(pipe)))
2881 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2882
2883 GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
2884 GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
2885 GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
2886
2887 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2888 GEN3_IRQ_RESET(uncore, SDE);
2889
2890 /* Wa_14010685332:icl,jsl,ehl,tgl,rkl */
2891 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP) {
2892 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2893 SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2894 intel_uncore_rmw(uncore, SOUTH_CHICKEN1,
2895 SBCLK_RUN_REFCLK_DIS, 0);
2896 }
2897 }
2898
gen11_irq_reset(struct drm_i915_private * dev_priv)2899 static void gen11_irq_reset(struct drm_i915_private *dev_priv)
2900 {
2901 struct intel_uncore *uncore = &dev_priv->uncore;
2902
2903 if (HAS_MASTER_UNIT_IRQ(dev_priv))
2904 dg1_master_intr_disable_and_ack(dev_priv->uncore.regs);
2905 else
2906 gen11_master_intr_disable(dev_priv->uncore.regs);
2907
2908 gen11_gt_irq_reset(&dev_priv->gt);
2909 gen11_display_irq_reset(dev_priv);
2910
2911 GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
2912 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2913 }
2914
gen8_irq_power_well_post_enable(struct drm_i915_private * dev_priv,u8 pipe_mask)2915 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
2916 u8 pipe_mask)
2917 {
2918 struct intel_uncore *uncore = &dev_priv->uncore;
2919
2920 u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
2921 enum pipe pipe;
2922
2923 spin_lock_irq(&dev_priv->irq_lock);
2924
2925 if (!intel_irqs_enabled(dev_priv)) {
2926 spin_unlock_irq(&dev_priv->irq_lock);
2927 return;
2928 }
2929
2930 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2931 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
2932 dev_priv->de_irq_mask[pipe],
2933 ~dev_priv->de_irq_mask[pipe] | extra_ier);
2934
2935 spin_unlock_irq(&dev_priv->irq_lock);
2936 }
2937
gen8_irq_power_well_pre_disable(struct drm_i915_private * dev_priv,u8 pipe_mask)2938 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
2939 u8 pipe_mask)
2940 {
2941 struct intel_uncore *uncore = &dev_priv->uncore;
2942 enum pipe pipe;
2943
2944 spin_lock_irq(&dev_priv->irq_lock);
2945
2946 if (!intel_irqs_enabled(dev_priv)) {
2947 spin_unlock_irq(&dev_priv->irq_lock);
2948 return;
2949 }
2950
2951 for_each_pipe_masked(dev_priv, pipe, pipe_mask)
2952 GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
2953
2954 spin_unlock_irq(&dev_priv->irq_lock);
2955
2956 /* make sure we're done processing display irqs */
2957 intel_synchronize_irq(dev_priv);
2958 }
2959
cherryview_irq_reset(struct drm_i915_private * dev_priv)2960 static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
2961 {
2962 struct intel_uncore *uncore = &dev_priv->uncore;
2963
2964 I915_WRITE(GEN8_MASTER_IRQ, 0);
2965 POSTING_READ(GEN8_MASTER_IRQ);
2966
2967 gen8_gt_irq_reset(&dev_priv->gt);
2968
2969 GEN3_IRQ_RESET(uncore, GEN8_PCU_);
2970
2971 spin_lock_irq(&dev_priv->irq_lock);
2972 if (dev_priv->display_irqs_enabled)
2973 vlv_display_irq_reset(dev_priv);
2974 spin_unlock_irq(&dev_priv->irq_lock);
2975 }
2976
intel_hpd_enabled_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])2977 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
2978 const u32 hpd[HPD_NUM_PINS])
2979 {
2980 struct intel_encoder *encoder;
2981 u32 enabled_irqs = 0;
2982
2983 for_each_intel_encoder(&dev_priv->drm, encoder)
2984 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
2985 enabled_irqs |= hpd[encoder->hpd_pin];
2986
2987 return enabled_irqs;
2988 }
2989
intel_hpd_hotplug_irqs(struct drm_i915_private * dev_priv,const u32 hpd[HPD_NUM_PINS])2990 static u32 intel_hpd_hotplug_irqs(struct drm_i915_private *dev_priv,
2991 const u32 hpd[HPD_NUM_PINS])
2992 {
2993 struct intel_encoder *encoder;
2994 u32 hotplug_irqs = 0;
2995
2996 for_each_intel_encoder(&dev_priv->drm, encoder)
2997 hotplug_irqs |= hpd[encoder->hpd_pin];
2998
2999 return hotplug_irqs;
3000 }
3001
ibx_hpd_detection_setup(struct drm_i915_private * dev_priv)3002 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3003 {
3004 u32 hotplug;
3005
3006 /*
3007 * Enable digital hotplug on the PCH, and configure the DP short pulse
3008 * duration to 2ms (which is the minimum in the Display Port spec).
3009 * The pulse duration bits are reserved on LPT+.
3010 */
3011 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3012 hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3013 PORTC_PULSE_DURATION_MASK |
3014 PORTD_PULSE_DURATION_MASK);
3015 hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3016 hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3017 hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3018 /*
3019 * When CPU and PCH are on the same package, port A
3020 * HPD must be enabled in both north and south.
3021 */
3022 if (HAS_PCH_LPT_LP(dev_priv))
3023 hotplug |= PORTA_HOTPLUG_ENABLE;
3024 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3025 }
3026
ibx_hpd_irq_setup(struct drm_i915_private * dev_priv)3027 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3028 {
3029 u32 hotplug_irqs, enabled_irqs;
3030
3031 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3032 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3033
3034 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3035
3036 ibx_hpd_detection_setup(dev_priv);
3037 }
3038
icp_ddi_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enable_mask)3039 static void icp_ddi_hpd_detection_setup(struct drm_i915_private *dev_priv,
3040 u32 enable_mask)
3041 {
3042 u32 hotplug;
3043
3044 hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3045 hotplug |= enable_mask;
3046 I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3047 }
3048
icp_tc_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enable_mask)3049 static void icp_tc_hpd_detection_setup(struct drm_i915_private *dev_priv,
3050 u32 enable_mask)
3051 {
3052 u32 hotplug;
3053
3054 hotplug = I915_READ(SHOTPLUG_CTL_TC);
3055 hotplug |= enable_mask;
3056 I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3057 }
3058
icp_hpd_irq_setup(struct drm_i915_private * dev_priv,u32 ddi_enable_mask,u32 tc_enable_mask)3059 static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv,
3060 u32 ddi_enable_mask, u32 tc_enable_mask)
3061 {
3062 u32 hotplug_irqs, enabled_irqs;
3063
3064 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3065 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3066
3067 if (INTEL_PCH_TYPE(dev_priv) <= PCH_TGP)
3068 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3069
3070 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3071
3072 icp_ddi_hpd_detection_setup(dev_priv, ddi_enable_mask);
3073 if (tc_enable_mask)
3074 icp_tc_hpd_detection_setup(dev_priv, tc_enable_mask);
3075 }
3076
3077 /*
3078 * EHL doesn't need most of gen11_hpd_irq_setup, it's handling only the
3079 * equivalent of SDE.
3080 */
mcc_hpd_irq_setup(struct drm_i915_private * dev_priv)3081 static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3082 {
3083 icp_hpd_irq_setup(dev_priv,
3084 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE(PORT_TC1));
3085 }
3086
3087 /*
3088 * JSP behaves exactly the same as MCC above except that port C is mapped to
3089 * the DDI-C pins instead of the TC1 pins. This means we should follow TGP's
3090 * masks & tables rather than ICP's masks & tables.
3091 */
jsp_hpd_irq_setup(struct drm_i915_private * dev_priv)3092 static void jsp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094 icp_hpd_irq_setup(dev_priv,
3095 TGP_DDI_HPD_ENABLE_MASK, 0);
3096 }
3097
gen11_hpd_detection_setup(struct drm_i915_private * dev_priv)3098 static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3099 {
3100 u32 hotplug;
3101
3102 hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3103 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3104 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3105 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3106 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) |
3107 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) |
3108 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6);
3109 I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3110
3111 hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3112 hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3113 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3114 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3115 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4) |
3116 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC5) |
3117 GEN11_HOTPLUG_CTL_ENABLE(PORT_TC6);
3118 I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3119 }
3120
gen11_hpd_irq_setup(struct drm_i915_private * dev_priv)3121 static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3122 {
3123 u32 hotplug_irqs, enabled_irqs;
3124 u32 val;
3125
3126 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3127 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3128
3129 val = I915_READ(GEN11_DE_HPD_IMR);
3130 val &= ~hotplug_irqs;
3131 val |= ~enabled_irqs & hotplug_irqs;
3132 I915_WRITE(GEN11_DE_HPD_IMR, val);
3133 POSTING_READ(GEN11_DE_HPD_IMR);
3134
3135 gen11_hpd_detection_setup(dev_priv);
3136
3137 if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3138 icp_hpd_irq_setup(dev_priv,
3139 TGP_DDI_HPD_ENABLE_MASK, TGP_TC_HPD_ENABLE_MASK);
3140 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3141 icp_hpd_irq_setup(dev_priv,
3142 ICP_DDI_HPD_ENABLE_MASK, ICP_TC_HPD_ENABLE_MASK);
3143 }
3144
spt_hpd_detection_setup(struct drm_i915_private * dev_priv)3145 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3146 {
3147 u32 val, hotplug;
3148
3149 /* Display WA #1179 WaHardHangonHotPlug: cnp */
3150 if (HAS_PCH_CNP(dev_priv)) {
3151 val = I915_READ(SOUTH_CHICKEN1);
3152 val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3153 val |= CHASSIS_CLK_REQ_DURATION(0xf);
3154 I915_WRITE(SOUTH_CHICKEN1, val);
3155 }
3156
3157 /* Enable digital hotplug on the PCH */
3158 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3159 hotplug |= PORTA_HOTPLUG_ENABLE |
3160 PORTB_HOTPLUG_ENABLE |
3161 PORTC_HOTPLUG_ENABLE |
3162 PORTD_HOTPLUG_ENABLE;
3163 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3164
3165 hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3166 hotplug |= PORTE_HOTPLUG_ENABLE;
3167 I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3168 }
3169
spt_hpd_irq_setup(struct drm_i915_private * dev_priv)3170 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3171 {
3172 u32 hotplug_irqs, enabled_irqs;
3173
3174 if (INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
3175 I915_WRITE(SHPD_FILTER_CNT, SHPD_FILTER_CNT_500_ADJ);
3176
3177 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3178 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.pch_hpd);
3179
3180 ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3181
3182 spt_hpd_detection_setup(dev_priv);
3183 }
3184
ilk_hpd_detection_setup(struct drm_i915_private * dev_priv)3185 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3186 {
3187 u32 hotplug;
3188
3189 /*
3190 * Enable digital hotplug on the CPU, and configure the DP short pulse
3191 * duration to 2ms (which is the minimum in the Display Port spec)
3192 * The pulse duration bits are reserved on HSW+.
3193 */
3194 hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3195 hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3196 hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3197 DIGITAL_PORTA_PULSE_DURATION_2ms;
3198 I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3199 }
3200
ilk_hpd_irq_setup(struct drm_i915_private * dev_priv)3201 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3202 {
3203 u32 hotplug_irqs, enabled_irqs;
3204
3205 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3206 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3207
3208 if (INTEL_GEN(dev_priv) >= 8)
3209 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3210 else
3211 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3212
3213 ilk_hpd_detection_setup(dev_priv);
3214
3215 ibx_hpd_irq_setup(dev_priv);
3216 }
3217
__bxt_hpd_detection_setup(struct drm_i915_private * dev_priv,u32 enabled_irqs)3218 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3219 u32 enabled_irqs)
3220 {
3221 u32 hotplug;
3222
3223 hotplug = I915_READ(PCH_PORT_HOTPLUG);
3224 hotplug |= PORTA_HOTPLUG_ENABLE |
3225 PORTB_HOTPLUG_ENABLE |
3226 PORTC_HOTPLUG_ENABLE;
3227
3228 drm_dbg_kms(&dev_priv->drm,
3229 "Invert bit setting: hp_ctl:%x hp_port:%x\n",
3230 hotplug, enabled_irqs);
3231 hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3232
3233 /*
3234 * For BXT invert bit has to be set based on AOB design
3235 * for HPD detection logic, update it based on VBT fields.
3236 */
3237 if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3238 intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3239 hotplug |= BXT_DDIA_HPD_INVERT;
3240 if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3241 intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3242 hotplug |= BXT_DDIB_HPD_INVERT;
3243 if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3244 intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3245 hotplug |= BXT_DDIC_HPD_INVERT;
3246
3247 I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3248 }
3249
bxt_hpd_detection_setup(struct drm_i915_private * dev_priv)3250 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3251 {
3252 __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3253 }
3254
bxt_hpd_irq_setup(struct drm_i915_private * dev_priv)3255 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3256 {
3257 u32 hotplug_irqs, enabled_irqs;
3258
3259 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, dev_priv->hotplug.hpd);
3260 hotplug_irqs = intel_hpd_hotplug_irqs(dev_priv, dev_priv->hotplug.hpd);
3261
3262 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3263
3264 __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3265 }
3266
ibx_irq_postinstall(struct drm_i915_private * dev_priv)3267 static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3268 {
3269 u32 mask;
3270
3271 if (HAS_PCH_NOP(dev_priv))
3272 return;
3273
3274 if (HAS_PCH_IBX(dev_priv))
3275 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3276 else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3277 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3278 else
3279 mask = SDE_GMBUS_CPT;
3280
3281 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3282 I915_WRITE(SDEIMR, ~mask);
3283
3284 if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3285 HAS_PCH_LPT(dev_priv))
3286 ibx_hpd_detection_setup(dev_priv);
3287 else
3288 spt_hpd_detection_setup(dev_priv);
3289 }
3290
ilk_irq_postinstall(struct drm_i915_private * dev_priv)3291 static void ilk_irq_postinstall(struct drm_i915_private *dev_priv)
3292 {
3293 struct intel_uncore *uncore = &dev_priv->uncore;
3294 u32 display_mask, extra_mask;
3295
3296 if (INTEL_GEN(dev_priv) >= 7) {
3297 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3298 DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
3299 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3300 DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3301 DE_DP_A_HOTPLUG_IVB);
3302 } else {
3303 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3304 DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3305 DE_PIPEA_CRC_DONE | DE_POISON);
3306 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3307 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3308 DE_DP_A_HOTPLUG);
3309 }
3310
3311 if (IS_HASWELL(dev_priv)) {
3312 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3313 display_mask |= DE_EDP_PSR_INT_HSW;
3314 }
3315
3316 dev_priv->irq_mask = ~display_mask;
3317
3318 ibx_irq_pre_postinstall(dev_priv);
3319
3320 GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3321 display_mask | extra_mask);
3322
3323 gen5_gt_irq_postinstall(&dev_priv->gt);
3324
3325 ilk_hpd_detection_setup(dev_priv);
3326
3327 ibx_irq_postinstall(dev_priv);
3328
3329 if (IS_IRONLAKE_M(dev_priv)) {
3330 /* Enable PCU event interrupts
3331 *
3332 * spinlocking not required here for correctness since interrupt
3333 * setup is guaranteed to run in single-threaded context. But we
3334 * need it to make the assert_spin_locked happy. */
3335 spin_lock_irq(&dev_priv->irq_lock);
3336 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3337 spin_unlock_irq(&dev_priv->irq_lock);
3338 }
3339 }
3340
valleyview_enable_display_irqs(struct drm_i915_private * dev_priv)3341 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3342 {
3343 lockdep_assert_held(&dev_priv->irq_lock);
3344
3345 if (dev_priv->display_irqs_enabled)
3346 return;
3347
3348 dev_priv->display_irqs_enabled = true;
3349
3350 if (intel_irqs_enabled(dev_priv)) {
3351 vlv_display_irq_reset(dev_priv);
3352 vlv_display_irq_postinstall(dev_priv);
3353 }
3354 }
3355
valleyview_disable_display_irqs(struct drm_i915_private * dev_priv)3356 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3357 {
3358 lockdep_assert_held(&dev_priv->irq_lock);
3359
3360 if (!dev_priv->display_irqs_enabled)
3361 return;
3362
3363 dev_priv->display_irqs_enabled = false;
3364
3365 if (intel_irqs_enabled(dev_priv))
3366 vlv_display_irq_reset(dev_priv);
3367 }
3368
3369
valleyview_irq_postinstall(struct drm_i915_private * dev_priv)3370 static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3371 {
3372 gen5_gt_irq_postinstall(&dev_priv->gt);
3373
3374 spin_lock_irq(&dev_priv->irq_lock);
3375 if (dev_priv->display_irqs_enabled)
3376 vlv_display_irq_postinstall(dev_priv);
3377 spin_unlock_irq(&dev_priv->irq_lock);
3378
3379 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3380 POSTING_READ(VLV_MASTER_IER);
3381 }
3382
gen8_de_irq_postinstall(struct drm_i915_private * dev_priv)3383 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3384 {
3385 struct intel_uncore *uncore = &dev_priv->uncore;
3386
3387 u32 de_pipe_masked = gen8_de_pipe_fault_mask(dev_priv) |
3388 GEN8_PIPE_CDCLK_CRC_DONE;
3389 u32 de_pipe_enables;
3390 u32 de_port_masked = gen8_de_port_aux_mask(dev_priv);
3391 u32 de_port_enables;
3392 u32 de_misc_masked = GEN8_DE_EDP_PSR;
3393 u32 trans_mask = BIT(TRANSCODER_A) | BIT(TRANSCODER_B) |
3394 BIT(TRANSCODER_C) | BIT(TRANSCODER_D);
3395 enum pipe pipe;
3396
3397 if (INTEL_GEN(dev_priv) <= 10)
3398 de_misc_masked |= GEN8_DE_MISC_GSE;
3399
3400 if (IS_GEN9_LP(dev_priv))
3401 de_port_masked |= BXT_DE_PORT_GMBUS;
3402
3403 de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3404 GEN8_PIPE_FIFO_UNDERRUN;
3405
3406 de_port_enables = de_port_masked;
3407 if (IS_GEN9_LP(dev_priv))
3408 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3409 else if (IS_BROADWELL(dev_priv))
3410 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3411
3412 if (INTEL_GEN(dev_priv) >= 12) {
3413 enum transcoder trans;
3414
3415 for_each_cpu_transcoder_masked(dev_priv, trans, trans_mask) {
3416 enum intel_display_power_domain domain;
3417
3418 domain = POWER_DOMAIN_TRANSCODER(trans);
3419 if (!intel_display_power_is_enabled(dev_priv, domain))
3420 continue;
3421
3422 gen3_assert_iir_is_zero(uncore, TRANS_PSR_IIR(trans));
3423 }
3424 } else {
3425 gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3426 }
3427
3428 for_each_pipe(dev_priv, pipe) {
3429 dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3430
3431 if (intel_display_power_is_enabled(dev_priv,
3432 POWER_DOMAIN_PIPE(pipe)))
3433 GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3434 dev_priv->de_irq_mask[pipe],
3435 de_pipe_enables);
3436 }
3437
3438 GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3439 GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3440
3441 if (INTEL_GEN(dev_priv) >= 11) {
3442 u32 de_hpd_masked = 0;
3443 u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3444 GEN11_DE_TBT_HOTPLUG_MASK;
3445
3446 GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3447 de_hpd_enables);
3448 gen11_hpd_detection_setup(dev_priv);
3449 } else if (IS_GEN9_LP(dev_priv)) {
3450 bxt_hpd_detection_setup(dev_priv);
3451 } else if (IS_BROADWELL(dev_priv)) {
3452 ilk_hpd_detection_setup(dev_priv);
3453 }
3454 }
3455
gen8_irq_postinstall(struct drm_i915_private * dev_priv)3456 static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3457 {
3458 if (HAS_PCH_SPLIT(dev_priv))
3459 ibx_irq_pre_postinstall(dev_priv);
3460
3461 gen8_gt_irq_postinstall(&dev_priv->gt);
3462 gen8_de_irq_postinstall(dev_priv);
3463
3464 if (HAS_PCH_SPLIT(dev_priv))
3465 ibx_irq_postinstall(dev_priv);
3466
3467 gen8_master_intr_enable(dev_priv->uncore.regs);
3468 }
3469
icp_irq_postinstall(struct drm_i915_private * dev_priv)3470 static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3471 {
3472 u32 mask = SDE_GMBUS_ICP;
3473
3474 drm_WARN_ON(&dev_priv->drm, I915_READ(SDEIER) != 0);
3475 I915_WRITE(SDEIER, 0xffffffff);
3476 POSTING_READ(SDEIER);
3477
3478 gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3479 I915_WRITE(SDEIMR, ~mask);
3480
3481 if (HAS_PCH_TGP(dev_priv)) {
3482 icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK);
3483 icp_tc_hpd_detection_setup(dev_priv, TGP_TC_HPD_ENABLE_MASK);
3484 } else if (HAS_PCH_JSP(dev_priv)) {
3485 icp_ddi_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK);
3486 } else if (HAS_PCH_MCC(dev_priv)) {
3487 icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK);
3488 icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE(PORT_TC1));
3489 } else {
3490 icp_ddi_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK);
3491 icp_tc_hpd_detection_setup(dev_priv, ICP_TC_HPD_ENABLE_MASK);
3492 }
3493 }
3494
gen11_irq_postinstall(struct drm_i915_private * dev_priv)3495 static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3496 {
3497 struct intel_uncore *uncore = &dev_priv->uncore;
3498 u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3499
3500 if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3501 icp_irq_postinstall(dev_priv);
3502
3503 gen11_gt_irq_postinstall(&dev_priv->gt);
3504 gen8_de_irq_postinstall(dev_priv);
3505
3506 GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3507
3508 I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3509
3510 if (HAS_MASTER_UNIT_IRQ(dev_priv)) {
3511 dg1_master_intr_enable(uncore->regs);
3512 POSTING_READ(DG1_MSTR_UNIT_INTR);
3513 } else {
3514 gen11_master_intr_enable(uncore->regs);
3515 POSTING_READ(GEN11_GFX_MSTR_IRQ);
3516 }
3517 }
3518
cherryview_irq_postinstall(struct drm_i915_private * dev_priv)3519 static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3520 {
3521 gen8_gt_irq_postinstall(&dev_priv->gt);
3522
3523 spin_lock_irq(&dev_priv->irq_lock);
3524 if (dev_priv->display_irqs_enabled)
3525 vlv_display_irq_postinstall(dev_priv);
3526 spin_unlock_irq(&dev_priv->irq_lock);
3527
3528 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3529 POSTING_READ(GEN8_MASTER_IRQ);
3530 }
3531
i8xx_irq_reset(struct drm_i915_private * dev_priv)3532 static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3533 {
3534 struct intel_uncore *uncore = &dev_priv->uncore;
3535
3536 i9xx_pipestat_irq_reset(dev_priv);
3537
3538 GEN2_IRQ_RESET(uncore);
3539 }
3540
i8xx_irq_postinstall(struct drm_i915_private * dev_priv)3541 static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3542 {
3543 struct intel_uncore *uncore = &dev_priv->uncore;
3544 u16 enable_mask;
3545
3546 intel_uncore_write16(uncore,
3547 EMR,
3548 ~(I915_ERROR_PAGE_TABLE |
3549 I915_ERROR_MEMORY_REFRESH));
3550
3551 /* Unmask the interrupts that we always want on. */
3552 dev_priv->irq_mask =
3553 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3554 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3555 I915_MASTER_ERROR_INTERRUPT);
3556
3557 enable_mask =
3558 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3559 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3560 I915_MASTER_ERROR_INTERRUPT |
3561 I915_USER_INTERRUPT;
3562
3563 GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3564
3565 /* Interrupt setup is already guaranteed to be single-threaded, this is
3566 * just to make the assert_spin_locked check happy. */
3567 spin_lock_irq(&dev_priv->irq_lock);
3568 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3569 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3570 spin_unlock_irq(&dev_priv->irq_lock);
3571 }
3572
i8xx_error_irq_ack(struct drm_i915_private * i915,u16 * eir,u16 * eir_stuck)3573 static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3574 u16 *eir, u16 *eir_stuck)
3575 {
3576 struct intel_uncore *uncore = &i915->uncore;
3577 u16 emr;
3578
3579 *eir = intel_uncore_read16(uncore, EIR);
3580
3581 if (*eir)
3582 intel_uncore_write16(uncore, EIR, *eir);
3583
3584 *eir_stuck = intel_uncore_read16(uncore, EIR);
3585 if (*eir_stuck == 0)
3586 return;
3587
3588 /*
3589 * Toggle all EMR bits to make sure we get an edge
3590 * in the ISR master error bit if we don't clear
3591 * all the EIR bits. Otherwise the edge triggered
3592 * IIR on i965/g4x wouldn't notice that an interrupt
3593 * is still pending. Also some EIR bits can't be
3594 * cleared except by handling the underlying error
3595 * (or by a GPU reset) so we mask any bit that
3596 * remains set.
3597 */
3598 emr = intel_uncore_read16(uncore, EMR);
3599 intel_uncore_write16(uncore, EMR, 0xffff);
3600 intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3601 }
3602
i8xx_error_irq_handler(struct drm_i915_private * dev_priv,u16 eir,u16 eir_stuck)3603 static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3604 u16 eir, u16 eir_stuck)
3605 {
3606 DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
3607
3608 if (eir_stuck)
3609 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%04x, masked\n",
3610 eir_stuck);
3611 }
3612
i9xx_error_irq_ack(struct drm_i915_private * dev_priv,u32 * eir,u32 * eir_stuck)3613 static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3614 u32 *eir, u32 *eir_stuck)
3615 {
3616 u32 emr;
3617
3618 *eir = I915_READ(EIR);
3619
3620 I915_WRITE(EIR, *eir);
3621
3622 *eir_stuck = I915_READ(EIR);
3623 if (*eir_stuck == 0)
3624 return;
3625
3626 /*
3627 * Toggle all EMR bits to make sure we get an edge
3628 * in the ISR master error bit if we don't clear
3629 * all the EIR bits. Otherwise the edge triggered
3630 * IIR on i965/g4x wouldn't notice that an interrupt
3631 * is still pending. Also some EIR bits can't be
3632 * cleared except by handling the underlying error
3633 * (or by a GPU reset) so we mask any bit that
3634 * remains set.
3635 */
3636 emr = I915_READ(EMR);
3637 I915_WRITE(EMR, 0xffffffff);
3638 I915_WRITE(EMR, emr | *eir_stuck);
3639 }
3640
i9xx_error_irq_handler(struct drm_i915_private * dev_priv,u32 eir,u32 eir_stuck)3641 static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
3642 u32 eir, u32 eir_stuck)
3643 {
3644 DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
3645
3646 if (eir_stuck)
3647 drm_dbg(&dev_priv->drm, "EIR stuck: 0x%08x, masked\n",
3648 eir_stuck);
3649 }
3650
i8xx_irq_handler(int irq,void * arg)3651 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3652 {
3653 struct drm_i915_private *dev_priv = arg;
3654 irqreturn_t ret = IRQ_NONE;
3655
3656 if (!intel_irqs_enabled(dev_priv))
3657 return IRQ_NONE;
3658
3659 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3660 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3661
3662 do {
3663 u32 pipe_stats[I915_MAX_PIPES] = {};
3664 u16 eir = 0, eir_stuck = 0;
3665 u16 iir;
3666
3667 iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
3668 if (iir == 0)
3669 break;
3670
3671 ret = IRQ_HANDLED;
3672
3673 /* Call regardless, as some status bits might not be
3674 * signalled in iir */
3675 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3676
3677 if (iir & I915_MASTER_ERROR_INTERRUPT)
3678 i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3679
3680 intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
3681
3682 if (iir & I915_USER_INTERRUPT)
3683 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3684
3685 if (iir & I915_MASTER_ERROR_INTERRUPT)
3686 i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
3687
3688 i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3689 } while (0);
3690
3691 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3692
3693 return ret;
3694 }
3695
i915_irq_reset(struct drm_i915_private * dev_priv)3696 static void i915_irq_reset(struct drm_i915_private *dev_priv)
3697 {
3698 struct intel_uncore *uncore = &dev_priv->uncore;
3699
3700 if (I915_HAS_HOTPLUG(dev_priv)) {
3701 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3702 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3703 }
3704
3705 i9xx_pipestat_irq_reset(dev_priv);
3706
3707 GEN3_IRQ_RESET(uncore, GEN2_);
3708 }
3709
i915_irq_postinstall(struct drm_i915_private * dev_priv)3710 static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
3711 {
3712 struct intel_uncore *uncore = &dev_priv->uncore;
3713 u32 enable_mask;
3714
3715 I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
3716 I915_ERROR_MEMORY_REFRESH));
3717
3718 /* Unmask the interrupts that we always want on. */
3719 dev_priv->irq_mask =
3720 ~(I915_ASLE_INTERRUPT |
3721 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3722 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3723 I915_MASTER_ERROR_INTERRUPT);
3724
3725 enable_mask =
3726 I915_ASLE_INTERRUPT |
3727 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3728 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3729 I915_MASTER_ERROR_INTERRUPT |
3730 I915_USER_INTERRUPT;
3731
3732 if (I915_HAS_HOTPLUG(dev_priv)) {
3733 /* Enable in IER... */
3734 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3735 /* and unmask in IMR */
3736 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3737 }
3738
3739 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3740
3741 /* Interrupt setup is already guaranteed to be single-threaded, this is
3742 * just to make the assert_spin_locked check happy. */
3743 spin_lock_irq(&dev_priv->irq_lock);
3744 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3745 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3746 spin_unlock_irq(&dev_priv->irq_lock);
3747
3748 i915_enable_asle_pipestat(dev_priv);
3749 }
3750
i915_irq_handler(int irq,void * arg)3751 static irqreturn_t i915_irq_handler(int irq, void *arg)
3752 {
3753 struct drm_i915_private *dev_priv = arg;
3754 irqreturn_t ret = IRQ_NONE;
3755
3756 if (!intel_irqs_enabled(dev_priv))
3757 return IRQ_NONE;
3758
3759 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3760 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3761
3762 do {
3763 u32 pipe_stats[I915_MAX_PIPES] = {};
3764 u32 eir = 0, eir_stuck = 0;
3765 u32 hotplug_status = 0;
3766 u32 iir;
3767
3768 iir = I915_READ(GEN2_IIR);
3769 if (iir == 0)
3770 break;
3771
3772 ret = IRQ_HANDLED;
3773
3774 if (I915_HAS_HOTPLUG(dev_priv) &&
3775 iir & I915_DISPLAY_PORT_INTERRUPT)
3776 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3777
3778 /* Call regardless, as some status bits might not be
3779 * signalled in iir */
3780 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3781
3782 if (iir & I915_MASTER_ERROR_INTERRUPT)
3783 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3784
3785 I915_WRITE(GEN2_IIR, iir);
3786
3787 if (iir & I915_USER_INTERRUPT)
3788 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3789
3790 if (iir & I915_MASTER_ERROR_INTERRUPT)
3791 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3792
3793 if (hotplug_status)
3794 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3795
3796 i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3797 } while (0);
3798
3799 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3800
3801 return ret;
3802 }
3803
i965_irq_reset(struct drm_i915_private * dev_priv)3804 static void i965_irq_reset(struct drm_i915_private *dev_priv)
3805 {
3806 struct intel_uncore *uncore = &dev_priv->uncore;
3807
3808 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3809 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3810
3811 i9xx_pipestat_irq_reset(dev_priv);
3812
3813 GEN3_IRQ_RESET(uncore, GEN2_);
3814 }
3815
i965_irq_postinstall(struct drm_i915_private * dev_priv)3816 static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
3817 {
3818 struct intel_uncore *uncore = &dev_priv->uncore;
3819 u32 enable_mask;
3820 u32 error_mask;
3821
3822 /*
3823 * Enable some error detection, note the instruction error mask
3824 * bit is reserved, so we leave it masked.
3825 */
3826 if (IS_G4X(dev_priv)) {
3827 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3828 GM45_ERROR_MEM_PRIV |
3829 GM45_ERROR_CP_PRIV |
3830 I915_ERROR_MEMORY_REFRESH);
3831 } else {
3832 error_mask = ~(I915_ERROR_PAGE_TABLE |
3833 I915_ERROR_MEMORY_REFRESH);
3834 }
3835 I915_WRITE(EMR, error_mask);
3836
3837 /* Unmask the interrupts that we always want on. */
3838 dev_priv->irq_mask =
3839 ~(I915_ASLE_INTERRUPT |
3840 I915_DISPLAY_PORT_INTERRUPT |
3841 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3842 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3843 I915_MASTER_ERROR_INTERRUPT);
3844
3845 enable_mask =
3846 I915_ASLE_INTERRUPT |
3847 I915_DISPLAY_PORT_INTERRUPT |
3848 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3849 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3850 I915_MASTER_ERROR_INTERRUPT |
3851 I915_USER_INTERRUPT;
3852
3853 if (IS_G4X(dev_priv))
3854 enable_mask |= I915_BSD_USER_INTERRUPT;
3855
3856 GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
3857
3858 /* Interrupt setup is already guaranteed to be single-threaded, this is
3859 * just to make the assert_spin_locked check happy. */
3860 spin_lock_irq(&dev_priv->irq_lock);
3861 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3862 i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3863 i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3864 spin_unlock_irq(&dev_priv->irq_lock);
3865
3866 i915_enable_asle_pipestat(dev_priv);
3867 }
3868
i915_hpd_irq_setup(struct drm_i915_private * dev_priv)3869 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3870 {
3871 u32 hotplug_en;
3872
3873 lockdep_assert_held(&dev_priv->irq_lock);
3874
3875 /* Note HDMI and DP share hotplug bits */
3876 /* enable bits are the same for all generations */
3877 hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3878 /* Programming the CRT detection parameters tends
3879 to generate a spurious hotplug event about three
3880 seconds later. So just do it once.
3881 */
3882 if (IS_G4X(dev_priv))
3883 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3884 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3885
3886 /* Ignore TV since it's buggy */
3887 i915_hotplug_interrupt_update_locked(dev_priv,
3888 HOTPLUG_INT_EN_MASK |
3889 CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3890 CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3891 hotplug_en);
3892 }
3893
i965_irq_handler(int irq,void * arg)3894 static irqreturn_t i965_irq_handler(int irq, void *arg)
3895 {
3896 struct drm_i915_private *dev_priv = arg;
3897 irqreturn_t ret = IRQ_NONE;
3898
3899 if (!intel_irqs_enabled(dev_priv))
3900 return IRQ_NONE;
3901
3902 /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3903 disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3904
3905 do {
3906 u32 pipe_stats[I915_MAX_PIPES] = {};
3907 u32 eir = 0, eir_stuck = 0;
3908 u32 hotplug_status = 0;
3909 u32 iir;
3910
3911 iir = I915_READ(GEN2_IIR);
3912 if (iir == 0)
3913 break;
3914
3915 ret = IRQ_HANDLED;
3916
3917 if (iir & I915_DISPLAY_PORT_INTERRUPT)
3918 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3919
3920 /* Call regardless, as some status bits might not be
3921 * signalled in iir */
3922 i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
3923
3924 if (iir & I915_MASTER_ERROR_INTERRUPT)
3925 i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
3926
3927 I915_WRITE(GEN2_IIR, iir);
3928
3929 if (iir & I915_USER_INTERRUPT)
3930 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[RCS0]);
3931
3932 if (iir & I915_BSD_USER_INTERRUPT)
3933 intel_engine_signal_breadcrumbs(dev_priv->gt.engine[VCS0]);
3934
3935 if (iir & I915_MASTER_ERROR_INTERRUPT)
3936 i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
3937
3938 if (hotplug_status)
3939 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3940
3941 i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
3942 } while (0);
3943
3944 enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
3945
3946 return ret;
3947 }
3948
3949 /**
3950 * intel_irq_init - initializes irq support
3951 * @dev_priv: i915 device instance
3952 *
3953 * This function initializes all the irq support including work items, timers
3954 * and all the vtables. It does not setup the interrupt itself though.
3955 */
intel_irq_init(struct drm_i915_private * dev_priv)3956 void intel_irq_init(struct drm_i915_private *dev_priv)
3957 {
3958 struct drm_device *dev = &dev_priv->drm;
3959 int i;
3960
3961 intel_hpd_init_pins(dev_priv);
3962
3963 intel_hpd_init_work(dev_priv);
3964
3965 INIT_WORK(&dev_priv->l3_parity.error_work, ivb_parity_work);
3966 for (i = 0; i < MAX_L3_SLICES; ++i)
3967 dev_priv->l3_parity.remap_info[i] = NULL;
3968
3969 /* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
3970 if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
3971 dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
3972
3973 dev->vblank_disable_immediate = true;
3974
3975 /* Most platforms treat the display irq block as an always-on
3976 * power domain. vlv/chv can disable it at runtime and need
3977 * special care to avoid writing any of the display block registers
3978 * outside of the power domain. We defer setting up the display irqs
3979 * in this case to the runtime pm.
3980 */
3981 dev_priv->display_irqs_enabled = true;
3982 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3983 dev_priv->display_irqs_enabled = false;
3984
3985 dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
3986 /* If we have MST support, we want to avoid doing short HPD IRQ storm
3987 * detection, as short HPD storms will occur as a natural part of
3988 * sideband messaging with MST.
3989 * On older platforms however, IRQ storms can occur with both long and
3990 * short pulses, as seen on some G4x systems.
3991 */
3992 dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
3993
3994 if (HAS_GMCH(dev_priv)) {
3995 if (I915_HAS_HOTPLUG(dev_priv))
3996 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
3997 } else {
3998 if (HAS_PCH_JSP(dev_priv))
3999 dev_priv->display.hpd_irq_setup = jsp_hpd_irq_setup;
4000 else if (HAS_PCH_MCC(dev_priv))
4001 dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4002 else if (INTEL_GEN(dev_priv) >= 11)
4003 dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4004 else if (IS_GEN9_LP(dev_priv))
4005 dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4006 else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4007 dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4008 else
4009 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4010 }
4011 }
4012
4013 /**
4014 * intel_irq_fini - deinitializes IRQ support
4015 * @i915: i915 device instance
4016 *
4017 * This function deinitializes all the IRQ support.
4018 */
intel_irq_fini(struct drm_i915_private * i915)4019 void intel_irq_fini(struct drm_i915_private *i915)
4020 {
4021 int i;
4022
4023 for (i = 0; i < MAX_L3_SLICES; ++i)
4024 kfree(i915->l3_parity.remap_info[i]);
4025 }
4026
intel_irq_handler(struct drm_i915_private * dev_priv)4027 static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4028 {
4029 if (HAS_GMCH(dev_priv)) {
4030 if (IS_CHERRYVIEW(dev_priv))
4031 return cherryview_irq_handler;
4032 else if (IS_VALLEYVIEW(dev_priv))
4033 return valleyview_irq_handler;
4034 else if (IS_GEN(dev_priv, 4))
4035 return i965_irq_handler;
4036 else if (IS_GEN(dev_priv, 3))
4037 return i915_irq_handler;
4038 else
4039 return i8xx_irq_handler;
4040 } else {
4041 if (HAS_MASTER_UNIT_IRQ(dev_priv))
4042 return dg1_irq_handler;
4043 if (INTEL_GEN(dev_priv) >= 11)
4044 return gen11_irq_handler;
4045 else if (INTEL_GEN(dev_priv) >= 8)
4046 return gen8_irq_handler;
4047 else
4048 return ilk_irq_handler;
4049 }
4050 }
4051
intel_irq_reset(struct drm_i915_private * dev_priv)4052 static void intel_irq_reset(struct drm_i915_private *dev_priv)
4053 {
4054 if (HAS_GMCH(dev_priv)) {
4055 if (IS_CHERRYVIEW(dev_priv))
4056 cherryview_irq_reset(dev_priv);
4057 else if (IS_VALLEYVIEW(dev_priv))
4058 valleyview_irq_reset(dev_priv);
4059 else if (IS_GEN(dev_priv, 4))
4060 i965_irq_reset(dev_priv);
4061 else if (IS_GEN(dev_priv, 3))
4062 i915_irq_reset(dev_priv);
4063 else
4064 i8xx_irq_reset(dev_priv);
4065 } else {
4066 if (INTEL_GEN(dev_priv) >= 11)
4067 gen11_irq_reset(dev_priv);
4068 else if (INTEL_GEN(dev_priv) >= 8)
4069 gen8_irq_reset(dev_priv);
4070 else
4071 ilk_irq_reset(dev_priv);
4072 }
4073 }
4074
intel_irq_postinstall(struct drm_i915_private * dev_priv)4075 static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4076 {
4077 if (HAS_GMCH(dev_priv)) {
4078 if (IS_CHERRYVIEW(dev_priv))
4079 cherryview_irq_postinstall(dev_priv);
4080 else if (IS_VALLEYVIEW(dev_priv))
4081 valleyview_irq_postinstall(dev_priv);
4082 else if (IS_GEN(dev_priv, 4))
4083 i965_irq_postinstall(dev_priv);
4084 else if (IS_GEN(dev_priv, 3))
4085 i915_irq_postinstall(dev_priv);
4086 else
4087 i8xx_irq_postinstall(dev_priv);
4088 } else {
4089 if (INTEL_GEN(dev_priv) >= 11)
4090 gen11_irq_postinstall(dev_priv);
4091 else if (INTEL_GEN(dev_priv) >= 8)
4092 gen8_irq_postinstall(dev_priv);
4093 else
4094 ilk_irq_postinstall(dev_priv);
4095 }
4096 }
4097
4098 /**
4099 * intel_irq_install - enables the hardware interrupt
4100 * @dev_priv: i915 device instance
4101 *
4102 * This function enables the hardware interrupt handling, but leaves the hotplug
4103 * handling still disabled. It is called after intel_irq_init().
4104 *
4105 * In the driver load and resume code we need working interrupts in a few places
4106 * but don't want to deal with the hassle of concurrent probe and hotplug
4107 * workers. Hence the split into this two-stage approach.
4108 */
intel_irq_install(struct drm_i915_private * dev_priv)4109 int intel_irq_install(struct drm_i915_private *dev_priv)
4110 {
4111 int irq = dev_priv->drm.pdev->irq;
4112 int ret;
4113
4114 /*
4115 * We enable some interrupt sources in our postinstall hooks, so mark
4116 * interrupts as enabled _before_ actually enabling them to avoid
4117 * special cases in our ordering checks.
4118 */
4119 dev_priv->runtime_pm.irqs_enabled = true;
4120
4121 dev_priv->drm.irq_enabled = true;
4122
4123 intel_irq_reset(dev_priv);
4124
4125 ret = request_irq(irq, intel_irq_handler(dev_priv),
4126 IRQF_SHARED, DRIVER_NAME, dev_priv);
4127 if (ret < 0) {
4128 dev_priv->drm.irq_enabled = false;
4129 return ret;
4130 }
4131
4132 intel_irq_postinstall(dev_priv);
4133
4134 return ret;
4135 }
4136
4137 /**
4138 * intel_irq_uninstall - finilizes all irq handling
4139 * @dev_priv: i915 device instance
4140 *
4141 * This stops interrupt and hotplug handling and unregisters and frees all
4142 * resources acquired in the init functions.
4143 */
intel_irq_uninstall(struct drm_i915_private * dev_priv)4144 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4145 {
4146 int irq = dev_priv->drm.pdev->irq;
4147
4148 /*
4149 * FIXME we can get called twice during driver probe
4150 * error handling as well as during driver remove due to
4151 * intel_modeset_driver_remove() calling us out of sequence.
4152 * Would be nice if it didn't do that...
4153 */
4154 if (!dev_priv->drm.irq_enabled)
4155 return;
4156
4157 dev_priv->drm.irq_enabled = false;
4158
4159 intel_irq_reset(dev_priv);
4160
4161 free_irq(irq, dev_priv);
4162
4163 intel_hpd_cancel_work(dev_priv);
4164 dev_priv->runtime_pm.irqs_enabled = false;
4165 }
4166
4167 /**
4168 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4169 * @dev_priv: i915 device instance
4170 *
4171 * This function is used to disable interrupts at runtime, both in the runtime
4172 * pm and the system suspend/resume code.
4173 */
intel_runtime_pm_disable_interrupts(struct drm_i915_private * dev_priv)4174 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4175 {
4176 intel_irq_reset(dev_priv);
4177 dev_priv->runtime_pm.irqs_enabled = false;
4178 intel_synchronize_irq(dev_priv);
4179 }
4180
4181 /**
4182 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4183 * @dev_priv: i915 device instance
4184 *
4185 * This function is used to enable interrupts at runtime, both in the runtime
4186 * pm and the system suspend/resume code.
4187 */
intel_runtime_pm_enable_interrupts(struct drm_i915_private * dev_priv)4188 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4189 {
4190 dev_priv->runtime_pm.irqs_enabled = true;
4191 intel_irq_reset(dev_priv);
4192 intel_irq_postinstall(dev_priv);
4193 }
4194
intel_irqs_enabled(struct drm_i915_private * dev_priv)4195 bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4196 {
4197 /*
4198 * We only use drm_irq_uninstall() at unload and VT switch, so
4199 * this is the only thing we need to check.
4200 */
4201 return dev_priv->runtime_pm.irqs_enabled;
4202 }
4203
intel_synchronize_irq(struct drm_i915_private * i915)4204 void intel_synchronize_irq(struct drm_i915_private *i915)
4205 {
4206 synchronize_irq(i915->drm.pdev->irq);
4207 }
4208