1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/mpls.h>
7 #include <net/xdp.h>
8 #include "i40e.h"
9 #include "i40e_trace.h"
10 #include "i40e_prototype.h"
11 #include "i40e_txrx_common.h"
12 #include "i40e_xsk.h"
13
14 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
15 /**
16 * i40e_fdir - Generate a Flow Director descriptor based on fdata
17 * @tx_ring: Tx ring to send buffer on
18 * @fdata: Flow director filter data
19 * @add: Indicate if we are adding a rule or deleting one
20 *
21 **/
i40e_fdir(struct i40e_ring * tx_ring,struct i40e_fdir_filter * fdata,bool add)22 static void i40e_fdir(struct i40e_ring *tx_ring,
23 struct i40e_fdir_filter *fdata, bool add)
24 {
25 struct i40e_filter_program_desc *fdir_desc;
26 struct i40e_pf *pf = tx_ring->vsi->back;
27 u32 flex_ptype, dtype_cmd;
28 u16 i;
29
30 /* grab the next descriptor */
31 i = tx_ring->next_to_use;
32 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
33
34 i++;
35 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
36
37 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
38 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
39
40 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
41 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
42
43 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
44 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
45
46 /* Use LAN VSI Id if not programmed by user */
47 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
48 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
49 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
50
51 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
52
53 dtype_cmd |= add ?
54 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
55 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
56 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
58
59 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
60 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
61
62 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
63 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
64
65 if (fdata->cnt_index) {
66 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
67 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
68 ((u32)fdata->cnt_index <<
69 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
70 }
71
72 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
73 fdir_desc->rsvd = cpu_to_le32(0);
74 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
75 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
76 }
77
78 #define I40E_FD_CLEAN_DELAY 10
79 /**
80 * i40e_program_fdir_filter - Program a Flow Director filter
81 * @fdir_data: Packet data that will be filter parameters
82 * @raw_packet: the pre-allocated packet buffer for FDir
83 * @pf: The PF pointer
84 * @add: True for add/update, False for remove
85 **/
i40e_program_fdir_filter(struct i40e_fdir_filter * fdir_data,u8 * raw_packet,struct i40e_pf * pf,bool add)86 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
87 u8 *raw_packet, struct i40e_pf *pf,
88 bool add)
89 {
90 struct i40e_tx_buffer *tx_buf, *first;
91 struct i40e_tx_desc *tx_desc;
92 struct i40e_ring *tx_ring;
93 struct i40e_vsi *vsi;
94 struct device *dev;
95 dma_addr_t dma;
96 u32 td_cmd = 0;
97 u16 i;
98
99 /* find existing FDIR VSI */
100 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
101 if (!vsi)
102 return -ENOENT;
103
104 tx_ring = vsi->tx_rings[0];
105 dev = tx_ring->dev;
106
107 /* we need two descriptors to add/del a filter and we can wait */
108 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
109 if (!i)
110 return -EAGAIN;
111 msleep_interruptible(1);
112 }
113
114 dma = dma_map_single(dev, raw_packet,
115 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
116 if (dma_mapping_error(dev, dma))
117 goto dma_fail;
118
119 /* grab the next descriptor */
120 i = tx_ring->next_to_use;
121 first = &tx_ring->tx_bi[i];
122 i40e_fdir(tx_ring, fdir_data, add);
123
124 /* Now program a dummy descriptor */
125 i = tx_ring->next_to_use;
126 tx_desc = I40E_TX_DESC(tx_ring, i);
127 tx_buf = &tx_ring->tx_bi[i];
128
129 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
130
131 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
132
133 /* record length, and DMA address */
134 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
135 dma_unmap_addr_set(tx_buf, dma, dma);
136
137 tx_desc->buffer_addr = cpu_to_le64(dma);
138 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
139
140 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
141 tx_buf->raw_buf = (void *)raw_packet;
142
143 tx_desc->cmd_type_offset_bsz =
144 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
145
146 /* Force memory writes to complete before letting h/w
147 * know there are new descriptors to fetch.
148 */
149 wmb();
150
151 /* Mark the data descriptor to be watched */
152 first->next_to_watch = tx_desc;
153
154 writel(tx_ring->next_to_use, tx_ring->tail);
155 return 0;
156
157 dma_fail:
158 return -1;
159 }
160
161 /**
162 * i40e_create_dummy_packet - Constructs dummy packet for HW
163 * @dummy_packet: preallocated space for dummy packet
164 * @ipv4: is layer 3 packet of version 4 or 6
165 * @l4proto: next level protocol used in data portion of l3
166 * @data: filter data
167 *
168 * Returns address of layer 4 protocol dummy packet.
169 **/
i40e_create_dummy_packet(u8 * dummy_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)170 static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
171 struct i40e_fdir_filter *data)
172 {
173 bool is_vlan = !!data->vlan_tag;
174 struct vlan_hdr vlan = {};
175 struct ipv6hdr ipv6 = {};
176 struct ethhdr eth = {};
177 struct iphdr ip = {};
178 u8 *tmp;
179
180 if (ipv4) {
181 eth.h_proto = cpu_to_be16(ETH_P_IP);
182 ip.protocol = l4proto;
183 ip.version = 0x4;
184 ip.ihl = 0x5;
185
186 ip.daddr = data->dst_ip;
187 ip.saddr = data->src_ip;
188 } else {
189 eth.h_proto = cpu_to_be16(ETH_P_IPV6);
190 ipv6.nexthdr = l4proto;
191 ipv6.version = 0x6;
192
193 memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
194 sizeof(__be32) * 4);
195 memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
196 sizeof(__be32) * 4);
197 }
198
199 if (is_vlan) {
200 vlan.h_vlan_TCI = data->vlan_tag;
201 vlan.h_vlan_encapsulated_proto = eth.h_proto;
202 eth.h_proto = data->vlan_etype;
203 }
204
205 tmp = dummy_packet;
206 memcpy(tmp, ð, sizeof(eth));
207 tmp += sizeof(eth);
208
209 if (is_vlan) {
210 memcpy(tmp, &vlan, sizeof(vlan));
211 tmp += sizeof(vlan);
212 }
213
214 if (ipv4) {
215 memcpy(tmp, &ip, sizeof(ip));
216 tmp += sizeof(ip);
217 } else {
218 memcpy(tmp, &ipv6, sizeof(ipv6));
219 tmp += sizeof(ipv6);
220 }
221
222 return tmp;
223 }
224
225 /**
226 * i40e_create_dummy_udp_packet - helper function to create UDP packet
227 * @raw_packet: preallocated space for dummy packet
228 * @ipv4: is layer 3 packet of version 4 or 6
229 * @l4proto: next level protocol used in data portion of l3
230 * @data: filter data
231 *
232 * Helper function to populate udp fields.
233 **/
i40e_create_dummy_udp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)234 static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
235 struct i40e_fdir_filter *data)
236 {
237 struct udphdr *udp;
238 u8 *tmp;
239
240 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
241 udp = (struct udphdr *)(tmp);
242 udp->dest = data->dst_port;
243 udp->source = data->src_port;
244 }
245
246 /**
247 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
248 * @raw_packet: preallocated space for dummy packet
249 * @ipv4: is layer 3 packet of version 4 or 6
250 * @l4proto: next level protocol used in data portion of l3
251 * @data: filter data
252 *
253 * Helper function to populate tcp fields.
254 **/
i40e_create_dummy_tcp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)255 static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
256 struct i40e_fdir_filter *data)
257 {
258 struct tcphdr *tcp;
259 u8 *tmp;
260 /* Dummy tcp packet */
261 static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
262 0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
263
264 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
265
266 tcp = (struct tcphdr *)tmp;
267 memcpy(tcp, tcp_packet, sizeof(tcp_packet));
268 tcp->dest = data->dst_port;
269 tcp->source = data->src_port;
270 }
271
272 /**
273 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
274 * @raw_packet: preallocated space for dummy packet
275 * @ipv4: is layer 3 packet of version 4 or 6
276 * @l4proto: next level protocol used in data portion of l3
277 * @data: filter data
278 *
279 * Helper function to populate sctp fields.
280 **/
i40e_create_dummy_sctp_packet(u8 * raw_packet,bool ipv4,u8 l4proto,struct i40e_fdir_filter * data)281 static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
282 u8 l4proto,
283 struct i40e_fdir_filter *data)
284 {
285 struct sctphdr *sctp;
286 u8 *tmp;
287
288 tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
289
290 sctp = (struct sctphdr *)tmp;
291 sctp->dest = data->dst_port;
292 sctp->source = data->src_port;
293 }
294
295 /**
296 * i40e_prepare_fdir_filter - Prepare and program fdir filter
297 * @pf: physical function to attach filter to
298 * @fd_data: filter data
299 * @add: add or delete filter
300 * @packet_addr: address of dummy packet, used in filtering
301 * @payload_offset: offset from dummy packet address to user defined data
302 * @pctype: Packet type for which filter is used
303 *
304 * Helper function to offset data of dummy packet, program it and
305 * handle errors.
306 **/
i40e_prepare_fdir_filter(struct i40e_pf * pf,struct i40e_fdir_filter * fd_data,bool add,char * packet_addr,int payload_offset,u8 pctype)307 static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
308 struct i40e_fdir_filter *fd_data,
309 bool add, char *packet_addr,
310 int payload_offset, u8 pctype)
311 {
312 int ret;
313
314 if (fd_data->flex_filter) {
315 u8 *payload;
316 __be16 pattern = fd_data->flex_word;
317 u16 off = fd_data->flex_offset;
318
319 payload = packet_addr + payload_offset;
320
321 /* If user provided vlan, offset payload by vlan header length */
322 if (!!fd_data->vlan_tag)
323 payload += VLAN_HLEN;
324
325 *((__force __be16 *)(payload + off)) = pattern;
326 }
327
328 fd_data->pctype = pctype;
329 ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
330 if (ret) {
331 dev_info(&pf->pdev->dev,
332 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
333 fd_data->pctype, fd_data->fd_id, ret);
334 /* Free the packet buffer since it wasn't added to the ring */
335 return -EOPNOTSUPP;
336 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
337 if (add)
338 dev_info(&pf->pdev->dev,
339 "Filter OK for PCTYPE %d loc = %d\n",
340 fd_data->pctype, fd_data->fd_id);
341 else
342 dev_info(&pf->pdev->dev,
343 "Filter deleted for PCTYPE %d loc = %d\n",
344 fd_data->pctype, fd_data->fd_id);
345 }
346
347 return ret;
348 }
349
350 /**
351 * i40e_change_filter_num - Prepare and program fdir filter
352 * @ipv4: is layer 3 packet of version 4 or 6
353 * @add: add or delete filter
354 * @ipv4_filter_num: field to update
355 * @ipv6_filter_num: field to update
356 *
357 * Update filter number field for pf.
358 **/
i40e_change_filter_num(bool ipv4,bool add,u16 * ipv4_filter_num,u16 * ipv6_filter_num)359 static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
360 u16 *ipv6_filter_num)
361 {
362 if (add) {
363 if (ipv4)
364 (*ipv4_filter_num)++;
365 else
366 (*ipv6_filter_num)++;
367 } else {
368 if (ipv4)
369 (*ipv4_filter_num)--;
370 else
371 (*ipv6_filter_num)--;
372 }
373 }
374
375 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
376 #define I40E_UDPIP6_DUMMY_PACKET_LEN 62
377 /**
378 * i40e_add_del_fdir_udp - Add/Remove UDP filters
379 * @vsi: pointer to the targeted VSI
380 * @fd_data: the flow director data required for the FDir descriptor
381 * @add: true adds a filter, false removes it
382 * @ipv4: true is v4, false is v6
383 *
384 * Returns 0 if the filters were successfully added or removed
385 **/
i40e_add_del_fdir_udp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)386 static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
387 struct i40e_fdir_filter *fd_data,
388 bool add,
389 bool ipv4)
390 {
391 struct i40e_pf *pf = vsi->back;
392 u8 *raw_packet;
393 int ret;
394
395 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
396 if (!raw_packet)
397 return -ENOMEM;
398
399 i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
400
401 if (ipv4)
402 ret = i40e_prepare_fdir_filter
403 (pf, fd_data, add, raw_packet,
404 I40E_UDPIP_DUMMY_PACKET_LEN,
405 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
406 else
407 ret = i40e_prepare_fdir_filter
408 (pf, fd_data, add, raw_packet,
409 I40E_UDPIP6_DUMMY_PACKET_LEN,
410 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
411
412 if (ret) {
413 kfree(raw_packet);
414 return ret;
415 }
416
417 i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
418 &pf->fd_udp6_filter_cnt);
419
420 return 0;
421 }
422
423 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
424 #define I40E_TCPIP6_DUMMY_PACKET_LEN 74
425 /**
426 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
427 * @vsi: pointer to the targeted VSI
428 * @fd_data: the flow director data required for the FDir descriptor
429 * @add: true adds a filter, false removes it
430 * @ipv4: true is v4, false is v6
431 *
432 * Returns 0 if the filters were successfully added or removed
433 **/
i40e_add_del_fdir_tcp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)434 static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
435 struct i40e_fdir_filter *fd_data,
436 bool add,
437 bool ipv4)
438 {
439 struct i40e_pf *pf = vsi->back;
440 u8 *raw_packet;
441 int ret;
442
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 if (!raw_packet)
445 return -ENOMEM;
446
447 i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
448 if (ipv4)
449 ret = i40e_prepare_fdir_filter
450 (pf, fd_data, add, raw_packet,
451 I40E_TCPIP_DUMMY_PACKET_LEN,
452 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
453 else
454 ret = i40e_prepare_fdir_filter
455 (pf, fd_data, add, raw_packet,
456 I40E_TCPIP6_DUMMY_PACKET_LEN,
457 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
458
459 if (ret) {
460 kfree(raw_packet);
461 return ret;
462 }
463
464 i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
465 &pf->fd_tcp6_filter_cnt);
466
467 if (add) {
468 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
469 I40E_DEBUG_FD & pf->hw.debug_mask)
470 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
471 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
472 }
473 return 0;
474 }
475
476 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
477 #define I40E_SCTPIP6_DUMMY_PACKET_LEN 66
478 /**
479 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
480 * a specific flow spec
481 * @vsi: pointer to the targeted VSI
482 * @fd_data: the flow director data required for the FDir descriptor
483 * @add: true adds a filter, false removes it
484 * @ipv4: true is v4, false is v6
485 *
486 * Returns 0 if the filters were successfully added or removed
487 **/
i40e_add_del_fdir_sctp(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)488 static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
489 struct i40e_fdir_filter *fd_data,
490 bool add,
491 bool ipv4)
492 {
493 struct i40e_pf *pf = vsi->back;
494 u8 *raw_packet;
495 int ret;
496
497 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
498 if (!raw_packet)
499 return -ENOMEM;
500
501 i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
502
503 if (ipv4)
504 ret = i40e_prepare_fdir_filter
505 (pf, fd_data, add, raw_packet,
506 I40E_SCTPIP_DUMMY_PACKET_LEN,
507 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
508 else
509 ret = i40e_prepare_fdir_filter
510 (pf, fd_data, add, raw_packet,
511 I40E_SCTPIP6_DUMMY_PACKET_LEN,
512 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
513
514 if (ret) {
515 kfree(raw_packet);
516 return ret;
517 }
518
519 i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
520 &pf->fd_sctp6_filter_cnt);
521
522 return 0;
523 }
524
525 #define I40E_IP_DUMMY_PACKET_LEN 34
526 #define I40E_IP6_DUMMY_PACKET_LEN 54
527 /**
528 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
529 * a specific flow spec
530 * @vsi: pointer to the targeted VSI
531 * @fd_data: the flow director data required for the FDir descriptor
532 * @add: true adds a filter, false removes it
533 * @ipv4: true is v4, false is v6
534 *
535 * Returns 0 if the filters were successfully added or removed
536 **/
i40e_add_del_fdir_ip(struct i40e_vsi * vsi,struct i40e_fdir_filter * fd_data,bool add,bool ipv4)537 static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
538 struct i40e_fdir_filter *fd_data,
539 bool add,
540 bool ipv4)
541 {
542 struct i40e_pf *pf = vsi->back;
543 int payload_offset;
544 u8 *raw_packet;
545 int iter_start;
546 int iter_end;
547 int ret;
548 int i;
549
550 if (ipv4) {
551 iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
552 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
553 } else {
554 iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
555 iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
556 }
557
558 for (i = iter_start; i <= iter_end; i++) {
559 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
560 if (!raw_packet)
561 return -ENOMEM;
562
563 /* IPv6 no header option differs from IPv4 */
564 (void)i40e_create_dummy_packet
565 (raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
566 fd_data);
567
568 payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
569 I40E_IP6_DUMMY_PACKET_LEN;
570 ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
571 payload_offset, i);
572 if (ret)
573 goto err;
574 }
575
576 i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
577 &pf->fd_ip6_filter_cnt);
578
579 return 0;
580 err:
581 kfree(raw_packet);
582 return ret;
583 }
584
585 /**
586 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
587 * @vsi: pointer to the targeted VSI
588 * @input: filter to add or delete
589 * @add: true adds a filter, false removes it
590 *
591 **/
i40e_add_del_fdir(struct i40e_vsi * vsi,struct i40e_fdir_filter * input,bool add)592 int i40e_add_del_fdir(struct i40e_vsi *vsi,
593 struct i40e_fdir_filter *input, bool add)
594 {
595 enum ip_ver { ipv6 = 0, ipv4 = 1 };
596 struct i40e_pf *pf = vsi->back;
597 int ret;
598
599 switch (input->flow_type & ~FLOW_EXT) {
600 case TCP_V4_FLOW:
601 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
602 break;
603 case UDP_V4_FLOW:
604 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
605 break;
606 case SCTP_V4_FLOW:
607 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
608 break;
609 case TCP_V6_FLOW:
610 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
611 break;
612 case UDP_V6_FLOW:
613 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
614 break;
615 case SCTP_V6_FLOW:
616 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
617 break;
618 case IP_USER_FLOW:
619 switch (input->ipl4_proto) {
620 case IPPROTO_TCP:
621 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
622 break;
623 case IPPROTO_UDP:
624 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
625 break;
626 case IPPROTO_SCTP:
627 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
628 break;
629 case IPPROTO_IP:
630 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
631 break;
632 default:
633 /* We cannot support masking based on protocol */
634 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
635 input->ipl4_proto);
636 return -EINVAL;
637 }
638 break;
639 case IPV6_USER_FLOW:
640 switch (input->ipl4_proto) {
641 case IPPROTO_TCP:
642 ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
643 break;
644 case IPPROTO_UDP:
645 ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
646 break;
647 case IPPROTO_SCTP:
648 ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
649 break;
650 case IPPROTO_IP:
651 ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
652 break;
653 default:
654 /* We cannot support masking based on protocol */
655 dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
656 input->ipl4_proto);
657 return -EINVAL;
658 }
659 break;
660 default:
661 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
662 input->flow_type);
663 return -EINVAL;
664 }
665
666 /* The buffer allocated here will be normally be freed by
667 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
668 * completion. In the event of an error adding the buffer to the FDIR
669 * ring, it will immediately be freed. It may also be freed by
670 * i40e_clean_tx_ring() when closing the VSI.
671 */
672 return ret;
673 }
674
675 /**
676 * i40e_fd_handle_status - check the Programming Status for FD
677 * @rx_ring: the Rx ring for this descriptor
678 * @qword0_raw: qword0
679 * @qword1: qword1 after le_to_cpu
680 * @prog_id: the id originally used for programming
681 *
682 * This is used to verify if the FD programming or invalidation
683 * requested by SW to the HW is successful or not and take actions accordingly.
684 **/
i40e_fd_handle_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1,u8 prog_id)685 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
686 u64 qword1, u8 prog_id)
687 {
688 struct i40e_pf *pf = rx_ring->vsi->back;
689 struct pci_dev *pdev = pf->pdev;
690 struct i40e_16b_rx_wb_qw0 *qw0;
691 u32 fcnt_prog, fcnt_avail;
692 u32 error;
693
694 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
695 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
696 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
697
698 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
699 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
700 if (qw0->hi_dword.fd_id != 0 ||
701 (I40E_DEBUG_FD & pf->hw.debug_mask))
702 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
703 pf->fd_inv);
704
705 /* Check if the programming error is for ATR.
706 * If so, auto disable ATR and set a state for
707 * flush in progress. Next time we come here if flush is in
708 * progress do nothing, once flush is complete the state will
709 * be cleared.
710 */
711 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
712 return;
713
714 pf->fd_add_err++;
715 /* store the current atr filter count */
716 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
717
718 if (qw0->hi_dword.fd_id == 0 &&
719 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
720 /* These set_bit() calls aren't atomic with the
721 * test_bit() here, but worse case we potentially
722 * disable ATR and queue a flush right after SB
723 * support is re-enabled. That shouldn't cause an
724 * issue in practice
725 */
726 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
727 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
728 }
729
730 /* filter programming failed most likely due to table full */
731 fcnt_prog = i40e_get_global_fd_count(pf);
732 fcnt_avail = pf->fdir_pf_filter_count;
733 /* If ATR is running fcnt_prog can quickly change,
734 * if we are very close to full, it makes sense to disable
735 * FD ATR/SB and then re-enable it when there is room.
736 */
737 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
738 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
739 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
740 pf->state))
741 if (I40E_DEBUG_FD & pf->hw.debug_mask)
742 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
743 }
744 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
745 if (I40E_DEBUG_FD & pf->hw.debug_mask)
746 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
747 qw0->hi_dword.fd_id);
748 }
749 }
750
751 /**
752 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
753 * @ring: the ring that owns the buffer
754 * @tx_buffer: the buffer to free
755 **/
i40e_unmap_and_free_tx_resource(struct i40e_ring * ring,struct i40e_tx_buffer * tx_buffer)756 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
757 struct i40e_tx_buffer *tx_buffer)
758 {
759 if (tx_buffer->skb) {
760 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
761 kfree(tx_buffer->raw_buf);
762 else if (ring_is_xdp(ring))
763 xdp_return_frame(tx_buffer->xdpf);
764 else
765 dev_kfree_skb_any(tx_buffer->skb);
766 if (dma_unmap_len(tx_buffer, len))
767 dma_unmap_single(ring->dev,
768 dma_unmap_addr(tx_buffer, dma),
769 dma_unmap_len(tx_buffer, len),
770 DMA_TO_DEVICE);
771 } else if (dma_unmap_len(tx_buffer, len)) {
772 dma_unmap_page(ring->dev,
773 dma_unmap_addr(tx_buffer, dma),
774 dma_unmap_len(tx_buffer, len),
775 DMA_TO_DEVICE);
776 }
777
778 tx_buffer->next_to_watch = NULL;
779 tx_buffer->skb = NULL;
780 dma_unmap_len_set(tx_buffer, len, 0);
781 /* tx_buffer must be completely set up in the transmit path */
782 }
783
784 /**
785 * i40e_clean_tx_ring - Free any empty Tx buffers
786 * @tx_ring: ring to be cleaned
787 **/
i40e_clean_tx_ring(struct i40e_ring * tx_ring)788 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
789 {
790 unsigned long bi_size;
791 u16 i;
792
793 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
794 i40e_xsk_clean_tx_ring(tx_ring);
795 } else {
796 /* ring already cleared, nothing to do */
797 if (!tx_ring->tx_bi)
798 return;
799
800 /* Free all the Tx ring sk_buffs */
801 for (i = 0; i < tx_ring->count; i++)
802 i40e_unmap_and_free_tx_resource(tx_ring,
803 &tx_ring->tx_bi[i]);
804 }
805
806 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
807 memset(tx_ring->tx_bi, 0, bi_size);
808
809 /* Zero out the descriptor ring */
810 memset(tx_ring->desc, 0, tx_ring->size);
811
812 tx_ring->next_to_use = 0;
813 tx_ring->next_to_clean = 0;
814
815 if (!tx_ring->netdev)
816 return;
817
818 /* cleanup Tx queue statistics */
819 netdev_tx_reset_queue(txring_txq(tx_ring));
820 }
821
822 /**
823 * i40e_free_tx_resources - Free Tx resources per queue
824 * @tx_ring: Tx descriptor ring for a specific queue
825 *
826 * Free all transmit software resources
827 **/
i40e_free_tx_resources(struct i40e_ring * tx_ring)828 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
829 {
830 i40e_clean_tx_ring(tx_ring);
831 kfree(tx_ring->tx_bi);
832 tx_ring->tx_bi = NULL;
833
834 if (tx_ring->desc) {
835 dma_free_coherent(tx_ring->dev, tx_ring->size,
836 tx_ring->desc, tx_ring->dma);
837 tx_ring->desc = NULL;
838 }
839 }
840
841 /**
842 * i40e_get_tx_pending - how many tx descriptors not processed
843 * @ring: the ring of descriptors
844 * @in_sw: use SW variables
845 *
846 * Since there is no access to the ring head register
847 * in XL710, we need to use our local copies
848 **/
i40e_get_tx_pending(struct i40e_ring * ring,bool in_sw)849 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
850 {
851 u32 head, tail;
852
853 if (!in_sw) {
854 head = i40e_get_head(ring);
855 tail = readl(ring->tail);
856 } else {
857 head = ring->next_to_clean;
858 tail = ring->next_to_use;
859 }
860
861 if (head != tail)
862 return (head < tail) ?
863 tail - head : (tail + ring->count - head);
864
865 return 0;
866 }
867
868 /**
869 * i40e_detect_recover_hung - Function to detect and recover hung_queues
870 * @vsi: pointer to vsi struct with tx queues
871 *
872 * VSI has netdev and netdev has TX queues. This function is to check each of
873 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
874 **/
i40e_detect_recover_hung(struct i40e_vsi * vsi)875 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
876 {
877 struct i40e_ring *tx_ring = NULL;
878 struct net_device *netdev;
879 unsigned int i;
880 int packets;
881
882 if (!vsi)
883 return;
884
885 if (test_bit(__I40E_VSI_DOWN, vsi->state))
886 return;
887
888 netdev = vsi->netdev;
889 if (!netdev)
890 return;
891
892 if (!netif_carrier_ok(netdev))
893 return;
894
895 for (i = 0; i < vsi->num_queue_pairs; i++) {
896 tx_ring = vsi->tx_rings[i];
897 if (tx_ring && tx_ring->desc) {
898 /* If packet counter has not changed the queue is
899 * likely stalled, so force an interrupt for this
900 * queue.
901 *
902 * prev_pkt_ctr would be negative if there was no
903 * pending work.
904 */
905 packets = tx_ring->stats.packets & INT_MAX;
906 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
907 i40e_force_wb(vsi, tx_ring->q_vector);
908 continue;
909 }
910
911 /* Memory barrier between read of packet count and call
912 * to i40e_get_tx_pending()
913 */
914 smp_rmb();
915 tx_ring->tx_stats.prev_pkt_ctr =
916 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
917 }
918 }
919 }
920
921 /**
922 * i40e_clean_tx_irq - Reclaim resources after transmit completes
923 * @vsi: the VSI we care about
924 * @tx_ring: Tx ring to clean
925 * @napi_budget: Used to determine if we are in netpoll
926 * @tx_cleaned: Out parameter set to the number of TXes cleaned
927 *
928 * Returns true if there's any budget left (e.g. the clean is finished)
929 **/
i40e_clean_tx_irq(struct i40e_vsi * vsi,struct i40e_ring * tx_ring,int napi_budget,unsigned int * tx_cleaned)930 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
931 struct i40e_ring *tx_ring, int napi_budget,
932 unsigned int *tx_cleaned)
933 {
934 int i = tx_ring->next_to_clean;
935 struct i40e_tx_buffer *tx_buf;
936 struct i40e_tx_desc *tx_head;
937 struct i40e_tx_desc *tx_desc;
938 unsigned int total_bytes = 0, total_packets = 0;
939 unsigned int budget = vsi->work_limit;
940
941 tx_buf = &tx_ring->tx_bi[i];
942 tx_desc = I40E_TX_DESC(tx_ring, i);
943 i -= tx_ring->count;
944
945 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
946
947 do {
948 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
949
950 /* if next_to_watch is not set then there is no work pending */
951 if (!eop_desc)
952 break;
953
954 /* prevent any other reads prior to eop_desc */
955 smp_rmb();
956
957 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
958 /* we have caught up to head, no work left to do */
959 if (tx_head == tx_desc)
960 break;
961
962 /* clear next_to_watch to prevent false hangs */
963 tx_buf->next_to_watch = NULL;
964
965 /* update the statistics for this packet */
966 total_bytes += tx_buf->bytecount;
967 total_packets += tx_buf->gso_segs;
968
969 /* free the skb/XDP data */
970 if (ring_is_xdp(tx_ring))
971 xdp_return_frame(tx_buf->xdpf);
972 else
973 napi_consume_skb(tx_buf->skb, napi_budget);
974
975 /* unmap skb header data */
976 dma_unmap_single(tx_ring->dev,
977 dma_unmap_addr(tx_buf, dma),
978 dma_unmap_len(tx_buf, len),
979 DMA_TO_DEVICE);
980
981 /* clear tx_buffer data */
982 tx_buf->skb = NULL;
983 dma_unmap_len_set(tx_buf, len, 0);
984
985 /* unmap remaining buffers */
986 while (tx_desc != eop_desc) {
987 i40e_trace(clean_tx_irq_unmap,
988 tx_ring, tx_desc, tx_buf);
989
990 tx_buf++;
991 tx_desc++;
992 i++;
993 if (unlikely(!i)) {
994 i -= tx_ring->count;
995 tx_buf = tx_ring->tx_bi;
996 tx_desc = I40E_TX_DESC(tx_ring, 0);
997 }
998
999 /* unmap any remaining paged data */
1000 if (dma_unmap_len(tx_buf, len)) {
1001 dma_unmap_page(tx_ring->dev,
1002 dma_unmap_addr(tx_buf, dma),
1003 dma_unmap_len(tx_buf, len),
1004 DMA_TO_DEVICE);
1005 dma_unmap_len_set(tx_buf, len, 0);
1006 }
1007 }
1008
1009 /* move us one more past the eop_desc for start of next pkt */
1010 tx_buf++;
1011 tx_desc++;
1012 i++;
1013 if (unlikely(!i)) {
1014 i -= tx_ring->count;
1015 tx_buf = tx_ring->tx_bi;
1016 tx_desc = I40E_TX_DESC(tx_ring, 0);
1017 }
1018
1019 prefetch(tx_desc);
1020
1021 /* update budget accounting */
1022 budget--;
1023 } while (likely(budget));
1024
1025 i += tx_ring->count;
1026 tx_ring->next_to_clean = i;
1027 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1028 i40e_arm_wb(tx_ring, vsi, budget);
1029
1030 if (ring_is_xdp(tx_ring))
1031 return !!budget;
1032
1033 /* notify netdev of completed buffers */
1034 netdev_tx_completed_queue(txring_txq(tx_ring),
1035 total_packets, total_bytes);
1036
1037 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1038 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1039 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1040 /* Make sure that anybody stopping the queue after this
1041 * sees the new next_to_clean.
1042 */
1043 smp_mb();
1044 if (__netif_subqueue_stopped(tx_ring->netdev,
1045 tx_ring->queue_index) &&
1046 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1047 netif_wake_subqueue(tx_ring->netdev,
1048 tx_ring->queue_index);
1049 ++tx_ring->tx_stats.restart_queue;
1050 }
1051 }
1052
1053 *tx_cleaned = total_packets;
1054 return !!budget;
1055 }
1056
1057 /**
1058 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1059 * @vsi: the VSI we care about
1060 * @q_vector: the vector on which to enable writeback
1061 *
1062 **/
i40e_enable_wb_on_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1063 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1064 struct i40e_q_vector *q_vector)
1065 {
1066 u16 flags = q_vector->tx.ring[0].flags;
1067 u32 val;
1068
1069 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1070 return;
1071
1072 if (q_vector->arm_wb_state)
1073 return;
1074
1075 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1076 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1077 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1078
1079 wr32(&vsi->back->hw,
1080 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1081 val);
1082 } else {
1083 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1084 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1085
1086 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1087 }
1088 q_vector->arm_wb_state = true;
1089 }
1090
1091 /**
1092 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1093 * @vsi: the VSI we care about
1094 * @q_vector: the vector on which to force writeback
1095 *
1096 **/
i40e_force_wb(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)1097 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1098 {
1099 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1100 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1101 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1102 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1103 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1104 /* allow 00 to be written to the index */
1105
1106 wr32(&vsi->back->hw,
1107 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1108 } else {
1109 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1110 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1111 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1112 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1113 /* allow 00 to be written to the index */
1114
1115 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1116 }
1117 }
1118
i40e_container_is_rx(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1119 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1120 struct i40e_ring_container *rc)
1121 {
1122 return &q_vector->rx == rc;
1123 }
1124
i40e_itr_divisor(struct i40e_q_vector * q_vector)1125 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1126 {
1127 unsigned int divisor;
1128
1129 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1130 case I40E_LINK_SPEED_40GB:
1131 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1132 break;
1133 case I40E_LINK_SPEED_25GB:
1134 case I40E_LINK_SPEED_20GB:
1135 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1136 break;
1137 default:
1138 case I40E_LINK_SPEED_10GB:
1139 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1140 break;
1141 case I40E_LINK_SPEED_1GB:
1142 case I40E_LINK_SPEED_100MB:
1143 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1144 break;
1145 }
1146
1147 return divisor;
1148 }
1149
1150 /**
1151 * i40e_update_itr - update the dynamic ITR value based on statistics
1152 * @q_vector: structure containing interrupt and ring information
1153 * @rc: structure containing ring performance data
1154 *
1155 * Stores a new ITR value based on packets and byte
1156 * counts during the last interrupt. The advantage of per interrupt
1157 * computation is faster updates and more accurate ITR for the current
1158 * traffic pattern. Constants in this function were computed
1159 * based on theoretical maximum wire speed and thresholds were set based
1160 * on testing data as well as attempting to minimize response time
1161 * while increasing bulk throughput.
1162 **/
i40e_update_itr(struct i40e_q_vector * q_vector,struct i40e_ring_container * rc)1163 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1164 struct i40e_ring_container *rc)
1165 {
1166 unsigned int avg_wire_size, packets, bytes, itr;
1167 unsigned long next_update = jiffies;
1168
1169 /* If we don't have any rings just leave ourselves set for maximum
1170 * possible latency so we take ourselves out of the equation.
1171 */
1172 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1173 return;
1174
1175 /* For Rx we want to push the delay up and default to low latency.
1176 * for Tx we want to pull the delay down and default to high latency.
1177 */
1178 itr = i40e_container_is_rx(q_vector, rc) ?
1179 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1180 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1181
1182 /* If we didn't update within up to 1 - 2 jiffies we can assume
1183 * that either packets are coming in so slow there hasn't been
1184 * any work, or that there is so much work that NAPI is dealing
1185 * with interrupt moderation and we don't need to do anything.
1186 */
1187 if (time_after(next_update, rc->next_update))
1188 goto clear_counts;
1189
1190 /* If itr_countdown is set it means we programmed an ITR within
1191 * the last 4 interrupt cycles. This has a side effect of us
1192 * potentially firing an early interrupt. In order to work around
1193 * this we need to throw out any data received for a few
1194 * interrupts following the update.
1195 */
1196 if (q_vector->itr_countdown) {
1197 itr = rc->target_itr;
1198 goto clear_counts;
1199 }
1200
1201 packets = rc->total_packets;
1202 bytes = rc->total_bytes;
1203
1204 if (i40e_container_is_rx(q_vector, rc)) {
1205 /* If Rx there are 1 to 4 packets and bytes are less than
1206 * 9000 assume insufficient data to use bulk rate limiting
1207 * approach unless Tx is already in bulk rate limiting. We
1208 * are likely latency driven.
1209 */
1210 if (packets && packets < 4 && bytes < 9000 &&
1211 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1212 itr = I40E_ITR_ADAPTIVE_LATENCY;
1213 goto adjust_by_size;
1214 }
1215 } else if (packets < 4) {
1216 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1217 * bulk mode and we are receiving 4 or fewer packets just
1218 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1219 * that the Rx can relax.
1220 */
1221 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1222 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1223 I40E_ITR_ADAPTIVE_MAX_USECS)
1224 goto clear_counts;
1225 } else if (packets > 32) {
1226 /* If we have processed over 32 packets in a single interrupt
1227 * for Tx assume we need to switch over to "bulk" mode.
1228 */
1229 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1230 }
1231
1232 /* We have no packets to actually measure against. This means
1233 * either one of the other queues on this vector is active or
1234 * we are a Tx queue doing TSO with too high of an interrupt rate.
1235 *
1236 * Between 4 and 56 we can assume that our current interrupt delay
1237 * is only slightly too low. As such we should increase it by a small
1238 * fixed amount.
1239 */
1240 if (packets < 56) {
1241 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1242 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1243 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1244 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1245 }
1246 goto clear_counts;
1247 }
1248
1249 if (packets <= 256) {
1250 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1251 itr &= I40E_ITR_MASK;
1252
1253 /* Between 56 and 112 is our "goldilocks" zone where we are
1254 * working out "just right". Just report that our current
1255 * ITR is good for us.
1256 */
1257 if (packets <= 112)
1258 goto clear_counts;
1259
1260 /* If packet count is 128 or greater we are likely looking
1261 * at a slight overrun of the delay we want. Try halving
1262 * our delay to see if that will cut the number of packets
1263 * in half per interrupt.
1264 */
1265 itr /= 2;
1266 itr &= I40E_ITR_MASK;
1267 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1268 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1269
1270 goto clear_counts;
1271 }
1272
1273 /* The paths below assume we are dealing with a bulk ITR since
1274 * number of packets is greater than 256. We are just going to have
1275 * to compute a value and try to bring the count under control,
1276 * though for smaller packet sizes there isn't much we can do as
1277 * NAPI polling will likely be kicking in sooner rather than later.
1278 */
1279 itr = I40E_ITR_ADAPTIVE_BULK;
1280
1281 adjust_by_size:
1282 /* If packet counts are 256 or greater we can assume we have a gross
1283 * overestimation of what the rate should be. Instead of trying to fine
1284 * tune it just use the formula below to try and dial in an exact value
1285 * give the current packet size of the frame.
1286 */
1287 avg_wire_size = bytes / packets;
1288
1289 /* The following is a crude approximation of:
1290 * wmem_default / (size + overhead) = desired_pkts_per_int
1291 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1292 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1293 *
1294 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1295 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1296 * formula down to
1297 *
1298 * (170 * (size + 24)) / (size + 640) = ITR
1299 *
1300 * We first do some math on the packet size and then finally bitshift
1301 * by 8 after rounding up. We also have to account for PCIe link speed
1302 * difference as ITR scales based on this.
1303 */
1304 if (avg_wire_size <= 60) {
1305 /* Start at 250k ints/sec */
1306 avg_wire_size = 4096;
1307 } else if (avg_wire_size <= 380) {
1308 /* 250K ints/sec to 60K ints/sec */
1309 avg_wire_size *= 40;
1310 avg_wire_size += 1696;
1311 } else if (avg_wire_size <= 1084) {
1312 /* 60K ints/sec to 36K ints/sec */
1313 avg_wire_size *= 15;
1314 avg_wire_size += 11452;
1315 } else if (avg_wire_size <= 1980) {
1316 /* 36K ints/sec to 30K ints/sec */
1317 avg_wire_size *= 5;
1318 avg_wire_size += 22420;
1319 } else {
1320 /* plateau at a limit of 30K ints/sec */
1321 avg_wire_size = 32256;
1322 }
1323
1324 /* If we are in low latency mode halve our delay which doubles the
1325 * rate to somewhere between 100K to 16K ints/sec
1326 */
1327 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1328 avg_wire_size /= 2;
1329
1330 /* Resultant value is 256 times larger than it needs to be. This
1331 * gives us room to adjust the value as needed to either increase
1332 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1333 *
1334 * Use addition as we have already recorded the new latency flag
1335 * for the ITR value.
1336 */
1337 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1338 I40E_ITR_ADAPTIVE_MIN_INC;
1339
1340 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1341 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1342 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1343 }
1344
1345 clear_counts:
1346 /* write back value */
1347 rc->target_itr = itr;
1348
1349 /* next update should occur within next jiffy */
1350 rc->next_update = next_update + 1;
1351
1352 rc->total_bytes = 0;
1353 rc->total_packets = 0;
1354 }
1355
i40e_rx_bi(struct i40e_ring * rx_ring,u32 idx)1356 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1357 {
1358 return &rx_ring->rx_bi[idx];
1359 }
1360
1361 /**
1362 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1363 * @rx_ring: rx descriptor ring to store buffers on
1364 * @old_buff: donor buffer to have page reused
1365 *
1366 * Synchronizes page for reuse by the adapter
1367 **/
i40e_reuse_rx_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * old_buff)1368 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1369 struct i40e_rx_buffer *old_buff)
1370 {
1371 struct i40e_rx_buffer *new_buff;
1372 u16 nta = rx_ring->next_to_alloc;
1373
1374 new_buff = i40e_rx_bi(rx_ring, nta);
1375
1376 /* update, and store next to alloc */
1377 nta++;
1378 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1379
1380 /* transfer page from old buffer to new buffer */
1381 new_buff->dma = old_buff->dma;
1382 new_buff->page = old_buff->page;
1383 new_buff->page_offset = old_buff->page_offset;
1384 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1385
1386 /* clear contents of buffer_info */
1387 old_buff->page = NULL;
1388 }
1389
1390 /**
1391 * i40e_clean_programming_status - clean the programming status descriptor
1392 * @rx_ring: the rx ring that has this descriptor
1393 * @qword0_raw: qword0
1394 * @qword1: qword1 representing status_error_len in CPU ordering
1395 *
1396 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1397 * status being successful or not and take actions accordingly. FCoE should
1398 * handle its context/filter programming/invalidation status and take actions.
1399 *
1400 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1401 **/
i40e_clean_programming_status(struct i40e_ring * rx_ring,u64 qword0_raw,u64 qword1)1402 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1403 u64 qword1)
1404 {
1405 u8 id;
1406
1407 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1408 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1409
1410 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1411 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1412 }
1413
1414 /**
1415 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1416 * @tx_ring: the tx ring to set up
1417 *
1418 * Return 0 on success, negative on error
1419 **/
i40e_setup_tx_descriptors(struct i40e_ring * tx_ring)1420 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1421 {
1422 struct device *dev = tx_ring->dev;
1423 int bi_size;
1424
1425 if (!dev)
1426 return -ENOMEM;
1427
1428 /* warn if we are about to overwrite the pointer */
1429 WARN_ON(tx_ring->tx_bi);
1430 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1431 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1432 if (!tx_ring->tx_bi)
1433 goto err;
1434
1435 u64_stats_init(&tx_ring->syncp);
1436
1437 /* round up to nearest 4K */
1438 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1439 /* add u32 for head writeback, align after this takes care of
1440 * guaranteeing this is at least one cache line in size
1441 */
1442 tx_ring->size += sizeof(u32);
1443 tx_ring->size = ALIGN(tx_ring->size, 4096);
1444 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1445 &tx_ring->dma, GFP_KERNEL);
1446 if (!tx_ring->desc) {
1447 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1448 tx_ring->size);
1449 goto err;
1450 }
1451
1452 tx_ring->next_to_use = 0;
1453 tx_ring->next_to_clean = 0;
1454 tx_ring->tx_stats.prev_pkt_ctr = -1;
1455 return 0;
1456
1457 err:
1458 kfree(tx_ring->tx_bi);
1459 tx_ring->tx_bi = NULL;
1460 return -ENOMEM;
1461 }
1462
i40e_clear_rx_bi(struct i40e_ring * rx_ring)1463 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1464 {
1465 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1466 }
1467
1468 /**
1469 * i40e_clean_rx_ring - Free Rx buffers
1470 * @rx_ring: ring to be cleaned
1471 **/
i40e_clean_rx_ring(struct i40e_ring * rx_ring)1472 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1473 {
1474 u16 i;
1475
1476 /* ring already cleared, nothing to do */
1477 if (!rx_ring->rx_bi)
1478 return;
1479
1480 if (rx_ring->xsk_pool) {
1481 i40e_xsk_clean_rx_ring(rx_ring);
1482 goto skip_free;
1483 }
1484
1485 /* Free all the Rx ring sk_buffs */
1486 for (i = 0; i < rx_ring->count; i++) {
1487 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1488
1489 if (!rx_bi->page)
1490 continue;
1491
1492 /* Invalidate cache lines that may have been written to by
1493 * device so that we avoid corrupting memory.
1494 */
1495 dma_sync_single_range_for_cpu(rx_ring->dev,
1496 rx_bi->dma,
1497 rx_bi->page_offset,
1498 rx_ring->rx_buf_len,
1499 DMA_FROM_DEVICE);
1500
1501 /* free resources associated with mapping */
1502 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1503 i40e_rx_pg_size(rx_ring),
1504 DMA_FROM_DEVICE,
1505 I40E_RX_DMA_ATTR);
1506
1507 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1508
1509 rx_bi->page = NULL;
1510 rx_bi->page_offset = 0;
1511 }
1512
1513 skip_free:
1514 if (rx_ring->xsk_pool)
1515 i40e_clear_rx_bi_zc(rx_ring);
1516 else
1517 i40e_clear_rx_bi(rx_ring);
1518
1519 /* Zero out the descriptor ring */
1520 memset(rx_ring->desc, 0, rx_ring->size);
1521
1522 rx_ring->next_to_alloc = 0;
1523 rx_ring->next_to_clean = 0;
1524 rx_ring->next_to_process = 0;
1525 rx_ring->next_to_use = 0;
1526 }
1527
1528 /**
1529 * i40e_free_rx_resources - Free Rx resources
1530 * @rx_ring: ring to clean the resources from
1531 *
1532 * Free all receive software resources
1533 **/
i40e_free_rx_resources(struct i40e_ring * rx_ring)1534 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1535 {
1536 i40e_clean_rx_ring(rx_ring);
1537 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1538 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1539 rx_ring->xdp_prog = NULL;
1540 kfree(rx_ring->rx_bi);
1541 rx_ring->rx_bi = NULL;
1542
1543 if (rx_ring->desc) {
1544 dma_free_coherent(rx_ring->dev, rx_ring->size,
1545 rx_ring->desc, rx_ring->dma);
1546 rx_ring->desc = NULL;
1547 }
1548 }
1549
1550 /**
1551 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1552 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1553 *
1554 * Returns 0 on success, negative on failure
1555 **/
i40e_setup_rx_descriptors(struct i40e_ring * rx_ring)1556 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1557 {
1558 struct device *dev = rx_ring->dev;
1559 int err;
1560
1561 u64_stats_init(&rx_ring->syncp);
1562
1563 /* Round up to nearest 4K */
1564 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1565 rx_ring->size = ALIGN(rx_ring->size, 4096);
1566 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1567 &rx_ring->dma, GFP_KERNEL);
1568
1569 if (!rx_ring->desc) {
1570 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1571 rx_ring->size);
1572 return -ENOMEM;
1573 }
1574
1575 rx_ring->next_to_alloc = 0;
1576 rx_ring->next_to_clean = 0;
1577 rx_ring->next_to_process = 0;
1578 rx_ring->next_to_use = 0;
1579
1580 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1581 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1582 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1583 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1584 if (err < 0)
1585 return err;
1586 }
1587
1588 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1589
1590 rx_ring->rx_bi =
1591 kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1592 if (!rx_ring->rx_bi)
1593 return -ENOMEM;
1594
1595 return 0;
1596 }
1597
1598 /**
1599 * i40e_release_rx_desc - Store the new tail and head values
1600 * @rx_ring: ring to bump
1601 * @val: new head index
1602 **/
i40e_release_rx_desc(struct i40e_ring * rx_ring,u32 val)1603 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1604 {
1605 rx_ring->next_to_use = val;
1606
1607 /* update next to alloc since we have filled the ring */
1608 rx_ring->next_to_alloc = val;
1609
1610 /* Force memory writes to complete before letting h/w
1611 * know there are new descriptors to fetch. (Only
1612 * applicable for weak-ordered memory model archs,
1613 * such as IA-64).
1614 */
1615 wmb();
1616 writel(val, rx_ring->tail);
1617 }
1618
1619 #if (PAGE_SIZE >= 8192)
i40e_rx_frame_truesize(struct i40e_ring * rx_ring,unsigned int size)1620 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1621 unsigned int size)
1622 {
1623 unsigned int truesize;
1624
1625 truesize = rx_ring->rx_offset ?
1626 SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1627 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1628 SKB_DATA_ALIGN(size);
1629 return truesize;
1630 }
1631 #endif
1632
1633 /**
1634 * i40e_alloc_mapped_page - recycle or make a new page
1635 * @rx_ring: ring to use
1636 * @bi: rx_buffer struct to modify
1637 *
1638 * Returns true if the page was successfully allocated or
1639 * reused.
1640 **/
i40e_alloc_mapped_page(struct i40e_ring * rx_ring,struct i40e_rx_buffer * bi)1641 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1642 struct i40e_rx_buffer *bi)
1643 {
1644 struct page *page = bi->page;
1645 dma_addr_t dma;
1646
1647 /* since we are recycling buffers we should seldom need to alloc */
1648 if (likely(page)) {
1649 rx_ring->rx_stats.page_reuse_count++;
1650 return true;
1651 }
1652
1653 /* alloc new page for storage */
1654 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1655 if (unlikely(!page)) {
1656 rx_ring->rx_stats.alloc_page_failed++;
1657 return false;
1658 }
1659
1660 rx_ring->rx_stats.page_alloc_count++;
1661
1662 /* map page for use */
1663 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1664 i40e_rx_pg_size(rx_ring),
1665 DMA_FROM_DEVICE,
1666 I40E_RX_DMA_ATTR);
1667
1668 /* if mapping failed free memory back to system since
1669 * there isn't much point in holding memory we can't use
1670 */
1671 if (dma_mapping_error(rx_ring->dev, dma)) {
1672 __free_pages(page, i40e_rx_pg_order(rx_ring));
1673 rx_ring->rx_stats.alloc_page_failed++;
1674 return false;
1675 }
1676
1677 bi->dma = dma;
1678 bi->page = page;
1679 bi->page_offset = rx_ring->rx_offset;
1680 page_ref_add(page, USHRT_MAX - 1);
1681 bi->pagecnt_bias = USHRT_MAX;
1682
1683 return true;
1684 }
1685
1686 /**
1687 * i40e_alloc_rx_buffers - Replace used receive buffers
1688 * @rx_ring: ring to place buffers on
1689 * @cleaned_count: number of buffers to replace
1690 *
1691 * Returns false if all allocations were successful, true if any fail
1692 **/
i40e_alloc_rx_buffers(struct i40e_ring * rx_ring,u16 cleaned_count)1693 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1694 {
1695 u16 ntu = rx_ring->next_to_use;
1696 union i40e_rx_desc *rx_desc;
1697 struct i40e_rx_buffer *bi;
1698
1699 /* do nothing if no valid netdev defined */
1700 if (!rx_ring->netdev || !cleaned_count)
1701 return false;
1702
1703 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1704 bi = i40e_rx_bi(rx_ring, ntu);
1705
1706 do {
1707 if (!i40e_alloc_mapped_page(rx_ring, bi))
1708 goto no_buffers;
1709
1710 /* sync the buffer for use by the device */
1711 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1712 bi->page_offset,
1713 rx_ring->rx_buf_len,
1714 DMA_FROM_DEVICE);
1715
1716 /* Refresh the desc even if buffer_addrs didn't change
1717 * because each write-back erases this info.
1718 */
1719 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1720
1721 rx_desc++;
1722 bi++;
1723 ntu++;
1724 if (unlikely(ntu == rx_ring->count)) {
1725 rx_desc = I40E_RX_DESC(rx_ring, 0);
1726 bi = i40e_rx_bi(rx_ring, 0);
1727 ntu = 0;
1728 }
1729
1730 /* clear the status bits for the next_to_use descriptor */
1731 rx_desc->wb.qword1.status_error_len = 0;
1732
1733 cleaned_count--;
1734 } while (cleaned_count);
1735
1736 if (rx_ring->next_to_use != ntu)
1737 i40e_release_rx_desc(rx_ring, ntu);
1738
1739 return false;
1740
1741 no_buffers:
1742 if (rx_ring->next_to_use != ntu)
1743 i40e_release_rx_desc(rx_ring, ntu);
1744
1745 /* make sure to come back via polling to try again after
1746 * allocation failure
1747 */
1748 return true;
1749 }
1750
1751 /**
1752 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1753 * @vsi: the VSI we care about
1754 * @skb: skb currently being received and modified
1755 * @rx_desc: the receive descriptor
1756 **/
i40e_rx_checksum(struct i40e_vsi * vsi,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1757 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1758 struct sk_buff *skb,
1759 union i40e_rx_desc *rx_desc)
1760 {
1761 struct i40e_rx_ptype_decoded decoded;
1762 u32 rx_error, rx_status;
1763 bool ipv4, ipv6;
1764 u8 ptype;
1765 u64 qword;
1766
1767 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1768 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1769 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1770 I40E_RXD_QW1_ERROR_SHIFT;
1771 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1772 I40E_RXD_QW1_STATUS_SHIFT;
1773 decoded = decode_rx_desc_ptype(ptype);
1774
1775 skb->ip_summed = CHECKSUM_NONE;
1776
1777 skb_checksum_none_assert(skb);
1778
1779 /* Rx csum enabled and ip headers found? */
1780 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1781 return;
1782
1783 /* did the hardware decode the packet and checksum? */
1784 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1785 return;
1786
1787 /* both known and outer_ip must be set for the below code to work */
1788 if (!(decoded.known && decoded.outer_ip))
1789 return;
1790
1791 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1792 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1793 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1794 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1795
1796 if (ipv4 &&
1797 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1798 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1799 goto checksum_fail;
1800
1801 /* likely incorrect csum if alternate IP extension headers found */
1802 if (ipv6 &&
1803 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1804 /* don't increment checksum err here, non-fatal err */
1805 return;
1806
1807 /* there was some L4 error, count error and punt packet to the stack */
1808 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1809 goto checksum_fail;
1810
1811 /* handle packets that were not able to be checksummed due
1812 * to arrival speed, in this case the stack can compute
1813 * the csum.
1814 */
1815 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1816 return;
1817
1818 /* If there is an outer header present that might contain a checksum
1819 * we need to bump the checksum level by 1 to reflect the fact that
1820 * we are indicating we validated the inner checksum.
1821 */
1822 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1823 skb->csum_level = 1;
1824
1825 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1826 switch (decoded.inner_prot) {
1827 case I40E_RX_PTYPE_INNER_PROT_TCP:
1828 case I40E_RX_PTYPE_INNER_PROT_UDP:
1829 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1830 skb->ip_summed = CHECKSUM_UNNECESSARY;
1831 fallthrough;
1832 default:
1833 break;
1834 }
1835
1836 return;
1837
1838 checksum_fail:
1839 vsi->back->hw_csum_rx_error++;
1840 }
1841
1842 /**
1843 * i40e_ptype_to_htype - get a hash type
1844 * @ptype: the ptype value from the descriptor
1845 *
1846 * Returns a hash type to be used by skb_set_hash
1847 **/
i40e_ptype_to_htype(u8 ptype)1848 static inline int i40e_ptype_to_htype(u8 ptype)
1849 {
1850 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1851
1852 if (!decoded.known)
1853 return PKT_HASH_TYPE_NONE;
1854
1855 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1856 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1857 return PKT_HASH_TYPE_L4;
1858 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1859 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1860 return PKT_HASH_TYPE_L3;
1861 else
1862 return PKT_HASH_TYPE_L2;
1863 }
1864
1865 /**
1866 * i40e_rx_hash - set the hash value in the skb
1867 * @ring: descriptor ring
1868 * @rx_desc: specific descriptor
1869 * @skb: skb currently being received and modified
1870 * @rx_ptype: Rx packet type
1871 **/
i40e_rx_hash(struct i40e_ring * ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb,u8 rx_ptype)1872 static inline void i40e_rx_hash(struct i40e_ring *ring,
1873 union i40e_rx_desc *rx_desc,
1874 struct sk_buff *skb,
1875 u8 rx_ptype)
1876 {
1877 u32 hash;
1878 const __le64 rss_mask =
1879 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1880 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1881
1882 if (!(ring->netdev->features & NETIF_F_RXHASH))
1883 return;
1884
1885 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1886 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1887 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1888 }
1889 }
1890
1891 /**
1892 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1893 * @rx_ring: rx descriptor ring packet is being transacted on
1894 * @rx_desc: pointer to the EOP Rx descriptor
1895 * @skb: pointer to current skb being populated
1896 *
1897 * This function checks the ring, descriptor, and packet information in
1898 * order to populate the hash, checksum, VLAN, protocol, and
1899 * other fields within the skb.
1900 **/
i40e_process_skb_fields(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc,struct sk_buff * skb)1901 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1902 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1903 {
1904 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1905 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1906 I40E_RXD_QW1_STATUS_SHIFT;
1907 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1908 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1909 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1910 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1911 I40E_RXD_QW1_PTYPE_SHIFT;
1912
1913 if (unlikely(tsynvalid))
1914 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1915
1916 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1917
1918 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1919
1920 skb_record_rx_queue(skb, rx_ring->queue_index);
1921
1922 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1923 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1924
1925 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1926 le16_to_cpu(vlan_tag));
1927 }
1928
1929 /* modifies the skb - consumes the enet header */
1930 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1931 }
1932
1933 /**
1934 * i40e_cleanup_headers - Correct empty headers
1935 * @rx_ring: rx descriptor ring packet is being transacted on
1936 * @skb: pointer to current skb being fixed
1937 * @rx_desc: pointer to the EOP Rx descriptor
1938 *
1939 * In addition if skb is not at least 60 bytes we need to pad it so that
1940 * it is large enough to qualify as a valid Ethernet frame.
1941 *
1942 * Returns true if an error was encountered and skb was freed.
1943 **/
i40e_cleanup_headers(struct i40e_ring * rx_ring,struct sk_buff * skb,union i40e_rx_desc * rx_desc)1944 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1945 union i40e_rx_desc *rx_desc)
1946
1947 {
1948 /* ERR_MASK will only have valid bits if EOP set, and
1949 * what we are doing here is actually checking
1950 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1951 * the error field
1952 */
1953 if (unlikely(i40e_test_staterr(rx_desc,
1954 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1955 dev_kfree_skb_any(skb);
1956 return true;
1957 }
1958
1959 /* if eth_skb_pad returns an error the skb was freed */
1960 if (eth_skb_pad(skb))
1961 return true;
1962
1963 return false;
1964 }
1965
1966 /**
1967 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
1968 * @rx_buffer: buffer containing the page
1969 * @rx_stats: rx stats structure for the rx ring
1970 *
1971 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1972 * which will assign the current buffer to the buffer that next_to_alloc is
1973 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1974 * page freed.
1975 *
1976 * rx_stats will be updated to indicate whether the page was waived
1977 * or busy if it could not be reused.
1978 */
i40e_can_reuse_rx_page(struct i40e_rx_buffer * rx_buffer,struct i40e_rx_queue_stats * rx_stats)1979 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1980 struct i40e_rx_queue_stats *rx_stats)
1981 {
1982 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1983 struct page *page = rx_buffer->page;
1984
1985 /* Is any reuse possible? */
1986 if (!dev_page_is_reusable(page)) {
1987 rx_stats->page_waive_count++;
1988 return false;
1989 }
1990
1991 #if (PAGE_SIZE < 8192)
1992 /* if we are only owner of page we can reuse it */
1993 if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1994 rx_stats->page_busy_count++;
1995 return false;
1996 }
1997 #else
1998 #define I40E_LAST_OFFSET \
1999 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
2000 if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
2001 rx_stats->page_busy_count++;
2002 return false;
2003 }
2004 #endif
2005
2006 /* If we have drained the page fragment pool we need to update
2007 * the pagecnt_bias and page count so that we fully restock the
2008 * number of references the driver holds.
2009 */
2010 if (unlikely(pagecnt_bias == 1)) {
2011 page_ref_add(page, USHRT_MAX - 1);
2012 rx_buffer->pagecnt_bias = USHRT_MAX;
2013 }
2014
2015 return true;
2016 }
2017
2018 /**
2019 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2020 * @rx_buffer: Rx buffer to adjust
2021 * @truesize: Size of adjustment
2022 **/
i40e_rx_buffer_flip(struct i40e_rx_buffer * rx_buffer,unsigned int truesize)2023 static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2024 unsigned int truesize)
2025 {
2026 #if (PAGE_SIZE < 8192)
2027 rx_buffer->page_offset ^= truesize;
2028 #else
2029 rx_buffer->page_offset += truesize;
2030 #endif
2031 }
2032
2033 /**
2034 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2035 * @rx_ring: rx descriptor ring to transact packets on
2036 * @size: size of buffer to add to skb
2037 *
2038 * This function will pull an Rx buffer from the ring and synchronize it
2039 * for use by the CPU.
2040 */
i40e_get_rx_buffer(struct i40e_ring * rx_ring,const unsigned int size)2041 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2042 const unsigned int size)
2043 {
2044 struct i40e_rx_buffer *rx_buffer;
2045
2046 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2047 rx_buffer->page_count =
2048 #if (PAGE_SIZE < 8192)
2049 page_count(rx_buffer->page);
2050 #else
2051 0;
2052 #endif
2053 prefetch_page_address(rx_buffer->page);
2054
2055 /* we are reusing so sync this buffer for CPU use */
2056 dma_sync_single_range_for_cpu(rx_ring->dev,
2057 rx_buffer->dma,
2058 rx_buffer->page_offset,
2059 size,
2060 DMA_FROM_DEVICE);
2061
2062 /* We have pulled a buffer for use, so decrement pagecnt_bias */
2063 rx_buffer->pagecnt_bias--;
2064
2065 return rx_buffer;
2066 }
2067
2068 /**
2069 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2070 * @rx_ring: rx descriptor ring to transact packets on
2071 * @rx_buffer: rx buffer to pull data from
2072 *
2073 * This function will clean up the contents of the rx_buffer. It will
2074 * either recycle the buffer or unmap it and free the associated resources.
2075 */
i40e_put_rx_buffer(struct i40e_ring * rx_ring,struct i40e_rx_buffer * rx_buffer)2076 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2077 struct i40e_rx_buffer *rx_buffer)
2078 {
2079 if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2080 /* hand second half of page back to the ring */
2081 i40e_reuse_rx_page(rx_ring, rx_buffer);
2082 } else {
2083 /* we are not reusing the buffer so unmap it */
2084 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2085 i40e_rx_pg_size(rx_ring),
2086 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2087 __page_frag_cache_drain(rx_buffer->page,
2088 rx_buffer->pagecnt_bias);
2089 /* clear contents of buffer_info */
2090 rx_buffer->page = NULL;
2091 }
2092 }
2093
2094 /**
2095 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2096 * @rx_ring: Rx descriptor ring to transact packets on
2097 * @xdp_res: Result of the XDP program
2098 * @xdp: xdp_buff pointing to the data
2099 **/
i40e_process_rx_buffs(struct i40e_ring * rx_ring,int xdp_res,struct xdp_buff * xdp)2100 static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2101 struct xdp_buff *xdp)
2102 {
2103 u32 next = rx_ring->next_to_clean;
2104 struct i40e_rx_buffer *rx_buffer;
2105
2106 xdp->flags = 0;
2107
2108 while (1) {
2109 rx_buffer = i40e_rx_bi(rx_ring, next);
2110 if (++next == rx_ring->count)
2111 next = 0;
2112
2113 if (!rx_buffer->page)
2114 continue;
2115
2116 if (xdp_res == I40E_XDP_CONSUMED)
2117 rx_buffer->pagecnt_bias++;
2118 else
2119 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2120
2121 /* EOP buffer will be put in i40e_clean_rx_irq() */
2122 if (next == rx_ring->next_to_process)
2123 return;
2124
2125 i40e_put_rx_buffer(rx_ring, rx_buffer);
2126 }
2127 }
2128
2129 /**
2130 * i40e_construct_skb - Allocate skb and populate it
2131 * @rx_ring: rx descriptor ring to transact packets on
2132 * @xdp: xdp_buff pointing to the data
2133 * @nr_frags: number of buffers for the packet
2134 *
2135 * This function allocates an skb. It then populates it with the page
2136 * data from the current receive descriptor, taking care to set up the
2137 * skb correctly.
2138 */
i40e_construct_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp,u32 nr_frags)2139 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2140 struct xdp_buff *xdp,
2141 u32 nr_frags)
2142 {
2143 unsigned int size = xdp->data_end - xdp->data;
2144 struct i40e_rx_buffer *rx_buffer;
2145 unsigned int headlen;
2146 struct sk_buff *skb;
2147
2148 /* prefetch first cache line of first page */
2149 net_prefetch(xdp->data);
2150
2151 /* Note, we get here by enabling legacy-rx via:
2152 *
2153 * ethtool --set-priv-flags <dev> legacy-rx on
2154 *
2155 * In this mode, we currently get 0 extra XDP headroom as
2156 * opposed to having legacy-rx off, where we process XDP
2157 * packets going to stack via i40e_build_skb(). The latter
2158 * provides us currently with 192 bytes of headroom.
2159 *
2160 * For i40e_construct_skb() mode it means that the
2161 * xdp->data_meta will always point to xdp->data, since
2162 * the helper cannot expand the head. Should this ever
2163 * change in future for legacy-rx mode on, then lets also
2164 * add xdp->data_meta handling here.
2165 */
2166
2167 /* allocate a skb to store the frags */
2168 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2169 I40E_RX_HDR_SIZE,
2170 GFP_ATOMIC | __GFP_NOWARN);
2171 if (unlikely(!skb))
2172 return NULL;
2173
2174 /* Determine available headroom for copy */
2175 headlen = size;
2176 if (headlen > I40E_RX_HDR_SIZE)
2177 headlen = eth_get_headlen(skb->dev, xdp->data,
2178 I40E_RX_HDR_SIZE);
2179
2180 /* align pull length to size of long to optimize memcpy performance */
2181 memcpy(__skb_put(skb, headlen), xdp->data,
2182 ALIGN(headlen, sizeof(long)));
2183
2184 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2185 /* update all of the pointers */
2186 size -= headlen;
2187 if (size) {
2188 if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2189 dev_kfree_skb(skb);
2190 return NULL;
2191 }
2192 skb_add_rx_frag(skb, 0, rx_buffer->page,
2193 rx_buffer->page_offset + headlen,
2194 size, xdp->frame_sz);
2195 /* buffer is used by skb, update page_offset */
2196 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2197 } else {
2198 /* buffer is unused, reset bias back to rx_buffer */
2199 rx_buffer->pagecnt_bias++;
2200 }
2201
2202 if (unlikely(xdp_buff_has_frags(xdp))) {
2203 struct skb_shared_info *sinfo, *skinfo = skb_shinfo(skb);
2204
2205 sinfo = xdp_get_shared_info_from_buff(xdp);
2206 memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2207 sizeof(skb_frag_t) * nr_frags);
2208
2209 xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2210 sinfo->xdp_frags_size,
2211 nr_frags * xdp->frame_sz,
2212 xdp_buff_is_frag_pfmemalloc(xdp));
2213
2214 /* First buffer has already been processed, so bump ntc */
2215 if (++rx_ring->next_to_clean == rx_ring->count)
2216 rx_ring->next_to_clean = 0;
2217
2218 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2219 }
2220
2221 return skb;
2222 }
2223
2224 /**
2225 * i40e_build_skb - Build skb around an existing buffer
2226 * @rx_ring: Rx descriptor ring to transact packets on
2227 * @xdp: xdp_buff pointing to the data
2228 * @nr_frags: number of buffers for the packet
2229 *
2230 * This function builds an skb around an existing Rx buffer, taking care
2231 * to set up the skb correctly and avoid any memcpy overhead.
2232 */
i40e_build_skb(struct i40e_ring * rx_ring,struct xdp_buff * xdp,u32 nr_frags)2233 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2234 struct xdp_buff *xdp,
2235 u32 nr_frags)
2236 {
2237 unsigned int metasize = xdp->data - xdp->data_meta;
2238 struct sk_buff *skb;
2239
2240 /* Prefetch first cache line of first page. If xdp->data_meta
2241 * is unused, this points exactly as xdp->data, otherwise we
2242 * likely have a consumer accessing first few bytes of meta
2243 * data, and then actual data.
2244 */
2245 net_prefetch(xdp->data_meta);
2246
2247 /* build an skb around the page buffer */
2248 skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2249 if (unlikely(!skb))
2250 return NULL;
2251
2252 /* update pointers within the skb to store the data */
2253 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2254 __skb_put(skb, xdp->data_end - xdp->data);
2255 if (metasize)
2256 skb_metadata_set(skb, metasize);
2257
2258 if (unlikely(xdp_buff_has_frags(xdp))) {
2259 struct skb_shared_info *sinfo;
2260
2261 sinfo = xdp_get_shared_info_from_buff(xdp);
2262 xdp_update_skb_shared_info(skb, nr_frags,
2263 sinfo->xdp_frags_size,
2264 nr_frags * xdp->frame_sz,
2265 xdp_buff_is_frag_pfmemalloc(xdp));
2266
2267 i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2268 } else {
2269 struct i40e_rx_buffer *rx_buffer;
2270
2271 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2272 /* buffer is used by skb, update page_offset */
2273 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2274 }
2275
2276 return skb;
2277 }
2278
2279 /**
2280 * i40e_is_non_eop - process handling of non-EOP buffers
2281 * @rx_ring: Rx ring being processed
2282 * @rx_desc: Rx descriptor for current buffer
2283 *
2284 * If the buffer is an EOP buffer, this function exits returning false,
2285 * otherwise return true indicating that this is in fact a non-EOP buffer.
2286 */
i40e_is_non_eop(struct i40e_ring * rx_ring,union i40e_rx_desc * rx_desc)2287 bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2288 union i40e_rx_desc *rx_desc)
2289 {
2290 /* if we are the last buffer then there is nothing else to do */
2291 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2292 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2293 return false;
2294
2295 rx_ring->rx_stats.non_eop_descs++;
2296
2297 return true;
2298 }
2299
2300 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2301 struct i40e_ring *xdp_ring);
2302
i40e_xmit_xdp_tx_ring(struct xdp_buff * xdp,struct i40e_ring * xdp_ring)2303 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2304 {
2305 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2306
2307 if (unlikely(!xdpf))
2308 return I40E_XDP_CONSUMED;
2309
2310 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2311 }
2312
2313 /**
2314 * i40e_run_xdp - run an XDP program
2315 * @rx_ring: Rx ring being processed
2316 * @xdp: XDP buffer containing the frame
2317 * @xdp_prog: XDP program to run
2318 **/
i40e_run_xdp(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)2319 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
2320 {
2321 int err, result = I40E_XDP_PASS;
2322 struct i40e_ring *xdp_ring;
2323 u32 act;
2324
2325 if (!xdp_prog)
2326 goto xdp_out;
2327
2328 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2329
2330 act = bpf_prog_run_xdp(xdp_prog, xdp);
2331 switch (act) {
2332 case XDP_PASS:
2333 break;
2334 case XDP_TX:
2335 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2336 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2337 if (result == I40E_XDP_CONSUMED)
2338 goto out_failure;
2339 break;
2340 case XDP_REDIRECT:
2341 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2342 if (err)
2343 goto out_failure;
2344 result = I40E_XDP_REDIR;
2345 break;
2346 default:
2347 bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2348 fallthrough;
2349 case XDP_ABORTED:
2350 out_failure:
2351 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2352 fallthrough; /* handle aborts by dropping packet */
2353 case XDP_DROP:
2354 result = I40E_XDP_CONSUMED;
2355 break;
2356 }
2357 xdp_out:
2358 return result;
2359 }
2360
2361 /**
2362 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2363 * @xdp_ring: XDP Tx ring
2364 *
2365 * This function updates the XDP Tx ring tail register.
2366 **/
i40e_xdp_ring_update_tail(struct i40e_ring * xdp_ring)2367 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2368 {
2369 /* Force memory writes to complete before letting h/w
2370 * know there are new descriptors to fetch.
2371 */
2372 wmb();
2373 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2374 }
2375
2376 /**
2377 * i40e_update_rx_stats - Update Rx ring statistics
2378 * @rx_ring: rx descriptor ring
2379 * @total_rx_bytes: number of bytes received
2380 * @total_rx_packets: number of packets received
2381 *
2382 * This function updates the Rx ring statistics.
2383 **/
i40e_update_rx_stats(struct i40e_ring * rx_ring,unsigned int total_rx_bytes,unsigned int total_rx_packets)2384 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2385 unsigned int total_rx_bytes,
2386 unsigned int total_rx_packets)
2387 {
2388 u64_stats_update_begin(&rx_ring->syncp);
2389 rx_ring->stats.packets += total_rx_packets;
2390 rx_ring->stats.bytes += total_rx_bytes;
2391 u64_stats_update_end(&rx_ring->syncp);
2392 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2393 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2394 }
2395
2396 /**
2397 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2398 * @rx_ring: Rx ring
2399 * @xdp_res: Result of the receive batch
2400 *
2401 * This function bumps XDP Tx tail and/or flush redirect map, and
2402 * should be called when a batch of packets has been processed in the
2403 * napi loop.
2404 **/
i40e_finalize_xdp_rx(struct i40e_ring * rx_ring,unsigned int xdp_res)2405 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2406 {
2407 if (xdp_res & I40E_XDP_REDIR)
2408 xdp_do_flush_map();
2409
2410 if (xdp_res & I40E_XDP_TX) {
2411 struct i40e_ring *xdp_ring =
2412 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2413
2414 i40e_xdp_ring_update_tail(xdp_ring);
2415 }
2416 }
2417
2418 /**
2419 * i40e_inc_ntp: Advance the next_to_process index
2420 * @rx_ring: Rx ring
2421 **/
i40e_inc_ntp(struct i40e_ring * rx_ring)2422 static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2423 {
2424 u32 ntp = rx_ring->next_to_process + 1;
2425
2426 ntp = (ntp < rx_ring->count) ? ntp : 0;
2427 rx_ring->next_to_process = ntp;
2428 prefetch(I40E_RX_DESC(rx_ring, ntp));
2429 }
2430
2431 /**
2432 * i40e_add_xdp_frag: Add a frag to xdp_buff
2433 * @xdp: xdp_buff pointing to the data
2434 * @nr_frags: return number of buffers for the packet
2435 * @rx_buffer: rx_buffer holding data of the current frag
2436 * @size: size of data of current frag
2437 */
i40e_add_xdp_frag(struct xdp_buff * xdp,u32 * nr_frags,struct i40e_rx_buffer * rx_buffer,u32 size)2438 static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2439 struct i40e_rx_buffer *rx_buffer, u32 size)
2440 {
2441 struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2442
2443 if (!xdp_buff_has_frags(xdp)) {
2444 sinfo->nr_frags = 0;
2445 sinfo->xdp_frags_size = 0;
2446 xdp_buff_set_frags_flag(xdp);
2447 } else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2448 /* Overflowing packet: All frags need to be dropped */
2449 return -ENOMEM;
2450 }
2451
2452 __skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2453 rx_buffer->page_offset, size);
2454
2455 sinfo->xdp_frags_size += size;
2456
2457 if (page_is_pfmemalloc(rx_buffer->page))
2458 xdp_buff_set_frag_pfmemalloc(xdp);
2459 *nr_frags = sinfo->nr_frags;
2460
2461 return 0;
2462 }
2463
2464 /**
2465 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @xdp: xdp_buff pointing to the data
2468 * @rx_buffer: rx_buffer of eop desc
2469 */
i40e_consume_xdp_buff(struct i40e_ring * rx_ring,struct xdp_buff * xdp,struct i40e_rx_buffer * rx_buffer)2470 static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2471 struct xdp_buff *xdp,
2472 struct i40e_rx_buffer *rx_buffer)
2473 {
2474 i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2475 i40e_put_rx_buffer(rx_ring, rx_buffer);
2476 rx_ring->next_to_clean = rx_ring->next_to_process;
2477 xdp->data = NULL;
2478 }
2479
2480 /**
2481 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2482 * @rx_ring: rx descriptor ring to transact packets on
2483 * @budget: Total limit on number of packets to process
2484 * @rx_cleaned: Out parameter of the number of packets processed
2485 *
2486 * This function provides a "bounce buffer" approach to Rx interrupt
2487 * processing. The advantage to this is that on systems that have
2488 * expensive overhead for IOMMU access this provides a means of avoiding
2489 * it by maintaining the mapping of the page to the system.
2490 *
2491 * Returns amount of work completed
2492 **/
i40e_clean_rx_irq(struct i40e_ring * rx_ring,int budget,unsigned int * rx_cleaned)2493 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2494 unsigned int *rx_cleaned)
2495 {
2496 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2497 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2498 u16 clean_threshold = rx_ring->count / 2;
2499 unsigned int offset = rx_ring->rx_offset;
2500 struct xdp_buff *xdp = &rx_ring->xdp;
2501 unsigned int xdp_xmit = 0;
2502 struct bpf_prog *xdp_prog;
2503 bool failure = false;
2504 int xdp_res = 0;
2505
2506 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2507
2508 while (likely(total_rx_packets < (unsigned int)budget)) {
2509 u16 ntp = rx_ring->next_to_process;
2510 struct i40e_rx_buffer *rx_buffer;
2511 union i40e_rx_desc *rx_desc;
2512 struct sk_buff *skb;
2513 unsigned int size;
2514 u32 nfrags = 0;
2515 bool neop;
2516 u64 qword;
2517
2518 /* return some buffers to hardware, one at a time is too slow */
2519 if (cleaned_count >= clean_threshold) {
2520 failure = failure ||
2521 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2522 cleaned_count = 0;
2523 }
2524
2525 rx_desc = I40E_RX_DESC(rx_ring, ntp);
2526
2527 /* status_error_len will always be zero for unused descriptors
2528 * because it's cleared in cleanup, and overlaps with hdr_addr
2529 * which is always zero because packet split isn't used, if the
2530 * hardware wrote DD then the length will be non-zero
2531 */
2532 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2533
2534 /* This memory barrier is needed to keep us from reading
2535 * any other fields out of the rx_desc until we have
2536 * verified the descriptor has been written back.
2537 */
2538 dma_rmb();
2539
2540 if (i40e_rx_is_programming_status(qword)) {
2541 i40e_clean_programming_status(rx_ring,
2542 rx_desc->raw.qword[0],
2543 qword);
2544 rx_buffer = i40e_rx_bi(rx_ring, ntp);
2545 i40e_inc_ntp(rx_ring);
2546 i40e_reuse_rx_page(rx_ring, rx_buffer);
2547 /* Update ntc and bump cleaned count if not in the
2548 * middle of mb packet.
2549 */
2550 if (rx_ring->next_to_clean == ntp) {
2551 rx_ring->next_to_clean =
2552 rx_ring->next_to_process;
2553 cleaned_count++;
2554 }
2555 continue;
2556 }
2557
2558 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2559 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2560 if (!size)
2561 break;
2562
2563 i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2564 /* retrieve a buffer from the ring */
2565 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2566
2567 neop = i40e_is_non_eop(rx_ring, rx_desc);
2568 i40e_inc_ntp(rx_ring);
2569
2570 if (!xdp->data) {
2571 unsigned char *hard_start;
2572
2573 hard_start = page_address(rx_buffer->page) +
2574 rx_buffer->page_offset - offset;
2575 xdp_prepare_buff(xdp, hard_start, offset, size, true);
2576 #if (PAGE_SIZE > 4096)
2577 /* At larger PAGE_SIZE, frame_sz depend on len size */
2578 xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2579 #endif
2580 } else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2581 !neop) {
2582 /* Overflowing packet: Drop all frags on EOP */
2583 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2584 break;
2585 }
2586
2587 if (neop)
2588 continue;
2589
2590 xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2591
2592 if (xdp_res) {
2593 xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2594
2595 if (unlikely(xdp_buff_has_frags(xdp))) {
2596 i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2597 size = xdp_get_buff_len(xdp);
2598 } else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2599 i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2600 } else {
2601 rx_buffer->pagecnt_bias++;
2602 }
2603 total_rx_bytes += size;
2604 } else {
2605 if (ring_uses_build_skb(rx_ring))
2606 skb = i40e_build_skb(rx_ring, xdp, nfrags);
2607 else
2608 skb = i40e_construct_skb(rx_ring, xdp, nfrags);
2609
2610 /* drop if we failed to retrieve a buffer */
2611 if (!skb) {
2612 rx_ring->rx_stats.alloc_buff_failed++;
2613 i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2614 break;
2615 }
2616
2617 if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2618 goto process_next;
2619
2620 /* probably a little skewed due to removing CRC */
2621 total_rx_bytes += skb->len;
2622
2623 /* populate checksum, VLAN, and protocol */
2624 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2625
2626 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2627 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2628 }
2629
2630 /* update budget accounting */
2631 total_rx_packets++;
2632 process_next:
2633 cleaned_count += nfrags + 1;
2634 i40e_put_rx_buffer(rx_ring, rx_buffer);
2635 rx_ring->next_to_clean = rx_ring->next_to_process;
2636
2637 xdp->data = NULL;
2638 }
2639
2640 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2641
2642 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2643
2644 *rx_cleaned = total_rx_packets;
2645
2646 /* guarantee a trip back through this routine if there was a failure */
2647 return failure ? budget : (int)total_rx_packets;
2648 }
2649
i40e_buildreg_itr(const int type,u16 itr)2650 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2651 {
2652 u32 val;
2653
2654 /* We don't bother with setting the CLEARPBA bit as the data sheet
2655 * points out doing so is "meaningless since it was already
2656 * auto-cleared". The auto-clearing happens when the interrupt is
2657 * asserted.
2658 *
2659 * Hardware errata 28 for also indicates that writing to a
2660 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2661 * an event in the PBA anyway so we need to rely on the automask
2662 * to hold pending events for us until the interrupt is re-enabled
2663 *
2664 * The itr value is reported in microseconds, and the register
2665 * value is recorded in 2 microsecond units. For this reason we
2666 * only need to shift by the interval shift - 1 instead of the
2667 * full value.
2668 */
2669 itr &= I40E_ITR_MASK;
2670
2671 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2672 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2673 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2674
2675 return val;
2676 }
2677
2678 /* a small macro to shorten up some long lines */
2679 #define INTREG I40E_PFINT_DYN_CTLN
2680
2681 /* The act of updating the ITR will cause it to immediately trigger. In order
2682 * to prevent this from throwing off adaptive update statistics we defer the
2683 * update so that it can only happen so often. So after either Tx or Rx are
2684 * updated we make the adaptive scheme wait until either the ITR completely
2685 * expires via the next_update expiration or we have been through at least
2686 * 3 interrupts.
2687 */
2688 #define ITR_COUNTDOWN_START 3
2689
2690 /**
2691 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2692 * @vsi: the VSI we care about
2693 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2694 *
2695 **/
i40e_update_enable_itr(struct i40e_vsi * vsi,struct i40e_q_vector * q_vector)2696 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2697 struct i40e_q_vector *q_vector)
2698 {
2699 struct i40e_hw *hw = &vsi->back->hw;
2700 u32 intval;
2701
2702 /* If we don't have MSIX, then we only need to re-enable icr0 */
2703 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2704 i40e_irq_dynamic_enable_icr0(vsi->back);
2705 return;
2706 }
2707
2708 /* These will do nothing if dynamic updates are not enabled */
2709 i40e_update_itr(q_vector, &q_vector->tx);
2710 i40e_update_itr(q_vector, &q_vector->rx);
2711
2712 /* This block of logic allows us to get away with only updating
2713 * one ITR value with each interrupt. The idea is to perform a
2714 * pseudo-lazy update with the following criteria.
2715 *
2716 * 1. Rx is given higher priority than Tx if both are in same state
2717 * 2. If we must reduce an ITR that is given highest priority.
2718 * 3. We then give priority to increasing ITR based on amount.
2719 */
2720 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2721 /* Rx ITR needs to be reduced, this is highest priority */
2722 intval = i40e_buildreg_itr(I40E_RX_ITR,
2723 q_vector->rx.target_itr);
2724 q_vector->rx.current_itr = q_vector->rx.target_itr;
2725 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2726 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2727 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2728 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2729 /* Tx ITR needs to be reduced, this is second priority
2730 * Tx ITR needs to be increased more than Rx, fourth priority
2731 */
2732 intval = i40e_buildreg_itr(I40E_TX_ITR,
2733 q_vector->tx.target_itr);
2734 q_vector->tx.current_itr = q_vector->tx.target_itr;
2735 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2737 /* Rx ITR needs to be increased, third priority */
2738 intval = i40e_buildreg_itr(I40E_RX_ITR,
2739 q_vector->rx.target_itr);
2740 q_vector->rx.current_itr = q_vector->rx.target_itr;
2741 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2742 } else {
2743 /* No ITR update, lowest priority */
2744 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2745 if (q_vector->itr_countdown)
2746 q_vector->itr_countdown--;
2747 }
2748
2749 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2750 wr32(hw, INTREG(q_vector->reg_idx), intval);
2751 }
2752
2753 /**
2754 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2755 * @napi: napi struct with our devices info in it
2756 * @budget: amount of work driver is allowed to do this pass, in packets
2757 *
2758 * This function will clean all queues associated with a q_vector.
2759 *
2760 * Returns the amount of work done
2761 **/
i40e_napi_poll(struct napi_struct * napi,int budget)2762 int i40e_napi_poll(struct napi_struct *napi, int budget)
2763 {
2764 struct i40e_q_vector *q_vector =
2765 container_of(napi, struct i40e_q_vector, napi);
2766 struct i40e_vsi *vsi = q_vector->vsi;
2767 struct i40e_ring *ring;
2768 bool tx_clean_complete = true;
2769 bool rx_clean_complete = true;
2770 unsigned int tx_cleaned = 0;
2771 unsigned int rx_cleaned = 0;
2772 bool clean_complete = true;
2773 bool arm_wb = false;
2774 int budget_per_ring;
2775 int work_done = 0;
2776
2777 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2778 napi_complete(napi);
2779 return 0;
2780 }
2781
2782 /* Since the actual Tx work is minimal, we can give the Tx a larger
2783 * budget and be more aggressive about cleaning up the Tx descriptors.
2784 */
2785 i40e_for_each_ring(ring, q_vector->tx) {
2786 bool wd = ring->xsk_pool ?
2787 i40e_clean_xdp_tx_irq(vsi, ring) :
2788 i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2789
2790 if (!wd) {
2791 clean_complete = tx_clean_complete = false;
2792 continue;
2793 }
2794 arm_wb |= ring->arm_wb;
2795 ring->arm_wb = false;
2796 }
2797
2798 /* Handle case where we are called by netpoll with a budget of 0 */
2799 if (budget <= 0)
2800 goto tx_only;
2801
2802 /* normally we have 1 Rx ring per q_vector */
2803 if (unlikely(q_vector->num_ringpairs > 1))
2804 /* We attempt to distribute budget to each Rx queue fairly, but
2805 * don't allow the budget to go below 1 because that would exit
2806 * polling early.
2807 */
2808 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2809 else
2810 /* Max of 1 Rx ring in this q_vector so give it the budget */
2811 budget_per_ring = budget;
2812
2813 i40e_for_each_ring(ring, q_vector->rx) {
2814 int cleaned = ring->xsk_pool ?
2815 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2816 i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2817
2818 work_done += cleaned;
2819 /* if we clean as many as budgeted, we must not be done */
2820 if (cleaned >= budget_per_ring)
2821 clean_complete = rx_clean_complete = false;
2822 }
2823
2824 if (!i40e_enabled_xdp_vsi(vsi))
2825 trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2826 tx_cleaned, rx_clean_complete, tx_clean_complete);
2827
2828 /* If work not completed, return budget and polling will return */
2829 if (!clean_complete) {
2830 int cpu_id = smp_processor_id();
2831
2832 /* It is possible that the interrupt affinity has changed but,
2833 * if the cpu is pegged at 100%, polling will never exit while
2834 * traffic continues and the interrupt will be stuck on this
2835 * cpu. We check to make sure affinity is correct before we
2836 * continue to poll, otherwise we must stop polling so the
2837 * interrupt can move to the correct cpu.
2838 */
2839 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2840 /* Tell napi that we are done polling */
2841 napi_complete_done(napi, work_done);
2842
2843 /* Force an interrupt */
2844 i40e_force_wb(vsi, q_vector);
2845
2846 /* Return budget-1 so that polling stops */
2847 return budget - 1;
2848 }
2849 tx_only:
2850 if (arm_wb) {
2851 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2852 i40e_enable_wb_on_itr(vsi, q_vector);
2853 }
2854 return budget;
2855 }
2856
2857 if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2858 q_vector->arm_wb_state = false;
2859
2860 /* Exit the polling mode, but don't re-enable interrupts if stack might
2861 * poll us due to busy-polling
2862 */
2863 if (likely(napi_complete_done(napi, work_done)))
2864 i40e_update_enable_itr(vsi, q_vector);
2865
2866 return min(work_done, budget - 1);
2867 }
2868
2869 /**
2870 * i40e_atr - Add a Flow Director ATR filter
2871 * @tx_ring: ring to add programming descriptor to
2872 * @skb: send buffer
2873 * @tx_flags: send tx flags
2874 **/
i40e_atr(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags)2875 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2876 u32 tx_flags)
2877 {
2878 struct i40e_filter_program_desc *fdir_desc;
2879 struct i40e_pf *pf = tx_ring->vsi->back;
2880 union {
2881 unsigned char *network;
2882 struct iphdr *ipv4;
2883 struct ipv6hdr *ipv6;
2884 } hdr;
2885 struct tcphdr *th;
2886 unsigned int hlen;
2887 u32 flex_ptype, dtype_cmd;
2888 int l4_proto;
2889 u16 i;
2890
2891 /* make sure ATR is enabled */
2892 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2893 return;
2894
2895 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2896 return;
2897
2898 /* if sampling is disabled do nothing */
2899 if (!tx_ring->atr_sample_rate)
2900 return;
2901
2902 /* Currently only IPv4/IPv6 with TCP is supported */
2903 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2904 return;
2905
2906 /* snag network header to get L4 type and address */
2907 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2908 skb_inner_network_header(skb) : skb_network_header(skb);
2909
2910 /* Note: tx_flags gets modified to reflect inner protocols in
2911 * tx_enable_csum function if encap is enabled.
2912 */
2913 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2914 /* access ihl as u8 to avoid unaligned access on ia64 */
2915 hlen = (hdr.network[0] & 0x0F) << 2;
2916 l4_proto = hdr.ipv4->protocol;
2917 } else {
2918 /* find the start of the innermost ipv6 header */
2919 unsigned int inner_hlen = hdr.network - skb->data;
2920 unsigned int h_offset = inner_hlen;
2921
2922 /* this function updates h_offset to the end of the header */
2923 l4_proto =
2924 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2925 /* hlen will contain our best estimate of the tcp header */
2926 hlen = h_offset - inner_hlen;
2927 }
2928
2929 if (l4_proto != IPPROTO_TCP)
2930 return;
2931
2932 th = (struct tcphdr *)(hdr.network + hlen);
2933
2934 /* Due to lack of space, no more new filters can be programmed */
2935 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2936 return;
2937 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2938 /* HW ATR eviction will take care of removing filters on FIN
2939 * and RST packets.
2940 */
2941 if (th->fin || th->rst)
2942 return;
2943 }
2944
2945 tx_ring->atr_count++;
2946
2947 /* sample on all syn/fin/rst packets or once every atr sample rate */
2948 if (!th->fin &&
2949 !th->syn &&
2950 !th->rst &&
2951 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2952 return;
2953
2954 tx_ring->atr_count = 0;
2955
2956 /* grab the next descriptor */
2957 i = tx_ring->next_to_use;
2958 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2959
2960 i++;
2961 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2962
2963 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2964 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2965 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2966 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2967 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2968 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2969 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2970
2971 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2972
2973 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2974
2975 dtype_cmd |= (th->fin || th->rst) ?
2976 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2977 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2978 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2979 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2980
2981 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2982 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2983
2984 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2985 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2986
2987 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2988 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2989 dtype_cmd |=
2990 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2991 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2992 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2993 else
2994 dtype_cmd |=
2995 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2996 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2997 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2998
2999 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
3000 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3001
3002 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3003 fdir_desc->rsvd = cpu_to_le32(0);
3004 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3005 fdir_desc->fd_id = cpu_to_le32(0);
3006 }
3007
3008 /**
3009 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3010 * @skb: send buffer
3011 * @tx_ring: ring to send buffer on
3012 * @flags: the tx flags to be set
3013 *
3014 * Checks the skb and set up correspondingly several generic transmit flags
3015 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3016 *
3017 * Returns error code indicate the frame should be dropped upon error and the
3018 * otherwise returns 0 to indicate the flags has been set properly.
3019 **/
i40e_tx_prepare_vlan_flags(struct sk_buff * skb,struct i40e_ring * tx_ring,u32 * flags)3020 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3021 struct i40e_ring *tx_ring,
3022 u32 *flags)
3023 {
3024 __be16 protocol = skb->protocol;
3025 u32 tx_flags = 0;
3026
3027 if (protocol == htons(ETH_P_8021Q) &&
3028 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3029 /* When HW VLAN acceleration is turned off by the user the
3030 * stack sets the protocol to 8021q so that the driver
3031 * can take any steps required to support the SW only
3032 * VLAN handling. In our case the driver doesn't need
3033 * to take any further steps so just set the protocol
3034 * to the encapsulated ethertype.
3035 */
3036 skb->protocol = vlan_get_protocol(skb);
3037 goto out;
3038 }
3039
3040 /* if we have a HW VLAN tag being added, default to the HW one */
3041 if (skb_vlan_tag_present(skb)) {
3042 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3043 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3044 /* else if it is a SW VLAN, check the next protocol and store the tag */
3045 } else if (protocol == htons(ETH_P_8021Q)) {
3046 struct vlan_hdr *vhdr, _vhdr;
3047
3048 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3049 if (!vhdr)
3050 return -EINVAL;
3051
3052 protocol = vhdr->h_vlan_encapsulated_proto;
3053 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3054 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3055 }
3056
3057 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
3058 goto out;
3059
3060 /* Insert 802.1p priority into VLAN header */
3061 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3062 (skb->priority != TC_PRIO_CONTROL)) {
3063 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3064 tx_flags |= (skb->priority & 0x7) <<
3065 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3066 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3067 struct vlan_ethhdr *vhdr;
3068 int rc;
3069
3070 rc = skb_cow_head(skb, 0);
3071 if (rc < 0)
3072 return rc;
3073 vhdr = skb_vlan_eth_hdr(skb);
3074 vhdr->h_vlan_TCI = htons(tx_flags >>
3075 I40E_TX_FLAGS_VLAN_SHIFT);
3076 } else {
3077 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3078 }
3079 }
3080
3081 out:
3082 *flags = tx_flags;
3083 return 0;
3084 }
3085
3086 /**
3087 * i40e_tso - set up the tso context descriptor
3088 * @first: pointer to first Tx buffer for xmit
3089 * @hdr_len: ptr to the size of the packet header
3090 * @cd_type_cmd_tso_mss: Quad Word 1
3091 *
3092 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3093 **/
i40e_tso(struct i40e_tx_buffer * first,u8 * hdr_len,u64 * cd_type_cmd_tso_mss)3094 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3095 u64 *cd_type_cmd_tso_mss)
3096 {
3097 struct sk_buff *skb = first->skb;
3098 u64 cd_cmd, cd_tso_len, cd_mss;
3099 __be16 protocol;
3100 union {
3101 struct iphdr *v4;
3102 struct ipv6hdr *v6;
3103 unsigned char *hdr;
3104 } ip;
3105 union {
3106 struct tcphdr *tcp;
3107 struct udphdr *udp;
3108 unsigned char *hdr;
3109 } l4;
3110 u32 paylen, l4_offset;
3111 u16 gso_size;
3112 int err;
3113
3114 if (skb->ip_summed != CHECKSUM_PARTIAL)
3115 return 0;
3116
3117 if (!skb_is_gso(skb))
3118 return 0;
3119
3120 err = skb_cow_head(skb, 0);
3121 if (err < 0)
3122 return err;
3123
3124 protocol = vlan_get_protocol(skb);
3125
3126 if (eth_p_mpls(protocol))
3127 ip.hdr = skb_inner_network_header(skb);
3128 else
3129 ip.hdr = skb_network_header(skb);
3130 l4.hdr = skb_checksum_start(skb);
3131
3132 /* initialize outer IP header fields */
3133 if (ip.v4->version == 4) {
3134 ip.v4->tot_len = 0;
3135 ip.v4->check = 0;
3136
3137 first->tx_flags |= I40E_TX_FLAGS_TSO;
3138 } else {
3139 ip.v6->payload_len = 0;
3140 first->tx_flags |= I40E_TX_FLAGS_TSO;
3141 }
3142
3143 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3144 SKB_GSO_GRE_CSUM |
3145 SKB_GSO_IPXIP4 |
3146 SKB_GSO_IPXIP6 |
3147 SKB_GSO_UDP_TUNNEL |
3148 SKB_GSO_UDP_TUNNEL_CSUM)) {
3149 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3150 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3151 l4.udp->len = 0;
3152
3153 /* determine offset of outer transport header */
3154 l4_offset = l4.hdr - skb->data;
3155
3156 /* remove payload length from outer checksum */
3157 paylen = skb->len - l4_offset;
3158 csum_replace_by_diff(&l4.udp->check,
3159 (__force __wsum)htonl(paylen));
3160 }
3161
3162 /* reset pointers to inner headers */
3163 ip.hdr = skb_inner_network_header(skb);
3164 l4.hdr = skb_inner_transport_header(skb);
3165
3166 /* initialize inner IP header fields */
3167 if (ip.v4->version == 4) {
3168 ip.v4->tot_len = 0;
3169 ip.v4->check = 0;
3170 } else {
3171 ip.v6->payload_len = 0;
3172 }
3173 }
3174
3175 /* determine offset of inner transport header */
3176 l4_offset = l4.hdr - skb->data;
3177
3178 /* remove payload length from inner checksum */
3179 paylen = skb->len - l4_offset;
3180
3181 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3182 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3183 /* compute length of segmentation header */
3184 *hdr_len = sizeof(*l4.udp) + l4_offset;
3185 } else {
3186 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3187 /* compute length of segmentation header */
3188 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3189 }
3190
3191 /* pull values out of skb_shinfo */
3192 gso_size = skb_shinfo(skb)->gso_size;
3193
3194 /* update GSO size and bytecount with header size */
3195 first->gso_segs = skb_shinfo(skb)->gso_segs;
3196 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3197
3198 /* find the field values */
3199 cd_cmd = I40E_TX_CTX_DESC_TSO;
3200 cd_tso_len = skb->len - *hdr_len;
3201 cd_mss = gso_size;
3202 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3203 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3204 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3205 return 1;
3206 }
3207
3208 /**
3209 * i40e_tsyn - set up the tsyn context descriptor
3210 * @tx_ring: ptr to the ring to send
3211 * @skb: ptr to the skb we're sending
3212 * @tx_flags: the collected send information
3213 * @cd_type_cmd_tso_mss: Quad Word 1
3214 *
3215 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3216 **/
i40e_tsyn(struct i40e_ring * tx_ring,struct sk_buff * skb,u32 tx_flags,u64 * cd_type_cmd_tso_mss)3217 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3218 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3219 {
3220 struct i40e_pf *pf;
3221
3222 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3223 return 0;
3224
3225 /* Tx timestamps cannot be sampled when doing TSO */
3226 if (tx_flags & I40E_TX_FLAGS_TSO)
3227 return 0;
3228
3229 /* only timestamp the outbound packet if the user has requested it and
3230 * we are not already transmitting a packet to be timestamped
3231 */
3232 pf = i40e_netdev_to_pf(tx_ring->netdev);
3233 if (!(pf->flags & I40E_FLAG_PTP))
3234 return 0;
3235
3236 if (pf->ptp_tx &&
3237 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3238 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3239 pf->ptp_tx_start = jiffies;
3240 pf->ptp_tx_skb = skb_get(skb);
3241 } else {
3242 pf->tx_hwtstamp_skipped++;
3243 return 0;
3244 }
3245
3246 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3247 I40E_TXD_CTX_QW1_CMD_SHIFT;
3248
3249 return 1;
3250 }
3251
3252 /**
3253 * i40e_tx_enable_csum - Enable Tx checksum offloads
3254 * @skb: send buffer
3255 * @tx_flags: pointer to Tx flags currently set
3256 * @td_cmd: Tx descriptor command bits to set
3257 * @td_offset: Tx descriptor header offsets to set
3258 * @tx_ring: Tx descriptor ring
3259 * @cd_tunneling: ptr to context desc bits
3260 **/
i40e_tx_enable_csum(struct sk_buff * skb,u32 * tx_flags,u32 * td_cmd,u32 * td_offset,struct i40e_ring * tx_ring,u32 * cd_tunneling)3261 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3262 u32 *td_cmd, u32 *td_offset,
3263 struct i40e_ring *tx_ring,
3264 u32 *cd_tunneling)
3265 {
3266 union {
3267 struct iphdr *v4;
3268 struct ipv6hdr *v6;
3269 unsigned char *hdr;
3270 } ip;
3271 union {
3272 struct tcphdr *tcp;
3273 struct udphdr *udp;
3274 unsigned char *hdr;
3275 } l4;
3276 unsigned char *exthdr;
3277 u32 offset, cmd = 0;
3278 __be16 frag_off;
3279 __be16 protocol;
3280 u8 l4_proto = 0;
3281
3282 if (skb->ip_summed != CHECKSUM_PARTIAL)
3283 return 0;
3284
3285 protocol = vlan_get_protocol(skb);
3286
3287 if (eth_p_mpls(protocol)) {
3288 ip.hdr = skb_inner_network_header(skb);
3289 l4.hdr = skb_checksum_start(skb);
3290 } else {
3291 ip.hdr = skb_network_header(skb);
3292 l4.hdr = skb_transport_header(skb);
3293 }
3294
3295 /* set the tx_flags to indicate the IP protocol type. this is
3296 * required so that checksum header computation below is accurate.
3297 */
3298 if (ip.v4->version == 4)
3299 *tx_flags |= I40E_TX_FLAGS_IPV4;
3300 else
3301 *tx_flags |= I40E_TX_FLAGS_IPV6;
3302
3303 /* compute outer L2 header size */
3304 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3305
3306 if (skb->encapsulation) {
3307 u32 tunnel = 0;
3308 /* define outer network header type */
3309 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3310 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3311 I40E_TX_CTX_EXT_IP_IPV4 :
3312 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3313
3314 l4_proto = ip.v4->protocol;
3315 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3316 int ret;
3317
3318 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3319
3320 exthdr = ip.hdr + sizeof(*ip.v6);
3321 l4_proto = ip.v6->nexthdr;
3322 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3323 &l4_proto, &frag_off);
3324 if (ret < 0)
3325 return -1;
3326 }
3327
3328 /* define outer transport */
3329 switch (l4_proto) {
3330 case IPPROTO_UDP:
3331 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3332 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3333 break;
3334 case IPPROTO_GRE:
3335 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3336 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3337 break;
3338 case IPPROTO_IPIP:
3339 case IPPROTO_IPV6:
3340 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3341 l4.hdr = skb_inner_network_header(skb);
3342 break;
3343 default:
3344 if (*tx_flags & I40E_TX_FLAGS_TSO)
3345 return -1;
3346
3347 skb_checksum_help(skb);
3348 return 0;
3349 }
3350
3351 /* compute outer L3 header size */
3352 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3353 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3354
3355 /* switch IP header pointer from outer to inner header */
3356 ip.hdr = skb_inner_network_header(skb);
3357
3358 /* compute tunnel header size */
3359 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3360 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3361
3362 /* indicate if we need to offload outer UDP header */
3363 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3364 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3365 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3366 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3367
3368 /* record tunnel offload values */
3369 *cd_tunneling |= tunnel;
3370
3371 /* switch L4 header pointer from outer to inner */
3372 l4.hdr = skb_inner_transport_header(skb);
3373 l4_proto = 0;
3374
3375 /* reset type as we transition from outer to inner headers */
3376 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3377 if (ip.v4->version == 4)
3378 *tx_flags |= I40E_TX_FLAGS_IPV4;
3379 if (ip.v6->version == 6)
3380 *tx_flags |= I40E_TX_FLAGS_IPV6;
3381 }
3382
3383 /* Enable IP checksum offloads */
3384 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3385 l4_proto = ip.v4->protocol;
3386 /* the stack computes the IP header already, the only time we
3387 * need the hardware to recompute it is in the case of TSO.
3388 */
3389 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3390 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3391 I40E_TX_DESC_CMD_IIPT_IPV4;
3392 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3393 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3394
3395 exthdr = ip.hdr + sizeof(*ip.v6);
3396 l4_proto = ip.v6->nexthdr;
3397 if (l4.hdr != exthdr)
3398 ipv6_skip_exthdr(skb, exthdr - skb->data,
3399 &l4_proto, &frag_off);
3400 }
3401
3402 /* compute inner L3 header size */
3403 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3404
3405 /* Enable L4 checksum offloads */
3406 switch (l4_proto) {
3407 case IPPROTO_TCP:
3408 /* enable checksum offloads */
3409 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3410 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3411 break;
3412 case IPPROTO_SCTP:
3413 /* enable SCTP checksum offload */
3414 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3415 offset |= (sizeof(struct sctphdr) >> 2) <<
3416 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3417 break;
3418 case IPPROTO_UDP:
3419 /* enable UDP checksum offload */
3420 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3421 offset |= (sizeof(struct udphdr) >> 2) <<
3422 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3423 break;
3424 default:
3425 if (*tx_flags & I40E_TX_FLAGS_TSO)
3426 return -1;
3427 skb_checksum_help(skb);
3428 return 0;
3429 }
3430
3431 *td_cmd |= cmd;
3432 *td_offset |= offset;
3433
3434 return 1;
3435 }
3436
3437 /**
3438 * i40e_create_tx_ctx - Build the Tx context descriptor
3439 * @tx_ring: ring to create the descriptor on
3440 * @cd_type_cmd_tso_mss: Quad Word 1
3441 * @cd_tunneling: Quad Word 0 - bits 0-31
3442 * @cd_l2tag2: Quad Word 0 - bits 32-63
3443 **/
i40e_create_tx_ctx(struct i40e_ring * tx_ring,const u64 cd_type_cmd_tso_mss,const u32 cd_tunneling,const u32 cd_l2tag2)3444 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3445 const u64 cd_type_cmd_tso_mss,
3446 const u32 cd_tunneling, const u32 cd_l2tag2)
3447 {
3448 struct i40e_tx_context_desc *context_desc;
3449 int i = tx_ring->next_to_use;
3450
3451 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3452 !cd_tunneling && !cd_l2tag2)
3453 return;
3454
3455 /* grab the next descriptor */
3456 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3457
3458 i++;
3459 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3460
3461 /* cpu_to_le32 and assign to struct fields */
3462 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3463 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3464 context_desc->rsvd = cpu_to_le16(0);
3465 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3466 }
3467
3468 /**
3469 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3470 * @tx_ring: the ring to be checked
3471 * @size: the size buffer we want to assure is available
3472 *
3473 * Returns -EBUSY if a stop is needed, else 0
3474 **/
__i40e_maybe_stop_tx(struct i40e_ring * tx_ring,int size)3475 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3476 {
3477 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3478 /* Memory barrier before checking head and tail */
3479 smp_mb();
3480
3481 ++tx_ring->tx_stats.tx_stopped;
3482
3483 /* Check again in a case another CPU has just made room available. */
3484 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3485 return -EBUSY;
3486
3487 /* A reprieve! - use start_queue because it doesn't call schedule */
3488 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3489 ++tx_ring->tx_stats.restart_queue;
3490 return 0;
3491 }
3492
3493 /**
3494 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3495 * @skb: send buffer
3496 *
3497 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3498 * and so we need to figure out the cases where we need to linearize the skb.
3499 *
3500 * For TSO we need to count the TSO header and segment payload separately.
3501 * As such we need to check cases where we have 7 fragments or more as we
3502 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3503 * the segment payload in the first descriptor, and another 7 for the
3504 * fragments.
3505 **/
__i40e_chk_linearize(struct sk_buff * skb)3506 bool __i40e_chk_linearize(struct sk_buff *skb)
3507 {
3508 const skb_frag_t *frag, *stale;
3509 int nr_frags, sum;
3510
3511 /* no need to check if number of frags is less than 7 */
3512 nr_frags = skb_shinfo(skb)->nr_frags;
3513 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3514 return false;
3515
3516 /* We need to walk through the list and validate that each group
3517 * of 6 fragments totals at least gso_size.
3518 */
3519 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3520 frag = &skb_shinfo(skb)->frags[0];
3521
3522 /* Initialize size to the negative value of gso_size minus 1. We
3523 * use this as the worst case scenerio in which the frag ahead
3524 * of us only provides one byte which is why we are limited to 6
3525 * descriptors for a single transmit as the header and previous
3526 * fragment are already consuming 2 descriptors.
3527 */
3528 sum = 1 - skb_shinfo(skb)->gso_size;
3529
3530 /* Add size of frags 0 through 4 to create our initial sum */
3531 sum += skb_frag_size(frag++);
3532 sum += skb_frag_size(frag++);
3533 sum += skb_frag_size(frag++);
3534 sum += skb_frag_size(frag++);
3535 sum += skb_frag_size(frag++);
3536
3537 /* Walk through fragments adding latest fragment, testing it, and
3538 * then removing stale fragments from the sum.
3539 */
3540 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3541 int stale_size = skb_frag_size(stale);
3542
3543 sum += skb_frag_size(frag++);
3544
3545 /* The stale fragment may present us with a smaller
3546 * descriptor than the actual fragment size. To account
3547 * for that we need to remove all the data on the front and
3548 * figure out what the remainder would be in the last
3549 * descriptor associated with the fragment.
3550 */
3551 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3552 int align_pad = -(skb_frag_off(stale)) &
3553 (I40E_MAX_READ_REQ_SIZE - 1);
3554
3555 sum -= align_pad;
3556 stale_size -= align_pad;
3557
3558 do {
3559 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3560 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3561 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3562 }
3563
3564 /* if sum is negative we failed to make sufficient progress */
3565 if (sum < 0)
3566 return true;
3567
3568 if (!nr_frags--)
3569 break;
3570
3571 sum -= stale_size;
3572 }
3573
3574 return false;
3575 }
3576
3577 /**
3578 * i40e_tx_map - Build the Tx descriptor
3579 * @tx_ring: ring to send buffer on
3580 * @skb: send buffer
3581 * @first: first buffer info buffer to use
3582 * @tx_flags: collected send information
3583 * @hdr_len: size of the packet header
3584 * @td_cmd: the command field in the descriptor
3585 * @td_offset: offset for checksum or crc
3586 *
3587 * Returns 0 on success, -1 on failure to DMA
3588 **/
i40e_tx_map(struct i40e_ring * tx_ring,struct sk_buff * skb,struct i40e_tx_buffer * first,u32 tx_flags,const u8 hdr_len,u32 td_cmd,u32 td_offset)3589 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3590 struct i40e_tx_buffer *first, u32 tx_flags,
3591 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3592 {
3593 unsigned int data_len = skb->data_len;
3594 unsigned int size = skb_headlen(skb);
3595 skb_frag_t *frag;
3596 struct i40e_tx_buffer *tx_bi;
3597 struct i40e_tx_desc *tx_desc;
3598 u16 i = tx_ring->next_to_use;
3599 u32 td_tag = 0;
3600 dma_addr_t dma;
3601 u16 desc_count = 1;
3602
3603 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3604 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3605 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3606 I40E_TX_FLAGS_VLAN_SHIFT;
3607 }
3608
3609 first->tx_flags = tx_flags;
3610
3611 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3612
3613 tx_desc = I40E_TX_DESC(tx_ring, i);
3614 tx_bi = first;
3615
3616 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3617 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3618
3619 if (dma_mapping_error(tx_ring->dev, dma))
3620 goto dma_error;
3621
3622 /* record length, and DMA address */
3623 dma_unmap_len_set(tx_bi, len, size);
3624 dma_unmap_addr_set(tx_bi, dma, dma);
3625
3626 /* align size to end of page */
3627 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3628 tx_desc->buffer_addr = cpu_to_le64(dma);
3629
3630 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3631 tx_desc->cmd_type_offset_bsz =
3632 build_ctob(td_cmd, td_offset,
3633 max_data, td_tag);
3634
3635 tx_desc++;
3636 i++;
3637 desc_count++;
3638
3639 if (i == tx_ring->count) {
3640 tx_desc = I40E_TX_DESC(tx_ring, 0);
3641 i = 0;
3642 }
3643
3644 dma += max_data;
3645 size -= max_data;
3646
3647 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3648 tx_desc->buffer_addr = cpu_to_le64(dma);
3649 }
3650
3651 if (likely(!data_len))
3652 break;
3653
3654 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3655 size, td_tag);
3656
3657 tx_desc++;
3658 i++;
3659 desc_count++;
3660
3661 if (i == tx_ring->count) {
3662 tx_desc = I40E_TX_DESC(tx_ring, 0);
3663 i = 0;
3664 }
3665
3666 size = skb_frag_size(frag);
3667 data_len -= size;
3668
3669 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3670 DMA_TO_DEVICE);
3671
3672 tx_bi = &tx_ring->tx_bi[i];
3673 }
3674
3675 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3676
3677 i++;
3678 if (i == tx_ring->count)
3679 i = 0;
3680
3681 tx_ring->next_to_use = i;
3682
3683 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3684
3685 /* write last descriptor with EOP bit */
3686 td_cmd |= I40E_TX_DESC_CMD_EOP;
3687
3688 /* We OR these values together to check both against 4 (WB_STRIDE)
3689 * below. This is safe since we don't re-use desc_count afterwards.
3690 */
3691 desc_count |= ++tx_ring->packet_stride;
3692
3693 if (desc_count >= WB_STRIDE) {
3694 /* write last descriptor with RS bit set */
3695 td_cmd |= I40E_TX_DESC_CMD_RS;
3696 tx_ring->packet_stride = 0;
3697 }
3698
3699 tx_desc->cmd_type_offset_bsz =
3700 build_ctob(td_cmd, td_offset, size, td_tag);
3701
3702 skb_tx_timestamp(skb);
3703
3704 /* Force memory writes to complete before letting h/w know there
3705 * are new descriptors to fetch.
3706 *
3707 * We also use this memory barrier to make certain all of the
3708 * status bits have been updated before next_to_watch is written.
3709 */
3710 wmb();
3711
3712 /* set next_to_watch value indicating a packet is present */
3713 first->next_to_watch = tx_desc;
3714
3715 /* notify HW of packet */
3716 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3717 writel(i, tx_ring->tail);
3718 }
3719
3720 return 0;
3721
3722 dma_error:
3723 dev_info(tx_ring->dev, "TX DMA map failed\n");
3724
3725 /* clear dma mappings for failed tx_bi map */
3726 for (;;) {
3727 tx_bi = &tx_ring->tx_bi[i];
3728 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3729 if (tx_bi == first)
3730 break;
3731 if (i == 0)
3732 i = tx_ring->count;
3733 i--;
3734 }
3735
3736 tx_ring->next_to_use = i;
3737
3738 return -1;
3739 }
3740
i40e_swdcb_skb_tx_hash(struct net_device * dev,const struct sk_buff * skb,u16 num_tx_queues)3741 static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3742 const struct sk_buff *skb,
3743 u16 num_tx_queues)
3744 {
3745 u32 jhash_initval_salt = 0xd631614b;
3746 u32 hash;
3747
3748 if (skb->sk && skb->sk->sk_hash)
3749 hash = skb->sk->sk_hash;
3750 else
3751 hash = (__force u16)skb->protocol ^ skb->hash;
3752
3753 hash = jhash_1word(hash, jhash_initval_salt);
3754
3755 return (u16)(((u64)hash * num_tx_queues) >> 32);
3756 }
3757
i40e_lan_select_queue(struct net_device * netdev,struct sk_buff * skb,struct net_device __always_unused * sb_dev)3758 u16 i40e_lan_select_queue(struct net_device *netdev,
3759 struct sk_buff *skb,
3760 struct net_device __always_unused *sb_dev)
3761 {
3762 struct i40e_netdev_priv *np = netdev_priv(netdev);
3763 struct i40e_vsi *vsi = np->vsi;
3764 struct i40e_hw *hw;
3765 u16 qoffset;
3766 u16 qcount;
3767 u8 tclass;
3768 u16 hash;
3769 u8 prio;
3770
3771 /* is DCB enabled at all? */
3772 if (vsi->tc_config.numtc == 1 ||
3773 i40e_is_tc_mqprio_enabled(vsi->back))
3774 return netdev_pick_tx(netdev, skb, sb_dev);
3775
3776 prio = skb->priority;
3777 hw = &vsi->back->hw;
3778 tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3779 /* sanity check */
3780 if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3781 tclass = 0;
3782
3783 /* select a queue assigned for the given TC */
3784 qcount = vsi->tc_config.tc_info[tclass].qcount;
3785 hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3786
3787 qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3788 return qoffset + hash;
3789 }
3790
3791 /**
3792 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3793 * @xdpf: data to transmit
3794 * @xdp_ring: XDP Tx ring
3795 **/
i40e_xmit_xdp_ring(struct xdp_frame * xdpf,struct i40e_ring * xdp_ring)3796 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3797 struct i40e_ring *xdp_ring)
3798 {
3799 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3800 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3801 u16 i = 0, index = xdp_ring->next_to_use;
3802 struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3803 struct i40e_tx_buffer *tx_bi = tx_head;
3804 struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3805 void *data = xdpf->data;
3806 u32 size = xdpf->len;
3807
3808 if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3809 xdp_ring->tx_stats.tx_busy++;
3810 return I40E_XDP_CONSUMED;
3811 }
3812
3813 tx_head->bytecount = xdp_get_frame_len(xdpf);
3814 tx_head->gso_segs = 1;
3815 tx_head->xdpf = xdpf;
3816
3817 for (;;) {
3818 dma_addr_t dma;
3819
3820 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3821 if (dma_mapping_error(xdp_ring->dev, dma))
3822 goto unmap;
3823
3824 /* record length, and DMA address */
3825 dma_unmap_len_set(tx_bi, len, size);
3826 dma_unmap_addr_set(tx_bi, dma, dma);
3827
3828 tx_desc->buffer_addr = cpu_to_le64(dma);
3829 tx_desc->cmd_type_offset_bsz =
3830 build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3831
3832 if (++index == xdp_ring->count)
3833 index = 0;
3834
3835 if (i == nr_frags)
3836 break;
3837
3838 tx_bi = &xdp_ring->tx_bi[index];
3839 tx_desc = I40E_TX_DESC(xdp_ring, index);
3840
3841 data = skb_frag_address(&sinfo->frags[i]);
3842 size = skb_frag_size(&sinfo->frags[i]);
3843 i++;
3844 }
3845
3846 tx_desc->cmd_type_offset_bsz |=
3847 cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
3848
3849 /* Make certain all of the status bits have been updated
3850 * before next_to_watch is written.
3851 */
3852 smp_wmb();
3853
3854 xdp_ring->xdp_tx_active++;
3855
3856 tx_head->next_to_watch = tx_desc;
3857 xdp_ring->next_to_use = index;
3858
3859 return I40E_XDP_TX;
3860
3861 unmap:
3862 for (;;) {
3863 tx_bi = &xdp_ring->tx_bi[index];
3864 if (dma_unmap_len(tx_bi, len))
3865 dma_unmap_page(xdp_ring->dev,
3866 dma_unmap_addr(tx_bi, dma),
3867 dma_unmap_len(tx_bi, len),
3868 DMA_TO_DEVICE);
3869 dma_unmap_len_set(tx_bi, len, 0);
3870 if (tx_bi == tx_head)
3871 break;
3872
3873 if (!index)
3874 index += xdp_ring->count;
3875 index--;
3876 }
3877
3878 return I40E_XDP_CONSUMED;
3879 }
3880
3881 /**
3882 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3883 * @skb: send buffer
3884 * @tx_ring: ring to send buffer on
3885 *
3886 * Returns NETDEV_TX_OK if sent, else an error code
3887 **/
i40e_xmit_frame_ring(struct sk_buff * skb,struct i40e_ring * tx_ring)3888 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3889 struct i40e_ring *tx_ring)
3890 {
3891 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3892 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3893 struct i40e_tx_buffer *first;
3894 u32 td_offset = 0;
3895 u32 tx_flags = 0;
3896 u32 td_cmd = 0;
3897 u8 hdr_len = 0;
3898 int tso, count;
3899 int tsyn;
3900
3901 /* prefetch the data, we'll need it later */
3902 prefetch(skb->data);
3903
3904 i40e_trace(xmit_frame_ring, skb, tx_ring);
3905
3906 count = i40e_xmit_descriptor_count(skb);
3907 if (i40e_chk_linearize(skb, count)) {
3908 if (__skb_linearize(skb)) {
3909 dev_kfree_skb_any(skb);
3910 return NETDEV_TX_OK;
3911 }
3912 count = i40e_txd_use_count(skb->len);
3913 tx_ring->tx_stats.tx_linearize++;
3914 }
3915
3916 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3917 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3918 * + 4 desc gap to avoid the cache line where head is,
3919 * + 1 desc for context descriptor,
3920 * otherwise try next time
3921 */
3922 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3923 tx_ring->tx_stats.tx_busy++;
3924 return NETDEV_TX_BUSY;
3925 }
3926
3927 /* record the location of the first descriptor for this packet */
3928 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3929 first->skb = skb;
3930 first->bytecount = skb->len;
3931 first->gso_segs = 1;
3932
3933 /* prepare the xmit flags */
3934 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3935 goto out_drop;
3936
3937 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3938
3939 if (tso < 0)
3940 goto out_drop;
3941 else if (tso)
3942 tx_flags |= I40E_TX_FLAGS_TSO;
3943
3944 /* Always offload the checksum, since it's in the data descriptor */
3945 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3946 tx_ring, &cd_tunneling);
3947 if (tso < 0)
3948 goto out_drop;
3949
3950 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3951
3952 if (tsyn)
3953 tx_flags |= I40E_TX_FLAGS_TSYN;
3954
3955 /* always enable CRC insertion offload */
3956 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3957
3958 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3959 cd_tunneling, cd_l2tag2);
3960
3961 /* Add Flow Director ATR if it's enabled.
3962 *
3963 * NOTE: this must always be directly before the data descriptor.
3964 */
3965 i40e_atr(tx_ring, skb, tx_flags);
3966
3967 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3968 td_cmd, td_offset))
3969 goto cleanup_tx_tstamp;
3970
3971 return NETDEV_TX_OK;
3972
3973 out_drop:
3974 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3975 dev_kfree_skb_any(first->skb);
3976 first->skb = NULL;
3977 cleanup_tx_tstamp:
3978 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3979 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3980
3981 dev_kfree_skb_any(pf->ptp_tx_skb);
3982 pf->ptp_tx_skb = NULL;
3983 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3984 }
3985
3986 return NETDEV_TX_OK;
3987 }
3988
3989 /**
3990 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3991 * @skb: send buffer
3992 * @netdev: network interface device structure
3993 *
3994 * Returns NETDEV_TX_OK if sent, else an error code
3995 **/
i40e_lan_xmit_frame(struct sk_buff * skb,struct net_device * netdev)3996 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3997 {
3998 struct i40e_netdev_priv *np = netdev_priv(netdev);
3999 struct i40e_vsi *vsi = np->vsi;
4000 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4001
4002 /* hardware can't handle really short frames, hardware padding works
4003 * beyond this point
4004 */
4005 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4006 return NETDEV_TX_OK;
4007
4008 return i40e_xmit_frame_ring(skb, tx_ring);
4009 }
4010
4011 /**
4012 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4013 * @dev: netdev
4014 * @n: number of frames
4015 * @frames: array of XDP buffer pointers
4016 * @flags: XDP extra info
4017 *
4018 * Returns number of frames successfully sent. Failed frames
4019 * will be free'ed by XDP core.
4020 *
4021 * For error cases, a negative errno code is returned and no-frames
4022 * are transmitted (caller must handle freeing frames).
4023 **/
i40e_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** frames,u32 flags)4024 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4025 u32 flags)
4026 {
4027 struct i40e_netdev_priv *np = netdev_priv(dev);
4028 unsigned int queue_index = smp_processor_id();
4029 struct i40e_vsi *vsi = np->vsi;
4030 struct i40e_pf *pf = vsi->back;
4031 struct i40e_ring *xdp_ring;
4032 int nxmit = 0;
4033 int i;
4034
4035 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4036 return -ENETDOWN;
4037
4038 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4039 test_bit(__I40E_CONFIG_BUSY, pf->state))
4040 return -ENXIO;
4041
4042 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4043 return -EINVAL;
4044
4045 xdp_ring = vsi->xdp_rings[queue_index];
4046
4047 for (i = 0; i < n; i++) {
4048 struct xdp_frame *xdpf = frames[i];
4049 int err;
4050
4051 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4052 if (err != I40E_XDP_TX)
4053 break;
4054 nxmit++;
4055 }
4056
4057 if (unlikely(flags & XDP_XMIT_FLUSH))
4058 i40e_xdp_ring_update_tail(xdp_ring);
4059
4060 return nxmit;
4061 }
4062