1 /*
2  * Intel Wireless WiMAX Connection 2400m
3  * Generic (non-bus specific) TX handling
4  *
5  *
6  * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  *   * Redistributions of source code must retain the above copyright
13  *     notice, this list of conditions and the following disclaimer.
14  *   * Redistributions in binary form must reproduce the above copyright
15  *     notice, this list of conditions and the following disclaimer in
16  *     the documentation and/or other materials provided with the
17  *     distribution.
18  *   * Neither the name of Intel Corporation nor the names of its
19  *     contributors may be used to endorse or promote products derived
20  *     from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33  *
34  *
35  * Intel Corporation <linux-wimax@intel.com>
36  * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37  *  - Initial implementation
38  *
39  * Intel Corporation <linux-wimax@intel.com>
40  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
41  *  - Rewritten to use a single FIFO to lower the memory allocation
42  *    pressure and optimize cache hits when copying to the queue, as
43  *    well as splitting out bus-specific code.
44  *
45  *
46  * Implements data transmission to the device; this is done through a
47  * software FIFO, as data/control frames can be coalesced (while the
48  * device is reading the previous tx transaction, others accumulate).
49  *
50  * A FIFO is used because at the end it is resource-cheaper that trying
51  * to implement scatter/gather over USB. As well, most traffic is going
52  * to be download (vs upload).
53  *
54  * The format for sending/receiving data to/from the i2400m is
55  * described in detail in rx.c:PROTOCOL FORMAT. In here we implement
56  * the transmission of that. This is split between a bus-independent
57  * part that just prepares everything and a bus-specific part that
58  * does the actual transmission over the bus to the device (in the
59  * bus-specific driver).
60  *
61  *
62  * The general format of a device-host transaction is MSG-HDR, PLD1,
63  * PLD2...PLDN, PL1, PL2,...PLN, PADDING.
64  *
65  * Because we need the send payload descriptors and then payloads and
66  * because it is kind of expensive to do scatterlists in USB (one URB
67  * per node), it becomes cheaper to append all the data to a FIFO
68  * (copying to a FIFO potentially in cache is cheaper).
69  *
70  * Then the bus-specific code takes the parts of that FIFO that are
71  * written and passes them to the device.
72  *
73  * So the concepts to keep in mind there are:
74  *
75  * We use a FIFO to queue the data in a linear buffer. We first append
76  * a MSG-HDR, space for I2400M_TX_PLD_MAX payload descriptors and then
77  * go appending payloads until we run out of space or of payload
78  * descriptors. Then we append padding to make the whole transaction a
79  * multiple of i2400m->bus_tx_block_size (as defined by the bus layer).
80  *
81  * - A TX message: a combination of a message header, payload
82  *   descriptors and payloads.
83  *
84  *     Open: it is marked as active (i2400m->tx_msg is valid) and we
85  *       can keep adding payloads to it.
86  *
87  *     Closed: we are not appending more payloads to this TX message
88  *       (exahusted space in the queue, too many payloads or
89  *       whichever).  We have appended padding so the whole message
90  *       length is aligned to i2400m->bus_tx_block_size (as set by the
91  *       bus/transport layer).
92  *
93  * - Most of the time we keep a TX message open to which we append
94  *   payloads.
95  *
96  * - If we are going to append and there is no more space (we are at
97  *   the end of the FIFO), we close the message, mark the rest of the
98  *   FIFO space unusable (skip_tail), create a new message at the
99  *   beginning of the FIFO (if there is space) and append the message
100  *   there.
101  *
102  *   This is because we need to give linear TX messages to the bus
103  *   engine. So we don't write a message to the remaining FIFO space
104  *   until the tail and continue at the head of it.
105  *
106  * - We overload one of the fields in the message header to use it as
107  *   'size' of the TX message, so we can iterate over them. It also
108  *   contains a flag that indicates if we have to skip it or not.
109  *   When we send the buffer, we update that to its real on-the-wire
110  *   value.
111  *
112  * - The MSG-HDR PLD1...PLD2 stuff has to be a size multiple of 16.
113  *
114  *   It follows that if MSG-HDR says we have N messages, the whole
115  *   header + descriptors is 16 + 4*N; for those to be a multiple of
116  *   16, it follows that N can be 4, 8, 12, ... (32, 48, 64, 80...
117  *   bytes).
118  *
119  *   So if we have only 1 payload, we have to submit a header that in
120  *   all truth has space for 4.
121  *
122  *   The implication is that we reserve space for 12 (64 bytes); but
123  *   if we fill up only (eg) 2, our header becomes 32 bytes only. So
124  *   the TX engine has to shift those 32 bytes of msg header and 2
125  *   payloads and padding so that right after it the payloads start
126  *   and the TX engine has to know about that.
127  *
128  *   It is cheaper to move the header up than the whole payloads down.
129  *
130  *   We do this in i2400m_tx_close(). See 'i2400m_msg_hdr->offset'.
131  *
132  * - Each payload has to be size-padded to 16 bytes; before appending
133  *   it, we just do it.
134  *
135  * - The whole message has to be padded to i2400m->bus_tx_block_size;
136  *   we do this at close time. Thus, when reserving space for the
137  *   payload, we always make sure there is also free space for this
138  *   padding that sooner or later will happen.
139  *
140  * When we append a message, we tell the bus specific code to kick in
141  * TXs. It will TX (in parallel) until the buffer is exhausted--hence
142  * the lockin we do. The TX code will only send a TX message at the
143  * time (which remember, might contain more than one payload). Of
144  * course, when the bus-specific driver attempts to TX a message that
145  * is still open, it gets closed first.
146  *
147  * Gee, this is messy; well a picture. In the example below we have a
148  * partially full FIFO, with a closed message ready to be delivered
149  * (with a moved message header to make sure it is size-aligned to
150  * 16), TAIL room that was unusable (and thus is marked with a message
151  * header that says 'skip this') and at the head of the buffer, an
152  * incomplete message with a couple of payloads.
153  *
154  * N   ___________________________________________________
155  *    |                                                   |
156  *    |     TAIL room                                     |
157  *    |                                                   |
158  *    |  msg_hdr to skip (size |= 0x80000)                |
159  *    |---------------------------------------------------|-------
160  *    |                                                   |  /|\
161  *    |                                                   |   |
162  *    |  TX message padding                               |   |
163  *    |                                                   |   |
164  *    |                                                   |   |
165  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|   |
166  *    |                                                   |   |
167  *    |  payload 1                                        |   |
168  *    |                                                   | N * tx_block_size
169  *    |                                                   |   |
170  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|   |
171  *    |                                                   |   |
172  *    |  payload 1                                        |   |
173  *    |                                                   |   |
174  *    |                                                   |   |
175  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|- -|- - - -
176  *    |  padding 3                  /|\                   |   |   /|\
177  *    |  padding 2                   |                    |   |    |
178  *    |  pld 1                32 bytes (2 * 16)           |   |    |
179  *    |  pld 0                       |                    |   |    |
180  *    |  moved msg_hdr              \|/                   |  \|/   |
181  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|- - -   |
182  *    |                                                   |    _PLD_SIZE
183  *    |  unused                                           |        |
184  *    |                                                   |        |
185  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|        |
186  *    |  msg_hdr (size X)       [this message is closed]  |       \|/
187  *    |===================================================|========== <=== OUT
188  *    |                                                   |
189  *    |                                                   |
190  *    |                                                   |
191  *    |          Free rooom                               |
192  *    |                                                   |
193  *    |                                                   |
194  *    |                                                   |
195  *    |                                                   |
196  *    |                                                   |
197  *    |                                                   |
198  *    |                                                   |
199  *    |                                                   |
200  *    |                                                   |
201  *    |===================================================|========== <=== IN
202  *    |                                                   |
203  *    |                                                   |
204  *    |                                                   |
205  *    |                                                   |
206  *    |  payload 1                                        |
207  *    |                                                   |
208  *    |                                                   |
209  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|
210  *    |                                                   |
211  *    |  payload 0                                        |
212  *    |                                                   |
213  *    |                                                   |
214  *    |- - - - - - - - - - - - - - - - - - - - - - - - - -|
215  *    |  pld 11                     /|\                   |
216  *    |  ...                         |                    |
217  *    |  pld 1                64 bytes (2 * 16)           |
218  *    |  pld 0                       |                    |
219  *    |  msg_hdr (size X)           \|/ [message is open] |
220  * 0   ---------------------------------------------------
221  *
222  *
223  * ROADMAP
224  *
225  * i2400m_tx_setup()           Called by i2400m_setup
226  * i2400m_tx_release()         Called by i2400m_release()
227  *
228  *  i2400m_tx()                 Called to send data or control frames
229  *    i2400m_tx_fifo_push()     Allocates append-space in the FIFO
230  *    i2400m_tx_new()           Opens a new message in the FIFO
231  *    i2400m_tx_fits()          Checks if a new payload fits in the message
232  *    i2400m_tx_close()         Closes an open message in the FIFO
233  *    i2400m_tx_skip_tail()     Marks unusable FIFO tail space
234  *    i2400m->bus_tx_kick()
235  *
236  * Now i2400m->bus_tx_kick() is the the bus-specific driver backend
237  * implementation; that would do:
238  *
239  * i2400m->bus_tx_kick()
240  *   i2400m_tx_msg_get()	Gets first message ready to go
241  *   ...sends it...
242  *   i2400m_tx_msg_sent()       Ack the message is sent; repeat from
243  *                              _tx_msg_get() until it returns NULL
244  *                               (FIFO empty).
245  */
246 #include <linux/netdevice.h>
247 #include <linux/slab.h>
248 #include <linux/export.h>
249 #include "i2400m.h"
250 
251 
252 #define D_SUBMODULE tx
253 #include "debug-levels.h"
254 
255 enum {
256 	/**
257 	 * TX Buffer size
258 	 *
259 	 * Doc says maximum transaction is 16KiB. If we had 16KiB en
260 	 * route and 16KiB being queued, it boils down to needing
261 	 * 32KiB.
262 	 * 32KiB is insufficient for 1400 MTU, hence increasing
263 	 * tx buffer size to 64KiB.
264 	 */
265 	I2400M_TX_BUF_SIZE = 65536,
266 	/**
267 	 * Message header and payload descriptors have to be 16
268 	 * aligned (16 + 4 * N = 16 * M). If we take that average sent
269 	 * packets are MTU size (~1400-~1500) it follows that we could
270 	 * fit at most 10-11 payloads in one transaction. To meet the
271 	 * alignment requirement, that means we need to leave space
272 	 * for 12 (64 bytes). To simplify, we leave space for that. If
273 	 * at the end there are less, we pad up to the nearest
274 	 * multiple of 16.
275 	 */
276 	/*
277 	 * According to Intel Wimax i3200, i5x50 and i6x50 specification
278 	 * documents, the maximum number of payloads per message can be
279 	 * up to 60. Increasing the number of payloads to 60 per message
280 	 * helps to accommodate smaller payloads in a single transaction.
281 	 */
282 	I2400M_TX_PLD_MAX = 60,
283 	I2400M_TX_PLD_SIZE = sizeof(struct i2400m_msg_hdr)
284 	+ I2400M_TX_PLD_MAX * sizeof(struct i2400m_pld),
285 	I2400M_TX_SKIP = 0x80000000,
286 	/*
287 	 * According to Intel Wimax i3200, i5x50 and i6x50 specification
288 	 * documents, the maximum size of each message can be up to 16KiB.
289 	 */
290 	I2400M_TX_MSG_SIZE = 16384,
291 };
292 
293 #define TAIL_FULL ((void *)~(unsigned long)NULL)
294 
295 /*
296  * Calculate how much tail room is available
297  *
298  * Note the trick here. This path is ONLY caleed for Case A (see
299  * i2400m_tx_fifo_push() below), where we have:
300  *
301  *       Case A
302  * N  ___________
303  *   | tail room |
304  *   |           |
305  *   |<-  IN   ->|
306  *   |           |
307  *   |   data    |
308  *   |           |
309  *   |<-  OUT  ->|
310  *   |           |
311  *   | head room |
312  * 0  -----------
313  *
314  * When calculating the tail_room, tx_in might get to be zero if
315  * i2400m->tx_in is right at the end of the buffer (really full
316  * buffer) if there is no head room. In this case, tail_room would be
317  * I2400M_TX_BUF_SIZE, although it is actually zero. Hence the final
318  * mod (%) operation. However, when doing this kind of optimization,
319  * i2400m->tx_in being zero would fail, so we treat is an a special
320  * case.
321  */
322 static inline
__i2400m_tx_tail_room(struct i2400m * i2400m)323 size_t __i2400m_tx_tail_room(struct i2400m *i2400m)
324 {
325 	size_t tail_room;
326 	size_t tx_in;
327 
328 	if (unlikely(i2400m->tx_in == 0))
329 		return I2400M_TX_BUF_SIZE;
330 	tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
331 	tail_room = I2400M_TX_BUF_SIZE - tx_in;
332 	tail_room %= I2400M_TX_BUF_SIZE;
333 	return tail_room;
334 }
335 
336 
337 /*
338  * Allocate @size bytes in the TX fifo, return a pointer to it
339  *
340  * @i2400m: device descriptor
341  * @size: size of the buffer we need to allocate
342  * @padding: ensure that there is at least this many bytes of free
343  *     contiguous space in the fifo. This is needed because later on
344  *     we might need to add padding.
345  * @try_head: specify either to allocate head room or tail room space
346  *     in the TX FIFO. This boolean is required to avoids a system hang
347  *     due to an infinite loop caused by i2400m_tx_fifo_push().
348  *     The caller must always try to allocate tail room space first by
349  *     calling this routine with try_head = 0. In case if there
350  *     is not enough tail room space but there is enough head room space,
351  *     (i2400m_tx_fifo_push() returns TAIL_FULL) try to allocate head
352  *     room space, by calling this routine again with try_head = 1.
353  *
354  * Returns:
355  *
356  *     Pointer to the allocated space. NULL if there is no
357  *     space. TAIL_FULL if there is no space at the tail but there is at
358  *     the head (Case B below).
359  *
360  * These are the two basic cases we need to keep an eye for -- it is
361  * much better explained in linux/kernel/kfifo.c, but this code
362  * basically does the same. No rocket science here.
363  *
364  *       Case A               Case B
365  * N  ___________          ___________
366  *   | tail room |        |   data    |
367  *   |           |        |           |
368  *   |<-  IN   ->|        |<-  OUT  ->|
369  *   |           |        |           |
370  *   |   data    |        |   room    |
371  *   |           |        |           |
372  *   |<-  OUT  ->|        |<-  IN   ->|
373  *   |           |        |           |
374  *   | head room |        |   data    |
375  * 0  -----------          -----------
376  *
377  * We allocate only *contiguous* space.
378  *
379  * We can allocate only from 'room'. In Case B, it is simple; in case
380  * A, we only try from the tail room; if it is not enough, we just
381  * fail and return TAIL_FULL and let the caller figure out if we wants to
382  * skip the tail room and try to allocate from the head.
383  *
384  * There is a corner case, wherein i2400m_tx_new() can get into
385  * an infinite loop calling i2400m_tx_fifo_push().
386  * In certain situations, tx_in would have reached on the top of TX FIFO
387  * and i2400m_tx_tail_room() returns 0, as described below:
388  *
389  * N  ___________ tail room is zero
390  *   |<-  IN   ->|
391  *   |           |
392  *   |           |
393  *   |           |
394  *   |   data    |
395  *   |<-  OUT  ->|
396  *   |           |
397  *   |           |
398  *   | head room |
399  * 0  -----------
400  * During such a time, where tail room is zero in the TX FIFO and if there
401  * is a request to add a payload to TX FIFO, which calls:
402  * i2400m_tx()
403  *         ->calls i2400m_tx_close()
404  *         ->calls i2400m_tx_skip_tail()
405  *         goto try_new;
406  *         ->calls i2400m_tx_new()
407  *                    |----> [try_head:]
408  *     infinite loop  |     ->calls i2400m_tx_fifo_push()
409  *                    |                if (tail_room < needed)
410  *                    |                   if (head_room => needed)
411  *                    |                       return TAIL_FULL;
412  *                    |<----  goto try_head;
413  *
414  * i2400m_tx() calls i2400m_tx_close() to close the message, since there
415  * is no tail room to accommodate the payload and calls
416  * i2400m_tx_skip_tail() to skip the tail space. Now i2400m_tx() calls
417  * i2400m_tx_new() to allocate space for new message header calling
418  * i2400m_tx_fifo_push() that returns TAIL_FULL, since there is no tail space
419  * to accommodate the message header, but there is enough head space.
420  * The i2400m_tx_new() keeps re-retrying by calling i2400m_tx_fifo_push()
421  * ending up in a loop causing system freeze.
422  *
423  * This corner case is avoided by using a try_head boolean,
424  * as an argument to i2400m_tx_fifo_push().
425  *
426  * Note:
427  *
428  *     Assumes i2400m->tx_lock is taken, and we use that as a barrier
429  *
430  *     The indexes keep increasing and we reset them to zero when we
431  *     pop data off the queue
432  */
433 static
i2400m_tx_fifo_push(struct i2400m * i2400m,size_t size,size_t padding,bool try_head)434 void *i2400m_tx_fifo_push(struct i2400m *i2400m, size_t size,
435 			  size_t padding, bool try_head)
436 {
437 	struct device *dev = i2400m_dev(i2400m);
438 	size_t room, tail_room, needed_size;
439 	void *ptr;
440 
441 	needed_size = size + padding;
442 	room = I2400M_TX_BUF_SIZE - (i2400m->tx_in - i2400m->tx_out);
443 	if (room < needed_size)	{ /* this takes care of Case B */
444 		d_printf(2, dev, "fifo push %zu/%zu: no space\n",
445 			 size, padding);
446 		return NULL;
447 	}
448 	/* Is there space at the tail? */
449 	tail_room = __i2400m_tx_tail_room(i2400m);
450 	if (!try_head && tail_room < needed_size) {
451 		/*
452 		 * If the tail room space is not enough to push the message
453 		 * in the TX FIFO, then there are two possibilities:
454 		 * 1. There is enough head room space to accommodate
455 		 * this message in the TX FIFO.
456 		 * 2. There is not enough space in the head room and
457 		 * in tail room of the TX FIFO to accommodate the message.
458 		 * In the case (1), return TAIL_FULL so that the caller
459 		 * can figure out, if the caller wants to push the message
460 		 * into the head room space.
461 		 * In the case (2), return NULL, indicating that the TX FIFO
462 		 * cannot accommodate the message.
463 		 */
464 		if (room - tail_room >= needed_size) {
465 			d_printf(2, dev, "fifo push %zu/%zu: tail full\n",
466 				 size, padding);
467 			return TAIL_FULL;	/* There might be head space */
468 		} else {
469 			d_printf(2, dev, "fifo push %zu/%zu: no head space\n",
470 				 size, padding);
471 			return NULL;	/* There is no space */
472 		}
473 	}
474 	ptr = i2400m->tx_buf + i2400m->tx_in % I2400M_TX_BUF_SIZE;
475 	d_printf(2, dev, "fifo push %zu/%zu: at @%zu\n", size, padding,
476 		 i2400m->tx_in % I2400M_TX_BUF_SIZE);
477 	i2400m->tx_in += size;
478 	return ptr;
479 }
480 
481 
482 /*
483  * Mark the tail of the FIFO buffer as 'to-skip'
484  *
485  * We should never hit the BUG_ON() because all the sizes we push to
486  * the FIFO are padded to be a multiple of 16 -- the size of *msg
487  * (I2400M_PL_PAD for the payloads, I2400M_TX_PLD_SIZE for the
488  * header).
489  *
490  * Tail room can get to be zero if a message was opened when there was
491  * space only for a header. _tx_close() will mark it as to-skip (as it
492  * will have no payloads) and there will be no more space to flush, so
493  * nothing has to be done here. This is probably cheaper than ensuring
494  * in _tx_new() that there is some space for payloads...as we could
495  * always possibly hit the same problem if the payload wouldn't fit.
496  *
497  * Note:
498  *
499  *     Assumes i2400m->tx_lock is taken, and we use that as a barrier
500  *
501  *     This path is only taken for Case A FIFO situations [see
502  *     i2400m_tx_fifo_push()]
503  */
504 static
i2400m_tx_skip_tail(struct i2400m * i2400m)505 void i2400m_tx_skip_tail(struct i2400m *i2400m)
506 {
507 	struct device *dev = i2400m_dev(i2400m);
508 	size_t tx_in = i2400m->tx_in % I2400M_TX_BUF_SIZE;
509 	size_t tail_room = __i2400m_tx_tail_room(i2400m);
510 	struct i2400m_msg_hdr *msg = i2400m->tx_buf + tx_in;
511 	if (unlikely(tail_room == 0))
512 		return;
513 	BUG_ON(tail_room < sizeof(*msg));
514 	msg->size = tail_room | I2400M_TX_SKIP;
515 	d_printf(2, dev, "skip tail: skipping %zu bytes @%zu\n",
516 		 tail_room, tx_in);
517 	i2400m->tx_in += tail_room;
518 }
519 
520 
521 /*
522  * Check if a skb will fit in the TX queue's current active TX
523  * message (if there are still descriptors left unused).
524  *
525  * Returns:
526  *     0 if the message won't fit, 1 if it will.
527  *
528  * Note:
529  *
530  *     Assumes a TX message is active (i2400m->tx_msg).
531  *
532  *     Assumes i2400m->tx_lock is taken, and we use that as a barrier
533  */
534 static
i2400m_tx_fits(struct i2400m * i2400m)535 unsigned i2400m_tx_fits(struct i2400m *i2400m)
536 {
537 	struct i2400m_msg_hdr *msg_hdr = i2400m->tx_msg;
538 	return le16_to_cpu(msg_hdr->num_pls) < I2400M_TX_PLD_MAX;
539 
540 }
541 
542 
543 /*
544  * Start a new TX message header in the queue.
545  *
546  * Reserve memory from the base FIFO engine and then just initialize
547  * the message header.
548  *
549  * We allocate the biggest TX message header we might need (one that'd
550  * fit I2400M_TX_PLD_MAX payloads) -- when it is closed it will be
551  * 'ironed it out' and the unneeded parts removed.
552  *
553  * NOTE:
554  *
555  *     Assumes that the previous message is CLOSED (eg: either
556  *     there was none or 'i2400m_tx_close()' was called on it).
557  *
558  *     Assumes i2400m->tx_lock is taken, and we use that as a barrier
559  */
560 static
i2400m_tx_new(struct i2400m * i2400m)561 void i2400m_tx_new(struct i2400m *i2400m)
562 {
563 	struct device *dev = i2400m_dev(i2400m);
564 	struct i2400m_msg_hdr *tx_msg;
565 	bool try_head = false;
566 	BUG_ON(i2400m->tx_msg != NULL);
567 	/*
568 	 * In certain situations, TX queue might have enough space to
569 	 * accommodate the new message header I2400M_TX_PLD_SIZE, but
570 	 * might not have enough space to accommodate the payloads.
571 	 * Adding bus_tx_room_min padding while allocating a new TX message
572 	 * increases the possibilities of including at least one payload of the
573 	 * size <= bus_tx_room_min.
574 	 */
575 try_head:
576 	tx_msg = i2400m_tx_fifo_push(i2400m, I2400M_TX_PLD_SIZE,
577 				     i2400m->bus_tx_room_min, try_head);
578 	if (tx_msg == NULL)
579 		goto out;
580 	else if (tx_msg == TAIL_FULL) {
581 		i2400m_tx_skip_tail(i2400m);
582 		d_printf(2, dev, "new TX message: tail full, trying head\n");
583 		try_head = true;
584 		goto try_head;
585 	}
586 	memset(tx_msg, 0, I2400M_TX_PLD_SIZE);
587 	tx_msg->size = I2400M_TX_PLD_SIZE;
588 out:
589 	i2400m->tx_msg = tx_msg;
590 	d_printf(2, dev, "new TX message: %p @%zu\n",
591 		 tx_msg, (void *) tx_msg - i2400m->tx_buf);
592 }
593 
594 
595 /*
596  * Finalize the current TX message header
597  *
598  * Sets the message header to be at the proper location depending on
599  * how many descriptors we have (check documentation at the file's
600  * header for more info on that).
601  *
602  * Appends padding bytes to make sure the whole TX message (counting
603  * from the 'relocated' message header) is aligned to
604  * tx_block_size. We assume the _append() code has left enough space
605  * in the FIFO for that. If there are no payloads, just pass, as it
606  * won't be transferred.
607  *
608  * The amount of padding bytes depends on how many payloads are in the
609  * TX message, as the "msg header and payload descriptors" will be
610  * shifted up in the buffer.
611  */
612 static
i2400m_tx_close(struct i2400m * i2400m)613 void i2400m_tx_close(struct i2400m *i2400m)
614 {
615 	struct device *dev = i2400m_dev(i2400m);
616 	struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
617 	struct i2400m_msg_hdr *tx_msg_moved;
618 	size_t aligned_size, padding, hdr_size;
619 	void *pad_buf;
620 	unsigned num_pls;
621 
622 	if (tx_msg->size & I2400M_TX_SKIP)	/* a skipper? nothing to do */
623 		goto out;
624 	num_pls = le16_to_cpu(tx_msg->num_pls);
625 	/* We can get this situation when a new message was started
626 	 * and there was no space to add payloads before hitting the
627 	 tail (and taking padding into consideration). */
628 	if (num_pls == 0) {
629 		tx_msg->size |= I2400M_TX_SKIP;
630 		goto out;
631 	}
632 	/* Relocate the message header
633 	 *
634 	 * Find the current header size, align it to 16 and if we need
635 	 * to move it so the tail is next to the payloads, move it and
636 	 * set the offset.
637 	 *
638 	 * If it moved, this header is good only for transmission; the
639 	 * original one (it is kept if we moved) is still used to
640 	 * figure out where the next TX message starts (and where the
641 	 * offset to the moved header is).
642 	 */
643 	hdr_size = struct_size(tx_msg, pld, le16_to_cpu(tx_msg->num_pls));
644 	hdr_size = ALIGN(hdr_size, I2400M_PL_ALIGN);
645 	tx_msg->offset = I2400M_TX_PLD_SIZE - hdr_size;
646 	tx_msg_moved = (void *) tx_msg + tx_msg->offset;
647 	memmove(tx_msg_moved, tx_msg, hdr_size);
648 	tx_msg_moved->size -= tx_msg->offset;
649 	/*
650 	 * Now figure out how much we have to add to the (moved!)
651 	 * message so the size is a multiple of i2400m->bus_tx_block_size.
652 	 */
653 	aligned_size = ALIGN(tx_msg_moved->size, i2400m->bus_tx_block_size);
654 	padding = aligned_size - tx_msg_moved->size;
655 	if (padding > 0) {
656 		pad_buf = i2400m_tx_fifo_push(i2400m, padding, 0, 0);
657 		if (WARN_ON(pad_buf == NULL || pad_buf == TAIL_FULL)) {
658 			/* This should not happen -- append should verify
659 			 * there is always space left at least to append
660 			 * tx_block_size */
661 			dev_err(dev,
662 				"SW BUG! Possible data leakage from memory the "
663 				"device should not read for padding - "
664 				"size %lu aligned_size %zu tx_buf %p in "
665 				"%zu out %zu\n",
666 				(unsigned long) tx_msg_moved->size,
667 				aligned_size, i2400m->tx_buf, i2400m->tx_in,
668 				i2400m->tx_out);
669 		} else
670 			memset(pad_buf, 0xad, padding);
671 	}
672 	tx_msg_moved->padding = cpu_to_le16(padding);
673 	tx_msg_moved->size += padding;
674 	if (tx_msg != tx_msg_moved)
675 		tx_msg->size += padding;
676 out:
677 	i2400m->tx_msg = NULL;
678 }
679 
680 
681 /**
682  * i2400m_tx - send the data in a buffer to the device
683  *
684  * @buf: pointer to the buffer to transmit
685  *
686  * @buf_len: buffer size
687  *
688  * @pl_type: type of the payload we are sending.
689  *
690  * Returns:
691  *     0 if ok, < 0 errno code on error (-ENOSPC, if there is no more
692  *     room for the message in the queue).
693  *
694  * Appends the buffer to the TX FIFO and notifies the bus-specific
695  * part of the driver that there is new data ready to transmit.
696  * Once this function returns, the buffer has been copied, so it can
697  * be reused.
698  *
699  * The steps followed to append are explained in detail in the file
700  * header.
701  *
702  * Whenever we write to a message, we increase msg->size, so it
703  * reflects exactly how big the message is. This is needed so that if
704  * we concatenate two messages before they can be sent, the code that
705  * sends the messages can find the boundaries (and it will replace the
706  * size with the real barker before sending).
707  *
708  * Note:
709  *
710  *     Cold and warm reset payloads need to be sent as a single
711  *     payload, so we handle that.
712  */
i2400m_tx(struct i2400m * i2400m,const void * buf,size_t buf_len,enum i2400m_pt pl_type)713 int i2400m_tx(struct i2400m *i2400m, const void *buf, size_t buf_len,
714 	      enum i2400m_pt pl_type)
715 {
716 	int result = -ENOSPC;
717 	struct device *dev = i2400m_dev(i2400m);
718 	unsigned long flags;
719 	size_t padded_len;
720 	void *ptr;
721 	bool try_head = false;
722 	unsigned is_singleton = pl_type == I2400M_PT_RESET_WARM
723 		|| pl_type == I2400M_PT_RESET_COLD;
724 
725 	d_fnstart(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u)\n",
726 		  i2400m, buf, buf_len, pl_type);
727 	padded_len = ALIGN(buf_len, I2400M_PL_ALIGN);
728 	d_printf(5, dev, "padded_len %zd buf_len %zd\n", padded_len, buf_len);
729 	/* If there is no current TX message, create one; if the
730 	 * current one is out of payload slots or we have a singleton,
731 	 * close it and start a new one */
732 	spin_lock_irqsave(&i2400m->tx_lock, flags);
733 	/* If tx_buf is NULL, device is shutdown */
734 	if (i2400m->tx_buf == NULL) {
735 		result = -ESHUTDOWN;
736 		goto error_tx_new;
737 	}
738 try_new:
739 	if (unlikely(i2400m->tx_msg == NULL))
740 		i2400m_tx_new(i2400m);
741 	else if (unlikely(!i2400m_tx_fits(i2400m)
742 			  || (is_singleton && i2400m->tx_msg->num_pls != 0))) {
743 		d_printf(2, dev, "closing TX message (fits %u singleton "
744 			 "%u num_pls %u)\n", i2400m_tx_fits(i2400m),
745 			 is_singleton, i2400m->tx_msg->num_pls);
746 		i2400m_tx_close(i2400m);
747 		i2400m_tx_new(i2400m);
748 	}
749 	if (i2400m->tx_msg == NULL)
750 		goto error_tx_new;
751 	/*
752 	 * Check if this skb will fit in the TX queue's current active
753 	 * TX message. The total message size must not exceed the maximum
754 	 * size of each message I2400M_TX_MSG_SIZE. If it exceeds,
755 	 * close the current message and push this skb into the new message.
756 	 */
757 	if (i2400m->tx_msg->size + padded_len > I2400M_TX_MSG_SIZE) {
758 		d_printf(2, dev, "TX: message too big, going new\n");
759 		i2400m_tx_close(i2400m);
760 		i2400m_tx_new(i2400m);
761 	}
762 	if (i2400m->tx_msg == NULL)
763 		goto error_tx_new;
764 	/* So we have a current message header; now append space for
765 	 * the message -- if there is not enough, try the head */
766 	ptr = i2400m_tx_fifo_push(i2400m, padded_len,
767 				  i2400m->bus_tx_block_size, try_head);
768 	if (ptr == TAIL_FULL) {	/* Tail is full, try head */
769 		d_printf(2, dev, "pl append: tail full\n");
770 		i2400m_tx_close(i2400m);
771 		i2400m_tx_skip_tail(i2400m);
772 		try_head = true;
773 		goto try_new;
774 	} else if (ptr == NULL) {	/* All full */
775 		result = -ENOSPC;
776 		d_printf(2, dev, "pl append: all full\n");
777 	} else {			/* Got space, copy it, set padding */
778 		struct i2400m_msg_hdr *tx_msg = i2400m->tx_msg;
779 		unsigned num_pls = le16_to_cpu(tx_msg->num_pls);
780 		memcpy(ptr, buf, buf_len);
781 		memset(ptr + buf_len, 0xad, padded_len - buf_len);
782 		i2400m_pld_set(&tx_msg->pld[num_pls], buf_len, pl_type);
783 		d_printf(3, dev, "pld 0x%08x (type 0x%1x len 0x%04zx\n",
784 			 le32_to_cpu(tx_msg->pld[num_pls].val),
785 			 pl_type, buf_len);
786 		tx_msg->num_pls = le16_to_cpu(num_pls+1);
787 		tx_msg->size += padded_len;
788 		d_printf(2, dev, "TX: appended %zu b (up to %u b) pl #%u\n",
789 			padded_len, tx_msg->size, num_pls+1);
790 		d_printf(2, dev,
791 			 "TX: appended hdr @%zu %zu b pl #%u @%zu %zu/%zu b\n",
792 			 (void *)tx_msg - i2400m->tx_buf, (size_t)tx_msg->size,
793 			 num_pls+1, ptr - i2400m->tx_buf, buf_len, padded_len);
794 		result = 0;
795 		if (is_singleton)
796 			i2400m_tx_close(i2400m);
797 	}
798 error_tx_new:
799 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
800 	/* kick in most cases, except when the TX subsys is down, as
801 	 * it might free space */
802 	if (likely(result != -ESHUTDOWN))
803 		i2400m->bus_tx_kick(i2400m);
804 	d_fnend(3, dev, "(i2400m %p skb %p [%zu bytes] pt %u) = %d\n",
805 		i2400m, buf, buf_len, pl_type, result);
806 	return result;
807 }
808 EXPORT_SYMBOL_GPL(i2400m_tx);
809 
810 
811 /**
812  * i2400m_tx_msg_get - Get the first TX message in the FIFO to start sending it
813  *
814  * @i2400m: device descriptors
815  * @bus_size: where to place the size of the TX message
816  *
817  * Called by the bus-specific driver to get the first TX message at
818  * the FIF that is ready for transmission.
819  *
820  * It sets the state in @i2400m to indicate the bus-specific driver is
821  * transferring that message (i2400m->tx_msg_size).
822  *
823  * Once the transfer is completed, call i2400m_tx_msg_sent().
824  *
825  * Notes:
826  *
827  *     The size of the TX message to be transmitted might be smaller than
828  *     that of the TX message in the FIFO (in case the header was
829  *     shorter). Hence, we copy it in @bus_size, for the bus layer to
830  *     use. We keep the message's size in i2400m->tx_msg_size so that
831  *     when the bus later is done transferring we know how much to
832  *     advance the fifo.
833  *
834  *     We collect statistics here as all the data is available and we
835  *     assume it is going to work [see i2400m_tx_msg_sent()].
836  */
i2400m_tx_msg_get(struct i2400m * i2400m,size_t * bus_size)837 struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *i2400m,
838 					 size_t *bus_size)
839 {
840 	struct device *dev = i2400m_dev(i2400m);
841 	struct i2400m_msg_hdr *tx_msg, *tx_msg_moved;
842 	unsigned long flags, pls;
843 
844 	d_fnstart(3, dev, "(i2400m %p bus_size %p)\n", i2400m, bus_size);
845 	spin_lock_irqsave(&i2400m->tx_lock, flags);
846 	tx_msg_moved = NULL;
847 	if (i2400m->tx_buf == NULL)
848 		goto out_unlock;
849 skip:
850 	tx_msg_moved = NULL;
851 	if (i2400m->tx_in == i2400m->tx_out) {	/* Empty FIFO? */
852 		i2400m->tx_in = 0;
853 		i2400m->tx_out = 0;
854 		d_printf(2, dev, "TX: FIFO empty: resetting\n");
855 		goto out_unlock;
856 	}
857 	tx_msg = i2400m->tx_buf + i2400m->tx_out % I2400M_TX_BUF_SIZE;
858 	if (tx_msg->size & I2400M_TX_SKIP) {	/* skip? */
859 		d_printf(2, dev, "TX: skip: msg @%zu (%zu b)\n",
860 			 i2400m->tx_out % I2400M_TX_BUF_SIZE,
861 			 (size_t) tx_msg->size & ~I2400M_TX_SKIP);
862 		i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
863 		goto skip;
864 	}
865 
866 	if (tx_msg->num_pls == 0) {		/* No payloads? */
867 		if (tx_msg == i2400m->tx_msg) {	/* open, we are done */
868 			d_printf(2, dev,
869 				 "TX: FIFO empty: open msg w/o payloads @%zu\n",
870 				 (void *) tx_msg - i2400m->tx_buf);
871 			tx_msg = NULL;
872 			goto out_unlock;
873 		} else {			/* closed, skip it */
874 			d_printf(2, dev,
875 				 "TX: skip msg w/o payloads @%zu (%zu b)\n",
876 				 (void *) tx_msg - i2400m->tx_buf,
877 				 (size_t) tx_msg->size);
878 			i2400m->tx_out += tx_msg->size & ~I2400M_TX_SKIP;
879 			goto skip;
880 		}
881 	}
882 	if (tx_msg == i2400m->tx_msg)		/* open msg? */
883 		i2400m_tx_close(i2400m);
884 
885 	/* Now we have a valid TX message (with payloads) to TX */
886 	tx_msg_moved = (void *) tx_msg + tx_msg->offset;
887 	i2400m->tx_msg_size = tx_msg->size;
888 	*bus_size = tx_msg_moved->size;
889 	d_printf(2, dev, "TX: pid %d msg hdr at @%zu offset +@%zu "
890 		 "size %zu bus_size %zu\n",
891 		 current->pid, (void *) tx_msg - i2400m->tx_buf,
892 		 (size_t) tx_msg->offset, (size_t) tx_msg->size,
893 		 (size_t) tx_msg_moved->size);
894 	tx_msg_moved->barker = le32_to_cpu(I2400M_H2D_PREVIEW_BARKER);
895 	tx_msg_moved->sequence = le32_to_cpu(i2400m->tx_sequence++);
896 
897 	pls = le32_to_cpu(tx_msg_moved->num_pls);
898 	i2400m->tx_pl_num += pls;		/* Update stats */
899 	if (pls > i2400m->tx_pl_max)
900 		i2400m->tx_pl_max = pls;
901 	if (pls < i2400m->tx_pl_min)
902 		i2400m->tx_pl_min = pls;
903 	i2400m->tx_num++;
904 	i2400m->tx_size_acc += *bus_size;
905 	if (*bus_size < i2400m->tx_size_min)
906 		i2400m->tx_size_min = *bus_size;
907 	if (*bus_size > i2400m->tx_size_max)
908 		i2400m->tx_size_max = *bus_size;
909 out_unlock:
910 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
911 	d_fnstart(3, dev, "(i2400m %p bus_size %p [%zu]) = %p\n",
912 		  i2400m, bus_size, *bus_size, tx_msg_moved);
913 	return tx_msg_moved;
914 }
915 EXPORT_SYMBOL_GPL(i2400m_tx_msg_get);
916 
917 
918 /**
919  * i2400m_tx_msg_sent - indicate the transmission of a TX message
920  *
921  * @i2400m: device descriptor
922  *
923  * Called by the bus-specific driver when a message has been sent;
924  * this pops it from the FIFO; and as there is space, start the queue
925  * in case it was stopped.
926  *
927  * Should be called even if the message send failed and we are
928  * dropping this TX message.
929  */
i2400m_tx_msg_sent(struct i2400m * i2400m)930 void i2400m_tx_msg_sent(struct i2400m *i2400m)
931 {
932 	unsigned n;
933 	unsigned long flags;
934 	struct device *dev = i2400m_dev(i2400m);
935 
936 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
937 	spin_lock_irqsave(&i2400m->tx_lock, flags);
938 	if (i2400m->tx_buf == NULL)
939 		goto out_unlock;
940 	i2400m->tx_out += i2400m->tx_msg_size;
941 	d_printf(2, dev, "TX: sent %zu b\n", (size_t) i2400m->tx_msg_size);
942 	i2400m->tx_msg_size = 0;
943 	BUG_ON(i2400m->tx_out > i2400m->tx_in);
944 	/* level them FIFO markers off */
945 	n = i2400m->tx_out / I2400M_TX_BUF_SIZE;
946 	i2400m->tx_out %= I2400M_TX_BUF_SIZE;
947 	i2400m->tx_in -= n * I2400M_TX_BUF_SIZE;
948 out_unlock:
949 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
950 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
951 }
952 EXPORT_SYMBOL_GPL(i2400m_tx_msg_sent);
953 
954 
955 /**
956  * i2400m_tx_setup - Initialize the TX queue and infrastructure
957  *
958  * Make sure we reset the TX sequence to zero, as when this function
959  * is called, the firmware has been just restarted. Same rational
960  * for tx_in, tx_out, tx_msg_size and tx_msg. We reset them since
961  * the memory for TX queue is reallocated.
962  */
i2400m_tx_setup(struct i2400m * i2400m)963 int i2400m_tx_setup(struct i2400m *i2400m)
964 {
965 	int result = 0;
966 	void *tx_buf;
967 	unsigned long flags;
968 
969 	/* Do this here only once -- can't do on
970 	 * i2400m_hard_start_xmit() as we'll cause race conditions if
971 	 * the WS was scheduled on another CPU */
972 	INIT_WORK(&i2400m->wake_tx_ws, i2400m_wake_tx_work);
973 
974 	tx_buf = kmalloc(I2400M_TX_BUF_SIZE, GFP_ATOMIC);
975 	if (tx_buf == NULL) {
976 		result = -ENOMEM;
977 		goto error_kmalloc;
978 	}
979 
980 	/*
981 	 * Fail the build if we can't fit at least two maximum size messages
982 	 * on the TX FIFO [one being delivered while one is constructed].
983 	 */
984 	BUILD_BUG_ON(2 * I2400M_TX_MSG_SIZE > I2400M_TX_BUF_SIZE);
985 	spin_lock_irqsave(&i2400m->tx_lock, flags);
986 	i2400m->tx_sequence = 0;
987 	i2400m->tx_in = 0;
988 	i2400m->tx_out = 0;
989 	i2400m->tx_msg_size = 0;
990 	i2400m->tx_msg = NULL;
991 	i2400m->tx_buf = tx_buf;
992 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
993 	/* Huh? the bus layer has to define this... */
994 	BUG_ON(i2400m->bus_tx_block_size == 0);
995 error_kmalloc:
996 	return result;
997 
998 }
999 
1000 
1001 /**
1002  * i2400m_tx_release - Tear down the TX queue and infrastructure
1003  */
i2400m_tx_release(struct i2400m * i2400m)1004 void i2400m_tx_release(struct i2400m *i2400m)
1005 {
1006 	unsigned long flags;
1007 	spin_lock_irqsave(&i2400m->tx_lock, flags);
1008 	kfree(i2400m->tx_buf);
1009 	i2400m->tx_buf = NULL;
1010 	spin_unlock_irqrestore(&i2400m->tx_lock, flags);
1011 }
1012