1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
28 
29 
30 #ifdef CONFIG_HUGETLB_PAGE
31 
32 #define PAGE_SHIFT_64K	16
33 #define PAGE_SHIFT_512K	19
34 #define PAGE_SHIFT_8M	23
35 #define PAGE_SHIFT_16M	24
36 #define PAGE_SHIFT_16G	34
37 
38 bool hugetlb_disabled = false;
39 
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
42 
43 #define hugepd_none(hpd)	(hpd_val(hpd) == 0)
44 
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
46 {
47 	/*
48 	 * Only called for hugetlbfs pages, hence can ignore THP and the
49 	 * irq disabled walk.
50 	 */
51 	return __find_linux_pte(mm->pgd, addr, NULL, NULL);
52 }
53 
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned int pdshift,unsigned int pshift,spinlock_t * ptl)54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
55 			   unsigned long address, unsigned int pdshift,
56 			   unsigned int pshift, spinlock_t *ptl)
57 {
58 	struct kmem_cache *cachep;
59 	pte_t *new;
60 	int i;
61 	int num_hugepd;
62 
63 	if (pshift >= pdshift) {
64 		cachep = hugepte_cache;
65 		num_hugepd = 1 << (pshift - pdshift);
66 	} else {
67 		cachep = PGT_CACHE(pdshift - pshift);
68 		num_hugepd = 1;
69 	}
70 
71 	new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
72 
73 	BUG_ON(pshift > HUGEPD_SHIFT_MASK);
74 	BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
75 
76 	if (! new)
77 		return -ENOMEM;
78 
79 	/*
80 	 * Make sure other cpus find the hugepd set only after a
81 	 * properly initialized page table is visible to them.
82 	 * For more details look for comment in __pte_alloc().
83 	 */
84 	smp_wmb();
85 
86 	spin_lock(ptl);
87 	/*
88 	 * We have multiple higher-level entries that point to the same
89 	 * actual pte location.  Fill in each as we go and backtrack on error.
90 	 * We need all of these so the DTLB pgtable walk code can find the
91 	 * right higher-level entry without knowing if it's a hugepage or not.
92 	 */
93 	for (i = 0; i < num_hugepd; i++, hpdp++) {
94 		if (unlikely(!hugepd_none(*hpdp)))
95 			break;
96 		else {
97 #ifdef CONFIG_PPC_BOOK3S_64
98 			*hpdp = __hugepd(__pa(new) |
99 					 (shift_to_mmu_psize(pshift) << 2));
100 #elif defined(CONFIG_PPC_8xx)
101 			*hpdp = __hugepd(__pa(new) | _PMD_USER |
102 					 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
103 					  _PMD_PAGE_512K) | _PMD_PRESENT);
104 #else
105 			/* We use the old format for PPC_FSL_BOOK3E */
106 			*hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
107 #endif
108 		}
109 	}
110 	/* If we bailed from the for loop early, an error occurred, clean up */
111 	if (i < num_hugepd) {
112 		for (i = i - 1 ; i >= 0; i--, hpdp--)
113 			*hpdp = __hugepd(0);
114 		kmem_cache_free(cachep, new);
115 	}
116 	spin_unlock(ptl);
117 	return 0;
118 }
119 
120 /*
121  * At this point we do the placement change only for BOOK3S 64. This would
122  * possibly work on other subarchs.
123  */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)124 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
125 {
126 	pgd_t *pg;
127 	pud_t *pu;
128 	pmd_t *pm;
129 	hugepd_t *hpdp = NULL;
130 	unsigned pshift = __ffs(sz);
131 	unsigned pdshift = PGDIR_SHIFT;
132 	spinlock_t *ptl;
133 
134 	addr &= ~(sz-1);
135 	pg = pgd_offset(mm, addr);
136 
137 #ifdef CONFIG_PPC_BOOK3S_64
138 	if (pshift == PGDIR_SHIFT)
139 		/* 16GB huge page */
140 		return (pte_t *) pg;
141 	else if (pshift > PUD_SHIFT) {
142 		/*
143 		 * We need to use hugepd table
144 		 */
145 		ptl = &mm->page_table_lock;
146 		hpdp = (hugepd_t *)pg;
147 	} else {
148 		pdshift = PUD_SHIFT;
149 		pu = pud_alloc(mm, pg, addr);
150 		if (pshift == PUD_SHIFT)
151 			return (pte_t *)pu;
152 		else if (pshift > PMD_SHIFT) {
153 			ptl = pud_lockptr(mm, pu);
154 			hpdp = (hugepd_t *)pu;
155 		} else {
156 			pdshift = PMD_SHIFT;
157 			pm = pmd_alloc(mm, pu, addr);
158 			if (pshift == PMD_SHIFT)
159 				/* 16MB hugepage */
160 				return (pte_t *)pm;
161 			else {
162 				ptl = pmd_lockptr(mm, pm);
163 				hpdp = (hugepd_t *)pm;
164 			}
165 		}
166 	}
167 #else
168 	if (pshift >= PGDIR_SHIFT) {
169 		ptl = &mm->page_table_lock;
170 		hpdp = (hugepd_t *)pg;
171 	} else {
172 		pdshift = PUD_SHIFT;
173 		pu = pud_alloc(mm, pg, addr);
174 		if (pshift >= PUD_SHIFT) {
175 			ptl = pud_lockptr(mm, pu);
176 			hpdp = (hugepd_t *)pu;
177 		} else {
178 			pdshift = PMD_SHIFT;
179 			pm = pmd_alloc(mm, pu, addr);
180 			ptl = pmd_lockptr(mm, pm);
181 			hpdp = (hugepd_t *)pm;
182 		}
183 	}
184 #endif
185 	if (!hpdp)
186 		return NULL;
187 
188 	BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
189 
190 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
191 						  pdshift, pshift, ptl))
192 		return NULL;
193 
194 	return hugepte_offset(*hpdp, addr, pdshift);
195 }
196 
197 #ifdef CONFIG_PPC_BOOK3S_64
198 /*
199  * Tracks gpages after the device tree is scanned and before the
200  * huge_boot_pages list is ready on pseries.
201  */
202 #define MAX_NUMBER_GPAGES	1024
203 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
204 __initdata static unsigned nr_gpages;
205 
206 /*
207  * Build list of addresses of gigantic pages.  This function is used in early
208  * boot before the buddy allocator is setup.
209  */
pseries_add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)210 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
211 {
212 	if (!addr)
213 		return;
214 	while (number_of_pages > 0) {
215 		gpage_freearray[nr_gpages] = addr;
216 		nr_gpages++;
217 		number_of_pages--;
218 		addr += page_size;
219 	}
220 }
221 
pseries_alloc_bootmem_huge_page(struct hstate * hstate)222 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
223 {
224 	struct huge_bootmem_page *m;
225 	if (nr_gpages == 0)
226 		return 0;
227 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
228 	gpage_freearray[nr_gpages] = 0;
229 	list_add(&m->list, &huge_boot_pages);
230 	m->hstate = hstate;
231 	return 1;
232 }
233 #endif
234 
235 
alloc_bootmem_huge_page(struct hstate * h)236 int __init alloc_bootmem_huge_page(struct hstate *h)
237 {
238 
239 #ifdef CONFIG_PPC_BOOK3S_64
240 	if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
241 		return pseries_alloc_bootmem_huge_page(h);
242 #endif
243 	return __alloc_bootmem_huge_page(h);
244 }
245 
246 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
247 #define HUGEPD_FREELIST_SIZE \
248 	((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
249 
250 struct hugepd_freelist {
251 	struct rcu_head	rcu;
252 	unsigned int index;
253 	void *ptes[0];
254 };
255 
256 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
257 
hugepd_free_rcu_callback(struct rcu_head * head)258 static void hugepd_free_rcu_callback(struct rcu_head *head)
259 {
260 	struct hugepd_freelist *batch =
261 		container_of(head, struct hugepd_freelist, rcu);
262 	unsigned int i;
263 
264 	for (i = 0; i < batch->index; i++)
265 		kmem_cache_free(hugepte_cache, batch->ptes[i]);
266 
267 	free_page((unsigned long)batch);
268 }
269 
hugepd_free(struct mmu_gather * tlb,void * hugepte)270 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
271 {
272 	struct hugepd_freelist **batchp;
273 
274 	batchp = &get_cpu_var(hugepd_freelist_cur);
275 
276 	if (atomic_read(&tlb->mm->mm_users) < 2 ||
277 	    mm_is_thread_local(tlb->mm)) {
278 		kmem_cache_free(hugepte_cache, hugepte);
279 		put_cpu_var(hugepd_freelist_cur);
280 		return;
281 	}
282 
283 	if (*batchp == NULL) {
284 		*batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
285 		(*batchp)->index = 0;
286 	}
287 
288 	(*batchp)->ptes[(*batchp)->index++] = hugepte;
289 	if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
290 		call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
291 		*batchp = NULL;
292 	}
293 	put_cpu_var(hugepd_freelist_cur);
294 }
295 #else
hugepd_free(struct mmu_gather * tlb,void * hugepte)296 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
297 #endif
298 
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)299 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
300 			      unsigned long start, unsigned long end,
301 			      unsigned long floor, unsigned long ceiling)
302 {
303 	pte_t *hugepte = hugepd_page(*hpdp);
304 	int i;
305 
306 	unsigned long pdmask = ~((1UL << pdshift) - 1);
307 	unsigned int num_hugepd = 1;
308 	unsigned int shift = hugepd_shift(*hpdp);
309 
310 	/* Note: On fsl the hpdp may be the first of several */
311 	if (shift > pdshift)
312 		num_hugepd = 1 << (shift - pdshift);
313 
314 	start &= pdmask;
315 	if (start < floor)
316 		return;
317 	if (ceiling) {
318 		ceiling &= pdmask;
319 		if (! ceiling)
320 			return;
321 	}
322 	if (end - 1 > ceiling - 1)
323 		return;
324 
325 	for (i = 0; i < num_hugepd; i++, hpdp++)
326 		*hpdp = __hugepd(0);
327 
328 	if (shift >= pdshift)
329 		hugepd_free(tlb, hugepte);
330 	else
331 		pgtable_free_tlb(tlb, hugepte,
332 				 get_hugepd_cache_index(pdshift - shift));
333 }
334 
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)335 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
336 				   unsigned long addr, unsigned long end,
337 				   unsigned long floor, unsigned long ceiling)
338 {
339 	pmd_t *pmd;
340 	unsigned long next;
341 	unsigned long start;
342 
343 	start = addr;
344 	do {
345 		unsigned long more;
346 
347 		pmd = pmd_offset(pud, addr);
348 		next = pmd_addr_end(addr, end);
349 		if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
350 			/*
351 			 * if it is not hugepd pointer, we should already find
352 			 * it cleared.
353 			 */
354 			WARN_ON(!pmd_none_or_clear_bad(pmd));
355 			continue;
356 		}
357 		/*
358 		 * Increment next by the size of the huge mapping since
359 		 * there may be more than one entry at this level for a
360 		 * single hugepage, but all of them point to
361 		 * the same kmem cache that holds the hugepte.
362 		 */
363 		more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
364 		if (more > next)
365 			next = more;
366 
367 		free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
368 				  addr, next, floor, ceiling);
369 	} while (addr = next, addr != end);
370 
371 	start &= PUD_MASK;
372 	if (start < floor)
373 		return;
374 	if (ceiling) {
375 		ceiling &= PUD_MASK;
376 		if (!ceiling)
377 			return;
378 	}
379 	if (end - 1 > ceiling - 1)
380 		return;
381 
382 	pmd = pmd_offset(pud, start);
383 	pud_clear(pud);
384 	pmd_free_tlb(tlb, pmd, start);
385 	mm_dec_nr_pmds(tlb->mm);
386 }
387 
hugetlb_free_pud_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)388 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
389 				   unsigned long addr, unsigned long end,
390 				   unsigned long floor, unsigned long ceiling)
391 {
392 	pud_t *pud;
393 	unsigned long next;
394 	unsigned long start;
395 
396 	start = addr;
397 	do {
398 		pud = pud_offset(pgd, addr);
399 		next = pud_addr_end(addr, end);
400 		if (!is_hugepd(__hugepd(pud_val(*pud)))) {
401 			if (pud_none_or_clear_bad(pud))
402 				continue;
403 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
404 					       ceiling);
405 		} else {
406 			unsigned long more;
407 			/*
408 			 * Increment next by the size of the huge mapping since
409 			 * there may be more than one entry at this level for a
410 			 * single hugepage, but all of them point to
411 			 * the same kmem cache that holds the hugepte.
412 			 */
413 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
414 			if (more > next)
415 				next = more;
416 
417 			free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
418 					  addr, next, floor, ceiling);
419 		}
420 	} while (addr = next, addr != end);
421 
422 	start &= PGDIR_MASK;
423 	if (start < floor)
424 		return;
425 	if (ceiling) {
426 		ceiling &= PGDIR_MASK;
427 		if (!ceiling)
428 			return;
429 	}
430 	if (end - 1 > ceiling - 1)
431 		return;
432 
433 	pud = pud_offset(pgd, start);
434 	pgd_clear(pgd);
435 	pud_free_tlb(tlb, pud, start);
436 	mm_dec_nr_puds(tlb->mm);
437 }
438 
439 /*
440  * This function frees user-level page tables of a process.
441  */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)442 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
443 			    unsigned long addr, unsigned long end,
444 			    unsigned long floor, unsigned long ceiling)
445 {
446 	pgd_t *pgd;
447 	unsigned long next;
448 
449 	/*
450 	 * Because there are a number of different possible pagetable
451 	 * layouts for hugepage ranges, we limit knowledge of how
452 	 * things should be laid out to the allocation path
453 	 * (huge_pte_alloc(), above).  Everything else works out the
454 	 * structure as it goes from information in the hugepd
455 	 * pointers.  That means that we can't here use the
456 	 * optimization used in the normal page free_pgd_range(), of
457 	 * checking whether we're actually covering a large enough
458 	 * range to have to do anything at the top level of the walk
459 	 * instead of at the bottom.
460 	 *
461 	 * To make sense of this, you should probably go read the big
462 	 * block comment at the top of the normal free_pgd_range(),
463 	 * too.
464 	 */
465 
466 	do {
467 		next = pgd_addr_end(addr, end);
468 		pgd = pgd_offset(tlb->mm, addr);
469 		if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
470 			if (pgd_none_or_clear_bad(pgd))
471 				continue;
472 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
473 		} else {
474 			unsigned long more;
475 			/*
476 			 * Increment next by the size of the huge mapping since
477 			 * there may be more than one entry at the pgd level
478 			 * for a single hugepage, but all of them point to the
479 			 * same kmem cache that holds the hugepte.
480 			 */
481 			more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
482 			if (more > next)
483 				next = more;
484 
485 			free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
486 					  addr, next, floor, ceiling);
487 		}
488 	} while (addr = next, addr != end);
489 }
490 
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)491 struct page *follow_huge_pd(struct vm_area_struct *vma,
492 			    unsigned long address, hugepd_t hpd,
493 			    int flags, int pdshift)
494 {
495 	pte_t *ptep;
496 	spinlock_t *ptl;
497 	struct page *page = NULL;
498 	unsigned long mask;
499 	int shift = hugepd_shift(hpd);
500 	struct mm_struct *mm = vma->vm_mm;
501 
502 retry:
503 	/*
504 	 * hugepage directory entries are protected by mm->page_table_lock
505 	 * Use this instead of huge_pte_lockptr
506 	 */
507 	ptl = &mm->page_table_lock;
508 	spin_lock(ptl);
509 
510 	ptep = hugepte_offset(hpd, address, pdshift);
511 	if (pte_present(*ptep)) {
512 		mask = (1UL << shift) - 1;
513 		page = pte_page(*ptep);
514 		page += ((address & mask) >> PAGE_SHIFT);
515 		if (flags & FOLL_GET)
516 			get_page(page);
517 	} else {
518 		if (is_hugetlb_entry_migration(*ptep)) {
519 			spin_unlock(ptl);
520 			__migration_entry_wait(mm, ptep, ptl);
521 			goto retry;
522 		}
523 	}
524 	spin_unlock(ptl);
525 	return page;
526 }
527 
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)528 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
529 				      unsigned long sz)
530 {
531 	unsigned long __boundary = (addr + sz) & ~(sz-1);
532 	return (__boundary - 1 < end - 1) ? __boundary : end;
533 }
534 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned pdshift,unsigned long end,int write,struct page ** pages,int * nr)535 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
536 		unsigned long end, int write, struct page **pages, int *nr)
537 {
538 	pte_t *ptep;
539 	unsigned long sz = 1UL << hugepd_shift(hugepd);
540 	unsigned long next;
541 
542 	ptep = hugepte_offset(hugepd, addr, pdshift);
543 	do {
544 		next = hugepte_addr_end(addr, end, sz);
545 		if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
546 			return 0;
547 	} while (ptep++, addr = next, addr != end);
548 
549 	return 1;
550 }
551 
552 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)553 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
554 					unsigned long len, unsigned long pgoff,
555 					unsigned long flags)
556 {
557 	struct hstate *hstate = hstate_file(file);
558 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
559 
560 #ifdef CONFIG_PPC_RADIX_MMU
561 	if (radix_enabled())
562 		return radix__hugetlb_get_unmapped_area(file, addr, len,
563 						       pgoff, flags);
564 #endif
565 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
566 }
567 #endif
568 
vma_mmu_pagesize(struct vm_area_struct * vma)569 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
570 {
571 #ifdef CONFIG_PPC_MM_SLICES
572 	/* With radix we don't use slice, so derive it from vma*/
573 	if (!radix_enabled()) {
574 		unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
575 
576 		return 1UL << mmu_psize_to_shift(psize);
577 	}
578 #endif
579 	return vma_kernel_pagesize(vma);
580 }
581 
is_power_of_4(unsigned long x)582 static inline bool is_power_of_4(unsigned long x)
583 {
584 	if (is_power_of_2(x))
585 		return (__ilog2(x) % 2) ? false : true;
586 	return false;
587 }
588 
add_huge_page_size(unsigned long long size)589 static int __init add_huge_page_size(unsigned long long size)
590 {
591 	int shift = __ffs(size);
592 	int mmu_psize;
593 
594 	/* Check that it is a page size supported by the hardware and
595 	 * that it fits within pagetable and slice limits. */
596 	if (size <= PAGE_SIZE)
597 		return -EINVAL;
598 #if defined(CONFIG_PPC_FSL_BOOK3E)
599 	if (!is_power_of_4(size))
600 		return -EINVAL;
601 #elif !defined(CONFIG_PPC_8xx)
602 	if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
603 		return -EINVAL;
604 #endif
605 
606 	if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
607 		return -EINVAL;
608 
609 #ifdef CONFIG_PPC_BOOK3S_64
610 	/*
611 	 * We need to make sure that for different page sizes reported by
612 	 * firmware we only add hugetlb support for page sizes that can be
613 	 * supported by linux page table layout.
614 	 * For now we have
615 	 * Radix: 2M and 1G
616 	 * Hash: 16M and 16G
617 	 */
618 	if (radix_enabled()) {
619 		if (mmu_psize != MMU_PAGE_2M && mmu_psize != MMU_PAGE_1G)
620 			return -EINVAL;
621 	} else {
622 		if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
623 			return -EINVAL;
624 	}
625 #endif
626 
627 	BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
628 
629 	/* Return if huge page size has already been setup */
630 	if (size_to_hstate(size))
631 		return 0;
632 
633 	hugetlb_add_hstate(shift - PAGE_SHIFT);
634 
635 	return 0;
636 }
637 
hugepage_setup_sz(char * str)638 static int __init hugepage_setup_sz(char *str)
639 {
640 	unsigned long long size;
641 
642 	size = memparse(str, &str);
643 
644 	if (add_huge_page_size(size) != 0) {
645 		hugetlb_bad_size();
646 		pr_err("Invalid huge page size specified(%llu)\n", size);
647 	}
648 
649 	return 1;
650 }
651 __setup("hugepagesz=", hugepage_setup_sz);
652 
653 struct kmem_cache *hugepte_cache;
hugetlbpage_init(void)654 static int __init hugetlbpage_init(void)
655 {
656 	int psize;
657 
658 	if (hugetlb_disabled) {
659 		pr_info("HugeTLB support is disabled!\n");
660 		return 0;
661 	}
662 
663 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
664 	if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
665 		return -ENODEV;
666 #endif
667 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
668 		unsigned shift;
669 		unsigned pdshift;
670 
671 		if (!mmu_psize_defs[psize].shift)
672 			continue;
673 
674 		shift = mmu_psize_to_shift(psize);
675 
676 #ifdef CONFIG_PPC_BOOK3S_64
677 		if (shift > PGDIR_SHIFT)
678 			continue;
679 		else if (shift > PUD_SHIFT)
680 			pdshift = PGDIR_SHIFT;
681 		else if (shift > PMD_SHIFT)
682 			pdshift = PUD_SHIFT;
683 		else
684 			pdshift = PMD_SHIFT;
685 #else
686 		if (shift < PUD_SHIFT)
687 			pdshift = PMD_SHIFT;
688 		else if (shift < PGDIR_SHIFT)
689 			pdshift = PUD_SHIFT;
690 		else
691 			pdshift = PGDIR_SHIFT;
692 #endif
693 
694 		if (add_huge_page_size(1ULL << shift) < 0)
695 			continue;
696 		/*
697 		 * if we have pdshift and shift value same, we don't
698 		 * use pgt cache for hugepd.
699 		 */
700 		if (pdshift > shift)
701 			pgtable_cache_add(pdshift - shift, NULL);
702 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
703 		else if (!hugepte_cache) {
704 			/*
705 			 * Create a kmem cache for hugeptes.  The bottom bits in
706 			 * the pte have size information encoded in them, so
707 			 * align them to allow this
708 			 */
709 			hugepte_cache = kmem_cache_create("hugepte-cache",
710 							  sizeof(pte_t),
711 							  HUGEPD_SHIFT_MASK + 1,
712 							  0, NULL);
713 			if (hugepte_cache == NULL)
714 				panic("%s: Unable to create kmem cache "
715 				      "for hugeptes\n", __func__);
716 
717 		}
718 #endif
719 	}
720 
721 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
722 	/* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
723 	if (mmu_psize_defs[MMU_PAGE_4M].shift)
724 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
725 	else if (mmu_psize_defs[MMU_PAGE_512K].shift)
726 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
727 #else
728 	/* Set default large page size. Currently, we pick 16M or 1M
729 	 * depending on what is available
730 	 */
731 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
732 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
733 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
734 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
735 	else if (mmu_psize_defs[MMU_PAGE_2M].shift)
736 		HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
737 #endif
738 	return 0;
739 }
740 
741 arch_initcall(hugetlbpage_init);
742 
flush_dcache_icache_hugepage(struct page * page)743 void flush_dcache_icache_hugepage(struct page *page)
744 {
745 	int i;
746 	void *start;
747 
748 	BUG_ON(!PageCompound(page));
749 
750 	for (i = 0; i < (1UL << compound_order(page)); i++) {
751 		if (!PageHighMem(page)) {
752 			__flush_dcache_icache(page_address(page+i));
753 		} else {
754 			start = kmap_atomic(page+i);
755 			__flush_dcache_icache(start);
756 			kunmap_atomic(start);
757 		}
758 	}
759 }
760 
761 #endif /* CONFIG_HUGETLB_PAGE */
762 
763 /*
764  * We have 4 cases for pgds and pmds:
765  * (1) invalid (all zeroes)
766  * (2) pointer to next table, as normal; bottom 6 bits == 0
767  * (3) leaf pte for huge page _PAGE_PTE set
768  * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
769  *
770  * So long as we atomically load page table pointers we are safe against teardown,
771  * we can follow the address down to the the page and take a ref on it.
772  * This function need to be called with interrupts disabled. We use this variant
773  * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
774  */
__find_linux_pte(pgd_t * pgdir,unsigned long ea,bool * is_thp,unsigned * hpage_shift)775 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
776 			bool *is_thp, unsigned *hpage_shift)
777 {
778 	pgd_t pgd, *pgdp;
779 	pud_t pud, *pudp;
780 	pmd_t pmd, *pmdp;
781 	pte_t *ret_pte;
782 	hugepd_t *hpdp = NULL;
783 	unsigned pdshift = PGDIR_SHIFT;
784 
785 	if (hpage_shift)
786 		*hpage_shift = 0;
787 
788 	if (is_thp)
789 		*is_thp = false;
790 
791 	pgdp = pgdir + pgd_index(ea);
792 	pgd  = READ_ONCE(*pgdp);
793 	/*
794 	 * Always operate on the local stack value. This make sure the
795 	 * value don't get updated by a parallel THP split/collapse,
796 	 * page fault or a page unmap. The return pte_t * is still not
797 	 * stable. So should be checked there for above conditions.
798 	 */
799 	if (pgd_none(pgd))
800 		return NULL;
801 	else if (pgd_huge(pgd)) {
802 		ret_pte = (pte_t *) pgdp;
803 		goto out;
804 	} else if (is_hugepd(__hugepd(pgd_val(pgd))))
805 		hpdp = (hugepd_t *)&pgd;
806 	else {
807 		/*
808 		 * Even if we end up with an unmap, the pgtable will not
809 		 * be freed, because we do an rcu free and here we are
810 		 * irq disabled
811 		 */
812 		pdshift = PUD_SHIFT;
813 		pudp = pud_offset(&pgd, ea);
814 		pud  = READ_ONCE(*pudp);
815 
816 		if (pud_none(pud))
817 			return NULL;
818 		else if (pud_huge(pud)) {
819 			ret_pte = (pte_t *) pudp;
820 			goto out;
821 		} else if (is_hugepd(__hugepd(pud_val(pud))))
822 			hpdp = (hugepd_t *)&pud;
823 		else {
824 			pdshift = PMD_SHIFT;
825 			pmdp = pmd_offset(&pud, ea);
826 			pmd  = READ_ONCE(*pmdp);
827 			/*
828 			 * A hugepage collapse is captured by pmd_none, because
829 			 * it mark the pmd none and do a hpte invalidate.
830 			 */
831 			if (pmd_none(pmd))
832 				return NULL;
833 
834 			if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
835 				if (is_thp)
836 					*is_thp = true;
837 				ret_pte = (pte_t *) pmdp;
838 				goto out;
839 			}
840 
841 			if (pmd_huge(pmd)) {
842 				ret_pte = (pte_t *) pmdp;
843 				goto out;
844 			} else if (is_hugepd(__hugepd(pmd_val(pmd))))
845 				hpdp = (hugepd_t *)&pmd;
846 			else
847 				return pte_offset_kernel(&pmd, ea);
848 		}
849 	}
850 	if (!hpdp)
851 		return NULL;
852 
853 	ret_pte = hugepte_offset(*hpdp, ea, pdshift);
854 	pdshift = hugepd_shift(*hpdp);
855 out:
856 	if (hpage_shift)
857 		*hpage_shift = pdshift;
858 	return ret_pte;
859 }
860 EXPORT_SYMBOL_GPL(__find_linux_pte);
861 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,int write,struct page ** pages,int * nr)862 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
863 		unsigned long end, int write, struct page **pages, int *nr)
864 {
865 	unsigned long pte_end;
866 	struct page *head, *page;
867 	pte_t pte;
868 	int refs;
869 
870 	pte_end = (addr + sz) & ~(sz-1);
871 	if (pte_end < end)
872 		end = pte_end;
873 
874 	pte = READ_ONCE(*ptep);
875 
876 	if (!pte_access_permitted(pte, write))
877 		return 0;
878 
879 	/* hugepages are never "special" */
880 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
881 
882 	refs = 0;
883 	head = pte_page(pte);
884 
885 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
886 	do {
887 		VM_BUG_ON(compound_head(page) != head);
888 		pages[*nr] = page;
889 		(*nr)++;
890 		page++;
891 		refs++;
892 	} while (addr += PAGE_SIZE, addr != end);
893 
894 	if (!page_cache_add_speculative(head, refs)) {
895 		*nr -= refs;
896 		return 0;
897 	}
898 
899 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
900 		/* Could be optimized better */
901 		*nr -= refs;
902 		while (refs--)
903 			put_page(head);
904 		return 0;
905 	}
906 
907 	return 1;
908 }
909