1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 
40 #include <asm/debugfs.h>
41 #include <asm/processor.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/page.h>
45 #include <asm/types.h>
46 #include <linux/uaccess.h>
47 #include <asm/machdep.h>
48 #include <asm/prom.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63 #include <asm/pte-walk.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/ultravisor.h>
66 
67 #include <mm/mmu_decl.h>
68 
69 #include "internal.h"
70 
71 
72 #ifdef DEBUG
73 #define DBG(fmt...) udbg_printf(fmt)
74 #else
75 #define DBG(fmt...)
76 #endif
77 
78 #ifdef DEBUG_LOW
79 #define DBG_LOW(fmt...) udbg_printf(fmt)
80 #else
81 #define DBG_LOW(fmt...)
82 #endif
83 
84 #define KB (1024)
85 #define MB (1024*KB)
86 #define GB (1024L*MB)
87 
88 /*
89  * Note:  pte   --> Linux PTE
90  *        HPTE  --> PowerPC Hashed Page Table Entry
91  *
92  * Execution context:
93  *   htab_initialize is called with the MMU off (of course), but
94  *   the kernel has been copied down to zero so it can directly
95  *   reference global data.  At this point it is very difficult
96  *   to print debug info.
97  *
98  */
99 
100 static unsigned long _SDR1;
101 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
102 EXPORT_SYMBOL_GPL(mmu_psize_defs);
103 
104 u8 hpte_page_sizes[1 << LP_BITS];
105 EXPORT_SYMBOL_GPL(hpte_page_sizes);
106 
107 struct hash_pte *htab_address;
108 unsigned long htab_size_bytes;
109 unsigned long htab_hash_mask;
110 EXPORT_SYMBOL_GPL(htab_hash_mask);
111 int mmu_linear_psize = MMU_PAGE_4K;
112 EXPORT_SYMBOL_GPL(mmu_linear_psize);
113 int mmu_virtual_psize = MMU_PAGE_4K;
114 int mmu_vmalloc_psize = MMU_PAGE_4K;
115 #ifdef CONFIG_SPARSEMEM_VMEMMAP
116 int mmu_vmemmap_psize = MMU_PAGE_4K;
117 #endif
118 int mmu_io_psize = MMU_PAGE_4K;
119 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
120 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
121 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
122 u16 mmu_slb_size = 64;
123 EXPORT_SYMBOL_GPL(mmu_slb_size);
124 #ifdef CONFIG_PPC_64K_PAGES
125 int mmu_ci_restrictions;
126 #endif
127 #ifdef CONFIG_DEBUG_PAGEALLOC
128 static u8 *linear_map_hash_slots;
129 static unsigned long linear_map_hash_count;
130 static DEFINE_SPINLOCK(linear_map_hash_lock);
131 #endif /* CONFIG_DEBUG_PAGEALLOC */
132 struct mmu_hash_ops mmu_hash_ops;
133 EXPORT_SYMBOL(mmu_hash_ops);
134 
135 /*
136  * These are definitions of page sizes arrays to be used when none
137  * is provided by the firmware.
138  */
139 
140 /*
141  * Fallback (4k pages only)
142  */
143 static struct mmu_psize_def mmu_psize_defaults[] = {
144 	[MMU_PAGE_4K] = {
145 		.shift	= 12,
146 		.sllp	= 0,
147 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
148 		.avpnm	= 0,
149 		.tlbiel = 0,
150 	},
151 };
152 
153 /*
154  * POWER4, GPUL, POWER5
155  *
156  * Support for 16Mb large pages
157  */
158 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
159 	[MMU_PAGE_4K] = {
160 		.shift	= 12,
161 		.sllp	= 0,
162 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
163 		.avpnm	= 0,
164 		.tlbiel = 1,
165 	},
166 	[MMU_PAGE_16M] = {
167 		.shift	= 24,
168 		.sllp	= SLB_VSID_L,
169 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
170 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
171 		.avpnm	= 0x1UL,
172 		.tlbiel = 0,
173 	},
174 };
175 
176 /*
177  * 'R' and 'C' update notes:
178  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
179  *     create writeable HPTEs without C set, because the hcall H_PROTECT
180  *     that we use in that case will not update C
181  *  - The above is however not a problem, because we also don't do that
182  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
183  *     do the right thing and thus we don't have the race I described earlier
184  *
185  *    - Under bare metal,  we do have the race, so we need R and C set
186  *    - We make sure R is always set and never lost
187  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
188  */
htab_convert_pte_flags(unsigned long pteflags)189 unsigned long htab_convert_pte_flags(unsigned long pteflags)
190 {
191 	unsigned long rflags = 0;
192 
193 	/* _PAGE_EXEC -> NOEXEC */
194 	if ((pteflags & _PAGE_EXEC) == 0)
195 		rflags |= HPTE_R_N;
196 	/*
197 	 * PPP bits:
198 	 * Linux uses slb key 0 for kernel and 1 for user.
199 	 * kernel RW areas are mapped with PPP=0b000
200 	 * User area is mapped with PPP=0b010 for read/write
201 	 * or PPP=0b011 for read-only (including writeable but clean pages).
202 	 */
203 	if (pteflags & _PAGE_PRIVILEGED) {
204 		/*
205 		 * Kernel read only mapped with ppp bits 0b110
206 		 */
207 		if (!(pteflags & _PAGE_WRITE)) {
208 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
209 				rflags |= (HPTE_R_PP0 | 0x2);
210 			else
211 				rflags |= 0x3;
212 		}
213 	} else {
214 		if (pteflags & _PAGE_RWX)
215 			rflags |= 0x2;
216 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
217 			rflags |= 0x1;
218 	}
219 	/*
220 	 * We can't allow hardware to update hpte bits. Hence always
221 	 * set 'R' bit and set 'C' if it is a write fault
222 	 */
223 	rflags |=  HPTE_R_R;
224 
225 	if (pteflags & _PAGE_DIRTY)
226 		rflags |= HPTE_R_C;
227 	/*
228 	 * Add in WIG bits
229 	 */
230 
231 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
232 		rflags |= HPTE_R_I;
233 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
234 		rflags |= (HPTE_R_I | HPTE_R_G);
235 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
236 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
237 	else
238 		/*
239 		 * Add memory coherence if cache inhibited is not set
240 		 */
241 		rflags |= HPTE_R_M;
242 
243 	rflags |= pte_to_hpte_pkey_bits(pteflags);
244 	return rflags;
245 }
246 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)247 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
248 		      unsigned long pstart, unsigned long prot,
249 		      int psize, int ssize)
250 {
251 	unsigned long vaddr, paddr;
252 	unsigned int step, shift;
253 	int ret = 0;
254 
255 	shift = mmu_psize_defs[psize].shift;
256 	step = 1 << shift;
257 
258 	prot = htab_convert_pte_flags(prot);
259 
260 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
261 	    vstart, vend, pstart, prot, psize, ssize);
262 
263 	/* Carefully map only the possible range */
264 	vaddr = ALIGN(vstart, step);
265 	paddr = ALIGN(pstart, step);
266 	vend  = ALIGN_DOWN(vend, step);
267 
268 	for (; vaddr < vend; vaddr += step, paddr += step) {
269 		unsigned long hash, hpteg;
270 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
271 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
272 		unsigned long tprot = prot;
273 		bool secondary_hash = false;
274 
275 		/*
276 		 * If we hit a bad address return error.
277 		 */
278 		if (!vsid)
279 			return -1;
280 		/* Make kernel text executable */
281 		if (overlaps_kernel_text(vaddr, vaddr + step))
282 			tprot &= ~HPTE_R_N;
283 
284 		/*
285 		 * If relocatable, check if it overlaps interrupt vectors that
286 		 * are copied down to real 0. For relocatable kernel
287 		 * (e.g. kdump case) we copy interrupt vectors down to real
288 		 * address 0. Mark that region as executable. This is
289 		 * because on p8 system with relocation on exception feature
290 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
291 		 * in order to execute the interrupt handlers in virtual
292 		 * mode the vector region need to be marked as executable.
293 		 */
294 		if ((PHYSICAL_START > MEMORY_START) &&
295 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
296 				tprot &= ~HPTE_R_N;
297 
298 		hash = hpt_hash(vpn, shift, ssize);
299 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
300 
301 		BUG_ON(!mmu_hash_ops.hpte_insert);
302 repeat:
303 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
304 					       HPTE_V_BOLTED, psize, psize,
305 					       ssize);
306 		if (ret == -1) {
307 			/*
308 			 * Try to to keep bolted entries in primary.
309 			 * Remove non bolted entries and try insert again
310 			 */
311 			ret = mmu_hash_ops.hpte_remove(hpteg);
312 			if (ret != -1)
313 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
314 							       HPTE_V_BOLTED, psize, psize,
315 							       ssize);
316 			if (ret == -1 && !secondary_hash) {
317 				secondary_hash = true;
318 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
319 				goto repeat;
320 			}
321 		}
322 
323 		if (ret < 0)
324 			break;
325 
326 		cond_resched();
327 #ifdef CONFIG_DEBUG_PAGEALLOC
328 		if (debug_pagealloc_enabled() &&
329 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
330 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
331 #endif /* CONFIG_DEBUG_PAGEALLOC */
332 	}
333 	return ret < 0 ? ret : 0;
334 }
335 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)336 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
337 		      int psize, int ssize)
338 {
339 	unsigned long vaddr;
340 	unsigned int step, shift;
341 	int rc;
342 	int ret = 0;
343 
344 	shift = mmu_psize_defs[psize].shift;
345 	step = 1 << shift;
346 
347 	if (!mmu_hash_ops.hpte_removebolted)
348 		return -ENODEV;
349 
350 	/* Unmap the full range specificied */
351 	vaddr = ALIGN_DOWN(vstart, step);
352 	for (;vaddr < vend; vaddr += step) {
353 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
354 		if (rc == -ENOENT) {
355 			ret = -ENOENT;
356 			continue;
357 		}
358 		if (rc < 0)
359 			return rc;
360 	}
361 
362 	return ret;
363 }
364 
365 static bool disable_1tb_segments = false;
366 
parse_disable_1tb_segments(char * p)367 static int __init parse_disable_1tb_segments(char *p)
368 {
369 	disable_1tb_segments = true;
370 	return 0;
371 }
372 early_param("disable_1tb_segments", parse_disable_1tb_segments);
373 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)374 static int __init htab_dt_scan_seg_sizes(unsigned long node,
375 					 const char *uname, int depth,
376 					 void *data)
377 {
378 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
379 	const __be32 *prop;
380 	int size = 0;
381 
382 	/* We are scanning "cpu" nodes only */
383 	if (type == NULL || strcmp(type, "cpu") != 0)
384 		return 0;
385 
386 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
387 	if (prop == NULL)
388 		return 0;
389 	for (; size >= 4; size -= 4, ++prop) {
390 		if (be32_to_cpu(prop[0]) == 40) {
391 			DBG("1T segment support detected\n");
392 
393 			if (disable_1tb_segments) {
394 				DBG("1T segments disabled by command line\n");
395 				break;
396 			}
397 
398 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
399 			return 1;
400 		}
401 	}
402 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
403 	return 0;
404 }
405 
get_idx_from_shift(unsigned int shift)406 static int __init get_idx_from_shift(unsigned int shift)
407 {
408 	int idx = -1;
409 
410 	switch (shift) {
411 	case 0xc:
412 		idx = MMU_PAGE_4K;
413 		break;
414 	case 0x10:
415 		idx = MMU_PAGE_64K;
416 		break;
417 	case 0x14:
418 		idx = MMU_PAGE_1M;
419 		break;
420 	case 0x18:
421 		idx = MMU_PAGE_16M;
422 		break;
423 	case 0x22:
424 		idx = MMU_PAGE_16G;
425 		break;
426 	}
427 	return idx;
428 }
429 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)430 static int __init htab_dt_scan_page_sizes(unsigned long node,
431 					  const char *uname, int depth,
432 					  void *data)
433 {
434 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
435 	const __be32 *prop;
436 	int size = 0;
437 
438 	/* We are scanning "cpu" nodes only */
439 	if (type == NULL || strcmp(type, "cpu") != 0)
440 		return 0;
441 
442 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
443 	if (!prop)
444 		return 0;
445 
446 	pr_info("Page sizes from device-tree:\n");
447 	size /= 4;
448 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
449 	while(size > 0) {
450 		unsigned int base_shift = be32_to_cpu(prop[0]);
451 		unsigned int slbenc = be32_to_cpu(prop[1]);
452 		unsigned int lpnum = be32_to_cpu(prop[2]);
453 		struct mmu_psize_def *def;
454 		int idx, base_idx;
455 
456 		size -= 3; prop += 3;
457 		base_idx = get_idx_from_shift(base_shift);
458 		if (base_idx < 0) {
459 			/* skip the pte encoding also */
460 			prop += lpnum * 2; size -= lpnum * 2;
461 			continue;
462 		}
463 		def = &mmu_psize_defs[base_idx];
464 		if (base_idx == MMU_PAGE_16M)
465 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
466 
467 		def->shift = base_shift;
468 		if (base_shift <= 23)
469 			def->avpnm = 0;
470 		else
471 			def->avpnm = (1 << (base_shift - 23)) - 1;
472 		def->sllp = slbenc;
473 		/*
474 		 * We don't know for sure what's up with tlbiel, so
475 		 * for now we only set it for 4K and 64K pages
476 		 */
477 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
478 			def->tlbiel = 1;
479 		else
480 			def->tlbiel = 0;
481 
482 		while (size > 0 && lpnum) {
483 			unsigned int shift = be32_to_cpu(prop[0]);
484 			int penc  = be32_to_cpu(prop[1]);
485 
486 			prop += 2; size -= 2;
487 			lpnum--;
488 
489 			idx = get_idx_from_shift(shift);
490 			if (idx < 0)
491 				continue;
492 
493 			if (penc == -1)
494 				pr_err("Invalid penc for base_shift=%d "
495 				       "shift=%d\n", base_shift, shift);
496 
497 			def->penc[idx] = penc;
498 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
499 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
500 				base_shift, shift, def->sllp,
501 				def->avpnm, def->tlbiel, def->penc[idx]);
502 		}
503 	}
504 
505 	return 1;
506 }
507 
508 #ifdef CONFIG_HUGETLB_PAGE
509 /*
510  * Scan for 16G memory blocks that have been set aside for huge pages
511  * and reserve those blocks for 16G huge pages.
512  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)513 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
514 					const char *uname, int depth,
515 					void *data) {
516 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
517 	const __be64 *addr_prop;
518 	const __be32 *page_count_prop;
519 	unsigned int expected_pages;
520 	long unsigned int phys_addr;
521 	long unsigned int block_size;
522 
523 	/* We are scanning "memory" nodes only */
524 	if (type == NULL || strcmp(type, "memory") != 0)
525 		return 0;
526 
527 	/*
528 	 * This property is the log base 2 of the number of virtual pages that
529 	 * will represent this memory block.
530 	 */
531 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
532 	if (page_count_prop == NULL)
533 		return 0;
534 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
535 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
536 	if (addr_prop == NULL)
537 		return 0;
538 	phys_addr = be64_to_cpu(addr_prop[0]);
539 	block_size = be64_to_cpu(addr_prop[1]);
540 	if (block_size != (16 * GB))
541 		return 0;
542 	printk(KERN_INFO "Huge page(16GB) memory: "
543 			"addr = 0x%lX size = 0x%lX pages = %d\n",
544 			phys_addr, block_size, expected_pages);
545 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
546 		memblock_reserve(phys_addr, block_size * expected_pages);
547 		pseries_add_gpage(phys_addr, block_size, expected_pages);
548 	}
549 	return 0;
550 }
551 #endif /* CONFIG_HUGETLB_PAGE */
552 
mmu_psize_set_default_penc(void)553 static void mmu_psize_set_default_penc(void)
554 {
555 	int bpsize, apsize;
556 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
557 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
558 			mmu_psize_defs[bpsize].penc[apsize] = -1;
559 }
560 
561 #ifdef CONFIG_PPC_64K_PAGES
562 
might_have_hea(void)563 static bool might_have_hea(void)
564 {
565 	/*
566 	 * The HEA ethernet adapter requires awareness of the
567 	 * GX bus. Without that awareness we can easily assume
568 	 * we will never see an HEA ethernet device.
569 	 */
570 #ifdef CONFIG_IBMEBUS
571 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
572 		firmware_has_feature(FW_FEATURE_SPLPAR);
573 #else
574 	return false;
575 #endif
576 }
577 
578 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
579 
htab_scan_page_sizes(void)580 static void __init htab_scan_page_sizes(void)
581 {
582 	int rc;
583 
584 	/* se the invalid penc to -1 */
585 	mmu_psize_set_default_penc();
586 
587 	/* Default to 4K pages only */
588 	memcpy(mmu_psize_defs, mmu_psize_defaults,
589 	       sizeof(mmu_psize_defaults));
590 
591 	/*
592 	 * Try to find the available page sizes in the device-tree
593 	 */
594 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
595 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
596 		/*
597 		 * Nothing in the device-tree, but the CPU supports 16M pages,
598 		 * so let's fallback on a known size list for 16M capable CPUs.
599 		 */
600 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
601 		       sizeof(mmu_psize_defaults_gp));
602 	}
603 
604 #ifdef CONFIG_HUGETLB_PAGE
605 	if (!hugetlb_disabled && !early_radix_enabled() ) {
606 		/* Reserve 16G huge page memory sections for huge pages */
607 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
608 	}
609 #endif /* CONFIG_HUGETLB_PAGE */
610 }
611 
612 /*
613  * Fill in the hpte_page_sizes[] array.
614  * We go through the mmu_psize_defs[] array looking for all the
615  * supported base/actual page size combinations.  Each combination
616  * has a unique pagesize encoding (penc) value in the low bits of
617  * the LP field of the HPTE.  For actual page sizes less than 1MB,
618  * some of the upper LP bits are used for RPN bits, meaning that
619  * we need to fill in several entries in hpte_page_sizes[].
620  *
621  * In diagrammatic form, with r = RPN bits and z = page size bits:
622  *        PTE LP     actual page size
623  *    rrrr rrrz		>=8KB
624  *    rrrr rrzz		>=16KB
625  *    rrrr rzzz		>=32KB
626  *    rrrr zzzz		>=64KB
627  *    ...
628  *
629  * The zzzz bits are implementation-specific but are chosen so that
630  * no encoding for a larger page size uses the same value in its
631  * low-order N bits as the encoding for the 2^(12+N) byte page size
632  * (if it exists).
633  */
init_hpte_page_sizes(void)634 static void init_hpte_page_sizes(void)
635 {
636 	long int ap, bp;
637 	long int shift, penc;
638 
639 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
640 		if (!mmu_psize_defs[bp].shift)
641 			continue;	/* not a supported page size */
642 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
643 			penc = mmu_psize_defs[bp].penc[ap];
644 			if (penc == -1 || !mmu_psize_defs[ap].shift)
645 				continue;
646 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
647 			if (shift <= 0)
648 				continue;	/* should never happen */
649 			/*
650 			 * For page sizes less than 1MB, this loop
651 			 * replicates the entry for all possible values
652 			 * of the rrrr bits.
653 			 */
654 			while (penc < (1 << LP_BITS)) {
655 				hpte_page_sizes[penc] = (ap << 4) | bp;
656 				penc += 1 << shift;
657 			}
658 		}
659 	}
660 }
661 
htab_init_page_sizes(void)662 static void __init htab_init_page_sizes(void)
663 {
664 	bool aligned = true;
665 	init_hpte_page_sizes();
666 
667 	if (!debug_pagealloc_enabled()) {
668 		/*
669 		 * Pick a size for the linear mapping. Currently, we only
670 		 * support 16M, 1M and 4K which is the default
671 		 */
672 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
673 		    (unsigned long)_stext % 0x1000000) {
674 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
675 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
676 			aligned = false;
677 		}
678 
679 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
680 			mmu_linear_psize = MMU_PAGE_16M;
681 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
682 			mmu_linear_psize = MMU_PAGE_1M;
683 	}
684 
685 #ifdef CONFIG_PPC_64K_PAGES
686 	/*
687 	 * Pick a size for the ordinary pages. Default is 4K, we support
688 	 * 64K for user mappings and vmalloc if supported by the processor.
689 	 * We only use 64k for ioremap if the processor
690 	 * (and firmware) support cache-inhibited large pages.
691 	 * If not, we use 4k and set mmu_ci_restrictions so that
692 	 * hash_page knows to switch processes that use cache-inhibited
693 	 * mappings to 4k pages.
694 	 */
695 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
696 		mmu_virtual_psize = MMU_PAGE_64K;
697 		mmu_vmalloc_psize = MMU_PAGE_64K;
698 		if (mmu_linear_psize == MMU_PAGE_4K)
699 			mmu_linear_psize = MMU_PAGE_64K;
700 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
701 			/*
702 			 * When running on pSeries using 64k pages for ioremap
703 			 * would stop us accessing the HEA ethernet. So if we
704 			 * have the chance of ever seeing one, stay at 4k.
705 			 */
706 			if (!might_have_hea())
707 				mmu_io_psize = MMU_PAGE_64K;
708 		} else
709 			mmu_ci_restrictions = 1;
710 	}
711 #endif /* CONFIG_PPC_64K_PAGES */
712 
713 #ifdef CONFIG_SPARSEMEM_VMEMMAP
714 	/*
715 	 * We try to use 16M pages for vmemmap if that is supported
716 	 * and we have at least 1G of RAM at boot
717 	 */
718 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
719 	    memblock_phys_mem_size() >= 0x40000000)
720 		mmu_vmemmap_psize = MMU_PAGE_16M;
721 	else
722 		mmu_vmemmap_psize = mmu_virtual_psize;
723 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
724 
725 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
726 	       "virtual = %d, io = %d"
727 #ifdef CONFIG_SPARSEMEM_VMEMMAP
728 	       ", vmemmap = %d"
729 #endif
730 	       "\n",
731 	       mmu_psize_defs[mmu_linear_psize].shift,
732 	       mmu_psize_defs[mmu_virtual_psize].shift,
733 	       mmu_psize_defs[mmu_io_psize].shift
734 #ifdef CONFIG_SPARSEMEM_VMEMMAP
735 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
736 #endif
737 	       );
738 }
739 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)740 static int __init htab_dt_scan_pftsize(unsigned long node,
741 				       const char *uname, int depth,
742 				       void *data)
743 {
744 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
745 	const __be32 *prop;
746 
747 	/* We are scanning "cpu" nodes only */
748 	if (type == NULL || strcmp(type, "cpu") != 0)
749 		return 0;
750 
751 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
752 	if (prop != NULL) {
753 		/* pft_size[0] is the NUMA CEC cookie */
754 		ppc64_pft_size = be32_to_cpu(prop[1]);
755 		return 1;
756 	}
757 	return 0;
758 }
759 
htab_shift_for_mem_size(unsigned long mem_size)760 unsigned htab_shift_for_mem_size(unsigned long mem_size)
761 {
762 	unsigned memshift = __ilog2(mem_size);
763 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
764 	unsigned pteg_shift;
765 
766 	/* round mem_size up to next power of 2 */
767 	if ((1UL << memshift) < mem_size)
768 		memshift += 1;
769 
770 	/* aim for 2 pages / pteg */
771 	pteg_shift = memshift - (pshift + 1);
772 
773 	/*
774 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
775 	 * size permitted by the architecture.
776 	 */
777 	return max(pteg_shift + 7, 18U);
778 }
779 
htab_get_table_size(void)780 static unsigned long __init htab_get_table_size(void)
781 {
782 	/*
783 	 * If hash size isn't already provided by the platform, we try to
784 	 * retrieve it from the device-tree. If it's not there neither, we
785 	 * calculate it now based on the total RAM size
786 	 */
787 	if (ppc64_pft_size == 0)
788 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
789 	if (ppc64_pft_size)
790 		return 1UL << ppc64_pft_size;
791 
792 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
793 }
794 
795 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)796 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
797 {
798 	unsigned target_hpt_shift;
799 
800 	if (!mmu_hash_ops.resize_hpt)
801 		return 0;
802 
803 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
804 
805 	/*
806 	 * To avoid lots of HPT resizes if memory size is fluctuating
807 	 * across a boundary, we deliberately have some hysterisis
808 	 * here: we immediately increase the HPT size if the target
809 	 * shift exceeds the current shift, but we won't attempt to
810 	 * reduce unless the target shift is at least 2 below the
811 	 * current shift
812 	 */
813 	if (target_hpt_shift > ppc64_pft_size ||
814 	    target_hpt_shift < ppc64_pft_size - 1)
815 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
816 
817 	return 0;
818 }
819 
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)820 int hash__create_section_mapping(unsigned long start, unsigned long end,
821 				 int nid, pgprot_t prot)
822 {
823 	int rc;
824 
825 	if (end >= H_VMALLOC_START) {
826 		pr_warn("Outside the supported range\n");
827 		return -1;
828 	}
829 
830 	resize_hpt_for_hotplug(memblock_phys_mem_size());
831 
832 	rc = htab_bolt_mapping(start, end, __pa(start),
833 			       pgprot_val(prot), mmu_linear_psize,
834 			       mmu_kernel_ssize);
835 
836 	if (rc < 0) {
837 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
838 					      mmu_kernel_ssize);
839 		BUG_ON(rc2 && (rc2 != -ENOENT));
840 	}
841 	return rc;
842 }
843 
hash__remove_section_mapping(unsigned long start,unsigned long end)844 int hash__remove_section_mapping(unsigned long start, unsigned long end)
845 {
846 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
847 				     mmu_kernel_ssize);
848 	WARN_ON(rc < 0);
849 
850 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
851 		pr_warn("Hash collision while resizing HPT\n");
852 
853 	return rc;
854 }
855 #endif /* CONFIG_MEMORY_HOTPLUG */
856 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)857 static void __init hash_init_partition_table(phys_addr_t hash_table,
858 					     unsigned long htab_size)
859 {
860 	mmu_partition_table_init();
861 
862 	/*
863 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
864 	 * For now, UPRT is 0 and we have no segment table.
865 	 */
866 	htab_size =  __ilog2(htab_size) - 18;
867 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
868 	pr_info("Partition table %p\n", partition_tb);
869 }
870 
htab_initialize(void)871 static void __init htab_initialize(void)
872 {
873 	unsigned long table;
874 	unsigned long pteg_count;
875 	unsigned long prot;
876 	phys_addr_t base = 0, size = 0, end;
877 	u64 i;
878 
879 	DBG(" -> htab_initialize()\n");
880 
881 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
882 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
883 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
884 		printk(KERN_INFO "Using 1TB segments\n");
885 	}
886 
887 	if (stress_slb_enabled)
888 		static_branch_enable(&stress_slb_key);
889 
890 	/*
891 	 * Calculate the required size of the htab.  We want the number of
892 	 * PTEGs to equal one half the number of real pages.
893 	 */
894 	htab_size_bytes = htab_get_table_size();
895 	pteg_count = htab_size_bytes >> 7;
896 
897 	htab_hash_mask = pteg_count - 1;
898 
899 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
900 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
901 		/* Using a hypervisor which owns the htab */
902 		htab_address = NULL;
903 		_SDR1 = 0;
904 #ifdef CONFIG_FA_DUMP
905 		/*
906 		 * If firmware assisted dump is active firmware preserves
907 		 * the contents of htab along with entire partition memory.
908 		 * Clear the htab if firmware assisted dump is active so
909 		 * that we dont end up using old mappings.
910 		 */
911 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
912 			mmu_hash_ops.hpte_clear_all();
913 #endif
914 	} else {
915 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
916 
917 #ifdef CONFIG_PPC_CELL
918 		/*
919 		 * Cell may require the hash table down low when using the
920 		 * Axon IOMMU in order to fit the dynamic region over it, see
921 		 * comments in cell/iommu.c
922 		 */
923 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
924 			limit = 0x80000000;
925 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
926 		}
927 #endif /* CONFIG_PPC_CELL */
928 
929 		table = memblock_phys_alloc_range(htab_size_bytes,
930 						  htab_size_bytes,
931 						  0, limit);
932 		if (!table)
933 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
934 			      &htab_size_bytes, &limit);
935 
936 		DBG("Hash table allocated at %lx, size: %lx\n", table,
937 		    htab_size_bytes);
938 
939 		htab_address = __va(table);
940 
941 		/* htab absolute addr + encoded htabsize */
942 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
943 
944 		/* Initialize the HPT with no entries */
945 		memset((void *)table, 0, htab_size_bytes);
946 
947 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
948 			/* Set SDR1 */
949 			mtspr(SPRN_SDR1, _SDR1);
950 		else
951 			hash_init_partition_table(table, htab_size_bytes);
952 	}
953 
954 	prot = pgprot_val(PAGE_KERNEL);
955 
956 #ifdef CONFIG_DEBUG_PAGEALLOC
957 	if (debug_pagealloc_enabled()) {
958 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
959 		linear_map_hash_slots = memblock_alloc_try_nid(
960 				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
961 				ppc64_rma_size,	NUMA_NO_NODE);
962 		if (!linear_map_hash_slots)
963 			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
964 			      __func__, linear_map_hash_count, &ppc64_rma_size);
965 	}
966 #endif /* CONFIG_DEBUG_PAGEALLOC */
967 
968 	/* create bolted the linear mapping in the hash table */
969 	for_each_mem_range(i, &base, &end) {
970 		size = end - base;
971 		base = (unsigned long)__va(base);
972 
973 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
974 		    base, size, prot);
975 
976 		if ((base + size) >= H_VMALLOC_START) {
977 			pr_warn("Outside the supported range\n");
978 			continue;
979 		}
980 
981 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
982 				prot, mmu_linear_psize, mmu_kernel_ssize));
983 	}
984 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
985 
986 	/*
987 	 * If we have a memory_limit and we've allocated TCEs then we need to
988 	 * explicitly map the TCE area at the top of RAM. We also cope with the
989 	 * case that the TCEs start below memory_limit.
990 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
991 	 * for either 4K or 16MB pages.
992 	 */
993 	if (tce_alloc_start) {
994 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
995 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
996 
997 		if (base + size >= tce_alloc_start)
998 			tce_alloc_start = base + size + 1;
999 
1000 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1001 					 __pa(tce_alloc_start), prot,
1002 					 mmu_linear_psize, mmu_kernel_ssize));
1003 	}
1004 
1005 
1006 	DBG(" <- htab_initialize()\n");
1007 }
1008 #undef KB
1009 #undef MB
1010 
hash__early_init_devtree(void)1011 void __init hash__early_init_devtree(void)
1012 {
1013 	/* Initialize segment sizes */
1014 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1015 
1016 	/* Initialize page sizes */
1017 	htab_scan_page_sizes();
1018 }
1019 
1020 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1021 void __init hash__early_init_mmu(void)
1022 {
1023 #ifndef CONFIG_PPC_64K_PAGES
1024 	/*
1025 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1026 	 * do the following:
1027 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1028 	 *
1029 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1030 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1031 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1032 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1033 	 * with a BUILD_BUG_ON().
1034 	 */
1035 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1036 #endif /* CONFIG_PPC_64K_PAGES */
1037 
1038 	htab_init_page_sizes();
1039 
1040 	/*
1041 	 * initialize page table size
1042 	 */
1043 	__pte_frag_nr = H_PTE_FRAG_NR;
1044 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1045 	__pmd_frag_nr = H_PMD_FRAG_NR;
1046 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1047 
1048 	__pte_index_size = H_PTE_INDEX_SIZE;
1049 	__pmd_index_size = H_PMD_INDEX_SIZE;
1050 	__pud_index_size = H_PUD_INDEX_SIZE;
1051 	__pgd_index_size = H_PGD_INDEX_SIZE;
1052 	__pud_cache_index = H_PUD_CACHE_INDEX;
1053 	__pte_table_size = H_PTE_TABLE_SIZE;
1054 	__pmd_table_size = H_PMD_TABLE_SIZE;
1055 	__pud_table_size = H_PUD_TABLE_SIZE;
1056 	__pgd_table_size = H_PGD_TABLE_SIZE;
1057 	/*
1058 	 * 4k use hugepd format, so for hash set then to
1059 	 * zero
1060 	 */
1061 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1062 	__pud_val_bits = HASH_PUD_VAL_BITS;
1063 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1064 
1065 	__kernel_virt_start = H_KERN_VIRT_START;
1066 	__vmalloc_start = H_VMALLOC_START;
1067 	__vmalloc_end = H_VMALLOC_END;
1068 	__kernel_io_start = H_KERN_IO_START;
1069 	__kernel_io_end = H_KERN_IO_END;
1070 	vmemmap = (struct page *)H_VMEMMAP_START;
1071 	ioremap_bot = IOREMAP_BASE;
1072 
1073 #ifdef CONFIG_PCI
1074 	pci_io_base = ISA_IO_BASE;
1075 #endif
1076 
1077 	/* Select appropriate backend */
1078 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1079 		ps3_early_mm_init();
1080 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1081 		hpte_init_pseries();
1082 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1083 		hpte_init_native();
1084 
1085 	if (!mmu_hash_ops.hpte_insert)
1086 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1087 
1088 	/*
1089 	 * Initialize the MMU Hash table and create the linear mapping
1090 	 * of memory. Has to be done before SLB initialization as this is
1091 	 * currently where the page size encoding is obtained.
1092 	 */
1093 	htab_initialize();
1094 
1095 	init_mm.context.hash_context = &init_hash_mm_context;
1096 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1097 
1098 	pr_info("Initializing hash mmu with SLB\n");
1099 	/* Initialize SLB management */
1100 	slb_initialize();
1101 
1102 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1103 			&& cpu_has_feature(CPU_FTR_HVMODE))
1104 		tlbiel_all();
1105 }
1106 
1107 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1108 void hash__early_init_mmu_secondary(void)
1109 {
1110 	/* Initialize hash table for that CPU */
1111 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1112 
1113 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1114 			mtspr(SPRN_SDR1, _SDR1);
1115 		else
1116 			set_ptcr_when_no_uv(__pa(partition_tb) |
1117 					    (PATB_SIZE_SHIFT - 12));
1118 	}
1119 	/* Initialize SLB */
1120 	slb_initialize();
1121 
1122 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1123 			&& cpu_has_feature(CPU_FTR_HVMODE))
1124 		tlbiel_all();
1125 
1126 #ifdef CONFIG_PPC_MEM_KEYS
1127 	if (mmu_has_feature(MMU_FTR_PKEY))
1128 		mtspr(SPRN_UAMOR, default_uamor);
1129 #endif
1130 }
1131 #endif /* CONFIG_SMP */
1132 
1133 /*
1134  * Called by asm hashtable.S for doing lazy icache flush
1135  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1136 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1137 {
1138 	struct page *page;
1139 
1140 	if (!pfn_valid(pte_pfn(pte)))
1141 		return pp;
1142 
1143 	page = pte_page(pte);
1144 
1145 	/* page is dirty */
1146 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1147 		if (trap == 0x400) {
1148 			flush_dcache_icache_page(page);
1149 			set_bit(PG_arch_1, &page->flags);
1150 		} else
1151 			pp |= HPTE_R_N;
1152 	}
1153 	return pp;
1154 }
1155 
1156 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1157 static unsigned int get_paca_psize(unsigned long addr)
1158 {
1159 	unsigned char *psizes;
1160 	unsigned long index, mask_index;
1161 
1162 	if (addr < SLICE_LOW_TOP) {
1163 		psizes = get_paca()->mm_ctx_low_slices_psize;
1164 		index = GET_LOW_SLICE_INDEX(addr);
1165 	} else {
1166 		psizes = get_paca()->mm_ctx_high_slices_psize;
1167 		index = GET_HIGH_SLICE_INDEX(addr);
1168 	}
1169 	mask_index = index & 0x1;
1170 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1171 }
1172 
1173 #else
get_paca_psize(unsigned long addr)1174 unsigned int get_paca_psize(unsigned long addr)
1175 {
1176 	return get_paca()->mm_ctx_user_psize;
1177 }
1178 #endif
1179 
1180 /*
1181  * Demote a segment to using 4k pages.
1182  * For now this makes the whole process use 4k pages.
1183  */
1184 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1185 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1186 {
1187 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1188 		return;
1189 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1190 	copro_flush_all_slbs(mm);
1191 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1192 
1193 		copy_mm_to_paca(mm);
1194 		slb_flush_and_restore_bolted();
1195 	}
1196 }
1197 #endif /* CONFIG_PPC_64K_PAGES */
1198 
1199 #ifdef CONFIG_PPC_SUBPAGE_PROT
1200 /*
1201  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1202  * Userspace sets the subpage permissions using the subpage_prot system call.
1203  *
1204  * Result is 0: full permissions, _PAGE_RW: read-only,
1205  * _PAGE_RWX: no access.
1206  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1207 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1208 {
1209 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1210 	u32 spp = 0;
1211 	u32 **sbpm, *sbpp;
1212 
1213 	if (!spt)
1214 		return 0;
1215 
1216 	if (ea >= spt->maxaddr)
1217 		return 0;
1218 	if (ea < 0x100000000UL) {
1219 		/* addresses below 4GB use spt->low_prot */
1220 		sbpm = spt->low_prot;
1221 	} else {
1222 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1223 		if (!sbpm)
1224 			return 0;
1225 	}
1226 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1227 	if (!sbpp)
1228 		return 0;
1229 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1230 
1231 	/* extract 2-bit bitfield for this 4k subpage */
1232 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1233 
1234 	/*
1235 	 * 0 -> full premission
1236 	 * 1 -> Read only
1237 	 * 2 -> no access.
1238 	 * We return the flag that need to be cleared.
1239 	 */
1240 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1241 	return spp;
1242 }
1243 
1244 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1245 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1246 {
1247 	return 0;
1248 }
1249 #endif
1250 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1251 void hash_failure_debug(unsigned long ea, unsigned long access,
1252 			unsigned long vsid, unsigned long trap,
1253 			int ssize, int psize, int lpsize, unsigned long pte)
1254 {
1255 	if (!printk_ratelimit())
1256 		return;
1257 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1258 		ea, access, current->comm);
1259 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1260 		trap, vsid, ssize, psize, lpsize, pte);
1261 }
1262 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1263 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1264 			     int psize, bool user_region)
1265 {
1266 	if (user_region) {
1267 		if (psize != get_paca_psize(ea)) {
1268 			copy_mm_to_paca(mm);
1269 			slb_flush_and_restore_bolted();
1270 		}
1271 	} else if (get_paca()->vmalloc_sllp !=
1272 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1273 		get_paca()->vmalloc_sllp =
1274 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1275 		slb_vmalloc_update();
1276 	}
1277 }
1278 
1279 /*
1280  * Result code is:
1281  *  0 - handled
1282  *  1 - normal page fault
1283  * -1 - critical hash insertion error
1284  * -2 - access not permitted by subpage protection mechanism
1285  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1286 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1287 		 unsigned long access, unsigned long trap,
1288 		 unsigned long flags)
1289 {
1290 	bool is_thp;
1291 	enum ctx_state prev_state = exception_enter();
1292 	pgd_t *pgdir;
1293 	unsigned long vsid;
1294 	pte_t *ptep;
1295 	unsigned hugeshift;
1296 	int rc, user_region = 0;
1297 	int psize, ssize;
1298 
1299 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1300 		ea, access, trap);
1301 	trace_hash_fault(ea, access, trap);
1302 
1303 	/* Get region & vsid */
1304 	switch (get_region_id(ea)) {
1305 	case USER_REGION_ID:
1306 		user_region = 1;
1307 		if (! mm) {
1308 			DBG_LOW(" user region with no mm !\n");
1309 			rc = 1;
1310 			goto bail;
1311 		}
1312 		psize = get_slice_psize(mm, ea);
1313 		ssize = user_segment_size(ea);
1314 		vsid = get_user_vsid(&mm->context, ea, ssize);
1315 		break;
1316 	case VMALLOC_REGION_ID:
1317 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1318 		psize = mmu_vmalloc_psize;
1319 		ssize = mmu_kernel_ssize;
1320 		break;
1321 
1322 	case IO_REGION_ID:
1323 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1324 		psize = mmu_io_psize;
1325 		ssize = mmu_kernel_ssize;
1326 		break;
1327 	default:
1328 		/*
1329 		 * Not a valid range
1330 		 * Send the problem up to do_page_fault()
1331 		 */
1332 		rc = 1;
1333 		goto bail;
1334 	}
1335 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1336 
1337 	/* Bad address. */
1338 	if (!vsid) {
1339 		DBG_LOW("Bad address!\n");
1340 		rc = 1;
1341 		goto bail;
1342 	}
1343 	/* Get pgdir */
1344 	pgdir = mm->pgd;
1345 	if (pgdir == NULL) {
1346 		rc = 1;
1347 		goto bail;
1348 	}
1349 
1350 	/* Check CPU locality */
1351 	if (user_region && mm_is_thread_local(mm))
1352 		flags |= HPTE_LOCAL_UPDATE;
1353 
1354 #ifndef CONFIG_PPC_64K_PAGES
1355 	/*
1356 	 * If we use 4K pages and our psize is not 4K, then we might
1357 	 * be hitting a special driver mapping, and need to align the
1358 	 * address before we fetch the PTE.
1359 	 *
1360 	 * It could also be a hugepage mapping, in which case this is
1361 	 * not necessary, but it's not harmful, either.
1362 	 */
1363 	if (psize != MMU_PAGE_4K)
1364 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1365 #endif /* CONFIG_PPC_64K_PAGES */
1366 
1367 	/* Get PTE and page size from page tables */
1368 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1369 	if (ptep == NULL || !pte_present(*ptep)) {
1370 		DBG_LOW(" no PTE !\n");
1371 		rc = 1;
1372 		goto bail;
1373 	}
1374 
1375 	/*
1376 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1377 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1378 	 *
1379 	 * We can safely use the return pte address in rest of the function
1380 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1381 	 * from generic code.
1382 	 */
1383 	access |= _PAGE_PRESENT | _PAGE_PTE;
1384 
1385 	/*
1386 	 * Pre-check access permissions (will be re-checked atomically
1387 	 * in __hash_page_XX but this pre-check is a fast path
1388 	 */
1389 	if (!check_pte_access(access, pte_val(*ptep))) {
1390 		DBG_LOW(" no access !\n");
1391 		rc = 1;
1392 		goto bail;
1393 	}
1394 
1395 	if (hugeshift) {
1396 		if (is_thp)
1397 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1398 					     trap, flags, ssize, psize);
1399 #ifdef CONFIG_HUGETLB_PAGE
1400 		else
1401 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1402 					      flags, ssize, hugeshift, psize);
1403 #else
1404 		else {
1405 			/*
1406 			 * if we have hugeshift, and is not transhuge with
1407 			 * hugetlb disabled, something is really wrong.
1408 			 */
1409 			rc = 1;
1410 			WARN_ON(1);
1411 		}
1412 #endif
1413 		if (current->mm == mm)
1414 			check_paca_psize(ea, mm, psize, user_region);
1415 
1416 		goto bail;
1417 	}
1418 
1419 #ifndef CONFIG_PPC_64K_PAGES
1420 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1421 #else
1422 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1423 		pte_val(*(ptep + PTRS_PER_PTE)));
1424 #endif
1425 	/* Do actual hashing */
1426 #ifdef CONFIG_PPC_64K_PAGES
1427 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1428 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1429 		demote_segment_4k(mm, ea);
1430 		psize = MMU_PAGE_4K;
1431 	}
1432 
1433 	/*
1434 	 * If this PTE is non-cacheable and we have restrictions on
1435 	 * using non cacheable large pages, then we switch to 4k
1436 	 */
1437 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1438 		if (user_region) {
1439 			demote_segment_4k(mm, ea);
1440 			psize = MMU_PAGE_4K;
1441 		} else if (ea < VMALLOC_END) {
1442 			/*
1443 			 * some driver did a non-cacheable mapping
1444 			 * in vmalloc space, so switch vmalloc
1445 			 * to 4k pages
1446 			 */
1447 			printk(KERN_ALERT "Reducing vmalloc segment "
1448 			       "to 4kB pages because of "
1449 			       "non-cacheable mapping\n");
1450 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1451 			copro_flush_all_slbs(mm);
1452 		}
1453 	}
1454 
1455 #endif /* CONFIG_PPC_64K_PAGES */
1456 
1457 	if (current->mm == mm)
1458 		check_paca_psize(ea, mm, psize, user_region);
1459 
1460 #ifdef CONFIG_PPC_64K_PAGES
1461 	if (psize == MMU_PAGE_64K)
1462 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1463 				     flags, ssize);
1464 	else
1465 #endif /* CONFIG_PPC_64K_PAGES */
1466 	{
1467 		int spp = subpage_protection(mm, ea);
1468 		if (access & spp)
1469 			rc = -2;
1470 		else
1471 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1472 					    flags, ssize, spp);
1473 	}
1474 
1475 	/*
1476 	 * Dump some info in case of hash insertion failure, they should
1477 	 * never happen so it is really useful to know if/when they do
1478 	 */
1479 	if (rc == -1)
1480 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1481 				   psize, pte_val(*ptep));
1482 #ifndef CONFIG_PPC_64K_PAGES
1483 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1484 #else
1485 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1486 		pte_val(*(ptep + PTRS_PER_PTE)));
1487 #endif
1488 	DBG_LOW(" -> rc=%d\n", rc);
1489 
1490 bail:
1491 	exception_exit(prev_state);
1492 	return rc;
1493 }
1494 EXPORT_SYMBOL_GPL(hash_page_mm);
1495 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1496 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1497 	      unsigned long dsisr)
1498 {
1499 	unsigned long flags = 0;
1500 	struct mm_struct *mm = current->mm;
1501 
1502 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1503 	    (get_region_id(ea) == IO_REGION_ID))
1504 		mm = &init_mm;
1505 
1506 	if (dsisr & DSISR_NOHPTE)
1507 		flags |= HPTE_NOHPTE_UPDATE;
1508 
1509 	return hash_page_mm(mm, ea, access, trap, flags);
1510 }
1511 EXPORT_SYMBOL_GPL(hash_page);
1512 
__hash_page(unsigned long trap,unsigned long ea,unsigned long dsisr,unsigned long msr)1513 int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1514 		unsigned long msr)
1515 {
1516 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1517 	unsigned long flags = 0;
1518 	struct mm_struct *mm = current->mm;
1519 	unsigned int region_id = get_region_id(ea);
1520 
1521 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1522 		mm = &init_mm;
1523 
1524 	if (dsisr & DSISR_NOHPTE)
1525 		flags |= HPTE_NOHPTE_UPDATE;
1526 
1527 	if (dsisr & DSISR_ISSTORE)
1528 		access |= _PAGE_WRITE;
1529 	/*
1530 	 * We set _PAGE_PRIVILEGED only when
1531 	 * kernel mode access kernel space.
1532 	 *
1533 	 * _PAGE_PRIVILEGED is NOT set
1534 	 * 1) when kernel mode access user space
1535 	 * 2) user space access kernel space.
1536 	 */
1537 	access |= _PAGE_PRIVILEGED;
1538 	if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1539 		access &= ~_PAGE_PRIVILEGED;
1540 
1541 	if (trap == 0x400)
1542 		access |= _PAGE_EXEC;
1543 
1544 	return hash_page_mm(mm, ea, access, trap, flags);
1545 }
1546 
1547 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1548 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1549 {
1550 	int psize = get_slice_psize(mm, ea);
1551 
1552 	/* We only prefault standard pages for now */
1553 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1554 		return false;
1555 
1556 	/*
1557 	 * Don't prefault if subpage protection is enabled for the EA.
1558 	 */
1559 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1560 		return false;
1561 
1562 	return true;
1563 }
1564 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1565 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1566 {
1567 	return true;
1568 }
1569 #endif
1570 
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)1571 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1572 			 bool is_exec, unsigned long trap)
1573 {
1574 	unsigned long vsid;
1575 	pgd_t *pgdir;
1576 	int rc, ssize, update_flags = 0;
1577 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1578 	unsigned long flags;
1579 
1580 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1581 
1582 	if (!should_hash_preload(mm, ea))
1583 		return;
1584 
1585 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1586 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1587 
1588 	/* Get Linux PTE if available */
1589 	pgdir = mm->pgd;
1590 	if (pgdir == NULL)
1591 		return;
1592 
1593 	/* Get VSID */
1594 	ssize = user_segment_size(ea);
1595 	vsid = get_user_vsid(&mm->context, ea, ssize);
1596 	if (!vsid)
1597 		return;
1598 
1599 #ifdef CONFIG_PPC_64K_PAGES
1600 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1601 	 * a 64K kernel), then we don't preload, hash_page() will take
1602 	 * care of it once we actually try to access the page.
1603 	 * That way we don't have to duplicate all of the logic for segment
1604 	 * page size demotion here
1605 	 * Called with  PTL held, hence can be sure the value won't change in
1606 	 * between.
1607 	 */
1608 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1609 		return;
1610 #endif /* CONFIG_PPC_64K_PAGES */
1611 
1612 	/*
1613 	 * __hash_page_* must run with interrupts off, as it sets the
1614 	 * H_PAGE_BUSY bit. It's possible for perf interrupts to hit at any
1615 	 * time and may take a hash fault reading the user stack, see
1616 	 * read_user_stack_slow() in the powerpc/perf code.
1617 	 *
1618 	 * If that takes a hash fault on the same page as we lock here, it
1619 	 * will bail out when seeing H_PAGE_BUSY set, and retry the access
1620 	 * leading to an infinite loop.
1621 	 *
1622 	 * Disabling interrupts here does not prevent perf interrupts, but it
1623 	 * will prevent them taking hash faults (see the NMI test in
1624 	 * do_hash_page), then read_user_stack's copy_from_user_nofault will
1625 	 * fail and perf will fall back to read_user_stack_slow(), which
1626 	 * walks the Linux page tables.
1627 	 *
1628 	 * Interrupts must also be off for the duration of the
1629 	 * mm_is_thread_local test and update, to prevent preempt running the
1630 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1631 	 */
1632 	local_irq_save(flags);
1633 
1634 	/* Is that local to this CPU ? */
1635 	if (mm_is_thread_local(mm))
1636 		update_flags |= HPTE_LOCAL_UPDATE;
1637 
1638 	/* Hash it in */
1639 #ifdef CONFIG_PPC_64K_PAGES
1640 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1641 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1642 				     update_flags, ssize);
1643 	else
1644 #endif /* CONFIG_PPC_64K_PAGES */
1645 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1646 				    ssize, subpage_protection(mm, ea));
1647 
1648 	/* Dump some info in case of hash insertion failure, they should
1649 	 * never happen so it is really useful to know if/when they do
1650 	 */
1651 	if (rc == -1)
1652 		hash_failure_debug(ea, access, vsid, trap, ssize,
1653 				   mm_ctx_user_psize(&mm->context),
1654 				   mm_ctx_user_psize(&mm->context),
1655 				   pte_val(*ptep));
1656 
1657 	local_irq_restore(flags);
1658 }
1659 
1660 /*
1661  * This is called at the end of handling a user page fault, when the
1662  * fault has been handled by updating a PTE in the linux page tables.
1663  * We use it to preload an HPTE into the hash table corresponding to
1664  * the updated linux PTE.
1665  *
1666  * This must always be called with the pte lock held.
1667  */
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1668 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1669 		      pte_t *ptep)
1670 {
1671 	/*
1672 	 * We don't need to worry about _PAGE_PRESENT here because we are
1673 	 * called with either mm->page_table_lock held or ptl lock held
1674 	 */
1675 	unsigned long trap;
1676 	bool is_exec;
1677 
1678 	if (radix_enabled())
1679 		return;
1680 
1681 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1682 	if (!pte_young(*ptep) || address >= TASK_SIZE)
1683 		return;
1684 
1685 	/*
1686 	 * We try to figure out if we are coming from an instruction
1687 	 * access fault and pass that down to __hash_page so we avoid
1688 	 * double-faulting on execution of fresh text. We have to test
1689 	 * for regs NULL since init will get here first thing at boot.
1690 	 *
1691 	 * We also avoid filling the hash if not coming from a fault.
1692 	 */
1693 
1694 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1695 	switch (trap) {
1696 	case 0x300:
1697 		is_exec = false;
1698 		break;
1699 	case 0x400:
1700 		is_exec = true;
1701 		break;
1702 	default:
1703 		return;
1704 	}
1705 
1706 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1707 }
1708 
1709 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1710 static inline void tm_flush_hash_page(int local)
1711 {
1712 	/*
1713 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1714 	 * page back to a block device w/PIO could pick up transactional data
1715 	 * (bad!) so we force an abort here. Before the sync the page will be
1716 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1717 	 * kernel uses a page from userspace without unmapping it first, it may
1718 	 * see the speculated version.
1719 	 */
1720 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1721 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1722 		tm_enable();
1723 		tm_abort(TM_CAUSE_TLBI);
1724 	}
1725 }
1726 #else
tm_flush_hash_page(int local)1727 static inline void tm_flush_hash_page(int local)
1728 {
1729 }
1730 #endif
1731 
1732 /*
1733  * Return the global hash slot, corresponding to the given PTE, which contains
1734  * the HPTE.
1735  */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1736 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1737 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1738 {
1739 	unsigned long hash, gslot, hidx;
1740 
1741 	hash = hpt_hash(vpn, shift, ssize);
1742 	hidx = __rpte_to_hidx(rpte, subpg_index);
1743 	if (hidx & _PTEIDX_SECONDARY)
1744 		hash = ~hash;
1745 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1746 	gslot += hidx & _PTEIDX_GROUP_IX;
1747 	return gslot;
1748 }
1749 
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1750 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1751 		     unsigned long flags)
1752 {
1753 	unsigned long index, shift, gslot;
1754 	int local = flags & HPTE_LOCAL_UPDATE;
1755 
1756 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1757 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1758 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1759 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1760 		/*
1761 		 * We use same base page size and actual psize, because we don't
1762 		 * use these functions for hugepage
1763 		 */
1764 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1765 					     ssize, local);
1766 	} pte_iterate_hashed_end();
1767 
1768 	tm_flush_hash_page(local);
1769 }
1770 
1771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1772 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1773 			 pmd_t *pmdp, unsigned int psize, int ssize,
1774 			 unsigned long flags)
1775 {
1776 	int i, max_hpte_count, valid;
1777 	unsigned long s_addr;
1778 	unsigned char *hpte_slot_array;
1779 	unsigned long hidx, shift, vpn, hash, slot;
1780 	int local = flags & HPTE_LOCAL_UPDATE;
1781 
1782 	s_addr = addr & HPAGE_PMD_MASK;
1783 	hpte_slot_array = get_hpte_slot_array(pmdp);
1784 	/*
1785 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1786 	 * we will find the below NULL. This happens when we do
1787 	 * split_huge_pmd
1788 	 */
1789 	if (!hpte_slot_array)
1790 		return;
1791 
1792 	if (mmu_hash_ops.hugepage_invalidate) {
1793 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1794 						 psize, ssize, local);
1795 		goto tm_abort;
1796 	}
1797 	/*
1798 	 * No bluk hpte removal support, invalidate each entry
1799 	 */
1800 	shift = mmu_psize_defs[psize].shift;
1801 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1802 	for (i = 0; i < max_hpte_count; i++) {
1803 		/*
1804 		 * 8 bits per each hpte entries
1805 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1806 		 */
1807 		valid = hpte_valid(hpte_slot_array, i);
1808 		if (!valid)
1809 			continue;
1810 		hidx =  hpte_hash_index(hpte_slot_array, i);
1811 
1812 		/* get the vpn */
1813 		addr = s_addr + (i * (1ul << shift));
1814 		vpn = hpt_vpn(addr, vsid, ssize);
1815 		hash = hpt_hash(vpn, shift, ssize);
1816 		if (hidx & _PTEIDX_SECONDARY)
1817 			hash = ~hash;
1818 
1819 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1820 		slot += hidx & _PTEIDX_GROUP_IX;
1821 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1822 					     MMU_PAGE_16M, ssize, local);
1823 	}
1824 tm_abort:
1825 	tm_flush_hash_page(local);
1826 }
1827 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1828 
flush_hash_range(unsigned long number,int local)1829 void flush_hash_range(unsigned long number, int local)
1830 {
1831 	if (mmu_hash_ops.flush_hash_range)
1832 		mmu_hash_ops.flush_hash_range(number, local);
1833 	else {
1834 		int i;
1835 		struct ppc64_tlb_batch *batch =
1836 			this_cpu_ptr(&ppc64_tlb_batch);
1837 
1838 		for (i = 0; i < number; i++)
1839 			flush_hash_page(batch->vpn[i], batch->pte[i],
1840 					batch->psize, batch->ssize, local);
1841 	}
1842 }
1843 
1844 /*
1845  * low_hash_fault is called when we the low level hash code failed
1846  * to instert a PTE due to an hypervisor error
1847  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1848 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1849 {
1850 	enum ctx_state prev_state = exception_enter();
1851 
1852 	if (user_mode(regs)) {
1853 #ifdef CONFIG_PPC_SUBPAGE_PROT
1854 		if (rc == -2)
1855 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1856 		else
1857 #endif
1858 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1859 	} else
1860 		bad_page_fault(regs, address, SIGBUS);
1861 
1862 	exception_exit(prev_state);
1863 }
1864 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1865 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1866 			   unsigned long pa, unsigned long rflags,
1867 			   unsigned long vflags, int psize, int ssize)
1868 {
1869 	unsigned long hpte_group;
1870 	long slot;
1871 
1872 repeat:
1873 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1874 
1875 	/* Insert into the hash table, primary slot */
1876 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1877 					psize, psize, ssize);
1878 
1879 	/* Primary is full, try the secondary */
1880 	if (unlikely(slot == -1)) {
1881 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1882 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1883 						vflags | HPTE_V_SECONDARY,
1884 						psize, psize, ssize);
1885 		if (slot == -1) {
1886 			if (mftb() & 0x1)
1887 				hpte_group = (hash & htab_hash_mask) *
1888 						HPTES_PER_GROUP;
1889 
1890 			mmu_hash_ops.hpte_remove(hpte_group);
1891 			goto repeat;
1892 		}
1893 	}
1894 
1895 	return slot;
1896 }
1897 
1898 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1899 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1900 {
1901 	unsigned long hash;
1902 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1903 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1904 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1905 	long ret;
1906 
1907 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1908 
1909 	/* Don't create HPTE entries for bad address */
1910 	if (!vsid)
1911 		return;
1912 
1913 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1914 				    HPTE_V_BOLTED,
1915 				    mmu_linear_psize, mmu_kernel_ssize);
1916 
1917 	BUG_ON (ret < 0);
1918 	spin_lock(&linear_map_hash_lock);
1919 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1920 	linear_map_hash_slots[lmi] = ret | 0x80;
1921 	spin_unlock(&linear_map_hash_lock);
1922 }
1923 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1924 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1925 {
1926 	unsigned long hash, hidx, slot;
1927 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1928 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1929 
1930 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1931 	spin_lock(&linear_map_hash_lock);
1932 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1933 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1934 	linear_map_hash_slots[lmi] = 0;
1935 	spin_unlock(&linear_map_hash_lock);
1936 	if (hidx & _PTEIDX_SECONDARY)
1937 		hash = ~hash;
1938 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1939 	slot += hidx & _PTEIDX_GROUP_IX;
1940 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1941 				     mmu_linear_psize,
1942 				     mmu_kernel_ssize, 0);
1943 }
1944 
__kernel_map_pages(struct page * page,int numpages,int enable)1945 void __kernel_map_pages(struct page *page, int numpages, int enable)
1946 {
1947 	unsigned long flags, vaddr, lmi;
1948 	int i;
1949 
1950 	local_irq_save(flags);
1951 	for (i = 0; i < numpages; i++, page++) {
1952 		vaddr = (unsigned long)page_address(page);
1953 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1954 		if (lmi >= linear_map_hash_count)
1955 			continue;
1956 		if (enable)
1957 			kernel_map_linear_page(vaddr, lmi);
1958 		else
1959 			kernel_unmap_linear_page(vaddr, lmi);
1960 	}
1961 	local_irq_restore(flags);
1962 }
1963 #endif /* CONFIG_DEBUG_PAGEALLOC */
1964 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1965 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1966 				phys_addr_t first_memblock_size)
1967 {
1968 	/*
1969 	 * We don't currently support the first MEMBLOCK not mapping 0
1970 	 * physical on those processors
1971 	 */
1972 	BUG_ON(first_memblock_base != 0);
1973 
1974 	/*
1975 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1976 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1977 	 * on real mode access.
1978 	 *
1979 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1980 	 * to avoid some funky things such as RTAS bugs etc...
1981 	 *
1982 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
1983 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1984 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1985 	 * for virtual real mode addressing and so it doesn't make sense to
1986 	 * have an area larger than 1TB as it can't be addressed.
1987 	 */
1988 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1989 		ppc64_rma_size = first_memblock_size;
1990 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1991 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1992 		else
1993 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
1994 					       1UL << SID_SHIFT_1T);
1995 
1996 		/* Finally limit subsequent allocations */
1997 		memblock_set_current_limit(ppc64_rma_size);
1998 	} else {
1999 		ppc64_rma_size = ULONG_MAX;
2000 	}
2001 }
2002 
2003 #ifdef CONFIG_DEBUG_FS
2004 
hpt_order_get(void * data,u64 * val)2005 static int hpt_order_get(void *data, u64 *val)
2006 {
2007 	*val = ppc64_pft_size;
2008 	return 0;
2009 }
2010 
hpt_order_set(void * data,u64 val)2011 static int hpt_order_set(void *data, u64 val)
2012 {
2013 	int ret;
2014 
2015 	if (!mmu_hash_ops.resize_hpt)
2016 		return -ENODEV;
2017 
2018 	cpus_read_lock();
2019 	ret = mmu_hash_ops.resize_hpt(val);
2020 	cpus_read_unlock();
2021 
2022 	return ret;
2023 }
2024 
2025 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2026 
hash64_debugfs(void)2027 static int __init hash64_debugfs(void)
2028 {
2029 	debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root, NULL,
2030 			    &fops_hpt_order);
2031 	return 0;
2032 }
2033 machine_device_initcall(pseries, hash64_debugfs);
2034 #endif /* CONFIG_DEBUG_FS */
2035 
print_system_hash_info(void)2036 void __init print_system_hash_info(void)
2037 {
2038 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2039 
2040 	if (htab_hash_mask)
2041 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2042 }
2043