1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "i40e.h"
5 #include <linux/ptp_classify.h>
6
7 /* The XL710 timesync is very much like Intel's 82599 design when it comes to
8 * the fundamental clock design. However, the clock operations are much simpler
9 * in the XL710 because the device supports a full 64 bits of nanoseconds.
10 * Because the field is so wide, we can forgo the cycle counter and just
11 * operate with the nanosecond field directly without fear of overflow.
12 *
13 * Much like the 82599, the update period is dependent upon the link speed:
14 * At 40Gb link or no link, the period is 1.6ns.
15 * At 10Gb link, the period is multiplied by 2. (3.2ns)
16 * At 1Gb link, the period is multiplied by 20. (32ns)
17 * 1588 functionality is not supported at 100Mbps.
18 */
19 #define I40E_PTP_40GB_INCVAL 0x0199999999ULL
20 #define I40E_PTP_10GB_INCVAL_MULT 2
21 #define I40E_PTP_1GB_INCVAL_MULT 20
22
23 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V1 BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
24 #define I40E_PRTTSYN_CTL1_TSYNTYPE_V2 (2 << \
25 I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
26
27 /**
28 * i40e_ptp_read - Read the PHC time from the device
29 * @pf: Board private structure
30 * @ts: timespec structure to hold the current time value
31 *
32 * This function reads the PRTTSYN_TIME registers and stores them in a
33 * timespec. However, since the registers are 64 bits of nanoseconds, we must
34 * convert the result to a timespec before we can return.
35 **/
i40e_ptp_read(struct i40e_pf * pf,struct timespec64 * ts)36 static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts)
37 {
38 struct i40e_hw *hw = &pf->hw;
39 u32 hi, lo;
40 u64 ns;
41
42 /* The timer latches on the lowest register read. */
43 lo = rd32(hw, I40E_PRTTSYN_TIME_L);
44 hi = rd32(hw, I40E_PRTTSYN_TIME_H);
45
46 ns = (((u64)hi) << 32) | lo;
47
48 *ts = ns_to_timespec64(ns);
49 }
50
51 /**
52 * i40e_ptp_write - Write the PHC time to the device
53 * @pf: Board private structure
54 * @ts: timespec structure that holds the new time value
55 *
56 * This function writes the PRTTSYN_TIME registers with the user value. Since
57 * we receive a timespec from the stack, we must convert that timespec into
58 * nanoseconds before programming the registers.
59 **/
i40e_ptp_write(struct i40e_pf * pf,const struct timespec64 * ts)60 static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
61 {
62 struct i40e_hw *hw = &pf->hw;
63 u64 ns = timespec64_to_ns(ts);
64
65 /* The timer will not update until the high register is written, so
66 * write the low register first.
67 */
68 wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
69 wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
70 }
71
72 /**
73 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
74 * @hwtstamps: Timestamp structure to update
75 * @timestamp: Timestamp from the hardware
76 *
77 * We need to convert the NIC clock value into a hwtstamp which can be used by
78 * the upper level timestamping functions. Since the timestamp is simply a 64-
79 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
80 **/
i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps * hwtstamps,u64 timestamp)81 static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
82 u64 timestamp)
83 {
84 memset(hwtstamps, 0, sizeof(*hwtstamps));
85
86 hwtstamps->hwtstamp = ns_to_ktime(timestamp);
87 }
88
89 /**
90 * i40e_ptp_adjfreq - Adjust the PHC frequency
91 * @ptp: The PTP clock structure
92 * @ppb: Parts per billion adjustment from the base
93 *
94 * Adjust the frequency of the PHC by the indicated parts per billion from the
95 * base frequency.
96 **/
i40e_ptp_adjfreq(struct ptp_clock_info * ptp,s32 ppb)97 static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
98 {
99 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
100 struct i40e_hw *hw = &pf->hw;
101 u64 adj, freq, diff;
102 int neg_adj = 0;
103
104 if (ppb < 0) {
105 neg_adj = 1;
106 ppb = -ppb;
107 }
108
109 freq = I40E_PTP_40GB_INCVAL;
110 freq *= ppb;
111 diff = div_u64(freq, 1000000000ULL);
112
113 if (neg_adj)
114 adj = I40E_PTP_40GB_INCVAL - diff;
115 else
116 adj = I40E_PTP_40GB_INCVAL + diff;
117
118 /* At some link speeds, the base incval is so large that directly
119 * multiplying by ppb would result in arithmetic overflow even when
120 * using a u64. Avoid this by instead calculating the new incval
121 * always in terms of the 40GbE clock rate and then multiplying by the
122 * link speed factor afterwards. This does result in slightly lower
123 * precision at lower link speeds, but it is fairly minor.
124 */
125 smp_mb(); /* Force any pending update before accessing. */
126 adj *= READ_ONCE(pf->ptp_adj_mult);
127
128 wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
129 wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
130
131 return 0;
132 }
133
134 /**
135 * i40e_ptp_adjtime - Adjust the PHC time
136 * @ptp: The PTP clock structure
137 * @delta: Offset in nanoseconds to adjust the PHC time by
138 *
139 * Adjust the frequency of the PHC by the indicated parts per billion from the
140 * base frequency.
141 **/
i40e_ptp_adjtime(struct ptp_clock_info * ptp,s64 delta)142 static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
143 {
144 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
145 struct timespec64 now;
146
147 mutex_lock(&pf->tmreg_lock);
148
149 i40e_ptp_read(pf, &now);
150 timespec64_add_ns(&now, delta);
151 i40e_ptp_write(pf, (const struct timespec64 *)&now);
152
153 mutex_unlock(&pf->tmreg_lock);
154
155 return 0;
156 }
157
158 /**
159 * i40e_ptp_gettime - Get the time of the PHC
160 * @ptp: The PTP clock structure
161 * @ts: timespec structure to hold the current time value
162 *
163 * Read the device clock and return the correct value on ns, after converting it
164 * into a timespec struct.
165 **/
i40e_ptp_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)166 static int i40e_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
167 {
168 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
169
170 mutex_lock(&pf->tmreg_lock);
171 i40e_ptp_read(pf, ts);
172 mutex_unlock(&pf->tmreg_lock);
173
174 return 0;
175 }
176
177 /**
178 * i40e_ptp_settime - Set the time of the PHC
179 * @ptp: The PTP clock structure
180 * @ts: timespec structure that holds the new time value
181 *
182 * Set the device clock to the user input value. The conversion from timespec
183 * to ns happens in the write function.
184 **/
i40e_ptp_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)185 static int i40e_ptp_settime(struct ptp_clock_info *ptp,
186 const struct timespec64 *ts)
187 {
188 struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
189
190 mutex_lock(&pf->tmreg_lock);
191 i40e_ptp_write(pf, ts);
192 mutex_unlock(&pf->tmreg_lock);
193
194 return 0;
195 }
196
197 /**
198 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
199 * @ptp: The PTP clock structure
200 * @rq: The requested feature to change
201 * @on: Enable/disable flag
202 *
203 * The XL710 does not support any of the ancillary features of the PHC
204 * subsystem, so this function may just return.
205 **/
i40e_ptp_feature_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * rq,int on)206 static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
207 struct ptp_clock_request *rq, int on)
208 {
209 return -EOPNOTSUPP;
210 }
211
212 /**
213 * i40e_ptp_update_latch_events - Read I40E_PRTTSYN_STAT_1 and latch events
214 * @pf: the PF data structure
215 *
216 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
217 * for noticed latch events. This allows the driver to keep track of the first
218 * time a latch event was noticed which will be used to help clear out Rx
219 * timestamps for packets that got dropped or lost.
220 *
221 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
222 * expected to be called only while under the ptp_rx_lock.
223 **/
i40e_ptp_get_rx_events(struct i40e_pf * pf)224 static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
225 {
226 struct i40e_hw *hw = &pf->hw;
227 u32 prttsyn_stat, new_latch_events;
228 int i;
229
230 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
231 new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
232
233 /* Update the jiffies time for any newly latched timestamp. This
234 * ensures that we store the time that we first discovered a timestamp
235 * was latched by the hardware. The service task will later determine
236 * if we should free the latch and drop that timestamp should too much
237 * time pass. This flow ensures that we only update jiffies for new
238 * events latched since the last time we checked, and not all events
239 * currently latched, so that the service task accounting remains
240 * accurate.
241 */
242 for (i = 0; i < 4; i++) {
243 if (new_latch_events & BIT(i))
244 pf->latch_events[i] = jiffies;
245 }
246
247 /* Finally, we store the current status of the Rx timestamp latches */
248 pf->latch_event_flags = prttsyn_stat;
249
250 return prttsyn_stat;
251 }
252
253 /**
254 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
255 * @pf: The PF private data structure
256 * @vsi: The VSI with the rings relevant to 1588
257 *
258 * This watchdog task is scheduled to detect error case where hardware has
259 * dropped an Rx packet that was timestamped when the ring is full. The
260 * particular error is rare but leaves the device in a state unable to timestamp
261 * any future packets.
262 **/
i40e_ptp_rx_hang(struct i40e_pf * pf)263 void i40e_ptp_rx_hang(struct i40e_pf *pf)
264 {
265 struct i40e_hw *hw = &pf->hw;
266 unsigned int i, cleared = 0;
267
268 /* Since we cannot turn off the Rx timestamp logic if the device is
269 * configured for Tx timestamping, we check if Rx timestamping is
270 * configured. We don't want to spuriously warn about Rx timestamp
271 * hangs if we don't care about the timestamps.
272 */
273 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
274 return;
275
276 spin_lock_bh(&pf->ptp_rx_lock);
277
278 /* Update current latch times for Rx events */
279 i40e_ptp_get_rx_events(pf);
280
281 /* Check all the currently latched Rx events and see whether they have
282 * been latched for over a second. It is assumed that any timestamp
283 * should have been cleared within this time, or else it was captured
284 * for a dropped frame that the driver never received. Thus, we will
285 * clear any timestamp that has been latched for over 1 second.
286 */
287 for (i = 0; i < 4; i++) {
288 if ((pf->latch_event_flags & BIT(i)) &&
289 time_is_before_jiffies(pf->latch_events[i] + HZ)) {
290 rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
291 pf->latch_event_flags &= ~BIT(i);
292 cleared++;
293 }
294 }
295
296 spin_unlock_bh(&pf->ptp_rx_lock);
297
298 /* Log a warning if more than 2 timestamps got dropped in the same
299 * check. We don't want to warn about all drops because it can occur
300 * in normal scenarios such as PTP frames on multicast addresses we
301 * aren't listening to. However, administrator should know if this is
302 * the reason packets aren't receiving timestamps.
303 */
304 if (cleared > 2)
305 dev_dbg(&pf->pdev->dev,
306 "Dropped %d missed RXTIME timestamp events\n",
307 cleared);
308
309 /* Finally, update the rx_hwtstamp_cleared counter */
310 pf->rx_hwtstamp_cleared += cleared;
311 }
312
313 /**
314 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
315 * @pf: The PF private data structure
316 *
317 * This watchdog task is run periodically to make sure that we clear the Tx
318 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
319 * time. It is unexpected in the normal case but if it occurs it results in
320 * permanently preventing timestamps of future packets.
321 **/
i40e_ptp_tx_hang(struct i40e_pf * pf)322 void i40e_ptp_tx_hang(struct i40e_pf *pf)
323 {
324 struct sk_buff *skb;
325
326 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
327 return;
328
329 /* Nothing to do if we're not already waiting for a timestamp */
330 if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
331 return;
332
333 /* We already have a handler routine which is run when we are notified
334 * of a Tx timestamp in the hardware. If we don't get an interrupt
335 * within a second it is reasonable to assume that we never will.
336 */
337 if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
338 skb = pf->ptp_tx_skb;
339 pf->ptp_tx_skb = NULL;
340 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
341
342 /* Free the skb after we clear the bitlock */
343 dev_kfree_skb_any(skb);
344 pf->tx_hwtstamp_timeouts++;
345 }
346 }
347
348 /**
349 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
350 * @pf: Board private structure
351 *
352 * Read the value of the Tx timestamp from the registers, convert it into a
353 * value consumable by the stack, and store that result into the shhwtstamps
354 * struct before returning it up the stack.
355 **/
i40e_ptp_tx_hwtstamp(struct i40e_pf * pf)356 void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
357 {
358 struct skb_shared_hwtstamps shhwtstamps;
359 struct sk_buff *skb = pf->ptp_tx_skb;
360 struct i40e_hw *hw = &pf->hw;
361 u32 hi, lo;
362 u64 ns;
363
364 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
365 return;
366
367 /* don't attempt to timestamp if we don't have an skb */
368 if (!pf->ptp_tx_skb)
369 return;
370
371 lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
372 hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
373
374 ns = (((u64)hi) << 32) | lo;
375 i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
376
377 /* Clear the bit lock as soon as possible after reading the register,
378 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
379 * applications might wake up and attempt to request another transmit
380 * timestamp prior to the bit lock being cleared.
381 */
382 pf->ptp_tx_skb = NULL;
383 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
384
385 /* Notify the stack and free the skb after we've unlocked */
386 skb_tstamp_tx(skb, &shhwtstamps);
387 dev_kfree_skb_any(skb);
388 }
389
390 /**
391 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
392 * @pf: Board private structure
393 * @skb: Particular skb to send timestamp with
394 * @index: Index into the receive timestamp registers for the timestamp
395 *
396 * The XL710 receives a notification in the receive descriptor with an offset
397 * into the set of RXTIME registers where the timestamp is for that skb. This
398 * function goes and fetches the receive timestamp from that offset, if a valid
399 * one exists. The RXTIME registers are in ns, so we must convert the result
400 * first.
401 **/
i40e_ptp_rx_hwtstamp(struct i40e_pf * pf,struct sk_buff * skb,u8 index)402 void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
403 {
404 u32 prttsyn_stat, hi, lo;
405 struct i40e_hw *hw;
406 u64 ns;
407
408 /* Since we cannot turn off the Rx timestamp logic if the device is
409 * doing Tx timestamping, check if Rx timestamping is configured.
410 */
411 if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
412 return;
413
414 hw = &pf->hw;
415
416 spin_lock_bh(&pf->ptp_rx_lock);
417
418 /* Get current Rx events and update latch times */
419 prttsyn_stat = i40e_ptp_get_rx_events(pf);
420
421 /* TODO: Should we warn about missing Rx timestamp event? */
422 if (!(prttsyn_stat & BIT(index))) {
423 spin_unlock_bh(&pf->ptp_rx_lock);
424 return;
425 }
426
427 /* Clear the latched event since we're about to read its register */
428 pf->latch_event_flags &= ~BIT(index);
429
430 lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
431 hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
432
433 spin_unlock_bh(&pf->ptp_rx_lock);
434
435 ns = (((u64)hi) << 32) | lo;
436
437 i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
438 }
439
440 /**
441 * i40e_ptp_set_increment - Utility function to update clock increment rate
442 * @pf: Board private structure
443 *
444 * During a link change, the DMA frequency that drives the 1588 logic will
445 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
446 * we must update the increment value per clock tick.
447 **/
i40e_ptp_set_increment(struct i40e_pf * pf)448 void i40e_ptp_set_increment(struct i40e_pf *pf)
449 {
450 struct i40e_link_status *hw_link_info;
451 struct i40e_hw *hw = &pf->hw;
452 u64 incval;
453 u32 mult;
454
455 hw_link_info = &hw->phy.link_info;
456
457 i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
458
459 switch (hw_link_info->link_speed) {
460 case I40E_LINK_SPEED_10GB:
461 mult = I40E_PTP_10GB_INCVAL_MULT;
462 break;
463 case I40E_LINK_SPEED_1GB:
464 mult = I40E_PTP_1GB_INCVAL_MULT;
465 break;
466 case I40E_LINK_SPEED_100MB:
467 {
468 static int warn_once;
469
470 if (!warn_once) {
471 dev_warn(&pf->pdev->dev,
472 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
473 warn_once++;
474 }
475 mult = 0;
476 break;
477 }
478 case I40E_LINK_SPEED_40GB:
479 default:
480 mult = 1;
481 break;
482 }
483
484 /* The increment value is calculated by taking the base 40GbE incvalue
485 * and multiplying it by a factor based on the link speed.
486 */
487 incval = I40E_PTP_40GB_INCVAL * mult;
488
489 /* Write the new increment value into the increment register. The
490 * hardware will not update the clock until both registers have been
491 * written.
492 */
493 wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
494 wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
495
496 /* Update the base adjustement value. */
497 WRITE_ONCE(pf->ptp_adj_mult, mult);
498 smp_mb(); /* Force the above update. */
499 }
500
501 /**
502 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
503 * @pf: Board private structure
504 * @ifr: ioctl data
505 *
506 * Obtain the current hardware timestamping settigs as requested. To do this,
507 * keep a shadow copy of the timestamp settings rather than attempting to
508 * deconstruct it from the registers.
509 **/
i40e_ptp_get_ts_config(struct i40e_pf * pf,struct ifreq * ifr)510 int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
511 {
512 struct hwtstamp_config *config = &pf->tstamp_config;
513
514 if (!(pf->flags & I40E_FLAG_PTP))
515 return -EOPNOTSUPP;
516
517 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
518 -EFAULT : 0;
519 }
520
521 /**
522 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
523 * @pf: Board private structure
524 * @config: hwtstamp settings requested or saved
525 *
526 * Control hardware registers to enter the specific mode requested by the
527 * user. Also used during reset path to ensure that timestamp settings are
528 * maintained.
529 *
530 * Note: modifies config in place, and may update the requested mode to be
531 * more broad if the specific filter is not directly supported.
532 **/
i40e_ptp_set_timestamp_mode(struct i40e_pf * pf,struct hwtstamp_config * config)533 static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
534 struct hwtstamp_config *config)
535 {
536 struct i40e_hw *hw = &pf->hw;
537 u32 tsyntype, regval;
538
539 /* Reserved for future extensions. */
540 if (config->flags)
541 return -EINVAL;
542
543 switch (config->tx_type) {
544 case HWTSTAMP_TX_OFF:
545 pf->ptp_tx = false;
546 break;
547 case HWTSTAMP_TX_ON:
548 pf->ptp_tx = true;
549 break;
550 default:
551 return -ERANGE;
552 }
553
554 switch (config->rx_filter) {
555 case HWTSTAMP_FILTER_NONE:
556 pf->ptp_rx = false;
557 /* We set the type to V1, but do not enable UDP packet
558 * recognition. In this way, we should be as close to
559 * disabling PTP Rx timestamps as possible since V1 packets
560 * are always UDP, since L2 packets are a V2 feature.
561 */
562 tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
563 break;
564 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
565 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
566 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
567 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
568 return -ERANGE;
569 pf->ptp_rx = true;
570 tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
571 I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
572 I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
573 config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
574 break;
575 case HWTSTAMP_FILTER_PTP_V2_EVENT:
576 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
577 case HWTSTAMP_FILTER_PTP_V2_SYNC:
578 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
579 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
580 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
581 if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
582 return -ERANGE;
583 /* fall through */
584 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
585 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
586 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
587 pf->ptp_rx = true;
588 tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
589 I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
590 if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
591 tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
592 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
593 } else {
594 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
595 }
596 break;
597 case HWTSTAMP_FILTER_NTP_ALL:
598 case HWTSTAMP_FILTER_ALL:
599 default:
600 return -ERANGE;
601 }
602
603 /* Clear out all 1588-related registers to clear and unlatch them. */
604 spin_lock_bh(&pf->ptp_rx_lock);
605 rd32(hw, I40E_PRTTSYN_STAT_0);
606 rd32(hw, I40E_PRTTSYN_TXTIME_H);
607 rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
608 rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
609 rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
610 rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
611 pf->latch_event_flags = 0;
612 spin_unlock_bh(&pf->ptp_rx_lock);
613
614 /* Enable/disable the Tx timestamp interrupt based on user input. */
615 regval = rd32(hw, I40E_PRTTSYN_CTL0);
616 if (pf->ptp_tx)
617 regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
618 else
619 regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
620 wr32(hw, I40E_PRTTSYN_CTL0, regval);
621
622 regval = rd32(hw, I40E_PFINT_ICR0_ENA);
623 if (pf->ptp_tx)
624 regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
625 else
626 regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
627 wr32(hw, I40E_PFINT_ICR0_ENA, regval);
628
629 /* Although there is no simple on/off switch for Rx, we "disable" Rx
630 * timestamps by setting to V1 only mode and clear the UDP
631 * recognition. This ought to disable all PTP Rx timestamps as V1
632 * packets are always over UDP. Note that software is configured to
633 * ignore Rx timestamps via the pf->ptp_rx flag.
634 */
635 regval = rd32(hw, I40E_PRTTSYN_CTL1);
636 /* clear everything but the enable bit */
637 regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
638 /* now enable bits for desired Rx timestamps */
639 regval |= tsyntype;
640 wr32(hw, I40E_PRTTSYN_CTL1, regval);
641
642 return 0;
643 }
644
645 /**
646 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
647 * @pf: Board private structure
648 * @ifr: ioctl data
649 *
650 * Respond to the user filter requests and make the appropriate hardware
651 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
652 * logic, so keep track in software of whether to indicate these timestamps
653 * or not.
654 *
655 * It is permissible to "upgrade" the user request to a broader filter, as long
656 * as the user receives the timestamps they care about and the user is notified
657 * the filter has been broadened.
658 **/
i40e_ptp_set_ts_config(struct i40e_pf * pf,struct ifreq * ifr)659 int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
660 {
661 struct hwtstamp_config config;
662 int err;
663
664 if (!(pf->flags & I40E_FLAG_PTP))
665 return -EOPNOTSUPP;
666
667 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
668 return -EFAULT;
669
670 err = i40e_ptp_set_timestamp_mode(pf, &config);
671 if (err)
672 return err;
673
674 /* save these settings for future reference */
675 pf->tstamp_config = config;
676
677 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
678 -EFAULT : 0;
679 }
680
681 /**
682 * i40e_ptp_create_clock - Create PTP clock device for userspace
683 * @pf: Board private structure
684 *
685 * This function creates a new PTP clock device. It only creates one if we
686 * don't already have one, so it is safe to call. Will return error if it
687 * can't create one, but success if we already have a device. Should be used
688 * by i40e_ptp_init to create clock initially, and prevent global resets from
689 * creating new clock devices.
690 **/
i40e_ptp_create_clock(struct i40e_pf * pf)691 static long i40e_ptp_create_clock(struct i40e_pf *pf)
692 {
693 /* no need to create a clock device if we already have one */
694 if (!IS_ERR_OR_NULL(pf->ptp_clock))
695 return 0;
696
697 strncpy(pf->ptp_caps.name, i40e_driver_name, sizeof(pf->ptp_caps.name));
698 pf->ptp_caps.owner = THIS_MODULE;
699 pf->ptp_caps.max_adj = 999999999;
700 pf->ptp_caps.n_ext_ts = 0;
701 pf->ptp_caps.pps = 0;
702 pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
703 pf->ptp_caps.adjtime = i40e_ptp_adjtime;
704 pf->ptp_caps.gettime64 = i40e_ptp_gettime;
705 pf->ptp_caps.settime64 = i40e_ptp_settime;
706 pf->ptp_caps.enable = i40e_ptp_feature_enable;
707
708 /* Attempt to register the clock before enabling the hardware. */
709 pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
710 if (IS_ERR(pf->ptp_clock))
711 return PTR_ERR(pf->ptp_clock);
712
713 /* clear the hwtstamp settings here during clock create, instead of
714 * during regular init, so that we can maintain settings across a
715 * reset or suspend.
716 */
717 pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
718 pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
719
720 return 0;
721 }
722
723 /**
724 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
725 * @pf: Board private structure
726 *
727 * This function sets device up for 1588 support. The first time it is run, it
728 * will create a PHC clock device. It does not create a clock device if one
729 * already exists. It also reconfigures the device after a reset.
730 **/
i40e_ptp_init(struct i40e_pf * pf)731 void i40e_ptp_init(struct i40e_pf *pf)
732 {
733 struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
734 struct i40e_hw *hw = &pf->hw;
735 u32 pf_id;
736 long err;
737
738 /* Only one PF is assigned to control 1588 logic per port. Do not
739 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
740 */
741 pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
742 I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
743 if (hw->pf_id != pf_id) {
744 pf->flags &= ~I40E_FLAG_PTP;
745 dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
746 __func__,
747 netdev->name);
748 return;
749 }
750
751 mutex_init(&pf->tmreg_lock);
752 spin_lock_init(&pf->ptp_rx_lock);
753
754 /* ensure we have a clock device */
755 err = i40e_ptp_create_clock(pf);
756 if (err) {
757 pf->ptp_clock = NULL;
758 dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
759 __func__);
760 } else if (pf->ptp_clock) {
761 struct timespec64 ts;
762 u32 regval;
763
764 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
765 dev_info(&pf->pdev->dev, "PHC enabled\n");
766 pf->flags |= I40E_FLAG_PTP;
767
768 /* Ensure the clocks are running. */
769 regval = rd32(hw, I40E_PRTTSYN_CTL0);
770 regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
771 wr32(hw, I40E_PRTTSYN_CTL0, regval);
772 regval = rd32(hw, I40E_PRTTSYN_CTL1);
773 regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
774 wr32(hw, I40E_PRTTSYN_CTL1, regval);
775
776 /* Set the increment value per clock tick. */
777 i40e_ptp_set_increment(pf);
778
779 /* reset timestamping mode */
780 i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
781
782 /* Set the clock value. */
783 ts = ktime_to_timespec64(ktime_get_real());
784 i40e_ptp_settime(&pf->ptp_caps, &ts);
785 }
786 }
787
788 /**
789 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
790 * @pf: Board private structure
791 *
792 * This function handles the cleanup work required from the initialization by
793 * clearing out the important information and unregistering the PHC.
794 **/
i40e_ptp_stop(struct i40e_pf * pf)795 void i40e_ptp_stop(struct i40e_pf *pf)
796 {
797 pf->flags &= ~I40E_FLAG_PTP;
798 pf->ptp_tx = false;
799 pf->ptp_rx = false;
800
801 if (pf->ptp_tx_skb) {
802 struct sk_buff *skb = pf->ptp_tx_skb;
803
804 pf->ptp_tx_skb = NULL;
805 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
806 dev_kfree_skb_any(skb);
807 }
808
809 if (pf->ptp_clock) {
810 ptp_clock_unregister(pf->ptp_clock);
811 pf->ptp_clock = NULL;
812 dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
813 pf->vsi[pf->lan_vsi]->netdev->name);
814 }
815 }
816