1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright SUSE Linux Products GmbH 2010
16 *
17 * Authors: Alexander Graf <agraf@suse.de>
18 */
19
20 #ifndef __ASM_KVM_BOOK3S_64_H__
21 #define __ASM_KVM_BOOK3S_64_H__
22
23 #include <linux/string.h>
24 #include <asm/bitops.h>
25 #include <asm/book3s/64/mmu-hash.h>
26
27 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
28 #define PPC_MIN_HPT_ORDER 18
29 #define PPC_MAX_HPT_ORDER 46
30
31 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
svcpu_get(struct kvm_vcpu * vcpu)32 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
33 {
34 preempt_disable();
35 return &get_paca()->shadow_vcpu;
36 }
37
svcpu_put(struct kvmppc_book3s_shadow_vcpu * svcpu)38 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
39 {
40 preempt_enable();
41 }
42 #endif
43
44 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
45
kvm_is_radix(struct kvm * kvm)46 static inline bool kvm_is_radix(struct kvm *kvm)
47 {
48 return kvm->arch.radix;
49 }
50
51 #define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
52 #endif
53
54 /*
55 * We use a lock bit in HPTE dword 0 to synchronize updates and
56 * accesses to each HPTE, and another bit to indicate non-present
57 * HPTEs.
58 */
59 #define HPTE_V_HVLOCK 0x40UL
60 #define HPTE_V_ABSENT 0x20UL
61
62 /*
63 * We use this bit in the guest_rpte field of the revmap entry
64 * to indicate a modified HPTE.
65 */
66 #define HPTE_GR_MODIFIED (1ul << 62)
67
68 /* These bits are reserved in the guest view of the HPTE */
69 #define HPTE_GR_RESERVED HPTE_GR_MODIFIED
70
try_lock_hpte(__be64 * hpte,unsigned long bits)71 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
72 {
73 unsigned long tmp, old;
74 __be64 be_lockbit, be_bits;
75
76 /*
77 * We load/store in native endian, but the HTAB is in big endian. If
78 * we byte swap all data we apply on the PTE we're implicitly correct
79 * again.
80 */
81 be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
82 be_bits = cpu_to_be64(bits);
83
84 asm volatile(" ldarx %0,0,%2\n"
85 " and. %1,%0,%3\n"
86 " bne 2f\n"
87 " or %0,%0,%4\n"
88 " stdcx. %0,0,%2\n"
89 " beq+ 2f\n"
90 " mr %1,%3\n"
91 "2: isync"
92 : "=&r" (tmp), "=&r" (old)
93 : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
94 : "cc", "memory");
95 return old == 0;
96 }
97
unlock_hpte(__be64 * hpte,unsigned long hpte_v)98 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
99 {
100 hpte_v &= ~HPTE_V_HVLOCK;
101 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
102 hpte[0] = cpu_to_be64(hpte_v);
103 }
104
105 /* Without barrier */
__unlock_hpte(__be64 * hpte,unsigned long hpte_v)106 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
107 {
108 hpte_v &= ~HPTE_V_HVLOCK;
109 hpte[0] = cpu_to_be64(hpte_v);
110 }
111
112 /*
113 * These functions encode knowledge of the POWER7/8/9 hardware
114 * interpretations of the HPTE LP (large page size) field.
115 */
kvmppc_hpte_page_shifts(unsigned long h,unsigned long l)116 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
117 {
118 unsigned int lphi;
119
120 if (!(h & HPTE_V_LARGE))
121 return 12; /* 4kB */
122 lphi = (l >> 16) & 0xf;
123 switch ((l >> 12) & 0xf) {
124 case 0:
125 return !lphi ? 24 : 0; /* 16MB */
126 break;
127 case 1:
128 return 16; /* 64kB */
129 break;
130 case 3:
131 return !lphi ? 34 : 0; /* 16GB */
132 break;
133 case 7:
134 return (16 << 8) + 12; /* 64kB in 4kB */
135 break;
136 case 8:
137 if (!lphi)
138 return (24 << 8) + 16; /* 16MB in 64kkB */
139 if (lphi == 3)
140 return (24 << 8) + 12; /* 16MB in 4kB */
141 break;
142 }
143 return 0;
144 }
145
kvmppc_hpte_base_page_shift(unsigned long h,unsigned long l)146 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
147 {
148 return kvmppc_hpte_page_shifts(h, l) & 0xff;
149 }
150
kvmppc_hpte_actual_page_shift(unsigned long h,unsigned long l)151 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
152 {
153 int tmp = kvmppc_hpte_page_shifts(h, l);
154
155 if (tmp >= 0x100)
156 tmp >>= 8;
157 return tmp;
158 }
159
kvmppc_actual_pgsz(unsigned long v,unsigned long r)160 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
161 {
162 int shift = kvmppc_hpte_actual_page_shift(v, r);
163
164 if (shift)
165 return 1ul << shift;
166 return 0;
167 }
168
kvmppc_pgsize_lp_encoding(int base_shift,int actual_shift)169 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
170 {
171 switch (base_shift) {
172 case 12:
173 switch (actual_shift) {
174 case 12:
175 return 0;
176 case 16:
177 return 7;
178 case 24:
179 return 0x38;
180 }
181 break;
182 case 16:
183 switch (actual_shift) {
184 case 16:
185 return 1;
186 case 24:
187 return 8;
188 }
189 break;
190 case 24:
191 return 0;
192 }
193 return -1;
194 }
195
compute_tlbie_rb(unsigned long v,unsigned long r,unsigned long pte_index)196 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
197 unsigned long pte_index)
198 {
199 int a_pgshift, b_pgshift;
200 unsigned long rb = 0, va_low, sllp;
201
202 b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
203 if (a_pgshift >= 0x100) {
204 b_pgshift &= 0xff;
205 a_pgshift >>= 8;
206 }
207
208 /*
209 * Ignore the top 14 bits of va
210 * v have top two bits covering segment size, hence move
211 * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
212 * AVA field in v also have the lower 23 bits ignored.
213 * For base page size 4K we need 14 .. 65 bits (so need to
214 * collect extra 11 bits)
215 * For others we need 14..14+i
216 */
217 /* This covers 14..54 bits of va*/
218 rb = (v & ~0x7fUL) << 16; /* AVA field */
219
220 /*
221 * AVA in v had cleared lower 23 bits. We need to derive
222 * that from pteg index
223 */
224 va_low = pte_index >> 3;
225 if (v & HPTE_V_SECONDARY)
226 va_low = ~va_low;
227 /*
228 * get the vpn bits from va_low using reverse of hashing.
229 * In v we have va with 23 bits dropped and then left shifted
230 * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
231 * right shift it with (SID_SHIFT - (23 - 7))
232 */
233 if (!(v & HPTE_V_1TB_SEG))
234 va_low ^= v >> (SID_SHIFT - 16);
235 else
236 va_low ^= v >> (SID_SHIFT_1T - 16);
237 va_low &= 0x7ff;
238
239 if (b_pgshift <= 12) {
240 if (a_pgshift > 12) {
241 sllp = (a_pgshift == 16) ? 5 : 4;
242 rb |= sllp << 5; /* AP field */
243 }
244 rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
245 } else {
246 int aval_shift;
247 /*
248 * remaining bits of AVA/LP fields
249 * Also contain the rr bits of LP
250 */
251 rb |= (va_low << b_pgshift) & 0x7ff000;
252 /*
253 * Now clear not needed LP bits based on actual psize
254 */
255 rb &= ~((1ul << a_pgshift) - 1);
256 /*
257 * AVAL field 58..77 - base_page_shift bits of va
258 * we have space for 58..64 bits, Missing bits should
259 * be zero filled. +1 is to take care of L bit shift
260 */
261 aval_shift = 64 - (77 - b_pgshift) + 1;
262 rb |= ((va_low << aval_shift) & 0xfe);
263
264 rb |= 1; /* L field */
265 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
266 }
267 rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
268 return rb;
269 }
270
hpte_rpn(unsigned long ptel,unsigned long psize)271 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
272 {
273 return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
274 }
275
hpte_is_writable(unsigned long ptel)276 static inline int hpte_is_writable(unsigned long ptel)
277 {
278 unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
279
280 return pp != PP_RXRX && pp != PP_RXXX;
281 }
282
hpte_make_readonly(unsigned long ptel)283 static inline unsigned long hpte_make_readonly(unsigned long ptel)
284 {
285 if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
286 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
287 else
288 ptel |= PP_RXRX;
289 return ptel;
290 }
291
hpte_cache_flags_ok(unsigned long hptel,bool is_ci)292 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
293 {
294 unsigned int wimg = hptel & HPTE_R_WIMG;
295
296 /* Handle SAO */
297 if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
298 cpu_has_feature(CPU_FTR_ARCH_206))
299 wimg = HPTE_R_M;
300
301 if (!is_ci)
302 return wimg == HPTE_R_M;
303 /*
304 * if host is mapped cache inhibited, make sure hptel also have
305 * cache inhibited.
306 */
307 if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
308 return false;
309 return !!(wimg & HPTE_R_I);
310 }
311
312 /*
313 * If it's present and writable, atomically set dirty and referenced bits and
314 * return the PTE, otherwise return 0.
315 */
kvmppc_read_update_linux_pte(pte_t * ptep,int writing)316 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
317 {
318 pte_t old_pte, new_pte = __pte(0);
319
320 while (1) {
321 /*
322 * Make sure we don't reload from ptep
323 */
324 old_pte = READ_ONCE(*ptep);
325 /*
326 * wait until H_PAGE_BUSY is clear then set it atomically
327 */
328 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
329 cpu_relax();
330 continue;
331 }
332 /* If pte is not present return None */
333 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
334 return __pte(0);
335
336 new_pte = pte_mkyoung(old_pte);
337 if (writing && pte_write(old_pte))
338 new_pte = pte_mkdirty(new_pte);
339
340 if (pte_xchg(ptep, old_pte, new_pte))
341 break;
342 }
343 return new_pte;
344 }
345
hpte_read_permission(unsigned long pp,unsigned long key)346 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
347 {
348 if (key)
349 return PP_RWRX <= pp && pp <= PP_RXRX;
350 return true;
351 }
352
hpte_write_permission(unsigned long pp,unsigned long key)353 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
354 {
355 if (key)
356 return pp == PP_RWRW;
357 return pp <= PP_RWRW;
358 }
359
hpte_get_skey_perm(unsigned long hpte_r,unsigned long amr)360 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
361 {
362 unsigned long skey;
363
364 skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
365 ((hpte_r & HPTE_R_KEY_LO) >> 9);
366 return (amr >> (62 - 2 * skey)) & 3;
367 }
368
lock_rmap(unsigned long * rmap)369 static inline void lock_rmap(unsigned long *rmap)
370 {
371 do {
372 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
373 cpu_relax();
374 } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
375 }
376
unlock_rmap(unsigned long * rmap)377 static inline void unlock_rmap(unsigned long *rmap)
378 {
379 __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
380 }
381
slot_is_aligned(struct kvm_memory_slot * memslot,unsigned long pagesize)382 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
383 unsigned long pagesize)
384 {
385 unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
386
387 if (pagesize <= PAGE_SIZE)
388 return true;
389 return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
390 }
391
392 /*
393 * This works for 4k, 64k and 16M pages on POWER7,
394 * and 4k and 16M pages on PPC970.
395 */
slb_pgsize_encoding(unsigned long psize)396 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
397 {
398 unsigned long senc = 0;
399
400 if (psize > 0x1000) {
401 senc = SLB_VSID_L;
402 if (psize == 0x10000)
403 senc |= SLB_VSID_LP_01;
404 }
405 return senc;
406 }
407
is_vrma_hpte(unsigned long hpte_v)408 static inline int is_vrma_hpte(unsigned long hpte_v)
409 {
410 return (hpte_v & ~0xffffffUL) ==
411 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
412 }
413
414 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
415 /*
416 * Note modification of an HPTE; set the HPTE modified bit
417 * if anyone is interested.
418 */
note_hpte_modification(struct kvm * kvm,struct revmap_entry * rev)419 static inline void note_hpte_modification(struct kvm *kvm,
420 struct revmap_entry *rev)
421 {
422 if (atomic_read(&kvm->arch.hpte_mod_interest))
423 rev->guest_rpte |= HPTE_GR_MODIFIED;
424 }
425
426 /*
427 * Like kvm_memslots(), but for use in real mode when we can't do
428 * any RCU stuff (since the secondary threads are offline from the
429 * kernel's point of view), and we can't print anything.
430 * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
431 */
kvm_memslots_raw(struct kvm * kvm)432 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
433 {
434 return rcu_dereference_raw_notrace(kvm->memslots[0]);
435 }
436
437 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
438
439 extern void kvmhv_rm_send_ipi(int cpu);
440
kvmppc_hpt_npte(struct kvm_hpt_info * hpt)441 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
442 {
443 /* HPTEs are 2**4 bytes long */
444 return 1UL << (hpt->order - 4);
445 }
446
kvmppc_hpt_mask(struct kvm_hpt_info * hpt)447 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
448 {
449 /* 128 (2**7) bytes in each HPTEG */
450 return (1UL << (hpt->order - 7)) - 1;
451 }
452
453 /* Set bits in a dirty bitmap, which is in LE format */
set_dirty_bits(unsigned long * map,unsigned long i,unsigned long npages)454 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
455 unsigned long npages)
456 {
457
458 if (npages >= 8)
459 memset((char *)map + i / 8, 0xff, npages / 8);
460 else
461 for (; npages; ++i, --npages)
462 __set_bit_le(i, map);
463 }
464
set_dirty_bits_atomic(unsigned long * map,unsigned long i,unsigned long npages)465 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
466 unsigned long npages)
467 {
468 if (npages >= 8)
469 memset((char *)map + i / 8, 0xff, npages / 8);
470 else
471 for (; npages; ++i, --npages)
472 set_bit_le(i, map);
473 }
474
sanitize_msr(u64 msr)475 static inline u64 sanitize_msr(u64 msr)
476 {
477 msr &= ~MSR_HV;
478 msr |= MSR_ME;
479 return msr;
480 }
481
482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
copy_from_checkpoint(struct kvm_vcpu * vcpu)483 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
484 {
485 vcpu->arch.cr = vcpu->arch.cr_tm;
486 vcpu->arch.regs.xer = vcpu->arch.xer_tm;
487 vcpu->arch.regs.link = vcpu->arch.lr_tm;
488 vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
489 vcpu->arch.amr = vcpu->arch.amr_tm;
490 vcpu->arch.ppr = vcpu->arch.ppr_tm;
491 vcpu->arch.dscr = vcpu->arch.dscr_tm;
492 vcpu->arch.tar = vcpu->arch.tar_tm;
493 memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
494 sizeof(vcpu->arch.regs.gpr));
495 vcpu->arch.fp = vcpu->arch.fp_tm;
496 vcpu->arch.vr = vcpu->arch.vr_tm;
497 vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
498 }
499
copy_to_checkpoint(struct kvm_vcpu * vcpu)500 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
501 {
502 vcpu->arch.cr_tm = vcpu->arch.cr;
503 vcpu->arch.xer_tm = vcpu->arch.regs.xer;
504 vcpu->arch.lr_tm = vcpu->arch.regs.link;
505 vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
506 vcpu->arch.amr_tm = vcpu->arch.amr;
507 vcpu->arch.ppr_tm = vcpu->arch.ppr;
508 vcpu->arch.dscr_tm = vcpu->arch.dscr;
509 vcpu->arch.tar_tm = vcpu->arch.tar;
510 memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
511 sizeof(vcpu->arch.regs.gpr));
512 vcpu->arch.fp_tm = vcpu->arch.fp;
513 vcpu->arch.vr_tm = vcpu->arch.vr;
514 vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
515 }
516 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
517
518 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
519
520 #endif /* __ASM_KVM_BOOK3S_64_H__ */
521