1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel Wireless WiMAX Connection 2400m
4  * Generic probe/disconnect, reset and message passing
5  *
6  * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * See i2400m.h for driver documentation. This contains helpers for
10  * the driver model glue [_setup()/_release()], handling device resets
11  * [_dev_reset_handle()], and the backends for the WiMAX stack ops
12  * reset [_op_reset()] and message from user [_op_msg_from_user()].
13  *
14  * ROADMAP:
15  *
16  * i2400m_op_msg_from_user()
17  *   i2400m_msg_to_dev()
18  *   wimax_msg_to_user_send()
19  *
20  * i2400m_op_reset()
21  *   i240m->bus_reset()
22  *
23  * i2400m_dev_reset_handle()
24  *   __i2400m_dev_reset_handle()
25  *     __i2400m_dev_stop()
26  *     __i2400m_dev_start()
27  *
28  * i2400m_setup()
29  *   i2400m->bus_setup()
30  *   i2400m_bootrom_init()
31  *   register_netdev()
32  *   wimax_dev_add()
33  *   i2400m_dev_start()
34  *     __i2400m_dev_start()
35  *       i2400m_dev_bootstrap()
36  *       i2400m_tx_setup()
37  *       i2400m->bus_dev_start()
38  *       i2400m_firmware_check()
39  *       i2400m_check_mac_addr()
40  *
41  * i2400m_release()
42  *   i2400m_dev_stop()
43  *     __i2400m_dev_stop()
44  *       i2400m_dev_shutdown()
45  *       i2400m->bus_dev_stop()
46  *       i2400m_tx_release()
47  *   i2400m->bus_release()
48  *   wimax_dev_rm()
49  *   unregister_netdev()
50  */
51 #include "i2400m.h"
52 #include <linux/etherdevice.h>
53 #include <linux/wimax/i2400m.h>
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/suspend.h>
57 #include <linux/slab.h>
58 
59 #define D_SUBMODULE driver
60 #include "debug-levels.h"
61 
62 
63 static char i2400m_debug_params[128];
64 module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
65 		    0644);
66 MODULE_PARM_DESC(debug,
67 		 "String of space-separated NAME:VALUE pairs, where NAMEs "
68 		 "are the different debug submodules and VALUE are the "
69 		 "initial debug value to set.");
70 
71 static char i2400m_barkers_params[128];
72 module_param_string(barkers, i2400m_barkers_params,
73 		    sizeof(i2400m_barkers_params), 0644);
74 MODULE_PARM_DESC(barkers,
75 		 "String of comma-separated 32-bit values; each is "
76 		 "recognized as the value the device sends as a reboot "
77 		 "signal; values are appended to a list--setting one value "
78 		 "as zero cleans the existing list and starts a new one.");
79 
80 /*
81  * WiMAX stack operation: relay a message from user space
82  *
83  * @wimax_dev: device descriptor
84  * @pipe_name: named pipe the message is for
85  * @msg_buf: pointer to the message bytes
86  * @msg_len: length of the buffer
87  * @genl_info: passed by the generic netlink layer
88  *
89  * The WiMAX stack will call this function when a message was received
90  * from user space.
91  *
92  * For the i2400m, this is an L3L4 message, as specified in
93  * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
94  * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
95  * coded in Little Endian.
96  *
97  * This function just verifies that the header declaration and the
98  * payload are consistent and then deals with it, either forwarding it
99  * to the device or procesing it locally.
100  *
101  * In the i2400m, messages are basically commands that will carry an
102  * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
103  * user space. The rx.c code might intercept the response and use it
104  * to update the driver's state, but then it will pass it on so it can
105  * be relayed back to user space.
106  *
107  * Note that asynchronous events from the device are processed and
108  * sent to user space in rx.c.
109  */
110 static
i2400m_op_msg_from_user(struct wimax_dev * wimax_dev,const char * pipe_name,const void * msg_buf,size_t msg_len,const struct genl_info * genl_info)111 int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
112 			    const char *pipe_name,
113 			    const void *msg_buf, size_t msg_len,
114 			    const struct genl_info *genl_info)
115 {
116 	int result;
117 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
118 	struct device *dev = i2400m_dev(i2400m);
119 	struct sk_buff *ack_skb;
120 
121 	d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
122 		  "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
123 		  msg_buf, msg_len, genl_info);
124 	ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
125 	result = PTR_ERR(ack_skb);
126 	if (IS_ERR(ack_skb))
127 		goto error_msg_to_dev;
128 	result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
129 error_msg_to_dev:
130 	d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
131 		"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
132 		genl_info, result);
133 	return result;
134 }
135 
136 
137 /*
138  * Context to wait for a reset to finalize
139  */
140 struct i2400m_reset_ctx {
141 	struct completion completion;
142 	int result;
143 };
144 
145 
146 /*
147  * WiMAX stack operation: reset a device
148  *
149  * @wimax_dev: device descriptor
150  *
151  * See the documentation for wimax_reset() and wimax_dev->op_reset for
152  * the requirements of this function. The WiMAX stack guarantees
153  * serialization on calls to this function.
154  *
155  * Do a warm reset on the device; if it fails, resort to a cold reset
156  * and return -ENODEV. On successful warm reset, we need to block
157  * until it is complete.
158  *
159  * The bus-driver implementation of reset takes care of falling back
160  * to cold reset if warm fails.
161  */
162 static
i2400m_op_reset(struct wimax_dev * wimax_dev)163 int i2400m_op_reset(struct wimax_dev *wimax_dev)
164 {
165 	int result;
166 	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
167 	struct device *dev = i2400m_dev(i2400m);
168 	struct i2400m_reset_ctx ctx = {
169 		.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
170 		.result = 0,
171 	};
172 
173 	d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
174 	mutex_lock(&i2400m->init_mutex);
175 	i2400m->reset_ctx = &ctx;
176 	mutex_unlock(&i2400m->init_mutex);
177 	result = i2400m_reset(i2400m, I2400M_RT_WARM);
178 	if (result < 0)
179 		goto out;
180 	result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
181 	if (result == 0)
182 		result = -ETIMEDOUT;
183 	else if (result > 0)
184 		result = ctx.result;
185 	/* if result < 0, pass it on */
186 	mutex_lock(&i2400m->init_mutex);
187 	i2400m->reset_ctx = NULL;
188 	mutex_unlock(&i2400m->init_mutex);
189 out:
190 	d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
191 	return result;
192 }
193 
194 
195 /*
196  * Check the MAC address we got from boot mode is ok
197  *
198  * @i2400m: device descriptor
199  *
200  * Returns: 0 if ok, < 0 errno code on error.
201  */
202 static
i2400m_check_mac_addr(struct i2400m * i2400m)203 int i2400m_check_mac_addr(struct i2400m *i2400m)
204 {
205 	int result;
206 	struct device *dev = i2400m_dev(i2400m);
207 	struct sk_buff *skb;
208 	const struct i2400m_tlv_detailed_device_info *ddi;
209 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
210 
211 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
212 	skb = i2400m_get_device_info(i2400m);
213 	if (IS_ERR(skb)) {
214 		result = PTR_ERR(skb);
215 		dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
216 			result);
217 		goto error;
218 	}
219 	/* Extract MAC address */
220 	ddi = (void *) skb->data;
221 	BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
222 	d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
223 		 ddi->mac_address);
224 	if (!memcmp(net_dev->perm_addr, ddi->mac_address,
225 		   sizeof(ddi->mac_address)))
226 		goto ok;
227 	dev_warn(dev, "warning: device reports a different MAC address "
228 		 "to that of boot mode's\n");
229 	dev_warn(dev, "device reports     %pM\n", ddi->mac_address);
230 	dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
231 	if (is_zero_ether_addr(ddi->mac_address))
232 		dev_err(dev, "device reports an invalid MAC address, "
233 			"not updating\n");
234 	else {
235 		dev_warn(dev, "updating MAC address\n");
236 		net_dev->addr_len = ETH_ALEN;
237 		memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
238 		memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
239 	}
240 ok:
241 	result = 0;
242 	kfree_skb(skb);
243 error:
244 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
245 	return result;
246 }
247 
248 
249 /**
250  * __i2400m_dev_start - Bring up driver communication with the device
251  *
252  * @i2400m: device descriptor
253  * @flags: boot mode flags
254  *
255  * Returns: 0 if ok, < 0 errno code on error.
256  *
257  * Uploads firmware and brings up all the resources needed to be able
258  * to communicate with the device.
259  *
260  * The workqueue has to be setup early, at least before RX handling
261  * (it's only real user for now) so it can process reports as they
262  * arrive. We also want to destroy it if we retry, to make sure it is
263  * flushed...easier like this.
264  *
265  * TX needs to be setup before the bus-specific code (otherwise on
266  * shutdown, the bus-tx code could try to access it).
267  */
268 static
__i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri flags)269 int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
270 {
271 	int result;
272 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
273 	struct net_device *net_dev = wimax_dev->net_dev;
274 	struct device *dev = i2400m_dev(i2400m);
275 	int times = i2400m->bus_bm_retries;
276 
277 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
278 retry:
279 	result = i2400m_dev_bootstrap(i2400m, flags);
280 	if (result < 0) {
281 		dev_err(dev, "cannot bootstrap device: %d\n", result);
282 		goto error_bootstrap;
283 	}
284 	result = i2400m_tx_setup(i2400m);
285 	if (result < 0)
286 		goto error_tx_setup;
287 	result = i2400m_rx_setup(i2400m);
288 	if (result < 0)
289 		goto error_rx_setup;
290 	i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
291 	if (i2400m->work_queue == NULL) {
292 		result = -ENOMEM;
293 		dev_err(dev, "cannot create workqueue\n");
294 		goto error_create_workqueue;
295 	}
296 	if (i2400m->bus_dev_start) {
297 		result = i2400m->bus_dev_start(i2400m);
298 		if (result < 0)
299 			goto error_bus_dev_start;
300 	}
301 	i2400m->ready = 1;
302 	wmb();		/* see i2400m->ready's documentation  */
303 	/* process pending reports from the device */
304 	queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
305 	result = i2400m_firmware_check(i2400m);	/* fw versions ok? */
306 	if (result < 0)
307 		goto error_fw_check;
308 	/* At this point is ok to send commands to the device */
309 	result = i2400m_check_mac_addr(i2400m);
310 	if (result < 0)
311 		goto error_check_mac_addr;
312 	result = i2400m_dev_initialize(i2400m);
313 	if (result < 0)
314 		goto error_dev_initialize;
315 
316 	/* We don't want any additional unwanted error recovery triggered
317 	 * from any other context so if anything went wrong before we come
318 	 * here, let's keep i2400m->error_recovery untouched and leave it to
319 	 * dev_reset_handle(). See dev_reset_handle(). */
320 
321 	atomic_dec(&i2400m->error_recovery);
322 	/* Every thing works so far, ok, now we are ready to
323 	 * take error recovery if it's required. */
324 
325 	/* At this point, reports will come for the device and set it
326 	 * to the right state if it is different than UNINITIALIZED */
327 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
328 		net_dev, i2400m, result);
329 	return result;
330 
331 error_dev_initialize:
332 error_check_mac_addr:
333 error_fw_check:
334 	i2400m->ready = 0;
335 	wmb();		/* see i2400m->ready's documentation  */
336 	flush_workqueue(i2400m->work_queue);
337 	if (i2400m->bus_dev_stop)
338 		i2400m->bus_dev_stop(i2400m);
339 error_bus_dev_start:
340 	destroy_workqueue(i2400m->work_queue);
341 error_create_workqueue:
342 	i2400m_rx_release(i2400m);
343 error_rx_setup:
344 	i2400m_tx_release(i2400m);
345 error_tx_setup:
346 error_bootstrap:
347 	if (result == -EL3RST && times-- > 0) {
348 		flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
349 		goto retry;
350 	}
351 	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
352 		net_dev, i2400m, result);
353 	return result;
354 }
355 
356 
357 static
i2400m_dev_start(struct i2400m * i2400m,enum i2400m_bri bm_flags)358 int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
359 {
360 	int result = 0;
361 	mutex_lock(&i2400m->init_mutex);	/* Well, start the device */
362 	if (i2400m->updown == 0) {
363 		result = __i2400m_dev_start(i2400m, bm_flags);
364 		if (result >= 0) {
365 			i2400m->updown = 1;
366 			i2400m->alive = 1;
367 			wmb();/* see i2400m->updown and i2400m->alive's doc */
368 		}
369 	}
370 	mutex_unlock(&i2400m->init_mutex);
371 	return result;
372 }
373 
374 
375 /**
376  * i2400m_dev_stop - Tear down driver communication with the device
377  *
378  * @i2400m: device descriptor
379  *
380  * Returns: 0 if ok, < 0 errno code on error.
381  *
382  * Releases all the resources allocated to communicate with the
383  * device. Note we cannot destroy the workqueue earlier as until RX is
384  * fully destroyed, it could still try to schedule jobs.
385  */
386 static
__i2400m_dev_stop(struct i2400m * i2400m)387 void __i2400m_dev_stop(struct i2400m *i2400m)
388 {
389 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
390 	struct device *dev = i2400m_dev(i2400m);
391 
392 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
393 	wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
394 	i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
395 	complete(&i2400m->msg_completion);
396 	i2400m_net_wake_stop(i2400m);
397 	i2400m_dev_shutdown(i2400m);
398 	/*
399 	 * Make sure no report hooks are running *before* we stop the
400 	 * communication infrastructure with the device.
401 	 */
402 	i2400m->ready = 0;	/* nobody can queue work anymore */
403 	wmb();		/* see i2400m->ready's documentation  */
404 	flush_workqueue(i2400m->work_queue);
405 
406 	if (i2400m->bus_dev_stop)
407 		i2400m->bus_dev_stop(i2400m);
408 	destroy_workqueue(i2400m->work_queue);
409 	i2400m_rx_release(i2400m);
410 	i2400m_tx_release(i2400m);
411 	wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
412 	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
413 }
414 
415 
416 /*
417  * Watch out -- we only need to stop if there is a need for it. The
418  * device could have reset itself and failed to come up again (see
419  * _i2400m_dev_reset_handle()).
420  */
421 static
i2400m_dev_stop(struct i2400m * i2400m)422 void i2400m_dev_stop(struct i2400m *i2400m)
423 {
424 	mutex_lock(&i2400m->init_mutex);
425 	if (i2400m->updown) {
426 		__i2400m_dev_stop(i2400m);
427 		i2400m->updown = 0;
428 		i2400m->alive = 0;
429 		wmb();	/* see i2400m->updown and i2400m->alive's doc */
430 	}
431 	mutex_unlock(&i2400m->init_mutex);
432 }
433 
434 
435 /*
436  * Listen to PM events to cache the firmware before suspend/hibernation
437  *
438  * When the device comes out of suspend, it might go into reset and
439  * firmware has to be uploaded again. At resume, most of the times, we
440  * can't load firmware images from disk, so we need to cache it.
441  *
442  * i2400m_fw_cache() will allocate a kobject and attach the firmware
443  * to it; that way we don't have to worry too much about the fw loader
444  * hitting a race condition.
445  *
446  * Note: modus operandi stolen from the Orinoco driver; thx.
447  */
448 static
i2400m_pm_notifier(struct notifier_block * notifier,unsigned long pm_event,void * unused)449 int i2400m_pm_notifier(struct notifier_block *notifier,
450 		       unsigned long pm_event,
451 		       void *unused)
452 {
453 	struct i2400m *i2400m =
454 		container_of(notifier, struct i2400m, pm_notifier);
455 	struct device *dev = i2400m_dev(i2400m);
456 
457 	d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
458 	switch (pm_event) {
459 	case PM_HIBERNATION_PREPARE:
460 	case PM_SUSPEND_PREPARE:
461 		i2400m_fw_cache(i2400m);
462 		break;
463 	case PM_POST_RESTORE:
464 		/* Restore from hibernation failed. We need to clean
465 		 * up in exactly the same way, so fall through. */
466 	case PM_POST_HIBERNATION:
467 	case PM_POST_SUSPEND:
468 		i2400m_fw_uncache(i2400m);
469 		break;
470 
471 	case PM_RESTORE_PREPARE:
472 	default:
473 		break;
474 	}
475 	d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
476 	return NOTIFY_DONE;
477 }
478 
479 
480 /*
481  * pre-reset is called before a device is going on reset
482  *
483  * This has to be followed by a call to i2400m_post_reset(), otherwise
484  * bad things might happen.
485  */
i2400m_pre_reset(struct i2400m * i2400m)486 int i2400m_pre_reset(struct i2400m *i2400m)
487 {
488 	struct device *dev = i2400m_dev(i2400m);
489 
490 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
491 	d_printf(1, dev, "pre-reset shut down\n");
492 
493 	mutex_lock(&i2400m->init_mutex);
494 	if (i2400m->updown) {
495 		netif_tx_disable(i2400m->wimax_dev.net_dev);
496 		__i2400m_dev_stop(i2400m);
497 		/* down't set updown to zero -- this way
498 		 * post_reset can restore properly */
499 	}
500 	mutex_unlock(&i2400m->init_mutex);
501 	if (i2400m->bus_release)
502 		i2400m->bus_release(i2400m);
503 	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
504 	return 0;
505 }
506 EXPORT_SYMBOL_GPL(i2400m_pre_reset);
507 
508 
509 /*
510  * Restore device state after a reset
511  *
512  * Do the work needed after a device reset to bring it up to the same
513  * state as it was before the reset.
514  *
515  * NOTE: this requires i2400m->init_mutex taken
516  */
i2400m_post_reset(struct i2400m * i2400m)517 int i2400m_post_reset(struct i2400m *i2400m)
518 {
519 	int result = 0;
520 	struct device *dev = i2400m_dev(i2400m);
521 
522 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
523 	d_printf(1, dev, "post-reset start\n");
524 	if (i2400m->bus_setup) {
525 		result = i2400m->bus_setup(i2400m);
526 		if (result < 0) {
527 			dev_err(dev, "bus-specific setup failed: %d\n",
528 				result);
529 			goto error_bus_setup;
530 		}
531 	}
532 	mutex_lock(&i2400m->init_mutex);
533 	if (i2400m->updown) {
534 		result = __i2400m_dev_start(
535 			i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
536 		if (result < 0)
537 			goto error_dev_start;
538 	}
539 	mutex_unlock(&i2400m->init_mutex);
540 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
541 	return result;
542 
543 error_dev_start:
544 	if (i2400m->bus_release)
545 		i2400m->bus_release(i2400m);
546 	/* even if the device was up, it could not be recovered, so we
547 	 * mark it as down. */
548 	i2400m->updown = 0;
549 	wmb();		/* see i2400m->updown's documentation  */
550 	mutex_unlock(&i2400m->init_mutex);
551 error_bus_setup:
552 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
553 	return result;
554 }
555 EXPORT_SYMBOL_GPL(i2400m_post_reset);
556 
557 
558 /*
559  * The device has rebooted; fix up the device and the driver
560  *
561  * Tear down the driver communication with the device, reload the
562  * firmware and reinitialize the communication with the device.
563  *
564  * If someone calls a reset when the device's firmware is down, in
565  * theory we won't see it because we are not listening. However, just
566  * in case, leave the code to handle it.
567  *
568  * If there is a reset context, use it; this means someone is waiting
569  * for us to tell him when the reset operation is complete and the
570  * device is ready to rock again.
571  *
572  * NOTE: if we are in the process of bringing up or down the
573  *       communication with the device [running i2400m_dev_start() or
574  *       _stop()], don't do anything, let it fail and handle it.
575  *
576  * This function is ran always in a thread context
577  *
578  * This function gets passed, as payload to i2400m_work() a 'const
579  * char *' ptr with a "reason" why the reset happened (for messages).
580  */
581 static
__i2400m_dev_reset_handle(struct work_struct * ws)582 void __i2400m_dev_reset_handle(struct work_struct *ws)
583 {
584 	struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
585 	const char *reason = i2400m->reset_reason;
586 	struct device *dev = i2400m_dev(i2400m);
587 	struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
588 	int result;
589 
590 	d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
591 
592 	i2400m->boot_mode = 1;
593 	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
594 
595 	result = 0;
596 	if (mutex_trylock(&i2400m->init_mutex) == 0) {
597 		/* We are still in i2400m_dev_start() [let it fail] or
598 		 * i2400m_dev_stop() [we are shutting down anyway, so
599 		 * ignore it] or we are resetting somewhere else. */
600 		dev_err(dev, "device rebooted somewhere else?\n");
601 		i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
602 		complete(&i2400m->msg_completion);
603 		goto out;
604 	}
605 
606 	dev_err(dev, "%s: reinitializing driver\n", reason);
607 	rmb();
608 	if (i2400m->updown) {
609 		__i2400m_dev_stop(i2400m);
610 		i2400m->updown = 0;
611 		wmb();		/* see i2400m->updown's documentation  */
612 	}
613 
614 	if (i2400m->alive) {
615 		result = __i2400m_dev_start(i2400m,
616 				    I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
617 		if (result < 0) {
618 			dev_err(dev, "%s: cannot start the device: %d\n",
619 				reason, result);
620 			result = -EUCLEAN;
621 			if (atomic_read(&i2400m->bus_reset_retries)
622 					>= I2400M_BUS_RESET_RETRIES) {
623 				result = -ENODEV;
624 				dev_err(dev, "tried too many times to "
625 					"reset the device, giving up\n");
626 			}
627 		}
628 	}
629 
630 	if (i2400m->reset_ctx) {
631 		ctx->result = result;
632 		complete(&ctx->completion);
633 	}
634 	mutex_unlock(&i2400m->init_mutex);
635 	if (result == -EUCLEAN) {
636 		/*
637 		 * We come here because the reset during operational mode
638 		 * wasn't successfully done and need to proceed to a bus
639 		 * reset. For the dev_reset_handle() to be able to handle
640 		 * the reset event later properly, we restore boot_mode back
641 		 * to the state before previous reset. ie: just like we are
642 		 * issuing the bus reset for the first time
643 		 */
644 		i2400m->boot_mode = 0;
645 		wmb();
646 
647 		atomic_inc(&i2400m->bus_reset_retries);
648 		/* ops, need to clean up [w/ init_mutex not held] */
649 		result = i2400m_reset(i2400m, I2400M_RT_BUS);
650 		if (result >= 0)
651 			result = -ENODEV;
652 	} else {
653 		rmb();
654 		if (i2400m->alive) {
655 			/* great, we expect the device state up and
656 			 * dev_start() actually brings the device state up */
657 			i2400m->updown = 1;
658 			wmb();
659 			atomic_set(&i2400m->bus_reset_retries, 0);
660 		}
661 	}
662 out:
663 	d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
664 		ws, i2400m, reason);
665 }
666 
667 
668 /**
669  * i2400m_dev_reset_handle - Handle a device's reset in a thread context
670  *
671  * Schedule a device reset handling out on a thread context, so it
672  * is safe to call from atomic context. We can't use the i2400m's
673  * queue as we are going to destroy it and reinitialize it as part of
674  * the driver bringup/bringup process.
675  *
676  * See __i2400m_dev_reset_handle() for details; that takes care of
677  * reinitializing the driver to handle the reset, calling into the
678  * bus-specific functions ops as needed.
679  */
i2400m_dev_reset_handle(struct i2400m * i2400m,const char * reason)680 int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
681 {
682 	i2400m->reset_reason = reason;
683 	return schedule_work(&i2400m->reset_ws);
684 }
685 EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
686 
687 
688  /*
689  * The actual work of error recovery.
690  *
691  * The current implementation of error recovery is to trigger a bus reset.
692  */
693 static
__i2400m_error_recovery(struct work_struct * ws)694 void __i2400m_error_recovery(struct work_struct *ws)
695 {
696 	struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
697 
698 	i2400m_reset(i2400m, I2400M_RT_BUS);
699 }
700 
701 /*
702  * Schedule a work struct for error recovery.
703  *
704  * The intention of error recovery is to bring back the device to some
705  * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
706  * the device. The TX failure could mean a device bus stuck, so the current
707  * error recovery implementation is to trigger a bus reset to the device
708  * and hopefully it can bring back the device.
709  *
710  * The actual work of error recovery has to be in a thread context because
711  * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
712  * destroyed by the error recovery mechanism (currently a bus reset).
713  *
714  * Also, there may be already a queue of TX works that all hit
715  * the -ETIMEOUT error condition because the device is stuck already.
716  * Since bus reset is used as the error recovery mechanism and we don't
717  * want consecutive bus resets simply because the multiple TX works
718  * in the queue all hit the same device erratum, the flag "error_recovery"
719  * is introduced for preventing unwanted consecutive bus resets.
720  *
721  * Error recovery shall only be invoked again if previous one was completed.
722  * The flag error_recovery is set when error recovery mechanism is scheduled,
723  * and is checked when we need to schedule another error recovery. If it is
724  * in place already, then we shouldn't schedule another one.
725  */
i2400m_error_recovery(struct i2400m * i2400m)726 void i2400m_error_recovery(struct i2400m *i2400m)
727 {
728 	if (atomic_add_return(1, &i2400m->error_recovery) == 1)
729 		schedule_work(&i2400m->recovery_ws);
730 	else
731 		atomic_dec(&i2400m->error_recovery);
732 }
733 EXPORT_SYMBOL_GPL(i2400m_error_recovery);
734 
735 /*
736  * Alloc the command and ack buffers for boot mode
737  *
738  * Get the buffers needed to deal with boot mode messages.
739  */
740 static
i2400m_bm_buf_alloc(struct i2400m * i2400m)741 int i2400m_bm_buf_alloc(struct i2400m *i2400m)
742 {
743 	i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
744 	if (i2400m->bm_cmd_buf == NULL)
745 		goto error_bm_cmd_kzalloc;
746 	i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
747 	if (i2400m->bm_ack_buf == NULL)
748 		goto error_bm_ack_buf_kzalloc;
749 	return 0;
750 
751 error_bm_ack_buf_kzalloc:
752 	kfree(i2400m->bm_cmd_buf);
753 error_bm_cmd_kzalloc:
754 	return -ENOMEM;
755 }
756 
757 
758 /*
759  * Free boot mode command and ack buffers.
760  */
761 static
i2400m_bm_buf_free(struct i2400m * i2400m)762 void i2400m_bm_buf_free(struct i2400m *i2400m)
763 {
764 	kfree(i2400m->bm_ack_buf);
765 	kfree(i2400m->bm_cmd_buf);
766 }
767 
768 
769 /**
770  * i2400m_init - Initialize a 'struct i2400m' from all zeroes
771  *
772  * This is a bus-generic API call.
773  */
i2400m_init(struct i2400m * i2400m)774 void i2400m_init(struct i2400m *i2400m)
775 {
776 	wimax_dev_init(&i2400m->wimax_dev);
777 
778 	i2400m->boot_mode = 1;
779 	i2400m->rx_reorder = 1;
780 	init_waitqueue_head(&i2400m->state_wq);
781 
782 	spin_lock_init(&i2400m->tx_lock);
783 	i2400m->tx_pl_min = UINT_MAX;
784 	i2400m->tx_size_min = UINT_MAX;
785 
786 	spin_lock_init(&i2400m->rx_lock);
787 	i2400m->rx_pl_min = UINT_MAX;
788 	i2400m->rx_size_min = UINT_MAX;
789 	INIT_LIST_HEAD(&i2400m->rx_reports);
790 	INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
791 
792 	mutex_init(&i2400m->msg_mutex);
793 	init_completion(&i2400m->msg_completion);
794 
795 	mutex_init(&i2400m->init_mutex);
796 	/* wake_tx_ws is initialized in i2400m_tx_setup() */
797 
798 	INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
799 	INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
800 
801 	atomic_set(&i2400m->bus_reset_retries, 0);
802 
803 	i2400m->alive = 0;
804 
805 	/* initialize error_recovery to 1 for denoting we
806 	 * are not yet ready to take any error recovery */
807 	atomic_set(&i2400m->error_recovery, 1);
808 }
809 EXPORT_SYMBOL_GPL(i2400m_init);
810 
811 
i2400m_reset(struct i2400m * i2400m,enum i2400m_reset_type rt)812 int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
813 {
814 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
815 
816 	/*
817 	 * Make sure we stop TXs and down the carrier before
818 	 * resetting; this is needed to avoid things like
819 	 * i2400m_wake_tx() scheduling stuff in parallel.
820 	 */
821 	if (net_dev->reg_state == NETREG_REGISTERED) {
822 		netif_tx_disable(net_dev);
823 		netif_carrier_off(net_dev);
824 	}
825 	return i2400m->bus_reset(i2400m, rt);
826 }
827 EXPORT_SYMBOL_GPL(i2400m_reset);
828 
829 
830 /**
831  * i2400m_setup - bus-generic setup function for the i2400m device
832  *
833  * @i2400m: device descriptor (bus-specific parts have been initialized)
834  *
835  * Returns: 0 if ok, < 0 errno code on error.
836  *
837  * Sets up basic device comunication infrastructure, boots the ROM to
838  * read the MAC address, registers with the WiMAX and network stacks
839  * and then brings up the device.
840  */
i2400m_setup(struct i2400m * i2400m,enum i2400m_bri bm_flags)841 int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
842 {
843 	int result;
844 	struct device *dev = i2400m_dev(i2400m);
845 	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
846 	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
847 
848 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
849 
850 	snprintf(wimax_dev->name, sizeof(wimax_dev->name),
851 		 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
852 
853 	result = i2400m_bm_buf_alloc(i2400m);
854 	if (result < 0) {
855 		dev_err(dev, "cannot allocate bootmode scratch buffers\n");
856 		goto error_bm_buf_alloc;
857 	}
858 
859 	if (i2400m->bus_setup) {
860 		result = i2400m->bus_setup(i2400m);
861 		if (result < 0) {
862 			dev_err(dev, "bus-specific setup failed: %d\n",
863 				result);
864 			goto error_bus_setup;
865 		}
866 	}
867 
868 	result = i2400m_bootrom_init(i2400m, bm_flags);
869 	if (result < 0) {
870 		dev_err(dev, "read mac addr: bootrom init "
871 			"failed: %d\n", result);
872 		goto error_bootrom_init;
873 	}
874 	result = i2400m_read_mac_addr(i2400m);
875 	if (result < 0)
876 		goto error_read_mac_addr;
877 	eth_random_addr(i2400m->src_mac_addr);
878 
879 	i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
880 	register_pm_notifier(&i2400m->pm_notifier);
881 
882 	result = register_netdev(net_dev);	/* Okey dokey, bring it up */
883 	if (result < 0) {
884 		dev_err(dev, "cannot register i2400m network device: %d\n",
885 			result);
886 		goto error_register_netdev;
887 	}
888 	netif_carrier_off(net_dev);
889 
890 	i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
891 	i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
892 	i2400m->wimax_dev.op_reset = i2400m_op_reset;
893 
894 	result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
895 	if (result < 0)
896 		goto error_wimax_dev_add;
897 
898 	/* Now setup all that requires a registered net and wimax device. */
899 	result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
900 	if (result < 0) {
901 		dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
902 		goto error_sysfs_setup;
903 	}
904 
905 	i2400m_debugfs_add(i2400m);
906 
907 	result = i2400m_dev_start(i2400m, bm_flags);
908 	if (result < 0)
909 		goto error_dev_start;
910 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
911 	return result;
912 
913 error_dev_start:
914 	i2400m_debugfs_rm(i2400m);
915 	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
916 			   &i2400m_dev_attr_group);
917 error_sysfs_setup:
918 	wimax_dev_rm(&i2400m->wimax_dev);
919 error_wimax_dev_add:
920 	unregister_netdev(net_dev);
921 error_register_netdev:
922 	unregister_pm_notifier(&i2400m->pm_notifier);
923 error_read_mac_addr:
924 error_bootrom_init:
925 	if (i2400m->bus_release)
926 		i2400m->bus_release(i2400m);
927 error_bus_setup:
928 	i2400m_bm_buf_free(i2400m);
929 error_bm_buf_alloc:
930 	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
931 	return result;
932 }
933 EXPORT_SYMBOL_GPL(i2400m_setup);
934 
935 
936 /**
937  * i2400m_release - release the bus-generic driver resources
938  *
939  * Sends a disconnect message and undoes any setup done by i2400m_setup()
940  */
i2400m_release(struct i2400m * i2400m)941 void i2400m_release(struct i2400m *i2400m)
942 {
943 	struct device *dev = i2400m_dev(i2400m);
944 
945 	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
946 	netif_stop_queue(i2400m->wimax_dev.net_dev);
947 
948 	i2400m_dev_stop(i2400m);
949 
950 	cancel_work_sync(&i2400m->reset_ws);
951 	cancel_work_sync(&i2400m->recovery_ws);
952 
953 	i2400m_debugfs_rm(i2400m);
954 	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
955 			   &i2400m_dev_attr_group);
956 	wimax_dev_rm(&i2400m->wimax_dev);
957 	unregister_netdev(i2400m->wimax_dev.net_dev);
958 	unregister_pm_notifier(&i2400m->pm_notifier);
959 	if (i2400m->bus_release)
960 		i2400m->bus_release(i2400m);
961 	i2400m_bm_buf_free(i2400m);
962 	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
963 }
964 EXPORT_SYMBOL_GPL(i2400m_release);
965 
966 
967 /*
968  * Debug levels control; see debug.h
969  */
970 struct d_level D_LEVEL[] = {
971 	D_SUBMODULE_DEFINE(control),
972 	D_SUBMODULE_DEFINE(driver),
973 	D_SUBMODULE_DEFINE(debugfs),
974 	D_SUBMODULE_DEFINE(fw),
975 	D_SUBMODULE_DEFINE(netdev),
976 	D_SUBMODULE_DEFINE(rfkill),
977 	D_SUBMODULE_DEFINE(rx),
978 	D_SUBMODULE_DEFINE(sysfs),
979 	D_SUBMODULE_DEFINE(tx),
980 };
981 size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
982 
983 
984 static
i2400m_driver_init(void)985 int __init i2400m_driver_init(void)
986 {
987 	d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
988 		       "i2400m.debug");
989 	return i2400m_barker_db_init(i2400m_barkers_params);
990 }
991 module_init(i2400m_driver_init);
992 
993 static
i2400m_driver_exit(void)994 void __exit i2400m_driver_exit(void)
995 {
996 	i2400m_barker_db_exit();
997 }
998 module_exit(i2400m_driver_exit);
999 
1000 MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1001 MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1002 MODULE_LICENSE("GPL");
1003