1 /*
2 * Intel Wireless WiMAX Connection 2400m
3 * Firmware uploader
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * * Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * * Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in
16 * the documentation and/or other materials provided with the
17 * distribution.
18 * * Neither the name of Intel Corporation nor the names of its
19 * contributors may be used to endorse or promote products derived
20 * from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
25 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
26 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
27 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
28 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
32 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 *
35 * Intel Corporation <linux-wimax@intel.com>
36 * Yanir Lubetkin <yanirx.lubetkin@intel.com>
37 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
38 * - Initial implementation
39 *
40 *
41 * THE PROCEDURE
42 *
43 * The 2400m and derived devices work in two modes: boot-mode or
44 * normal mode. In boot mode we can execute only a handful of commands
45 * targeted at uploading the firmware and launching it.
46 *
47 * The 2400m enters boot mode when it is first connected to the
48 * system, when it crashes and when you ask it to reboot. There are
49 * two submodes of the boot mode: signed and non-signed. Signed takes
50 * firmwares signed with a certain private key, non-signed takes any
51 * firmware. Normal hardware takes only signed firmware.
52 *
53 * On boot mode, in USB, we write to the device using the bulk out
54 * endpoint and read from it in the notification endpoint.
55 *
56 * Upon entrance to boot mode, the device sends (preceded with a few
57 * zero length packets (ZLPs) on the notification endpoint in USB) a
58 * reboot barker (4 le32 words with the same value). We ack it by
59 * sending the same barker to the device. The device acks with a
60 * reboot ack barker (4 le32 words with value I2400M_ACK_BARKER) and
61 * then is fully booted. At this point we can upload the firmware.
62 *
63 * Note that different iterations of the device and EEPROM
64 * configurations will send different [re]boot barkers; these are
65 * collected in i2400m_barker_db along with the firmware
66 * characteristics they require.
67 *
68 * This process is accomplished by the i2400m_bootrom_init()
69 * function. All the device interaction happens through the
70 * i2400m_bm_cmd() [boot mode command]. Special return values will
71 * indicate if the device did reset during the process.
72 *
73 * After this, we read the MAC address and then (if needed)
74 * reinitialize the device. We need to read it ahead of time because
75 * in the future, we might not upload the firmware until userspace
76 * 'ifconfig up's the device.
77 *
78 * We can then upload the firmware file. The file is composed of a BCF
79 * header (basic data, keys and signatures) and a list of write
80 * commands and payloads. Optionally more BCF headers might follow the
81 * main payload. We first upload the header [i2400m_dnload_init()] and
82 * then pass the commands and payloads verbatim to the i2400m_bm_cmd()
83 * function [i2400m_dnload_bcf()]. Then we tell the device to jump to
84 * the new firmware [i2400m_dnload_finalize()].
85 *
86 * Once firmware is uploaded, we are good to go :)
87 *
88 * When we don't know in which mode we are, we first try by sending a
89 * warm reset request that will take us to boot-mode. If we time out
90 * waiting for a reboot barker, that means maybe we are already in
91 * boot mode, so we send a reboot barker.
92 *
93 * COMMAND EXECUTION
94 *
95 * This code (and process) is single threaded; for executing commands,
96 * we post a URB to the notification endpoint, post the command, wait
97 * for data on the notification buffer. We don't need to worry about
98 * others as we know we are the only ones in there.
99 *
100 * BACKEND IMPLEMENTATION
101 *
102 * This code is bus-generic; the bus-specific driver provides back end
103 * implementations to send a boot mode command to the device and to
104 * read an acknolwedgement from it (or an asynchronous notification)
105 * from it.
106 *
107 * FIRMWARE LOADING
108 *
109 * Note that in some cases, we can't just load a firmware file (for
110 * example, when resuming). For that, we might cache the firmware
111 * file. Thus, when doing the bootstrap, if there is a cache firmware
112 * file, it is used; if not, loading from disk is attempted.
113 *
114 * ROADMAP
115 *
116 * i2400m_barker_db_init Called by i2400m_driver_init()
117 * i2400m_barker_db_add
118 *
119 * i2400m_barker_db_exit Called by i2400m_driver_exit()
120 *
121 * i2400m_dev_bootstrap Called by __i2400m_dev_start()
122 * request_firmware
123 * i2400m_fw_bootstrap
124 * i2400m_fw_check
125 * i2400m_fw_hdr_check
126 * i2400m_fw_dnload
127 * release_firmware
128 *
129 * i2400m_fw_dnload
130 * i2400m_bootrom_init
131 * i2400m_bm_cmd
132 * i2400m_reset
133 * i2400m_dnload_init
134 * i2400m_dnload_init_signed
135 * i2400m_dnload_init_nonsigned
136 * i2400m_download_chunk
137 * i2400m_bm_cmd
138 * i2400m_dnload_bcf
139 * i2400m_bm_cmd
140 * i2400m_dnload_finalize
141 * i2400m_bm_cmd
142 *
143 * i2400m_bm_cmd
144 * i2400m->bus_bm_cmd_send()
145 * i2400m->bus_bm_wait_for_ack
146 * __i2400m_bm_ack_verify
147 * i2400m_is_boot_barker
148 *
149 * i2400m_bm_cmd_prepare Used by bus-drivers to prep
150 * commands before sending
151 *
152 * i2400m_pm_notifier Called on Power Management events
153 * i2400m_fw_cache
154 * i2400m_fw_uncache
155 */
156 #include <linux/firmware.h>
157 #include <linux/sched.h>
158 #include <linux/slab.h>
159 #include <linux/usb.h>
160 #include <linux/export.h>
161 #include "i2400m.h"
162
163
164 #define D_SUBMODULE fw
165 #include "debug-levels.h"
166
167
168 static const __le32 i2400m_ACK_BARKER[4] = {
169 cpu_to_le32(I2400M_ACK_BARKER),
170 cpu_to_le32(I2400M_ACK_BARKER),
171 cpu_to_le32(I2400M_ACK_BARKER),
172 cpu_to_le32(I2400M_ACK_BARKER)
173 };
174
175
176 /**
177 * Prepare a boot-mode command for delivery
178 *
179 * @cmd: pointer to bootrom header to prepare
180 *
181 * Computes checksum if so needed. After calling this function, DO NOT
182 * modify the command or header as the checksum won't work anymore.
183 *
184 * We do it from here because some times we cannot do it in the
185 * original context the command was sent (it is a const), so when we
186 * copy it to our staging buffer, we add the checksum there.
187 */
i2400m_bm_cmd_prepare(struct i2400m_bootrom_header * cmd)188 void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *cmd)
189 {
190 if (i2400m_brh_get_use_checksum(cmd)) {
191 int i;
192 u32 checksum = 0;
193 const u32 *checksum_ptr = (void *) cmd->payload;
194 for (i = 0; i < cmd->data_size / 4; i++)
195 checksum += cpu_to_le32(*checksum_ptr++);
196 checksum += cmd->command + cmd->target_addr + cmd->data_size;
197 cmd->block_checksum = cpu_to_le32(checksum);
198 }
199 }
200 EXPORT_SYMBOL_GPL(i2400m_bm_cmd_prepare);
201
202
203 /*
204 * Database of known barkers.
205 *
206 * A barker is what the device sends indicating he is ready to be
207 * bootloaded. Different versions of the device will send different
208 * barkers. Depending on the barker, it might mean the device wants
209 * some kind of firmware or the other.
210 */
211 static struct i2400m_barker_db {
212 __le32 data[4];
213 } *i2400m_barker_db;
214 static size_t i2400m_barker_db_used, i2400m_barker_db_size;
215
216
217 static
i2400m_zrealloc_2x(void ** ptr,size_t * _count,size_t el_size,gfp_t gfp_flags)218 int i2400m_zrealloc_2x(void **ptr, size_t *_count, size_t el_size,
219 gfp_t gfp_flags)
220 {
221 size_t old_count = *_count,
222 new_count = old_count ? 2 * old_count : 2,
223 old_size = el_size * old_count,
224 new_size = el_size * new_count;
225 void *nptr = krealloc(*ptr, new_size, gfp_flags);
226 if (nptr) {
227 /* zero the other half or the whole thing if old_count
228 * was zero */
229 if (old_size == 0)
230 memset(nptr, 0, new_size);
231 else
232 memset(nptr + old_size, 0, old_size);
233 *_count = new_count;
234 *ptr = nptr;
235 return 0;
236 } else
237 return -ENOMEM;
238 }
239
240
241 /*
242 * Add a barker to the database
243 *
244 * This cannot used outside of this module and only at at module_init
245 * time. This is to avoid the need to do locking.
246 */
247 static
i2400m_barker_db_add(u32 barker_id)248 int i2400m_barker_db_add(u32 barker_id)
249 {
250 int result;
251
252 struct i2400m_barker_db *barker;
253 if (i2400m_barker_db_used >= i2400m_barker_db_size) {
254 result = i2400m_zrealloc_2x(
255 (void **) &i2400m_barker_db, &i2400m_barker_db_size,
256 sizeof(i2400m_barker_db[0]), GFP_KERNEL);
257 if (result < 0)
258 return result;
259 }
260 barker = i2400m_barker_db + i2400m_barker_db_used++;
261 barker->data[0] = le32_to_cpu(barker_id);
262 barker->data[1] = le32_to_cpu(barker_id);
263 barker->data[2] = le32_to_cpu(barker_id);
264 barker->data[3] = le32_to_cpu(barker_id);
265 return 0;
266 }
267
268
i2400m_barker_db_exit(void)269 void i2400m_barker_db_exit(void)
270 {
271 kfree(i2400m_barker_db);
272 i2400m_barker_db = NULL;
273 i2400m_barker_db_size = 0;
274 i2400m_barker_db_used = 0;
275 }
276
277
278 /*
279 * Helper function to add all the known stable barkers to the barker
280 * database.
281 */
282 static
i2400m_barker_db_known_barkers(void)283 int i2400m_barker_db_known_barkers(void)
284 {
285 int result;
286
287 result = i2400m_barker_db_add(I2400M_NBOOT_BARKER);
288 if (result < 0)
289 goto error_add;
290 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER);
291 if (result < 0)
292 goto error_add;
293 result = i2400m_barker_db_add(I2400M_SBOOT_BARKER_6050);
294 if (result < 0)
295 goto error_add;
296 error_add:
297 return result;
298 }
299
300
301 /*
302 * Initialize the barker database
303 *
304 * This can only be used from the module_init function for this
305 * module; this is to avoid the need to do locking.
306 *
307 * @options: command line argument with extra barkers to
308 * recognize. This is a comma-separated list of 32-bit hex
309 * numbers. They are appended to the existing list. Setting 0
310 * cleans the existing list and starts a new one.
311 */
i2400m_barker_db_init(const char * _options)312 int i2400m_barker_db_init(const char *_options)
313 {
314 int result;
315 char *options = NULL, *options_orig, *token;
316
317 i2400m_barker_db = NULL;
318 i2400m_barker_db_size = 0;
319 i2400m_barker_db_used = 0;
320
321 result = i2400m_barker_db_known_barkers();
322 if (result < 0)
323 goto error_add;
324 /* parse command line options from i2400m.barkers */
325 if (_options != NULL) {
326 unsigned barker;
327
328 options_orig = kstrdup(_options, GFP_KERNEL);
329 if (options_orig == NULL) {
330 result = -ENOMEM;
331 goto error_parse;
332 }
333 options = options_orig;
334
335 while ((token = strsep(&options, ",")) != NULL) {
336 if (*token == '\0') /* eat joint commas */
337 continue;
338 if (sscanf(token, "%x", &barker) != 1
339 || barker > 0xffffffff) {
340 printk(KERN_ERR "%s: can't recognize "
341 "i2400m.barkers value '%s' as "
342 "a 32-bit number\n",
343 __func__, token);
344 result = -EINVAL;
345 goto error_parse;
346 }
347 if (barker == 0) {
348 /* clean list and start new */
349 i2400m_barker_db_exit();
350 continue;
351 }
352 result = i2400m_barker_db_add(barker);
353 if (result < 0)
354 goto error_parse_add;
355 }
356 kfree(options_orig);
357 }
358 return 0;
359
360 error_parse_add:
361 error_parse:
362 kfree(options_orig);
363 error_add:
364 kfree(i2400m_barker_db);
365 return result;
366 }
367
368
369 /*
370 * Recognize a boot barker
371 *
372 * @buf: buffer where the boot barker.
373 * @buf_size: size of the buffer (has to be 16 bytes). It is passed
374 * here so the function can check it for the caller.
375 *
376 * Note that as a side effect, upon identifying the obtained boot
377 * barker, this function will set i2400m->barker to point to the right
378 * barker database entry. Subsequent calls to the function will result
379 * in verifying that the same type of boot barker is returned when the
380 * device [re]boots (as long as the same device instance is used).
381 *
382 * Return: 0 if @buf matches a known boot barker. -ENOENT if the
383 * buffer in @buf doesn't match any boot barker in the database or
384 * -EILSEQ if the buffer doesn't have the right size.
385 */
i2400m_is_boot_barker(struct i2400m * i2400m,const void * buf,size_t buf_size)386 int i2400m_is_boot_barker(struct i2400m *i2400m,
387 const void *buf, size_t buf_size)
388 {
389 int result;
390 struct device *dev = i2400m_dev(i2400m);
391 struct i2400m_barker_db *barker;
392 int i;
393
394 result = -ENOENT;
395 if (buf_size != sizeof(i2400m_barker_db[i].data))
396 return result;
397
398 /* Short circuit if we have already discovered the barker
399 * associated with the device. */
400 if (i2400m->barker &&
401 !memcmp(buf, i2400m->barker, sizeof(i2400m->barker->data)))
402 return 0;
403
404 for (i = 0; i < i2400m_barker_db_used; i++) {
405 barker = &i2400m_barker_db[i];
406 BUILD_BUG_ON(sizeof(barker->data) != 16);
407 if (memcmp(buf, barker->data, sizeof(barker->data)))
408 continue;
409
410 if (i2400m->barker == NULL) {
411 i2400m->barker = barker;
412 d_printf(1, dev, "boot barker set to #%u/%08x\n",
413 i, le32_to_cpu(barker->data[0]));
414 if (barker->data[0] == le32_to_cpu(I2400M_NBOOT_BARKER))
415 i2400m->sboot = 0;
416 else
417 i2400m->sboot = 1;
418 } else if (i2400m->barker != barker) {
419 dev_err(dev, "HW inconsistency: device "
420 "reports a different boot barker "
421 "than set (from %08x to %08x)\n",
422 le32_to_cpu(i2400m->barker->data[0]),
423 le32_to_cpu(barker->data[0]));
424 result = -EIO;
425 } else
426 d_printf(2, dev, "boot barker confirmed #%u/%08x\n",
427 i, le32_to_cpu(barker->data[0]));
428 result = 0;
429 break;
430 }
431 return result;
432 }
433 EXPORT_SYMBOL_GPL(i2400m_is_boot_barker);
434
435
436 /*
437 * Verify the ack data received
438 *
439 * Given a reply to a boot mode command, chew it and verify everything
440 * is ok.
441 *
442 * @opcode: opcode which generated this ack. For error messages.
443 * @ack: pointer to ack data we received
444 * @ack_size: size of that data buffer
445 * @flags: I2400M_BM_CMD_* flags we called the command with.
446 *
447 * Way too long function -- maybe it should be further split
448 */
449 static
__i2400m_bm_ack_verify(struct i2400m * i2400m,int opcode,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)450 ssize_t __i2400m_bm_ack_verify(struct i2400m *i2400m, int opcode,
451 struct i2400m_bootrom_header *ack,
452 size_t ack_size, int flags)
453 {
454 ssize_t result = -ENOMEM;
455 struct device *dev = i2400m_dev(i2400m);
456
457 d_fnstart(8, dev, "(i2400m %p opcode %d ack %p size %zu)\n",
458 i2400m, opcode, ack, ack_size);
459 if (ack_size < sizeof(*ack)) {
460 result = -EIO;
461 dev_err(dev, "boot-mode cmd %d: HW BUG? notification didn't "
462 "return enough data (%zu bytes vs %zu expected)\n",
463 opcode, ack_size, sizeof(*ack));
464 goto error_ack_short;
465 }
466 result = i2400m_is_boot_barker(i2400m, ack, ack_size);
467 if (result >= 0) {
468 result = -ERESTARTSYS;
469 d_printf(6, dev, "boot-mode cmd %d: HW boot barker\n", opcode);
470 goto error_reboot;
471 }
472 if (ack_size == sizeof(i2400m_ACK_BARKER)
473 && memcmp(ack, i2400m_ACK_BARKER, sizeof(*ack)) == 0) {
474 result = -EISCONN;
475 d_printf(3, dev, "boot-mode cmd %d: HW reboot ack barker\n",
476 opcode);
477 goto error_reboot_ack;
478 }
479 result = 0;
480 if (flags & I2400M_BM_CMD_RAW)
481 goto out_raw;
482 ack->data_size = le32_to_cpu(ack->data_size);
483 ack->target_addr = le32_to_cpu(ack->target_addr);
484 ack->block_checksum = le32_to_cpu(ack->block_checksum);
485 d_printf(5, dev, "boot-mode cmd %d: notification for opcode %u "
486 "response %u csum %u rr %u da %u\n",
487 opcode, i2400m_brh_get_opcode(ack),
488 i2400m_brh_get_response(ack),
489 i2400m_brh_get_use_checksum(ack),
490 i2400m_brh_get_response_required(ack),
491 i2400m_brh_get_direct_access(ack));
492 result = -EIO;
493 if (i2400m_brh_get_signature(ack) != 0xcbbc) {
494 dev_err(dev, "boot-mode cmd %d: HW BUG? wrong signature "
495 "0x%04x\n", opcode, i2400m_brh_get_signature(ack));
496 goto error_ack_signature;
497 }
498 if (opcode != -1 && opcode != i2400m_brh_get_opcode(ack)) {
499 dev_err(dev, "boot-mode cmd %d: HW BUG? "
500 "received response for opcode %u, expected %u\n",
501 opcode, i2400m_brh_get_opcode(ack), opcode);
502 goto error_ack_opcode;
503 }
504 if (i2400m_brh_get_response(ack) != 0) { /* failed? */
505 dev_err(dev, "boot-mode cmd %d: error; hw response %u\n",
506 opcode, i2400m_brh_get_response(ack));
507 goto error_ack_failed;
508 }
509 if (ack_size < ack->data_size + sizeof(*ack)) {
510 dev_err(dev, "boot-mode cmd %d: SW BUG "
511 "driver provided only %zu bytes for %zu bytes "
512 "of data\n", opcode, ack_size,
513 (size_t) le32_to_cpu(ack->data_size) + sizeof(*ack));
514 goto error_ack_short_buffer;
515 }
516 result = ack_size;
517 /* Don't you love this stack of empty targets? Well, I don't
518 * either, but it helps track exactly who comes in here and
519 * why :) */
520 error_ack_short_buffer:
521 error_ack_failed:
522 error_ack_opcode:
523 error_ack_signature:
524 out_raw:
525 error_reboot_ack:
526 error_reboot:
527 error_ack_short:
528 d_fnend(8, dev, "(i2400m %p opcode %d ack %p size %zu) = %d\n",
529 i2400m, opcode, ack, ack_size, (int) result);
530 return result;
531 }
532
533
534 /**
535 * i2400m_bm_cmd - Execute a boot mode command
536 *
537 * @cmd: buffer containing the command data (pointing at the header).
538 * This data can be ANYWHERE (for USB, we will copy it to an
539 * specific buffer). Make sure everything is in proper little
540 * endian.
541 *
542 * A raw buffer can be also sent, just cast it and set flags to
543 * I2400M_BM_CMD_RAW.
544 *
545 * This function will generate a checksum for you if the
546 * checksum bit in the command is set (unless I2400M_BM_CMD_RAW
547 * is set).
548 *
549 * You can use the i2400m->bm_cmd_buf to stage your commands and
550 * send them.
551 *
552 * If NULL, no command is sent (we just wait for an ack).
553 *
554 * @cmd_size: size of the command. Will be auto padded to the
555 * bus-specific drivers padding requirements.
556 *
557 * @ack: buffer where to place the acknowledgement. If it is a regular
558 * command response, all fields will be returned with the right,
559 * native endianess.
560 *
561 * You *cannot* use i2400m->bm_ack_buf for this buffer.
562 *
563 * @ack_size: size of @ack, 16 aligned; you need to provide at least
564 * sizeof(*ack) bytes and then enough to contain the return data
565 * from the command
566 *
567 * @flags: see I2400M_BM_CMD_* above.
568 *
569 * @returns: bytes received by the notification; if < 0, an errno code
570 * denoting an error or:
571 *
572 * -ERESTARTSYS The device has rebooted
573 *
574 * Executes a boot-mode command and waits for a response, doing basic
575 * validation on it; if a zero length response is received, it retries
576 * waiting for a response until a non-zero one is received (timing out
577 * after %I2400M_BOOT_RETRIES retries).
578 */
579 static
i2400m_bm_cmd(struct i2400m * i2400m,const struct i2400m_bootrom_header * cmd,size_t cmd_size,struct i2400m_bootrom_header * ack,size_t ack_size,int flags)580 ssize_t i2400m_bm_cmd(struct i2400m *i2400m,
581 const struct i2400m_bootrom_header *cmd, size_t cmd_size,
582 struct i2400m_bootrom_header *ack, size_t ack_size,
583 int flags)
584 {
585 ssize_t result = -ENOMEM, rx_bytes;
586 struct device *dev = i2400m_dev(i2400m);
587 int opcode = cmd == NULL ? -1 : i2400m_brh_get_opcode(cmd);
588
589 d_fnstart(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu)\n",
590 i2400m, cmd, cmd_size, ack, ack_size);
591 BUG_ON(ack_size < sizeof(*ack));
592 BUG_ON(i2400m->boot_mode == 0);
593
594 if (cmd != NULL) { /* send the command */
595 result = i2400m->bus_bm_cmd_send(i2400m, cmd, cmd_size, flags);
596 if (result < 0)
597 goto error_cmd_send;
598 if ((flags & I2400M_BM_CMD_RAW) == 0)
599 d_printf(5, dev,
600 "boot-mode cmd %d csum %u rr %u da %u: "
601 "addr 0x%04x size %u block csum 0x%04x\n",
602 opcode, i2400m_brh_get_use_checksum(cmd),
603 i2400m_brh_get_response_required(cmd),
604 i2400m_brh_get_direct_access(cmd),
605 cmd->target_addr, cmd->data_size,
606 cmd->block_checksum);
607 }
608 result = i2400m->bus_bm_wait_for_ack(i2400m, ack, ack_size);
609 if (result < 0) {
610 dev_err(dev, "boot-mode cmd %d: error waiting for an ack: %d\n",
611 opcode, (int) result); /* bah, %zd doesn't work */
612 goto error_wait_for_ack;
613 }
614 rx_bytes = result;
615 /* verify the ack and read more if necessary [result is the
616 * final amount of bytes we get in the ack] */
617 result = __i2400m_bm_ack_verify(i2400m, opcode, ack, ack_size, flags);
618 if (result < 0)
619 goto error_bad_ack;
620 /* Don't you love this stack of empty targets? Well, I don't
621 * either, but it helps track exactly who comes in here and
622 * why :) */
623 result = rx_bytes;
624 error_bad_ack:
625 error_wait_for_ack:
626 error_cmd_send:
627 d_fnend(6, dev, "(i2400m %p cmd %p size %zu ack %p size %zu) = %d\n",
628 i2400m, cmd, cmd_size, ack, ack_size, (int) result);
629 return result;
630 }
631
632
633 /**
634 * i2400m_download_chunk - write a single chunk of data to the device's memory
635 *
636 * @i2400m: device descriptor
637 * @buf: the buffer to write
638 * @buf_len: length of the buffer to write
639 * @addr: address in the device memory space
640 * @direct: bootrom write mode
641 * @do_csum: should a checksum validation be performed
642 */
i2400m_download_chunk(struct i2400m * i2400m,const void * chunk,size_t __chunk_len,unsigned long addr,unsigned int direct,unsigned int do_csum)643 static int i2400m_download_chunk(struct i2400m *i2400m, const void *chunk,
644 size_t __chunk_len, unsigned long addr,
645 unsigned int direct, unsigned int do_csum)
646 {
647 int ret;
648 size_t chunk_len = ALIGN(__chunk_len, I2400M_PL_ALIGN);
649 struct device *dev = i2400m_dev(i2400m);
650 struct {
651 struct i2400m_bootrom_header cmd;
652 u8 cmd_payload[];
653 } __packed *buf;
654 struct i2400m_bootrom_header ack;
655
656 d_fnstart(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
657 "direct %u do_csum %u)\n", i2400m, chunk, __chunk_len,
658 addr, direct, do_csum);
659 buf = i2400m->bm_cmd_buf;
660 memcpy(buf->cmd_payload, chunk, __chunk_len);
661 memset(buf->cmd_payload + __chunk_len, 0xad, chunk_len - __chunk_len);
662
663 buf->cmd.command = i2400m_brh_command(I2400M_BRH_WRITE,
664 __chunk_len & 0x3 ? 0 : do_csum,
665 __chunk_len & 0xf ? 0 : direct);
666 buf->cmd.target_addr = cpu_to_le32(addr);
667 buf->cmd.data_size = cpu_to_le32(__chunk_len);
668 ret = i2400m_bm_cmd(i2400m, &buf->cmd, sizeof(buf->cmd) + chunk_len,
669 &ack, sizeof(ack), 0);
670 if (ret >= 0)
671 ret = 0;
672 d_fnend(5, dev, "(i2400m %p chunk %p __chunk_len %zu addr 0x%08lx "
673 "direct %u do_csum %u) = %d\n", i2400m, chunk, __chunk_len,
674 addr, direct, do_csum, ret);
675 return ret;
676 }
677
678
679 /*
680 * Download a BCF file's sections to the device
681 *
682 * @i2400m: device descriptor
683 * @bcf: pointer to firmware data (first header followed by the
684 * payloads). Assumed verified and consistent.
685 * @bcf_len: length (in bytes) of the @bcf buffer.
686 *
687 * Returns: < 0 errno code on error or the offset to the jump instruction.
688 *
689 * Given a BCF file, downloads each section (a command and a payload)
690 * to the device's address space. Actually, it just executes each
691 * command i the BCF file.
692 *
693 * The section size has to be aligned to 4 bytes AND the padding has
694 * to be taken from the firmware file, as the signature takes it into
695 * account.
696 */
697 static
i2400m_dnload_bcf(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t bcf_len)698 ssize_t i2400m_dnload_bcf(struct i2400m *i2400m,
699 const struct i2400m_bcf_hdr *bcf, size_t bcf_len)
700 {
701 ssize_t ret;
702 struct device *dev = i2400m_dev(i2400m);
703 size_t offset, /* iterator offset */
704 data_size, /* Size of the data payload */
705 section_size, /* Size of the whole section (cmd + payload) */
706 section = 1;
707 const struct i2400m_bootrom_header *bh;
708 struct i2400m_bootrom_header ack;
709
710 d_fnstart(3, dev, "(i2400m %p bcf %p bcf_len %zu)\n",
711 i2400m, bcf, bcf_len);
712 /* Iterate over the command blocks in the BCF file that start
713 * after the header */
714 offset = le32_to_cpu(bcf->header_len) * sizeof(u32);
715 while (1) { /* start sending the file */
716 bh = (void *) bcf + offset;
717 data_size = le32_to_cpu(bh->data_size);
718 section_size = ALIGN(sizeof(*bh) + data_size, 4);
719 d_printf(7, dev,
720 "downloading section #%zu (@%zu %zu B) to 0x%08x\n",
721 section, offset, sizeof(*bh) + data_size,
722 le32_to_cpu(bh->target_addr));
723 /*
724 * We look for JUMP cmd from the bootmode header,
725 * either I2400M_BRH_SIGNED_JUMP for secure boot
726 * or I2400M_BRH_JUMP for unsecure boot, the last chunk
727 * should be the bootmode header with JUMP cmd.
728 */
729 if (i2400m_brh_get_opcode(bh) == I2400M_BRH_SIGNED_JUMP ||
730 i2400m_brh_get_opcode(bh) == I2400M_BRH_JUMP) {
731 d_printf(5, dev, "jump found @%zu\n", offset);
732 break;
733 }
734 if (offset + section_size > bcf_len) {
735 dev_err(dev, "fw %s: bad section #%zu, "
736 "end (@%zu) beyond EOF (@%zu)\n",
737 i2400m->fw_name, section,
738 offset + section_size, bcf_len);
739 ret = -EINVAL;
740 goto error_section_beyond_eof;
741 }
742 __i2400m_msleep(20);
743 ret = i2400m_bm_cmd(i2400m, bh, section_size,
744 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
745 if (ret < 0) {
746 dev_err(dev, "fw %s: section #%zu (@%zu %zu B) "
747 "failed %d\n", i2400m->fw_name, section,
748 offset, sizeof(*bh) + data_size, (int) ret);
749 goto error_send;
750 }
751 offset += section_size;
752 section++;
753 }
754 ret = offset;
755 error_section_beyond_eof:
756 error_send:
757 d_fnend(3, dev, "(i2400m %p bcf %p bcf_len %zu) = %d\n",
758 i2400m, bcf, bcf_len, (int) ret);
759 return ret;
760 }
761
762
763 /*
764 * Indicate if the device emitted a reboot barker that indicates
765 * "signed boot"
766 */
767 static
i2400m_boot_is_signed(struct i2400m * i2400m)768 unsigned i2400m_boot_is_signed(struct i2400m *i2400m)
769 {
770 return likely(i2400m->sboot);
771 }
772
773
774 /*
775 * Do the final steps of uploading firmware
776 *
777 * @bcf_hdr: BCF header we are actually using
778 * @bcf: pointer to the firmware image (which matches the first header
779 * that is followed by the actual payloads).
780 * @offset: [byte] offset into @bcf for the command we need to send.
781 *
782 * Depending on the boot mode (signed vs non-signed), different
783 * actions need to be taken.
784 */
785 static
i2400m_dnload_finalize(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,const struct i2400m_bcf_hdr * bcf,size_t offset)786 int i2400m_dnload_finalize(struct i2400m *i2400m,
787 const struct i2400m_bcf_hdr *bcf_hdr,
788 const struct i2400m_bcf_hdr *bcf, size_t offset)
789 {
790 int ret = 0;
791 struct device *dev = i2400m_dev(i2400m);
792 struct i2400m_bootrom_header *cmd, ack;
793 struct {
794 struct i2400m_bootrom_header cmd;
795 u8 cmd_pl[0];
796 } __packed *cmd_buf;
797 size_t signature_block_offset, signature_block_size;
798
799 d_fnstart(3, dev, "offset %zu\n", offset);
800 cmd = (void *) bcf + offset;
801 if (i2400m_boot_is_signed(i2400m) == 0) {
802 struct i2400m_bootrom_header jump_ack;
803 d_printf(1, dev, "unsecure boot, jumping to 0x%08x\n",
804 le32_to_cpu(cmd->target_addr));
805 cmd_buf = i2400m->bm_cmd_buf;
806 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
807 cmd = &cmd_buf->cmd;
808 /* now cmd points to the actual bootrom_header in cmd_buf */
809 i2400m_brh_set_opcode(cmd, I2400M_BRH_JUMP);
810 cmd->data_size = 0;
811 ret = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
812 &jump_ack, sizeof(jump_ack), 0);
813 } else {
814 d_printf(1, dev, "secure boot, jumping to 0x%08x\n",
815 le32_to_cpu(cmd->target_addr));
816 cmd_buf = i2400m->bm_cmd_buf;
817 memcpy(&cmd_buf->cmd, cmd, sizeof(*cmd));
818 signature_block_offset =
819 sizeof(*bcf_hdr)
820 + le32_to_cpu(bcf_hdr->key_size) * sizeof(u32)
821 + le32_to_cpu(bcf_hdr->exponent_size) * sizeof(u32);
822 signature_block_size =
823 le32_to_cpu(bcf_hdr->modulus_size) * sizeof(u32);
824 memcpy(cmd_buf->cmd_pl,
825 (void *) bcf_hdr + signature_block_offset,
826 signature_block_size);
827 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd,
828 sizeof(cmd_buf->cmd) + signature_block_size,
829 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
830 }
831 d_fnend(3, dev, "returning %d\n", ret);
832 return ret;
833 }
834
835
836 /**
837 * i2400m_bootrom_init - Reboots a powered device into boot mode
838 *
839 * @i2400m: device descriptor
840 * @flags:
841 * I2400M_BRI_SOFT: a reboot barker has been seen
842 * already, so don't wait for it.
843 *
844 * I2400M_BRI_NO_REBOOT: Don't send a reboot command, but wait
845 * for a reboot barker notification. This is a one shot; if
846 * the state machine needs to send a reboot command it will.
847 *
848 * Returns:
849 *
850 * < 0 errno code on error, 0 if ok.
851 *
852 * Description:
853 *
854 * Tries hard enough to put the device in boot-mode. There are two
855 * main phases to this:
856 *
857 * a. (1) send a reboot command and (2) get a reboot barker
858 *
859 * b. (1) echo/ack the reboot sending the reboot barker back and (2)
860 * getting an ack barker in return
861 *
862 * We want to skip (a) in some cases [soft]. The state machine is
863 * horrible, but it is basically: on each phase, send what has to be
864 * sent (if any), wait for the answer and act on the answer. We might
865 * have to backtrack and retry, so we keep a max tries counter for
866 * that.
867 *
868 * It sucks because we don't know ahead of time which is going to be
869 * the reboot barker (the device might send different ones depending
870 * on its EEPROM config) and once the device reboots and waits for the
871 * echo/ack reboot barker being sent back, it doesn't understand
872 * anything else. So we can be left at the point where we don't know
873 * what to send to it -- cold reset and bus reset seem to have little
874 * effect. So the function iterates (in this case) through all the
875 * known barkers and tries them all until an ACK is
876 * received. Otherwise, it gives up.
877 *
878 * If we get a timeout after sending a warm reset, we do it again.
879 */
i2400m_bootrom_init(struct i2400m * i2400m,enum i2400m_bri flags)880 int i2400m_bootrom_init(struct i2400m *i2400m, enum i2400m_bri flags)
881 {
882 int result;
883 struct device *dev = i2400m_dev(i2400m);
884 struct i2400m_bootrom_header *cmd;
885 struct i2400m_bootrom_header ack;
886 int count = i2400m->bus_bm_retries;
887 int ack_timeout_cnt = 1;
888 unsigned i;
889
890 BUILD_BUG_ON(sizeof(*cmd) != sizeof(i2400m_barker_db[0].data));
891 BUILD_BUG_ON(sizeof(ack) != sizeof(i2400m_ACK_BARKER));
892
893 d_fnstart(4, dev, "(i2400m %p flags 0x%08x)\n", i2400m, flags);
894 result = -ENOMEM;
895 cmd = i2400m->bm_cmd_buf;
896 if (flags & I2400M_BRI_SOFT)
897 goto do_reboot_ack;
898 do_reboot:
899 ack_timeout_cnt = 1;
900 if (--count < 0)
901 goto error_timeout;
902 d_printf(4, dev, "device reboot: reboot command [%d # left]\n",
903 count);
904 if ((flags & I2400M_BRI_NO_REBOOT) == 0)
905 i2400m_reset(i2400m, I2400M_RT_WARM);
906 result = i2400m_bm_cmd(i2400m, NULL, 0, &ack, sizeof(ack),
907 I2400M_BM_CMD_RAW);
908 flags &= ~I2400M_BRI_NO_REBOOT;
909 switch (result) {
910 case -ERESTARTSYS:
911 /*
912 * at this point, i2400m_bm_cmd(), through
913 * __i2400m_bm_ack_process(), has updated
914 * i2400m->barker and we are good to go.
915 */
916 d_printf(4, dev, "device reboot: got reboot barker\n");
917 break;
918 case -EISCONN: /* we don't know how it got here...but we follow it */
919 d_printf(4, dev, "device reboot: got ack barker - whatever\n");
920 goto do_reboot;
921 case -ETIMEDOUT:
922 /*
923 * Device has timed out, we might be in boot mode
924 * already and expecting an ack; if we don't know what
925 * the barker is, we just send them all. Cold reset
926 * and bus reset don't work. Beats me.
927 */
928 if (i2400m->barker != NULL) {
929 dev_err(dev, "device boot: reboot barker timed out, "
930 "trying (set) %08x echo/ack\n",
931 le32_to_cpu(i2400m->barker->data[0]));
932 goto do_reboot_ack;
933 }
934 for (i = 0; i < i2400m_barker_db_used; i++) {
935 struct i2400m_barker_db *barker = &i2400m_barker_db[i];
936 memcpy(cmd, barker->data, sizeof(barker->data));
937 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
938 &ack, sizeof(ack),
939 I2400M_BM_CMD_RAW);
940 if (result == -EISCONN) {
941 dev_warn(dev, "device boot: got ack barker "
942 "after sending echo/ack barker "
943 "#%d/%08x; rebooting j.i.c.\n",
944 i, le32_to_cpu(barker->data[0]));
945 flags &= ~I2400M_BRI_NO_REBOOT;
946 goto do_reboot;
947 }
948 }
949 dev_err(dev, "device boot: tried all the echo/acks, could "
950 "not get device to respond; giving up");
951 result = -ESHUTDOWN;
952 case -EPROTO:
953 case -ESHUTDOWN: /* dev is gone */
954 case -EINTR: /* user cancelled */
955 goto error_dev_gone;
956 default:
957 dev_err(dev, "device reboot: error %d while waiting "
958 "for reboot barker - rebooting\n", result);
959 d_dump(1, dev, &ack, result);
960 goto do_reboot;
961 }
962 /* At this point we ack back with 4 REBOOT barkers and expect
963 * 4 ACK barkers. This is ugly, as we send a raw command --
964 * hence the cast. _bm_cmd() will catch the reboot ack
965 * notification and report it as -EISCONN. */
966 do_reboot_ack:
967 d_printf(4, dev, "device reboot ack: sending ack [%d # left]\n", count);
968 memcpy(cmd, i2400m->barker->data, sizeof(i2400m->barker->data));
969 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
970 &ack, sizeof(ack), I2400M_BM_CMD_RAW);
971 switch (result) {
972 case -ERESTARTSYS:
973 d_printf(4, dev, "reboot ack: got reboot barker - retrying\n");
974 if (--count < 0)
975 goto error_timeout;
976 goto do_reboot_ack;
977 case -EISCONN:
978 d_printf(4, dev, "reboot ack: got ack barker - good\n");
979 break;
980 case -ETIMEDOUT: /* no response, maybe it is the other type? */
981 if (ack_timeout_cnt-- < 0) {
982 d_printf(4, dev, "reboot ack timedout: retrying\n");
983 goto do_reboot_ack;
984 } else {
985 dev_err(dev, "reboot ack timedout too long: "
986 "trying reboot\n");
987 goto do_reboot;
988 }
989 break;
990 case -EPROTO:
991 case -ESHUTDOWN: /* dev is gone */
992 goto error_dev_gone;
993 default:
994 dev_err(dev, "device reboot ack: error %d while waiting for "
995 "reboot ack barker - rebooting\n", result);
996 goto do_reboot;
997 }
998 d_printf(2, dev, "device reboot ack: got ack barker - boot done\n");
999 result = 0;
1000 exit_timeout:
1001 error_dev_gone:
1002 d_fnend(4, dev, "(i2400m %p flags 0x%08x) = %d\n",
1003 i2400m, flags, result);
1004 return result;
1005
1006 error_timeout:
1007 dev_err(dev, "Timed out waiting for reboot ack\n");
1008 result = -ETIMEDOUT;
1009 goto exit_timeout;
1010 }
1011
1012
1013 /*
1014 * Read the MAC addr
1015 *
1016 * The position this function reads is fixed in device memory and
1017 * always available, even without firmware.
1018 *
1019 * Note we specify we want to read only six bytes, but provide space
1020 * for 16, as we always get it rounded up.
1021 */
i2400m_read_mac_addr(struct i2400m * i2400m)1022 int i2400m_read_mac_addr(struct i2400m *i2400m)
1023 {
1024 int result;
1025 struct device *dev = i2400m_dev(i2400m);
1026 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
1027 struct i2400m_bootrom_header *cmd;
1028 struct {
1029 struct i2400m_bootrom_header ack;
1030 u8 ack_pl[16];
1031 } __packed ack_buf;
1032
1033 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1034 cmd = i2400m->bm_cmd_buf;
1035 cmd->command = i2400m_brh_command(I2400M_BRH_READ, 0, 1);
1036 cmd->target_addr = cpu_to_le32(0x00203fe8);
1037 cmd->data_size = cpu_to_le32(6);
1038 result = i2400m_bm_cmd(i2400m, cmd, sizeof(*cmd),
1039 &ack_buf.ack, sizeof(ack_buf), 0);
1040 if (result < 0) {
1041 dev_err(dev, "BM: read mac addr failed: %d\n", result);
1042 goto error_read_mac;
1043 }
1044 d_printf(2, dev, "mac addr is %pM\n", ack_buf.ack_pl);
1045 if (i2400m->bus_bm_mac_addr_impaired == 1) {
1046 ack_buf.ack_pl[0] = 0x00;
1047 ack_buf.ack_pl[1] = 0x16;
1048 ack_buf.ack_pl[2] = 0xd3;
1049 get_random_bytes(&ack_buf.ack_pl[3], 3);
1050 dev_err(dev, "BM is MAC addr impaired, faking MAC addr to "
1051 "mac addr is %pM\n", ack_buf.ack_pl);
1052 result = 0;
1053 }
1054 net_dev->addr_len = ETH_ALEN;
1055 memcpy(net_dev->dev_addr, ack_buf.ack_pl, ETH_ALEN);
1056 error_read_mac:
1057 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, result);
1058 return result;
1059 }
1060
1061
1062 /*
1063 * Initialize a non signed boot
1064 *
1065 * This implies sending some magic values to the device's memory. Note
1066 * we convert the values to little endian in the same array
1067 * declaration.
1068 */
1069 static
i2400m_dnload_init_nonsigned(struct i2400m * i2400m)1070 int i2400m_dnload_init_nonsigned(struct i2400m *i2400m)
1071 {
1072 unsigned i = 0;
1073 int ret = 0;
1074 struct device *dev = i2400m_dev(i2400m);
1075 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1076 if (i2400m->bus_bm_pokes_table) {
1077 while (i2400m->bus_bm_pokes_table[i].address) {
1078 ret = i2400m_download_chunk(
1079 i2400m,
1080 &i2400m->bus_bm_pokes_table[i].data,
1081 sizeof(i2400m->bus_bm_pokes_table[i].data),
1082 i2400m->bus_bm_pokes_table[i].address, 1, 1);
1083 if (ret < 0)
1084 break;
1085 i++;
1086 }
1087 }
1088 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1089 return ret;
1090 }
1091
1092
1093 /*
1094 * Initialize the signed boot process
1095 *
1096 * @i2400m: device descriptor
1097 *
1098 * @bcf_hdr: pointer to the firmware header; assumes it is fully in
1099 * memory (it has gone through basic validation).
1100 *
1101 * Returns: 0 if ok, < 0 errno code on error, -ERESTARTSYS if the hw
1102 * rebooted.
1103 *
1104 * This writes the firmware BCF header to the device using the
1105 * HASH_PAYLOAD_ONLY command.
1106 */
1107 static
i2400m_dnload_init_signed(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1108 int i2400m_dnload_init_signed(struct i2400m *i2400m,
1109 const struct i2400m_bcf_hdr *bcf_hdr)
1110 {
1111 int ret;
1112 struct device *dev = i2400m_dev(i2400m);
1113 struct {
1114 struct i2400m_bootrom_header cmd;
1115 struct i2400m_bcf_hdr cmd_pl;
1116 } __packed *cmd_buf;
1117 struct i2400m_bootrom_header ack;
1118
1119 d_fnstart(5, dev, "(i2400m %p bcf_hdr %p)\n", i2400m, bcf_hdr);
1120 cmd_buf = i2400m->bm_cmd_buf;
1121 cmd_buf->cmd.command =
1122 i2400m_brh_command(I2400M_BRH_HASH_PAYLOAD_ONLY, 0, 0);
1123 cmd_buf->cmd.target_addr = 0;
1124 cmd_buf->cmd.data_size = cpu_to_le32(sizeof(cmd_buf->cmd_pl));
1125 memcpy(&cmd_buf->cmd_pl, bcf_hdr, sizeof(*bcf_hdr));
1126 ret = i2400m_bm_cmd(i2400m, &cmd_buf->cmd, sizeof(*cmd_buf),
1127 &ack, sizeof(ack), 0);
1128 if (ret >= 0)
1129 ret = 0;
1130 d_fnend(5, dev, "(i2400m %p bcf_hdr %p) = %d\n", i2400m, bcf_hdr, ret);
1131 return ret;
1132 }
1133
1134
1135 /*
1136 * Initialize the firmware download at the device size
1137 *
1138 * Multiplex to the one that matters based on the device's mode
1139 * (signed or non-signed).
1140 */
1141 static
i2400m_dnload_init(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1142 int i2400m_dnload_init(struct i2400m *i2400m,
1143 const struct i2400m_bcf_hdr *bcf_hdr)
1144 {
1145 int result;
1146 struct device *dev = i2400m_dev(i2400m);
1147
1148 if (i2400m_boot_is_signed(i2400m)) {
1149 d_printf(1, dev, "signed boot\n");
1150 result = i2400m_dnload_init_signed(i2400m, bcf_hdr);
1151 if (result == -ERESTARTSYS)
1152 return result;
1153 if (result < 0)
1154 dev_err(dev, "firmware %s: signed boot download "
1155 "initialization failed: %d\n",
1156 i2400m->fw_name, result);
1157 } else {
1158 /* non-signed boot process without pokes */
1159 d_printf(1, dev, "non-signed boot\n");
1160 result = i2400m_dnload_init_nonsigned(i2400m);
1161 if (result == -ERESTARTSYS)
1162 return result;
1163 if (result < 0)
1164 dev_err(dev, "firmware %s: non-signed download "
1165 "initialization failed: %d\n",
1166 i2400m->fw_name, result);
1167 }
1168 return result;
1169 }
1170
1171
1172 /*
1173 * Run consistency tests on the firmware file and load up headers
1174 *
1175 * Check for the firmware being made for the i2400m device,
1176 * etc...These checks are mostly informative, as the device will make
1177 * them too; but the driver's response is more informative on what
1178 * went wrong.
1179 *
1180 * This will also look at all the headers present on the firmware
1181 * file, and update i2400m->fw_bcf_hdr to point to them.
1182 */
1183 static
i2400m_fw_hdr_check(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr,size_t index,size_t offset)1184 int i2400m_fw_hdr_check(struct i2400m *i2400m,
1185 const struct i2400m_bcf_hdr *bcf_hdr,
1186 size_t index, size_t offset)
1187 {
1188 struct device *dev = i2400m_dev(i2400m);
1189
1190 unsigned module_type, header_len, major_version, minor_version,
1191 module_id, module_vendor, date, size;
1192
1193 module_type = le32_to_cpu(bcf_hdr->module_type);
1194 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1195 major_version = (le32_to_cpu(bcf_hdr->header_version) & 0xffff0000)
1196 >> 16;
1197 minor_version = le32_to_cpu(bcf_hdr->header_version) & 0x0000ffff;
1198 module_id = le32_to_cpu(bcf_hdr->module_id);
1199 module_vendor = le32_to_cpu(bcf_hdr->module_vendor);
1200 date = le32_to_cpu(bcf_hdr->date);
1201 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1202
1203 d_printf(1, dev, "firmware %s #%zd@%08zx: BCF header "
1204 "type:vendor:id 0x%x:%x:%x v%u.%u (%u/%u B) built %08x\n",
1205 i2400m->fw_name, index, offset,
1206 module_type, module_vendor, module_id,
1207 major_version, minor_version, header_len, size, date);
1208
1209 /* Hard errors */
1210 if (major_version != 1) {
1211 dev_err(dev, "firmware %s #%zd@%08zx: major header version "
1212 "v%u.%u not supported\n",
1213 i2400m->fw_name, index, offset,
1214 major_version, minor_version);
1215 return -EBADF;
1216 }
1217
1218 if (module_type != 6) { /* built for the right hardware? */
1219 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1220 "type 0x%x; aborting\n",
1221 i2400m->fw_name, index, offset,
1222 module_type);
1223 return -EBADF;
1224 }
1225
1226 if (module_vendor != 0x8086) {
1227 dev_err(dev, "firmware %s #%zd@%08zx: unexpected module "
1228 "vendor 0x%x; aborting\n",
1229 i2400m->fw_name, index, offset, module_vendor);
1230 return -EBADF;
1231 }
1232
1233 if (date < 0x20080300)
1234 dev_warn(dev, "firmware %s #%zd@%08zx: build date %08x "
1235 "too old; unsupported\n",
1236 i2400m->fw_name, index, offset, date);
1237 return 0;
1238 }
1239
1240
1241 /*
1242 * Run consistency tests on the firmware file and load up headers
1243 *
1244 * Check for the firmware being made for the i2400m device,
1245 * etc...These checks are mostly informative, as the device will make
1246 * them too; but the driver's response is more informative on what
1247 * went wrong.
1248 *
1249 * This will also look at all the headers present on the firmware
1250 * file, and update i2400m->fw_hdrs to point to them.
1251 */
1252 static
i2400m_fw_check(struct i2400m * i2400m,const void * bcf,size_t bcf_size)1253 int i2400m_fw_check(struct i2400m *i2400m, const void *bcf, size_t bcf_size)
1254 {
1255 int result;
1256 struct device *dev = i2400m_dev(i2400m);
1257 size_t headers = 0;
1258 const struct i2400m_bcf_hdr *bcf_hdr;
1259 const void *itr, *next, *top;
1260 size_t slots = 0, used_slots = 0;
1261
1262 for (itr = bcf, top = itr + bcf_size;
1263 itr < top;
1264 headers++, itr = next) {
1265 size_t leftover, offset, header_len, size;
1266
1267 leftover = top - itr;
1268 offset = itr - bcf;
1269 if (leftover <= sizeof(*bcf_hdr)) {
1270 dev_err(dev, "firmware %s: %zu B left at @%zx, "
1271 "not enough for BCF header\n",
1272 i2400m->fw_name, leftover, offset);
1273 break;
1274 }
1275 bcf_hdr = itr;
1276 /* Only the first header is supposed to be followed by
1277 * payload */
1278 header_len = sizeof(u32) * le32_to_cpu(bcf_hdr->header_len);
1279 size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1280 if (headers == 0)
1281 next = itr + size;
1282 else
1283 next = itr + header_len;
1284
1285 result = i2400m_fw_hdr_check(i2400m, bcf_hdr, headers, offset);
1286 if (result < 0)
1287 continue;
1288 if (used_slots + 1 >= slots) {
1289 /* +1 -> we need to account for the one we'll
1290 * occupy and at least an extra one for
1291 * always being NULL */
1292 result = i2400m_zrealloc_2x(
1293 (void **) &i2400m->fw_hdrs, &slots,
1294 sizeof(i2400m->fw_hdrs[0]),
1295 GFP_KERNEL);
1296 if (result < 0)
1297 goto error_zrealloc;
1298 }
1299 i2400m->fw_hdrs[used_slots] = bcf_hdr;
1300 used_slots++;
1301 }
1302 if (headers == 0) {
1303 dev_err(dev, "firmware %s: no usable headers found\n",
1304 i2400m->fw_name);
1305 result = -EBADF;
1306 } else
1307 result = 0;
1308 error_zrealloc:
1309 return result;
1310 }
1311
1312
1313 /*
1314 * Match a barker to a BCF header module ID
1315 *
1316 * The device sends a barker which tells the firmware loader which
1317 * header in the BCF file has to be used. This does the matching.
1318 */
1319 static
i2400m_bcf_hdr_match(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf_hdr)1320 unsigned i2400m_bcf_hdr_match(struct i2400m *i2400m,
1321 const struct i2400m_bcf_hdr *bcf_hdr)
1322 {
1323 u32 barker = le32_to_cpu(i2400m->barker->data[0])
1324 & 0x7fffffff;
1325 u32 module_id = le32_to_cpu(bcf_hdr->module_id)
1326 & 0x7fffffff; /* high bit used for something else */
1327
1328 /* special case for 5x50 */
1329 if (barker == I2400M_SBOOT_BARKER && module_id == 0)
1330 return 1;
1331 if (module_id == barker)
1332 return 1;
1333 return 0;
1334 }
1335
1336 static
i2400m_bcf_hdr_find(struct i2400m * i2400m)1337 const struct i2400m_bcf_hdr *i2400m_bcf_hdr_find(struct i2400m *i2400m)
1338 {
1339 struct device *dev = i2400m_dev(i2400m);
1340 const struct i2400m_bcf_hdr **bcf_itr, *bcf_hdr;
1341 unsigned i = 0;
1342 u32 barker = le32_to_cpu(i2400m->barker->data[0]);
1343
1344 d_printf(2, dev, "finding BCF header for barker %08x\n", barker);
1345 if (barker == I2400M_NBOOT_BARKER) {
1346 bcf_hdr = i2400m->fw_hdrs[0];
1347 d_printf(1, dev, "using BCF header #%u/%08x for non-signed "
1348 "barker\n", 0, le32_to_cpu(bcf_hdr->module_id));
1349 return bcf_hdr;
1350 }
1351 for (bcf_itr = i2400m->fw_hdrs; *bcf_itr != NULL; bcf_itr++, i++) {
1352 bcf_hdr = *bcf_itr;
1353 if (i2400m_bcf_hdr_match(i2400m, bcf_hdr)) {
1354 d_printf(1, dev, "hit on BCF hdr #%u/%08x\n",
1355 i, le32_to_cpu(bcf_hdr->module_id));
1356 return bcf_hdr;
1357 } else
1358 d_printf(1, dev, "miss on BCF hdr #%u/%08x\n",
1359 i, le32_to_cpu(bcf_hdr->module_id));
1360 }
1361 dev_err(dev, "cannot find a matching BCF header for barker %08x\n",
1362 barker);
1363 return NULL;
1364 }
1365
1366
1367 /*
1368 * Download the firmware to the device
1369 *
1370 * @i2400m: device descriptor
1371 * @bcf: pointer to loaded (and minimally verified for consistency)
1372 * firmware
1373 * @bcf_size: size of the @bcf buffer (header plus payloads)
1374 *
1375 * The process for doing this is described in this file's header.
1376 *
1377 * Note we only reinitialize boot-mode if the flags say so. Some hw
1378 * iterations need it, some don't. In any case, if we loop, we always
1379 * need to reinitialize the boot room, hence the flags modification.
1380 */
1381 static
i2400m_fw_dnload(struct i2400m * i2400m,const struct i2400m_bcf_hdr * bcf,size_t fw_size,enum i2400m_bri flags)1382 int i2400m_fw_dnload(struct i2400m *i2400m, const struct i2400m_bcf_hdr *bcf,
1383 size_t fw_size, enum i2400m_bri flags)
1384 {
1385 int ret = 0;
1386 struct device *dev = i2400m_dev(i2400m);
1387 int count = i2400m->bus_bm_retries;
1388 const struct i2400m_bcf_hdr *bcf_hdr;
1389 size_t bcf_size;
1390
1391 d_fnstart(5, dev, "(i2400m %p bcf %p fw size %zu)\n",
1392 i2400m, bcf, fw_size);
1393 i2400m->boot_mode = 1;
1394 wmb(); /* Make sure other readers see it */
1395 hw_reboot:
1396 if (count-- == 0) {
1397 ret = -ERESTARTSYS;
1398 dev_err(dev, "device rebooted too many times, aborting\n");
1399 goto error_too_many_reboots;
1400 }
1401 if (flags & I2400M_BRI_MAC_REINIT) {
1402 ret = i2400m_bootrom_init(i2400m, flags);
1403 if (ret < 0) {
1404 dev_err(dev, "bootrom init failed: %d\n", ret);
1405 goto error_bootrom_init;
1406 }
1407 }
1408 flags |= I2400M_BRI_MAC_REINIT;
1409
1410 /*
1411 * Initialize the download, push the bytes to the device and
1412 * then jump to the new firmware. Note @ret is passed with the
1413 * offset of the jump instruction to _dnload_finalize()
1414 *
1415 * Note we need to use the BCF header in the firmware image
1416 * that matches the barker that the device sent when it
1417 * rebooted, so it has to be passed along.
1418 */
1419 ret = -EBADF;
1420 bcf_hdr = i2400m_bcf_hdr_find(i2400m);
1421 if (bcf_hdr == NULL)
1422 goto error_bcf_hdr_find;
1423
1424 ret = i2400m_dnload_init(i2400m, bcf_hdr);
1425 if (ret == -ERESTARTSYS)
1426 goto error_dev_rebooted;
1427 if (ret < 0)
1428 goto error_dnload_init;
1429
1430 /*
1431 * bcf_size refers to one header size plus the fw sections size
1432 * indicated by the header,ie. if there are other extended headers
1433 * at the tail, they are not counted
1434 */
1435 bcf_size = sizeof(u32) * le32_to_cpu(bcf_hdr->size);
1436 ret = i2400m_dnload_bcf(i2400m, bcf, bcf_size);
1437 if (ret == -ERESTARTSYS)
1438 goto error_dev_rebooted;
1439 if (ret < 0) {
1440 dev_err(dev, "fw %s: download failed: %d\n",
1441 i2400m->fw_name, ret);
1442 goto error_dnload_bcf;
1443 }
1444
1445 ret = i2400m_dnload_finalize(i2400m, bcf_hdr, bcf, ret);
1446 if (ret == -ERESTARTSYS)
1447 goto error_dev_rebooted;
1448 if (ret < 0) {
1449 dev_err(dev, "fw %s: "
1450 "download finalization failed: %d\n",
1451 i2400m->fw_name, ret);
1452 goto error_dnload_finalize;
1453 }
1454
1455 d_printf(2, dev, "fw %s successfully uploaded\n",
1456 i2400m->fw_name);
1457 i2400m->boot_mode = 0;
1458 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */
1459 error_dnload_finalize:
1460 error_dnload_bcf:
1461 error_dnload_init:
1462 error_bcf_hdr_find:
1463 error_bootrom_init:
1464 error_too_many_reboots:
1465 d_fnend(5, dev, "(i2400m %p bcf %p size %zu) = %d\n",
1466 i2400m, bcf, fw_size, ret);
1467 return ret;
1468
1469 error_dev_rebooted:
1470 dev_err(dev, "device rebooted, %d tries left\n", count);
1471 /* we got the notification already, no need to wait for it again */
1472 flags |= I2400M_BRI_SOFT;
1473 goto hw_reboot;
1474 }
1475
1476 static
i2400m_fw_bootstrap(struct i2400m * i2400m,const struct firmware * fw,enum i2400m_bri flags)1477 int i2400m_fw_bootstrap(struct i2400m *i2400m, const struct firmware *fw,
1478 enum i2400m_bri flags)
1479 {
1480 int ret;
1481 struct device *dev = i2400m_dev(i2400m);
1482 const struct i2400m_bcf_hdr *bcf; /* Firmware data */
1483
1484 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1485 bcf = (void *) fw->data;
1486 ret = i2400m_fw_check(i2400m, bcf, fw->size);
1487 if (ret >= 0)
1488 ret = i2400m_fw_dnload(i2400m, bcf, fw->size, flags);
1489 if (ret < 0)
1490 dev_err(dev, "%s: cannot use: %d, skipping\n",
1491 i2400m->fw_name, ret);
1492 kfree(i2400m->fw_hdrs);
1493 i2400m->fw_hdrs = NULL;
1494 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1495 return ret;
1496 }
1497
1498
1499 /* Refcounted container for firmware data */
1500 struct i2400m_fw {
1501 struct kref kref;
1502 const struct firmware *fw;
1503 };
1504
1505
1506 static
i2400m_fw_destroy(struct kref * kref)1507 void i2400m_fw_destroy(struct kref *kref)
1508 {
1509 struct i2400m_fw *i2400m_fw =
1510 container_of(kref, struct i2400m_fw, kref);
1511 release_firmware(i2400m_fw->fw);
1512 kfree(i2400m_fw);
1513 }
1514
1515
1516 static
i2400m_fw_get(struct i2400m_fw * i2400m_fw)1517 struct i2400m_fw *i2400m_fw_get(struct i2400m_fw *i2400m_fw)
1518 {
1519 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1520 kref_get(&i2400m_fw->kref);
1521 return i2400m_fw;
1522 }
1523
1524
1525 static
i2400m_fw_put(struct i2400m_fw * i2400m_fw)1526 void i2400m_fw_put(struct i2400m_fw *i2400m_fw)
1527 {
1528 kref_put(&i2400m_fw->kref, i2400m_fw_destroy);
1529 }
1530
1531
1532 /**
1533 * i2400m_dev_bootstrap - Bring the device to a known state and upload firmware
1534 *
1535 * @i2400m: device descriptor
1536 *
1537 * Returns: >= 0 if ok, < 0 errno code on error.
1538 *
1539 * This sets up the firmware upload environment, loads the firmware
1540 * file from disk, verifies and then calls the firmware upload process
1541 * per se.
1542 *
1543 * Can be called either from probe, or after a warm reset. Can not be
1544 * called from within an interrupt. All the flow in this code is
1545 * single-threade; all I/Os are synchronous.
1546 */
i2400m_dev_bootstrap(struct i2400m * i2400m,enum i2400m_bri flags)1547 int i2400m_dev_bootstrap(struct i2400m *i2400m, enum i2400m_bri flags)
1548 {
1549 int ret, itr;
1550 struct device *dev = i2400m_dev(i2400m);
1551 struct i2400m_fw *i2400m_fw;
1552 const struct firmware *fw;
1553 const char *fw_name;
1554
1555 d_fnstart(5, dev, "(i2400m %p)\n", i2400m);
1556
1557 ret = -ENODEV;
1558 spin_lock(&i2400m->rx_lock);
1559 i2400m_fw = i2400m_fw_get(i2400m->fw_cached);
1560 spin_unlock(&i2400m->rx_lock);
1561 if (i2400m_fw == (void *) ~0) {
1562 dev_err(dev, "can't load firmware now!");
1563 goto out;
1564 } else if (i2400m_fw != NULL) {
1565 dev_info(dev, "firmware %s: loading from cache\n",
1566 i2400m->fw_name);
1567 ret = i2400m_fw_bootstrap(i2400m, i2400m_fw->fw, flags);
1568 i2400m_fw_put(i2400m_fw);
1569 goto out;
1570 }
1571
1572 /* Load firmware files to memory. */
1573 for (itr = 0, ret = -ENOENT; ; itr++) {
1574 fw_name = i2400m->bus_fw_names[itr];
1575 if (fw_name == NULL) {
1576 dev_err(dev, "Could not find a usable firmware image\n");
1577 break;
1578 }
1579 d_printf(1, dev, "trying firmware %s (%d)\n", fw_name, itr);
1580 ret = request_firmware(&fw, fw_name, dev);
1581 if (ret < 0) {
1582 dev_err(dev, "fw %s: cannot load file: %d\n",
1583 fw_name, ret);
1584 continue;
1585 }
1586 i2400m->fw_name = fw_name;
1587 ret = i2400m_fw_bootstrap(i2400m, fw, flags);
1588 release_firmware(fw);
1589 if (ret >= 0) /* firmware loaded successfully */
1590 break;
1591 i2400m->fw_name = NULL;
1592 }
1593 out:
1594 d_fnend(5, dev, "(i2400m %p) = %d\n", i2400m, ret);
1595 return ret;
1596 }
1597 EXPORT_SYMBOL_GPL(i2400m_dev_bootstrap);
1598
1599
i2400m_fw_cache(struct i2400m * i2400m)1600 void i2400m_fw_cache(struct i2400m *i2400m)
1601 {
1602 int result;
1603 struct i2400m_fw *i2400m_fw;
1604 struct device *dev = i2400m_dev(i2400m);
1605
1606 /* if there is anything there, free it -- now, this'd be weird */
1607 spin_lock(&i2400m->rx_lock);
1608 i2400m_fw = i2400m->fw_cached;
1609 spin_unlock(&i2400m->rx_lock);
1610 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0) {
1611 i2400m_fw_put(i2400m_fw);
1612 WARN(1, "%s:%u: still cached fw still present?\n",
1613 __func__, __LINE__);
1614 }
1615
1616 if (i2400m->fw_name == NULL) {
1617 dev_err(dev, "firmware n/a: can't cache\n");
1618 i2400m_fw = (void *) ~0;
1619 goto out;
1620 }
1621
1622 i2400m_fw = kzalloc(sizeof(*i2400m_fw), GFP_ATOMIC);
1623 if (i2400m_fw == NULL)
1624 goto out;
1625 kref_init(&i2400m_fw->kref);
1626 result = request_firmware(&i2400m_fw->fw, i2400m->fw_name, dev);
1627 if (result < 0) {
1628 dev_err(dev, "firmware %s: failed to cache: %d\n",
1629 i2400m->fw_name, result);
1630 kfree(i2400m_fw);
1631 i2400m_fw = (void *) ~0;
1632 } else
1633 dev_info(dev, "firmware %s: cached\n", i2400m->fw_name);
1634 out:
1635 spin_lock(&i2400m->rx_lock);
1636 i2400m->fw_cached = i2400m_fw;
1637 spin_unlock(&i2400m->rx_lock);
1638 }
1639
1640
i2400m_fw_uncache(struct i2400m * i2400m)1641 void i2400m_fw_uncache(struct i2400m *i2400m)
1642 {
1643 struct i2400m_fw *i2400m_fw;
1644
1645 spin_lock(&i2400m->rx_lock);
1646 i2400m_fw = i2400m->fw_cached;
1647 i2400m->fw_cached = NULL;
1648 spin_unlock(&i2400m->rx_lock);
1649
1650 if (i2400m_fw != NULL && i2400m_fw != (void *) ~0)
1651 i2400m_fw_put(i2400m_fw);
1652 }
1653
1654