1 /*
2  * Copyright (C) 1999-2003		Andre Hedrick <andre@linux-ide.org>
3  * Portions Copyright (C) 2001	        Sun Microsystems, Inc.
4  * Portions Copyright (C) 2003		Red Hat Inc
5  * Portions Copyright (C) 2007		Bartlomiej Zolnierkiewicz
6  * Portions Copyright (C) 2005-2009	MontaVista Software, Inc.
7  *
8  * Thanks to HighPoint Technologies for their assistance, and hardware.
9  * Special Thanks to Jon Burchmore in SanDiego for the deep pockets, his
10  * donation of an ABit BP6 mainboard, processor, and memory acellerated
11  * development and support.
12  *
13  *
14  * HighPoint has its own drivers (open source except for the RAID part)
15  * available from http://www.highpoint-tech.com/USA_new/service_support.htm
16  * This may be useful to anyone wanting to work on this driver, however  do not
17  * trust  them too much since the code tends to become less and less meaningful
18  * as the time passes... :-/
19  *
20  * Note that final HPT370 support was done by force extraction of GPL.
21  *
22  * - add function for getting/setting power status of drive
23  * - the HPT370's state machine can get confused. reset it before each dma
24  *   xfer to prevent that from happening.
25  * - reset state engine whenever we get an error.
26  * - check for busmaster state at end of dma.
27  * - use new highpoint timings.
28  * - detect bus speed using highpoint register.
29  * - use pll if we don't have a clock table. added a 66MHz table that's
30  *   just 2x the 33MHz table.
31  * - removed turnaround. NOTE: we never want to switch between pll and
32  *   pci clocks as the chip can glitch in those cases. the highpoint
33  *   approved workaround slows everything down too much to be useful. in
34  *   addition, we would have to serialize access to each chip.
35  * 	Adrian Sun <a.sun@sun.com>
36  *
37  * add drive timings for 66MHz PCI bus,
38  * fix ATA Cable signal detection, fix incorrect /proc info
39  * add /proc display for per-drive PIO/DMA/UDMA mode and
40  * per-channel ATA-33/66 Cable detect.
41  * 	Duncan Laurie <void@sun.com>
42  *
43  * fixup /proc output for multiple controllers
44  *	Tim Hockin <thockin@sun.com>
45  *
46  * On hpt366:
47  * Reset the hpt366 on error, reset on dma
48  * Fix disabling Fast Interrupt hpt366.
49  * 	Mike Waychison <crlf@sun.com>
50  *
51  * Added support for 372N clocking and clock switching. The 372N needs
52  * different clocks on read/write. This requires overloading rw_disk and
53  * other deeply crazy things. Thanks to <http://www.hoerstreich.de> for
54  * keeping me sane.
55  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
56  *
57  * - fix the clock turnaround code: it was writing to the wrong ports when
58  *   called for the secondary channel, caching the current clock mode per-
59  *   channel caused the cached register value to get out of sync with the
60  *   actual one, the channels weren't serialized, the turnaround shouldn't
61  *   be done on 66 MHz PCI bus
62  * - disable UltraATA/100 for HPT370 by default as the 33 MHz clock being used
63  *   does not allow for this speed anyway
64  * - avoid touching disabled channels (e.g. HPT371/N are single channel chips,
65  *   their primary channel is kind of virtual, it isn't tied to any pins)
66  * - fix/remove bad/unused timing tables and use one set of tables for the whole
67  *   HPT37x chip family; save space by introducing the separate transfer mode
68  *   table in which the mode lookup is done
69  * - use f_CNT value saved by  the HighPoint BIOS as reading it directly gives
70  *   the wrong PCI frequency since DPLL has already been calibrated by BIOS;
71  *   read it only from the function 0 of HPT374 chips
72  * - fix the hotswap code:  it caused RESET- to glitch when tristating the bus,
73  *   and for HPT36x the obsolete HDIO_TRISTATE_HWIF handler was called instead
74  * - pass to init_chipset() handlers a copy of the IDE PCI device structure as
75  *   they tamper with its fields
76  * - pass  to the init_setup handlers a copy of the ide_pci_device_t structure
77  *   since they may tamper with its fields
78  * - prefix the driver startup messages with the real chip name
79  * - claim the extra 240 bytes of I/O space for all chips
80  * - optimize the UltraDMA filtering and the drive list lookup code
81  * - use pci_get_slot() to get to the function 1 of HPT36x/374
82  * - cache offset of the channel's misc. control registers (MCRs) being used
83  *   throughout the driver
84  * - only touch the relevant MCR when detecting the cable type on HPT374's
85  *   function 1
86  * - rename all the register related variables consistently
87  * - move all the interrupt twiddling code from the speedproc handlers into
88  *   init_hwif_hpt366(), also grouping all the DMA related code together there
89  * - merge HPT36x/HPT37x speedproc handlers, fix PIO timing register mask and
90  *   separate the UltraDMA and MWDMA masks there to avoid changing PIO timings
91  *   when setting an UltraDMA mode
92  * - fix hpt3xx_tune_drive() to set the PIO mode requested, not always select
93  *   the best possible one
94  * - clean up DMA timeout handling for HPT370
95  * - switch to using the enumeration type to differ between the numerous chip
96  *   variants, matching PCI device/revision ID with the chip type early, at the
97  *   init_setup stage
98  * - extend the hpt_info structure to hold the DPLL and PCI clock frequencies,
99  *   stop duplicating it for each channel by storing the pointer in the pci_dev
100  *   structure: first, at the init_setup stage, point it to a static "template"
101  *   with only the chip type and its specific base DPLL frequency, the highest
102  *   UltraDMA mode, and the chip settings table pointer filled,  then, at the
103  *   init_chipset stage, allocate per-chip instance  and fill it with the rest
104  *   of the necessary information
105  * - get rid of the constant thresholds in the HPT37x PCI clock detection code,
106  *   switch  to calculating  PCI clock frequency based on the chip's base DPLL
107  *   frequency
108  * - switch to using the  DPLL clock and enable UltraATA/133 mode by default on
109  *   anything  newer than HPT370/A (except HPT374 that is not capable of this
110  *   mode according to the manual)
111  * - fold PCI clock detection and DPLL setup code into init_chipset_hpt366(),
112  *   also fixing the interchanged 25/40 MHz PCI clock cases for HPT36x chips;
113  *   unify HPT36x/37x timing setup code and the speedproc handlers by joining
114  *   the register setting lists into the table indexed by the clock selected
115  * - set the correct hwif->ultra_mask for each individual chip
116  * - add Ultra and MW DMA mode filtering for the HPT37[24] based SATA cards
117  * - stop resetting HPT370's state machine before each DMA transfer as that has
118  *   caused more harm than good
119  *	Sergei Shtylyov, <sshtylyov@ru.mvista.com> or <source@mvista.com>
120  */
121 
122 #include <linux/types.h>
123 #include <linux/module.h>
124 #include <linux/kernel.h>
125 #include <linux/delay.h>
126 #include <linux/blkdev.h>
127 #include <linux/interrupt.h>
128 #include <linux/pci.h>
129 #include <linux/init.h>
130 #include <linux/ide.h>
131 #include <linux/slab.h>
132 
133 #include <linux/uaccess.h>
134 #include <asm/io.h>
135 
136 #define DRV_NAME "hpt366"
137 
138 /* various tuning parameters */
139 #undef	HPT_RESET_STATE_ENGINE
140 #undef	HPT_DELAY_INTERRUPT
141 
142 static const char *bad_ata100_5[] = {
143 	"IBM-DTLA-307075",
144 	"IBM-DTLA-307060",
145 	"IBM-DTLA-307045",
146 	"IBM-DTLA-307030",
147 	"IBM-DTLA-307020",
148 	"IBM-DTLA-307015",
149 	"IBM-DTLA-305040",
150 	"IBM-DTLA-305030",
151 	"IBM-DTLA-305020",
152 	"IC35L010AVER07-0",
153 	"IC35L020AVER07-0",
154 	"IC35L030AVER07-0",
155 	"IC35L040AVER07-0",
156 	"IC35L060AVER07-0",
157 	"WDC AC310200R",
158 	NULL
159 };
160 
161 static const char *bad_ata66_4[] = {
162 	"IBM-DTLA-307075",
163 	"IBM-DTLA-307060",
164 	"IBM-DTLA-307045",
165 	"IBM-DTLA-307030",
166 	"IBM-DTLA-307020",
167 	"IBM-DTLA-307015",
168 	"IBM-DTLA-305040",
169 	"IBM-DTLA-305030",
170 	"IBM-DTLA-305020",
171 	"IC35L010AVER07-0",
172 	"IC35L020AVER07-0",
173 	"IC35L030AVER07-0",
174 	"IC35L040AVER07-0",
175 	"IC35L060AVER07-0",
176 	"WDC AC310200R",
177 	"MAXTOR STM3320620A",
178 	NULL
179 };
180 
181 static const char *bad_ata66_3[] = {
182 	"WDC AC310200R",
183 	NULL
184 };
185 
186 static const char *bad_ata33[] = {
187 	"Maxtor 92720U8", "Maxtor 92040U6", "Maxtor 91360U4", "Maxtor 91020U3", "Maxtor 90845U3", "Maxtor 90650U2",
188 	"Maxtor 91360D8", "Maxtor 91190D7", "Maxtor 91020D6", "Maxtor 90845D5", "Maxtor 90680D4", "Maxtor 90510D3", "Maxtor 90340D2",
189 	"Maxtor 91152D8", "Maxtor 91008D7", "Maxtor 90845D6", "Maxtor 90840D6", "Maxtor 90720D5", "Maxtor 90648D5", "Maxtor 90576D4",
190 	"Maxtor 90510D4",
191 	"Maxtor 90432D3", "Maxtor 90288D2", "Maxtor 90256D2",
192 	"Maxtor 91000D8", "Maxtor 90910D8", "Maxtor 90875D7", "Maxtor 90840D7", "Maxtor 90750D6", "Maxtor 90625D5", "Maxtor 90500D4",
193 	"Maxtor 91728D8", "Maxtor 91512D7", "Maxtor 91303D6", "Maxtor 91080D5", "Maxtor 90845D4", "Maxtor 90680D4", "Maxtor 90648D3", "Maxtor 90432D2",
194 	NULL
195 };
196 
197 static u8 xfer_speeds[] = {
198 	XFER_UDMA_6,
199 	XFER_UDMA_5,
200 	XFER_UDMA_4,
201 	XFER_UDMA_3,
202 	XFER_UDMA_2,
203 	XFER_UDMA_1,
204 	XFER_UDMA_0,
205 
206 	XFER_MW_DMA_2,
207 	XFER_MW_DMA_1,
208 	XFER_MW_DMA_0,
209 
210 	XFER_PIO_4,
211 	XFER_PIO_3,
212 	XFER_PIO_2,
213 	XFER_PIO_1,
214 	XFER_PIO_0
215 };
216 
217 /* Key for bus clock timings
218  * 36x   37x
219  * bits  bits
220  * 0:3	 0:3	data_high_time. Inactive time of DIOW_/DIOR_ for PIO and MW DMA.
221  *		cycles = value + 1
222  * 4:7	 4:8	data_low_time. Active time of DIOW_/DIOR_ for PIO and MW DMA.
223  *		cycles = value + 1
224  * 8:11  9:12	cmd_high_time. Inactive time of DIOW_/DIOR_ during task file
225  *		register access.
226  * 12:15 13:17	cmd_low_time. Active time of DIOW_/DIOR_ during task file
227  *		register access.
228  * 16:18 18:20	udma_cycle_time. Clock cycles for UDMA xfer.
229  * -	 21	CLK frequency: 0=ATA clock, 1=dual ATA clock.
230  * 19:21 22:24	pre_high_time. Time to initialize the 1st cycle for PIO and
231  *		MW DMA xfer.
232  * 22:24 25:27	cmd_pre_high_time. Time to initialize the 1st PIO cycle for
233  *		task file register access.
234  * 28	 28	UDMA enable.
235  * 29	 29	DMA  enable.
236  * 30	 30	PIO MST enable. If set, the chip is in bus master mode during
237  *		PIO xfer.
238  * 31	 31	FIFO enable.
239  */
240 
241 static u32 forty_base_hpt36x[] = {
242 	/* XFER_UDMA_6 */	0x900fd943,
243 	/* XFER_UDMA_5 */	0x900fd943,
244 	/* XFER_UDMA_4 */	0x900fd943,
245 	/* XFER_UDMA_3 */	0x900ad943,
246 	/* XFER_UDMA_2 */	0x900bd943,
247 	/* XFER_UDMA_1 */	0x9008d943,
248 	/* XFER_UDMA_0 */	0x9008d943,
249 
250 	/* XFER_MW_DMA_2 */	0xa008d943,
251 	/* XFER_MW_DMA_1 */	0xa010d955,
252 	/* XFER_MW_DMA_0 */	0xa010d9fc,
253 
254 	/* XFER_PIO_4 */	0xc008d963,
255 	/* XFER_PIO_3 */	0xc010d974,
256 	/* XFER_PIO_2 */	0xc010d997,
257 	/* XFER_PIO_1 */	0xc010d9c7,
258 	/* XFER_PIO_0 */	0xc018d9d9
259 };
260 
261 static u32 thirty_three_base_hpt36x[] = {
262 	/* XFER_UDMA_6 */	0x90c9a731,
263 	/* XFER_UDMA_5 */	0x90c9a731,
264 	/* XFER_UDMA_4 */	0x90c9a731,
265 	/* XFER_UDMA_3 */	0x90cfa731,
266 	/* XFER_UDMA_2 */	0x90caa731,
267 	/* XFER_UDMA_1 */	0x90cba731,
268 	/* XFER_UDMA_0 */	0x90c8a731,
269 
270 	/* XFER_MW_DMA_2 */	0xa0c8a731,
271 	/* XFER_MW_DMA_1 */	0xa0c8a732,	/* 0xa0c8a733 */
272 	/* XFER_MW_DMA_0 */	0xa0c8a797,
273 
274 	/* XFER_PIO_4 */	0xc0c8a731,
275 	/* XFER_PIO_3 */	0xc0c8a742,
276 	/* XFER_PIO_2 */	0xc0d0a753,
277 	/* XFER_PIO_1 */	0xc0d0a7a3,	/* 0xc0d0a793 */
278 	/* XFER_PIO_0 */	0xc0d0a7aa	/* 0xc0d0a7a7 */
279 };
280 
281 static u32 twenty_five_base_hpt36x[] = {
282 	/* XFER_UDMA_6 */	0x90c98521,
283 	/* XFER_UDMA_5 */	0x90c98521,
284 	/* XFER_UDMA_4 */	0x90c98521,
285 	/* XFER_UDMA_3 */	0x90cf8521,
286 	/* XFER_UDMA_2 */	0x90cf8521,
287 	/* XFER_UDMA_1 */	0x90cb8521,
288 	/* XFER_UDMA_0 */	0x90cb8521,
289 
290 	/* XFER_MW_DMA_2 */	0xa0ca8521,
291 	/* XFER_MW_DMA_1 */	0xa0ca8532,
292 	/* XFER_MW_DMA_0 */	0xa0ca8575,
293 
294 	/* XFER_PIO_4 */	0xc0ca8521,
295 	/* XFER_PIO_3 */	0xc0ca8532,
296 	/* XFER_PIO_2 */	0xc0ca8542,
297 	/* XFER_PIO_1 */	0xc0d08572,
298 	/* XFER_PIO_0 */	0xc0d08585
299 };
300 
301 /*
302  * The following are the new timing tables with PIO mode data/taskfile transfer
303  * overclocking fixed...
304  */
305 
306 /* This table is taken from the HPT370 data manual rev. 1.02 */
307 static u32 thirty_three_base_hpt37x[] = {
308 	/* XFER_UDMA_6 */	0x16455031,	/* 0x16655031 ?? */
309 	/* XFER_UDMA_5 */	0x16455031,
310 	/* XFER_UDMA_4 */	0x16455031,
311 	/* XFER_UDMA_3 */	0x166d5031,
312 	/* XFER_UDMA_2 */	0x16495031,
313 	/* XFER_UDMA_1 */	0x164d5033,
314 	/* XFER_UDMA_0 */	0x16515097,
315 
316 	/* XFER_MW_DMA_2 */	0x26515031,
317 	/* XFER_MW_DMA_1 */	0x26515033,
318 	/* XFER_MW_DMA_0 */	0x26515097,
319 
320 	/* XFER_PIO_4 */	0x06515021,
321 	/* XFER_PIO_3 */	0x06515022,
322 	/* XFER_PIO_2 */	0x06515033,
323 	/* XFER_PIO_1 */	0x06915065,
324 	/* XFER_PIO_0 */	0x06d1508a
325 };
326 
327 static u32 fifty_base_hpt37x[] = {
328 	/* XFER_UDMA_6 */	0x1a861842,
329 	/* XFER_UDMA_5 */	0x1a861842,
330 	/* XFER_UDMA_4 */	0x1aae1842,
331 	/* XFER_UDMA_3 */	0x1a8e1842,
332 	/* XFER_UDMA_2 */	0x1a0e1842,
333 	/* XFER_UDMA_1 */	0x1a161854,
334 	/* XFER_UDMA_0 */	0x1a1a18ea,
335 
336 	/* XFER_MW_DMA_2 */	0x2a821842,
337 	/* XFER_MW_DMA_1 */	0x2a821854,
338 	/* XFER_MW_DMA_0 */	0x2a8218ea,
339 
340 	/* XFER_PIO_4 */	0x0a821842,
341 	/* XFER_PIO_3 */	0x0a821843,
342 	/* XFER_PIO_2 */	0x0a821855,
343 	/* XFER_PIO_1 */	0x0ac218a8,
344 	/* XFER_PIO_0 */	0x0b02190c
345 };
346 
347 static u32 sixty_six_base_hpt37x[] = {
348 	/* XFER_UDMA_6 */	0x1c86fe62,
349 	/* XFER_UDMA_5 */	0x1caefe62,	/* 0x1c8afe62 */
350 	/* XFER_UDMA_4 */	0x1c8afe62,
351 	/* XFER_UDMA_3 */	0x1c8efe62,
352 	/* XFER_UDMA_2 */	0x1c92fe62,
353 	/* XFER_UDMA_1 */	0x1c9afe62,
354 	/* XFER_UDMA_0 */	0x1c82fe62,
355 
356 	/* XFER_MW_DMA_2 */	0x2c82fe62,
357 	/* XFER_MW_DMA_1 */	0x2c82fe66,
358 	/* XFER_MW_DMA_0 */	0x2c82ff2e,
359 
360 	/* XFER_PIO_4 */	0x0c82fe62,
361 	/* XFER_PIO_3 */	0x0c82fe84,
362 	/* XFER_PIO_2 */	0x0c82fea6,
363 	/* XFER_PIO_1 */	0x0d02ff26,
364 	/* XFER_PIO_0 */	0x0d42ff7f
365 };
366 
367 #define HPT371_ALLOW_ATA133_6		1
368 #define HPT302_ALLOW_ATA133_6		1
369 #define HPT372_ALLOW_ATA133_6		1
370 #define HPT370_ALLOW_ATA100_5		0
371 #define HPT366_ALLOW_ATA66_4		1
372 #define HPT366_ALLOW_ATA66_3		1
373 
374 /* Supported ATA clock frequencies */
375 enum ata_clock {
376 	ATA_CLOCK_25MHZ,
377 	ATA_CLOCK_33MHZ,
378 	ATA_CLOCK_40MHZ,
379 	ATA_CLOCK_50MHZ,
380 	ATA_CLOCK_66MHZ,
381 	NUM_ATA_CLOCKS
382 };
383 
384 struct hpt_timings {
385 	u32 pio_mask;
386 	u32 dma_mask;
387 	u32 ultra_mask;
388 	u32 *clock_table[NUM_ATA_CLOCKS];
389 };
390 
391 /*
392  *	Hold all the HighPoint chip information in one place.
393  */
394 
395 struct hpt_info {
396 	char *chip_name;	/* Chip name */
397 	u8 chip_type;		/* Chip type */
398 	u8 udma_mask;		/* Allowed UltraDMA modes mask. */
399 	u8 dpll_clk;		/* DPLL clock in MHz */
400 	u8 pci_clk;		/* PCI  clock in MHz */
401 	struct hpt_timings *timings; /* Chipset timing data */
402 	u8 clock;		/* ATA clock selected */
403 };
404 
405 /* Supported HighPoint chips */
406 enum {
407 	HPT36x,
408 	HPT370,
409 	HPT370A,
410 	HPT374,
411 	HPT372,
412 	HPT372A,
413 	HPT302,
414 	HPT371,
415 	HPT372N,
416 	HPT302N,
417 	HPT371N
418 };
419 
420 static struct hpt_timings hpt36x_timings = {
421 	.pio_mask	= 0xc1f8ffff,
422 	.dma_mask	= 0x303800ff,
423 	.ultra_mask	= 0x30070000,
424 	.clock_table	= {
425 		[ATA_CLOCK_25MHZ] = twenty_five_base_hpt36x,
426 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt36x,
427 		[ATA_CLOCK_40MHZ] = forty_base_hpt36x,
428 		[ATA_CLOCK_50MHZ] = NULL,
429 		[ATA_CLOCK_66MHZ] = NULL
430 	}
431 };
432 
433 static struct hpt_timings hpt37x_timings = {
434 	.pio_mask	= 0xcfc3ffff,
435 	.dma_mask	= 0x31c001ff,
436 	.ultra_mask	= 0x303c0000,
437 	.clock_table	= {
438 		[ATA_CLOCK_25MHZ] = NULL,
439 		[ATA_CLOCK_33MHZ] = thirty_three_base_hpt37x,
440 		[ATA_CLOCK_40MHZ] = NULL,
441 		[ATA_CLOCK_50MHZ] = fifty_base_hpt37x,
442 		[ATA_CLOCK_66MHZ] = sixty_six_base_hpt37x
443 	}
444 };
445 
446 static const struct hpt_info hpt36x = {
447 	.chip_name	= "HPT36x",
448 	.chip_type	= HPT36x,
449 	.udma_mask	= HPT366_ALLOW_ATA66_3 ? (HPT366_ALLOW_ATA66_4 ? ATA_UDMA4 : ATA_UDMA3) : ATA_UDMA2,
450 	.dpll_clk	= 0,	/* no DPLL */
451 	.timings	= &hpt36x_timings
452 };
453 
454 static const struct hpt_info hpt370 = {
455 	.chip_name	= "HPT370",
456 	.chip_type	= HPT370,
457 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
458 	.dpll_clk	= 48,
459 	.timings	= &hpt37x_timings
460 };
461 
462 static const struct hpt_info hpt370a = {
463 	.chip_name	= "HPT370A",
464 	.chip_type	= HPT370A,
465 	.udma_mask	= HPT370_ALLOW_ATA100_5 ? ATA_UDMA5 : ATA_UDMA4,
466 	.dpll_clk	= 48,
467 	.timings	= &hpt37x_timings
468 };
469 
470 static const struct hpt_info hpt374 = {
471 	.chip_name	= "HPT374",
472 	.chip_type	= HPT374,
473 	.udma_mask	= ATA_UDMA5,
474 	.dpll_clk	= 48,
475 	.timings	= &hpt37x_timings
476 };
477 
478 static const struct hpt_info hpt372 = {
479 	.chip_name	= "HPT372",
480 	.chip_type	= HPT372,
481 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
482 	.dpll_clk	= 55,
483 	.timings	= &hpt37x_timings
484 };
485 
486 static const struct hpt_info hpt372a = {
487 	.chip_name	= "HPT372A",
488 	.chip_type	= HPT372A,
489 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
490 	.dpll_clk	= 66,
491 	.timings	= &hpt37x_timings
492 };
493 
494 static const struct hpt_info hpt302 = {
495 	.chip_name	= "HPT302",
496 	.chip_type	= HPT302,
497 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
498 	.dpll_clk	= 66,
499 	.timings	= &hpt37x_timings
500 };
501 
502 static const struct hpt_info hpt371 = {
503 	.chip_name	= "HPT371",
504 	.chip_type	= HPT371,
505 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
506 	.dpll_clk	= 66,
507 	.timings	= &hpt37x_timings
508 };
509 
510 static const struct hpt_info hpt372n = {
511 	.chip_name	= "HPT372N",
512 	.chip_type	= HPT372N,
513 	.udma_mask	= HPT372_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
514 	.dpll_clk	= 77,
515 	.timings	= &hpt37x_timings
516 };
517 
518 static const struct hpt_info hpt302n = {
519 	.chip_name	= "HPT302N",
520 	.chip_type	= HPT302N,
521 	.udma_mask	= HPT302_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
522 	.dpll_clk	= 77,
523 	.timings	= &hpt37x_timings
524 };
525 
526 static const struct hpt_info hpt371n = {
527 	.chip_name	= "HPT371N",
528 	.chip_type	= HPT371N,
529 	.udma_mask	= HPT371_ALLOW_ATA133_6 ? ATA_UDMA6 : ATA_UDMA5,
530 	.dpll_clk	= 77,
531 	.timings	= &hpt37x_timings
532 };
533 
check_in_drive_list(ide_drive_t * drive,const char ** list)534 static bool check_in_drive_list(ide_drive_t *drive, const char **list)
535 {
536 	return match_string(list, -1, (char *)&drive->id[ATA_ID_PROD]) >= 0;
537 }
538 
hpt3xx_get_info(struct device * dev)539 static struct hpt_info *hpt3xx_get_info(struct device *dev)
540 {
541 	struct ide_host *host	= dev_get_drvdata(dev);
542 	struct hpt_info *info	= (struct hpt_info *)host->host_priv;
543 
544 	return dev == host->dev[1] ? info + 1 : info;
545 }
546 
547 /*
548  * The Marvell bridge chips used on the HighPoint SATA cards do not seem
549  * to support the UltraDMA modes 1, 2, and 3 as well as any MWDMA modes...
550  */
551 
hpt3xx_udma_filter(ide_drive_t * drive)552 static u8 hpt3xx_udma_filter(ide_drive_t *drive)
553 {
554 	ide_hwif_t *hwif	= drive->hwif;
555 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
556 	u8 mask 		= hwif->ultra_mask;
557 
558 	switch (info->chip_type) {
559 	case HPT36x:
560 		if (!HPT366_ALLOW_ATA66_4 ||
561 		    check_in_drive_list(drive, bad_ata66_4))
562 			mask = ATA_UDMA3;
563 
564 		if (!HPT366_ALLOW_ATA66_3 ||
565 		    check_in_drive_list(drive, bad_ata66_3))
566 			mask = ATA_UDMA2;
567 		break;
568 	case HPT370:
569 		if (!HPT370_ALLOW_ATA100_5 ||
570 		    check_in_drive_list(drive, bad_ata100_5))
571 			mask = ATA_UDMA4;
572 		break;
573 	case HPT370A:
574 		if (!HPT370_ALLOW_ATA100_5 ||
575 		    check_in_drive_list(drive, bad_ata100_5))
576 			return ATA_UDMA4;
577 		/* else: fall through */
578 	case HPT372 :
579 	case HPT372A:
580 	case HPT372N:
581 	case HPT374 :
582 		if (ata_id_is_sata(drive->id))
583 			mask &= ~0x0e;
584 		/* fall through */
585 	default:
586 		return mask;
587 	}
588 
589 	return check_in_drive_list(drive, bad_ata33) ? 0x00 : mask;
590 }
591 
hpt3xx_mdma_filter(ide_drive_t * drive)592 static u8 hpt3xx_mdma_filter(ide_drive_t *drive)
593 {
594 	ide_hwif_t *hwif	= drive->hwif;
595 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
596 
597 	switch (info->chip_type) {
598 	case HPT372 :
599 	case HPT372A:
600 	case HPT372N:
601 	case HPT374 :
602 		if (ata_id_is_sata(drive->id))
603 			return 0x00;
604 		/* else: fall through */
605 	default:
606 		return 0x07;
607 	}
608 }
609 
get_speed_setting(u8 speed,struct hpt_info * info)610 static u32 get_speed_setting(u8 speed, struct hpt_info *info)
611 {
612 	int i;
613 
614 	/*
615 	 * Lookup the transfer mode table to get the index into
616 	 * the timing table.
617 	 *
618 	 * NOTE: For XFER_PIO_SLOW, PIO mode 0 timings will be used.
619 	 */
620 	for (i = 0; i < ARRAY_SIZE(xfer_speeds) - 1; i++)
621 		if (xfer_speeds[i] == speed)
622 			break;
623 
624 	return info->timings->clock_table[info->clock][i];
625 }
626 
hpt3xx_set_mode(ide_hwif_t * hwif,ide_drive_t * drive)627 static void hpt3xx_set_mode(ide_hwif_t *hwif, ide_drive_t *drive)
628 {
629 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
630 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
631 	struct hpt_timings *t	= info->timings;
632 	u8  itr_addr		= 0x40 + (drive->dn * 4);
633 	u32 old_itr		= 0;
634 	const u8 speed		= drive->dma_mode;
635 	u32 new_itr		= get_speed_setting(speed, info);
636 	u32 itr_mask		= speed < XFER_MW_DMA_0 ? t->pio_mask :
637 				 (speed < XFER_UDMA_0   ? t->dma_mask :
638 							  t->ultra_mask);
639 
640 	pci_read_config_dword(dev, itr_addr, &old_itr);
641 	new_itr = (old_itr & ~itr_mask) | (new_itr & itr_mask);
642 	/*
643 	 * Disable on-chip PIO FIFO/buffer (and PIO MST mode as well)
644 	 * to avoid problems handling I/O errors later
645 	 */
646 	new_itr &= ~0xc0000000;
647 
648 	pci_write_config_dword(dev, itr_addr, new_itr);
649 }
650 
hpt3xx_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)651 static void hpt3xx_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
652 {
653 	drive->dma_mode = drive->pio_mode;
654 	hpt3xx_set_mode(hwif, drive);
655 }
656 
hpt3xx_maskproc(ide_drive_t * drive,int mask)657 static void hpt3xx_maskproc(ide_drive_t *drive, int mask)
658 {
659 	ide_hwif_t *hwif	= drive->hwif;
660 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
661 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
662 
663 	if ((drive->dev_flags & IDE_DFLAG_NIEN_QUIRK) == 0)
664 		return;
665 
666 	if (info->chip_type >= HPT370) {
667 		u8 scr1 = 0;
668 
669 		pci_read_config_byte(dev, 0x5a, &scr1);
670 		if (((scr1 & 0x10) >> 4) != mask) {
671 			if (mask)
672 				scr1 |=  0x10;
673 			else
674 				scr1 &= ~0x10;
675 			pci_write_config_byte(dev, 0x5a, scr1);
676 		}
677 	} else if (mask)
678 		disable_irq(hwif->irq);
679 	else
680 		enable_irq(hwif->irq);
681 }
682 
683 /*
684  * This is specific to the HPT366 UDMA chipset
685  * by HighPoint|Triones Technologies, Inc.
686  */
hpt366_dma_lost_irq(ide_drive_t * drive)687 static void hpt366_dma_lost_irq(ide_drive_t *drive)
688 {
689 	struct pci_dev *dev = to_pci_dev(drive->hwif->dev);
690 	u8 mcr1 = 0, mcr3 = 0, scr1 = 0;
691 
692 	pci_read_config_byte(dev, 0x50, &mcr1);
693 	pci_read_config_byte(dev, 0x52, &mcr3);
694 	pci_read_config_byte(dev, 0x5a, &scr1);
695 	printk("%s: (%s)  mcr1=0x%02x, mcr3=0x%02x, scr1=0x%02x\n",
696 		drive->name, __func__, mcr1, mcr3, scr1);
697 	if (scr1 & 0x10)
698 		pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
699 	ide_dma_lost_irq(drive);
700 }
701 
hpt370_clear_engine(ide_drive_t * drive)702 static void hpt370_clear_engine(ide_drive_t *drive)
703 {
704 	ide_hwif_t *hwif = drive->hwif;
705 	struct pci_dev *dev = to_pci_dev(hwif->dev);
706 
707 	pci_write_config_byte(dev, hwif->select_data, 0x37);
708 	udelay(10);
709 }
710 
hpt370_irq_timeout(ide_drive_t * drive)711 static void hpt370_irq_timeout(ide_drive_t *drive)
712 {
713 	ide_hwif_t *hwif	= drive->hwif;
714 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
715 	u16 bfifo		= 0;
716 	u8  dma_cmd;
717 
718 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
719 	printk(KERN_DEBUG "%s: %d bytes in FIFO\n", drive->name, bfifo & 0x1ff);
720 
721 	/* get DMA command mode */
722 	dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
723 	/* stop DMA */
724 	outb(dma_cmd & ~ATA_DMA_START, hwif->dma_base + ATA_DMA_CMD);
725 	hpt370_clear_engine(drive);
726 }
727 
hpt370_dma_start(ide_drive_t * drive)728 static void hpt370_dma_start(ide_drive_t *drive)
729 {
730 #ifdef HPT_RESET_STATE_ENGINE
731 	hpt370_clear_engine(drive);
732 #endif
733 	ide_dma_start(drive);
734 }
735 
hpt370_dma_end(ide_drive_t * drive)736 static int hpt370_dma_end(ide_drive_t *drive)
737 {
738 	ide_hwif_t *hwif	= drive->hwif;
739 	u8  dma_stat		= inb(hwif->dma_base + ATA_DMA_STATUS);
740 
741 	if (dma_stat & ATA_DMA_ACTIVE) {
742 		/* wait a little */
743 		udelay(20);
744 		dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
745 		if (dma_stat & ATA_DMA_ACTIVE)
746 			hpt370_irq_timeout(drive);
747 	}
748 	return ide_dma_end(drive);
749 }
750 
751 /* returns 1 if DMA IRQ issued, 0 otherwise */
hpt374_dma_test_irq(ide_drive_t * drive)752 static int hpt374_dma_test_irq(ide_drive_t *drive)
753 {
754 	ide_hwif_t *hwif	= drive->hwif;
755 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
756 	u16 bfifo		= 0;
757 	u8  dma_stat;
758 
759 	pci_read_config_word(dev, hwif->select_data + 2, &bfifo);
760 	if (bfifo & 0x1FF) {
761 //		printk("%s: %d bytes in FIFO\n", drive->name, bfifo);
762 		return 0;
763 	}
764 
765 	dma_stat = inb(hwif->dma_base + ATA_DMA_STATUS);
766 	/* return 1 if INTR asserted */
767 	if (dma_stat & ATA_DMA_INTR)
768 		return 1;
769 
770 	return 0;
771 }
772 
hpt374_dma_end(ide_drive_t * drive)773 static int hpt374_dma_end(ide_drive_t *drive)
774 {
775 	ide_hwif_t *hwif	= drive->hwif;
776 	struct pci_dev *dev	= to_pci_dev(hwif->dev);
777 	u8 mcr	= 0, mcr_addr	= hwif->select_data;
778 	u8 bwsr = 0, mask	= hwif->channel ? 0x02 : 0x01;
779 
780 	pci_read_config_byte(dev, 0x6a, &bwsr);
781 	pci_read_config_byte(dev, mcr_addr, &mcr);
782 	if (bwsr & mask)
783 		pci_write_config_byte(dev, mcr_addr, mcr | 0x30);
784 	return ide_dma_end(drive);
785 }
786 
787 /**
788  *	hpt3xxn_set_clock	-	perform clock switching dance
789  *	@hwif: hwif to switch
790  *	@mode: clocking mode (0x21 for write, 0x23 otherwise)
791  *
792  *	Switch the DPLL clock on the HPT3xxN devices. This is a	right mess.
793  */
794 
hpt3xxn_set_clock(ide_hwif_t * hwif,u8 mode)795 static void hpt3xxn_set_clock(ide_hwif_t *hwif, u8 mode)
796 {
797 	unsigned long base = hwif->extra_base;
798 	u8 scr2 = inb(base + 0x6b);
799 
800 	if ((scr2 & 0x7f) == mode)
801 		return;
802 
803 	/* Tristate the bus */
804 	outb(0x80, base + 0x63);
805 	outb(0x80, base + 0x67);
806 
807 	/* Switch clock and reset channels */
808 	outb(mode, base + 0x6b);
809 	outb(0xc0, base + 0x69);
810 
811 	/*
812 	 * Reset the state machines.
813 	 * NOTE: avoid accidentally enabling the disabled channels.
814 	 */
815 	outb(inb(base + 0x60) | 0x32, base + 0x60);
816 	outb(inb(base + 0x64) | 0x32, base + 0x64);
817 
818 	/* Complete reset */
819 	outb(0x00, base + 0x69);
820 
821 	/* Reconnect channels to bus */
822 	outb(0x00, base + 0x63);
823 	outb(0x00, base + 0x67);
824 }
825 
826 /**
827  *	hpt3xxn_rw_disk		-	prepare for I/O
828  *	@drive: drive for command
829  *	@rq: block request structure
830  *
831  *	This is called when a disk I/O is issued to HPT3xxN.
832  *	We need it because of the clock switching.
833  */
834 
hpt3xxn_rw_disk(ide_drive_t * drive,struct request * rq)835 static void hpt3xxn_rw_disk(ide_drive_t *drive, struct request *rq)
836 {
837 	hpt3xxn_set_clock(drive->hwif, rq_data_dir(rq) ? 0x21 : 0x23);
838 }
839 
840 /**
841  *	hpt37x_calibrate_dpll	-	calibrate the DPLL
842  *	@dev: PCI device
843  *
844  *	Perform a calibration cycle on the DPLL.
845  *	Returns 1 if this succeeds
846  */
hpt37x_calibrate_dpll(struct pci_dev * dev,u16 f_low,u16 f_high)847 static int hpt37x_calibrate_dpll(struct pci_dev *dev, u16 f_low, u16 f_high)
848 {
849 	u32 dpll = (f_high << 16) | f_low | 0x100;
850 	u8  scr2;
851 	int i;
852 
853 	pci_write_config_dword(dev, 0x5c, dpll);
854 
855 	/* Wait for oscillator ready */
856 	for(i = 0; i < 0x5000; ++i) {
857 		udelay(50);
858 		pci_read_config_byte(dev, 0x5b, &scr2);
859 		if (scr2 & 0x80)
860 			break;
861 	}
862 	/* See if it stays ready (we'll just bail out if it's not yet) */
863 	for(i = 0; i < 0x1000; ++i) {
864 		pci_read_config_byte(dev, 0x5b, &scr2);
865 		/* DPLL destabilized? */
866 		if(!(scr2 & 0x80))
867 			return 0;
868 	}
869 	/* Turn off tuning, we have the DPLL set */
870 	pci_read_config_dword (dev, 0x5c, &dpll);
871 	pci_write_config_dword(dev, 0x5c, (dpll & ~0x100));
872 	return 1;
873 }
874 
hpt3xx_disable_fast_irq(struct pci_dev * dev,u8 mcr_addr)875 static void hpt3xx_disable_fast_irq(struct pci_dev *dev, u8 mcr_addr)
876 {
877 	struct ide_host *host	= pci_get_drvdata(dev);
878 	struct hpt_info *info	= host->host_priv + (&dev->dev == host->dev[1]);
879 	u8  chip_type		= info->chip_type;
880 	u8  new_mcr, old_mcr	= 0;
881 
882 	/*
883 	 * Disable the "fast interrupt" prediction.  Don't hold off
884 	 * on interrupts. (== 0x01 despite what the docs say)
885 	 */
886 	pci_read_config_byte(dev, mcr_addr + 1, &old_mcr);
887 
888 	if (chip_type >= HPT374)
889 		new_mcr = old_mcr & ~0x07;
890 	else if (chip_type >= HPT370) {
891 		new_mcr = old_mcr;
892 		new_mcr &= ~0x02;
893 #ifdef HPT_DELAY_INTERRUPT
894 		new_mcr &= ~0x01;
895 #else
896 		new_mcr |=  0x01;
897 #endif
898 	} else					/* HPT366 and HPT368  */
899 		new_mcr = old_mcr & ~0x80;
900 
901 	if (new_mcr != old_mcr)
902 		pci_write_config_byte(dev, mcr_addr + 1, new_mcr);
903 }
904 
init_chipset_hpt366(struct pci_dev * dev)905 static int init_chipset_hpt366(struct pci_dev *dev)
906 {
907 	unsigned long io_base	= pci_resource_start(dev, 4);
908 	struct hpt_info *info	= hpt3xx_get_info(&dev->dev);
909 	const char *name	= DRV_NAME;
910 	u8 pci_clk,  dpll_clk	= 0;	/* PCI and DPLL clock in MHz */
911 	u8 chip_type;
912 	enum ata_clock	clock;
913 
914 	chip_type = info->chip_type;
915 
916 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, (L1_CACHE_BYTES / 4));
917 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0x78);
918 	pci_write_config_byte(dev, PCI_MIN_GNT, 0x08);
919 	pci_write_config_byte(dev, PCI_MAX_LAT, 0x08);
920 
921 	/*
922 	 * First, try to estimate the PCI clock frequency...
923 	 */
924 	if (chip_type >= HPT370) {
925 		u8  scr1  = 0;
926 		u16 f_cnt = 0;
927 		u32 temp  = 0;
928 
929 		/* Interrupt force enable. */
930 		pci_read_config_byte(dev, 0x5a, &scr1);
931 		if (scr1 & 0x10)
932 			pci_write_config_byte(dev, 0x5a, scr1 & ~0x10);
933 
934 		/*
935 		 * HighPoint does this for HPT372A.
936 		 * NOTE: This register is only writeable via I/O space.
937 		 */
938 		if (chip_type == HPT372A)
939 			outb(0x0e, io_base + 0x9c);
940 
941 		/*
942 		 * Default to PCI clock. Make sure MA15/16 are set to output
943 		 * to prevent drives having problems with 40-pin cables.
944 		 */
945 		pci_write_config_byte(dev, 0x5b, 0x23);
946 
947 		/*
948 		 * We'll have to read f_CNT value in order to determine
949 		 * the PCI clock frequency according to the following ratio:
950 		 *
951 		 * f_CNT = Fpci * 192 / Fdpll
952 		 *
953 		 * First try reading the register in which the HighPoint BIOS
954 		 * saves f_CNT value before  reprogramming the DPLL from its
955 		 * default setting (which differs for the various chips).
956 		 *
957 		 * NOTE: This register is only accessible via I/O space;
958 		 * HPT374 BIOS only saves it for the function 0, so we have to
959 		 * always read it from there -- no need to check the result of
960 		 * pci_get_slot() for the function 0 as the whole device has
961 		 * been already "pinned" (via function 1) in init_setup_hpt374()
962 		 */
963 		if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
964 			struct pci_dev	*dev1 = pci_get_slot(dev->bus,
965 							     dev->devfn - 1);
966 			unsigned long io_base = pci_resource_start(dev1, 4);
967 
968 			temp =	inl(io_base + 0x90);
969 			pci_dev_put(dev1);
970 		} else
971 			temp =	inl(io_base + 0x90);
972 
973 		/*
974 		 * In case the signature check fails, we'll have to
975 		 * resort to reading the f_CNT register itself in hopes
976 		 * that nobody has touched the DPLL yet...
977 		 */
978 		if ((temp & 0xFFFFF000) != 0xABCDE000) {
979 			int i;
980 
981 			printk(KERN_WARNING "%s %s: no clock data saved by "
982 				"BIOS\n", name, pci_name(dev));
983 
984 			/* Calculate the average value of f_CNT. */
985 			for (temp = i = 0; i < 128; i++) {
986 				pci_read_config_word(dev, 0x78, &f_cnt);
987 				temp += f_cnt & 0x1ff;
988 				mdelay(1);
989 			}
990 			f_cnt = temp / 128;
991 		} else
992 			f_cnt = temp & 0x1ff;
993 
994 		dpll_clk = info->dpll_clk;
995 		pci_clk  = (f_cnt * dpll_clk) / 192;
996 
997 		/* Clamp PCI clock to bands. */
998 		if (pci_clk < 40)
999 			pci_clk = 33;
1000 		else if(pci_clk < 45)
1001 			pci_clk = 40;
1002 		else if(pci_clk < 55)
1003 			pci_clk = 50;
1004 		else
1005 			pci_clk = 66;
1006 
1007 		printk(KERN_INFO "%s %s: DPLL base: %d MHz, f_CNT: %d, "
1008 			"assuming %d MHz PCI\n", name, pci_name(dev),
1009 			dpll_clk, f_cnt, pci_clk);
1010 	} else {
1011 		u32 itr1 = 0;
1012 
1013 		pci_read_config_dword(dev, 0x40, &itr1);
1014 
1015 		/* Detect PCI clock by looking at cmd_high_time. */
1016 		switch ((itr1 >> 8) & 0x0f) {
1017 			case 0x09:
1018 				pci_clk = 40;
1019 				break;
1020 			case 0x05:
1021 				pci_clk = 25;
1022 				break;
1023 			case 0x07:
1024 			default:
1025 				pci_clk = 33;
1026 				break;
1027 		}
1028 	}
1029 
1030 	/* Let's assume we'll use PCI clock for the ATA clock... */
1031 	switch (pci_clk) {
1032 		case 25:
1033 			clock = ATA_CLOCK_25MHZ;
1034 			break;
1035 		case 33:
1036 		default:
1037 			clock = ATA_CLOCK_33MHZ;
1038 			break;
1039 		case 40:
1040 			clock = ATA_CLOCK_40MHZ;
1041 			break;
1042 		case 50:
1043 			clock = ATA_CLOCK_50MHZ;
1044 			break;
1045 		case 66:
1046 			clock = ATA_CLOCK_66MHZ;
1047 			break;
1048 	}
1049 
1050 	/*
1051 	 * Only try the DPLL if we don't have a table for the PCI clock that
1052 	 * we are running at for HPT370/A, always use it  for anything newer...
1053 	 *
1054 	 * NOTE: Using the internal DPLL results in slow reads on 33 MHz PCI.
1055 	 * We also  don't like using  the DPLL because this causes glitches
1056 	 * on PRST-/SRST- when the state engine gets reset...
1057 	 */
1058 	if (chip_type >= HPT374 || info->timings->clock_table[clock] == NULL) {
1059 		u16 f_low, delta = pci_clk < 50 ? 2 : 4;
1060 		int adjust;
1061 
1062 		 /*
1063 		  * Select 66 MHz DPLL clock only if UltraATA/133 mode is
1064 		  * supported/enabled, use 50 MHz DPLL clock otherwise...
1065 		  */
1066 		if (info->udma_mask == ATA_UDMA6) {
1067 			dpll_clk = 66;
1068 			clock = ATA_CLOCK_66MHZ;
1069 		} else if (dpll_clk) {	/* HPT36x chips don't have DPLL */
1070 			dpll_clk = 50;
1071 			clock = ATA_CLOCK_50MHZ;
1072 		}
1073 
1074 		if (info->timings->clock_table[clock] == NULL) {
1075 			printk(KERN_ERR "%s %s: unknown bus timing!\n",
1076 				name, pci_name(dev));
1077 			return -EIO;
1078 		}
1079 
1080 		/* Select the DPLL clock. */
1081 		pci_write_config_byte(dev, 0x5b, 0x21);
1082 
1083 		/*
1084 		 * Adjust the DPLL based upon PCI clock, enable it,
1085 		 * and wait for stabilization...
1086 		 */
1087 		f_low = (pci_clk * 48) / dpll_clk;
1088 
1089 		for (adjust = 0; adjust < 8; adjust++) {
1090 			if(hpt37x_calibrate_dpll(dev, f_low, f_low + delta))
1091 				break;
1092 
1093 			/*
1094 			 * See if it'll settle at a fractionally different clock
1095 			 */
1096 			if (adjust & 1)
1097 				f_low -= adjust >> 1;
1098 			else
1099 				f_low += adjust >> 1;
1100 		}
1101 		if (adjust == 8) {
1102 			printk(KERN_ERR "%s %s: DPLL did not stabilize!\n",
1103 				name, pci_name(dev));
1104 			return -EIO;
1105 		}
1106 
1107 		printk(KERN_INFO "%s %s: using %d MHz DPLL clock\n",
1108 			name, pci_name(dev), dpll_clk);
1109 	} else {
1110 		/* Mark the fact that we're not using the DPLL. */
1111 		dpll_clk = 0;
1112 
1113 		printk(KERN_INFO "%s %s: using %d MHz PCI clock\n",
1114 			name, pci_name(dev), pci_clk);
1115 	}
1116 
1117 	/* Store the clock frequencies. */
1118 	info->dpll_clk	= dpll_clk;
1119 	info->pci_clk	= pci_clk;
1120 	info->clock	= clock;
1121 
1122 	if (chip_type >= HPT370) {
1123 		u8  mcr1, mcr4;
1124 
1125 		/*
1126 		 * Reset the state engines.
1127 		 * NOTE: Avoid accidentally enabling the disabled channels.
1128 		 */
1129 		pci_read_config_byte (dev, 0x50, &mcr1);
1130 		pci_read_config_byte (dev, 0x54, &mcr4);
1131 		pci_write_config_byte(dev, 0x50, (mcr1 | 0x32));
1132 		pci_write_config_byte(dev, 0x54, (mcr4 | 0x32));
1133 		udelay(100);
1134 	}
1135 
1136 	/*
1137 	 * On  HPT371N, if ATA clock is 66 MHz we must set bit 2 in
1138 	 * the MISC. register to stretch the UltraDMA Tss timing.
1139 	 * NOTE: This register is only writeable via I/O space.
1140 	 */
1141 	if (chip_type == HPT371N && clock == ATA_CLOCK_66MHZ)
1142 		outb(inb(io_base + 0x9c) | 0x04, io_base + 0x9c);
1143 
1144 	hpt3xx_disable_fast_irq(dev, 0x50);
1145 	hpt3xx_disable_fast_irq(dev, 0x54);
1146 
1147 	return 0;
1148 }
1149 
hpt3xx_cable_detect(ide_hwif_t * hwif)1150 static u8 hpt3xx_cable_detect(ide_hwif_t *hwif)
1151 {
1152 	struct pci_dev	*dev	= to_pci_dev(hwif->dev);
1153 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1154 	u8 chip_type		= info->chip_type;
1155 	u8 scr1 = 0, ata66	= hwif->channel ? 0x01 : 0x02;
1156 
1157 	/*
1158 	 * The HPT37x uses the CBLID pins as outputs for MA15/MA16
1159 	 * address lines to access an external EEPROM.  To read valid
1160 	 * cable detect state the pins must be enabled as inputs.
1161 	 */
1162 	if (chip_type == HPT374 && (PCI_FUNC(dev->devfn) & 1)) {
1163 		/*
1164 		 * HPT374 PCI function 1
1165 		 * - set bit 15 of reg 0x52 to enable TCBLID as input
1166 		 * - set bit 15 of reg 0x56 to enable FCBLID as input
1167 		 */
1168 		u8  mcr_addr = hwif->select_data + 2;
1169 		u16 mcr;
1170 
1171 		pci_read_config_word(dev, mcr_addr, &mcr);
1172 		pci_write_config_word(dev, mcr_addr, mcr | 0x8000);
1173 		/* Debounce, then read cable ID register */
1174 		udelay(10);
1175 		pci_read_config_byte(dev, 0x5a, &scr1);
1176 		pci_write_config_word(dev, mcr_addr, mcr);
1177 	} else if (chip_type >= HPT370) {
1178 		/*
1179 		 * HPT370/372 and 374 pcifn 0
1180 		 * - clear bit 0 of reg 0x5b to enable P/SCBLID as inputs
1181 		 */
1182 		u8 scr2 = 0;
1183 
1184 		pci_read_config_byte(dev, 0x5b, &scr2);
1185 		pci_write_config_byte(dev, 0x5b, scr2 & ~1);
1186 		/* Debounce, then read cable ID register */
1187 		udelay(10);
1188 		pci_read_config_byte(dev, 0x5a, &scr1);
1189 		pci_write_config_byte(dev, 0x5b, scr2);
1190 	} else
1191 		pci_read_config_byte(dev, 0x5a, &scr1);
1192 
1193 	return (scr1 & ata66) ? ATA_CBL_PATA40 : ATA_CBL_PATA80;
1194 }
1195 
init_hwif_hpt366(ide_hwif_t * hwif)1196 static void init_hwif_hpt366(ide_hwif_t *hwif)
1197 {
1198 	struct hpt_info *info	= hpt3xx_get_info(hwif->dev);
1199 	u8  chip_type		= info->chip_type;
1200 
1201 	/* Cache the channel's MISC. control registers' offset */
1202 	hwif->select_data	= hwif->channel ? 0x54 : 0x50;
1203 
1204 	/*
1205 	 * HPT3xxN chips have some complications:
1206 	 *
1207 	 * - on 33 MHz PCI we must clock switch
1208 	 * - on 66 MHz PCI we must NOT use the PCI clock
1209 	 */
1210 	if (chip_type >= HPT372N && info->dpll_clk && info->pci_clk < 66) {
1211 		/*
1212 		 * Clock is shared between the channels,
1213 		 * so we'll have to serialize them... :-(
1214 		 */
1215 		hwif->host->host_flags |= IDE_HFLAG_SERIALIZE;
1216 		hwif->rw_disk = &hpt3xxn_rw_disk;
1217 	}
1218 }
1219 
init_dma_hpt366(ide_hwif_t * hwif,const struct ide_port_info * d)1220 static int init_dma_hpt366(ide_hwif_t *hwif,
1221 				     const struct ide_port_info *d)
1222 {
1223 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1224 	unsigned long flags, base = ide_pci_dma_base(hwif, d);
1225 	u8 dma_old, dma_new, masterdma = 0, slavedma = 0;
1226 
1227 	if (base == 0)
1228 		return -1;
1229 
1230 	hwif->dma_base = base;
1231 
1232 	if (ide_pci_check_simplex(hwif, d) < 0)
1233 		return -1;
1234 
1235 	if (ide_pci_set_master(dev, d->name) < 0)
1236 		return -1;
1237 
1238 	dma_old = inb(base + 2);
1239 
1240 	local_irq_save(flags);
1241 
1242 	dma_new = dma_old;
1243 	pci_read_config_byte(dev, hwif->channel ? 0x4b : 0x43, &masterdma);
1244 	pci_read_config_byte(dev, hwif->channel ? 0x4f : 0x47,  &slavedma);
1245 
1246 	if (masterdma & 0x30)	dma_new |= 0x20;
1247 	if ( slavedma & 0x30)	dma_new |= 0x40;
1248 	if (dma_new != dma_old)
1249 		outb(dma_new, base + 2);
1250 
1251 	local_irq_restore(flags);
1252 
1253 	printk(KERN_INFO "    %s: BM-DMA at 0x%04lx-0x%04lx\n",
1254 			 hwif->name, base, base + 7);
1255 
1256 	hwif->extra_base = base + (hwif->channel ? 8 : 16);
1257 
1258 	if (ide_allocate_dma_engine(hwif))
1259 		return -1;
1260 
1261 	return 0;
1262 }
1263 
hpt374_init(struct pci_dev * dev,struct pci_dev * dev2)1264 static void hpt374_init(struct pci_dev *dev, struct pci_dev *dev2)
1265 {
1266 	if (dev2->irq != dev->irq) {
1267 		/* FIXME: we need a core pci_set_interrupt() */
1268 		dev2->irq = dev->irq;
1269 		printk(KERN_INFO DRV_NAME " %s: PCI config space interrupt "
1270 			"fixed\n", pci_name(dev2));
1271 	}
1272 }
1273 
hpt371_init(struct pci_dev * dev)1274 static void hpt371_init(struct pci_dev *dev)
1275 {
1276 	u8 mcr1 = 0;
1277 
1278 	/*
1279 	 * HPT371 chips physically have only one channel, the secondary one,
1280 	 * but the primary channel registers do exist!  Go figure...
1281 	 * So,  we manually disable the non-existing channel here
1282 	 * (if the BIOS hasn't done this already).
1283 	 */
1284 	pci_read_config_byte(dev, 0x50, &mcr1);
1285 	if (mcr1 & 0x04)
1286 		pci_write_config_byte(dev, 0x50, mcr1 & ~0x04);
1287 }
1288 
hpt36x_init(struct pci_dev * dev,struct pci_dev * dev2)1289 static int hpt36x_init(struct pci_dev *dev, struct pci_dev *dev2)
1290 {
1291 	u8 mcr1 = 0, pin1 = 0, pin2 = 0;
1292 
1293 	/*
1294 	 * Now we'll have to force both channels enabled if
1295 	 * at least one of them has been enabled by BIOS...
1296 	 */
1297 	pci_read_config_byte(dev, 0x50, &mcr1);
1298 	if (mcr1 & 0x30)
1299 		pci_write_config_byte(dev, 0x50, mcr1 | 0x30);
1300 
1301 	pci_read_config_byte(dev,  PCI_INTERRUPT_PIN, &pin1);
1302 	pci_read_config_byte(dev2, PCI_INTERRUPT_PIN, &pin2);
1303 
1304 	if (pin1 != pin2 && dev->irq == dev2->irq) {
1305 		printk(KERN_INFO DRV_NAME " %s: onboard version of chipset, "
1306 			"pin1=%d pin2=%d\n", pci_name(dev), pin1, pin2);
1307 		return 1;
1308 	}
1309 
1310 	return 0;
1311 }
1312 
1313 #define IDE_HFLAGS_HPT3XX \
1314 	(IDE_HFLAG_NO_ATAPI_DMA | \
1315 	 IDE_HFLAG_OFF_BOARD)
1316 
1317 static const struct ide_port_ops hpt3xx_port_ops = {
1318 	.set_pio_mode		= hpt3xx_set_pio_mode,
1319 	.set_dma_mode		= hpt3xx_set_mode,
1320 	.maskproc		= hpt3xx_maskproc,
1321 	.mdma_filter		= hpt3xx_mdma_filter,
1322 	.udma_filter		= hpt3xx_udma_filter,
1323 	.cable_detect		= hpt3xx_cable_detect,
1324 };
1325 
1326 static const struct ide_dma_ops hpt37x_dma_ops = {
1327 	.dma_host_set		= ide_dma_host_set,
1328 	.dma_setup		= ide_dma_setup,
1329 	.dma_start		= ide_dma_start,
1330 	.dma_end		= hpt374_dma_end,
1331 	.dma_test_irq		= hpt374_dma_test_irq,
1332 	.dma_lost_irq		= ide_dma_lost_irq,
1333 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1334 	.dma_sff_read_status	= ide_dma_sff_read_status,
1335 };
1336 
1337 static const struct ide_dma_ops hpt370_dma_ops = {
1338 	.dma_host_set		= ide_dma_host_set,
1339 	.dma_setup		= ide_dma_setup,
1340 	.dma_start		= hpt370_dma_start,
1341 	.dma_end		= hpt370_dma_end,
1342 	.dma_test_irq		= ide_dma_test_irq,
1343 	.dma_lost_irq		= ide_dma_lost_irq,
1344 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1345 	.dma_clear		= hpt370_irq_timeout,
1346 	.dma_sff_read_status	= ide_dma_sff_read_status,
1347 };
1348 
1349 static const struct ide_dma_ops hpt36x_dma_ops = {
1350 	.dma_host_set		= ide_dma_host_set,
1351 	.dma_setup		= ide_dma_setup,
1352 	.dma_start		= ide_dma_start,
1353 	.dma_end		= ide_dma_end,
1354 	.dma_test_irq		= ide_dma_test_irq,
1355 	.dma_lost_irq		= hpt366_dma_lost_irq,
1356 	.dma_timer_expiry	= ide_dma_sff_timer_expiry,
1357 	.dma_sff_read_status	= ide_dma_sff_read_status,
1358 };
1359 
1360 static const struct ide_port_info hpt366_chipsets[] = {
1361 	{	/* 0: HPT36x */
1362 		.name		= DRV_NAME,
1363 		.init_chipset	= init_chipset_hpt366,
1364 		.init_hwif	= init_hwif_hpt366,
1365 		.init_dma	= init_dma_hpt366,
1366 		/*
1367 		 * HPT36x chips have one channel per function and have
1368 		 * both channel enable bits located differently and visible
1369 		 * to both functions -- really stupid design decision... :-(
1370 		 * Bit 4 is for the primary channel, bit 5 for the secondary.
1371 		 */
1372 		.enablebits	= {{0x50,0x10,0x10}, {0x54,0x04,0x04}},
1373 		.port_ops	= &hpt3xx_port_ops,
1374 		.dma_ops	= &hpt36x_dma_ops,
1375 		.host_flags	= IDE_HFLAGS_HPT3XX | IDE_HFLAG_SINGLE,
1376 		.pio_mask	= ATA_PIO4,
1377 		.mwdma_mask	= ATA_MWDMA2,
1378 	},
1379 	{	/* 1: HPT3xx */
1380 		.name		= DRV_NAME,
1381 		.init_chipset	= init_chipset_hpt366,
1382 		.init_hwif	= init_hwif_hpt366,
1383 		.init_dma	= init_dma_hpt366,
1384 		.enablebits	= {{0x50,0x04,0x04}, {0x54,0x04,0x04}},
1385 		.port_ops	= &hpt3xx_port_ops,
1386 		.dma_ops	= &hpt37x_dma_ops,
1387 		.host_flags	= IDE_HFLAGS_HPT3XX,
1388 		.pio_mask	= ATA_PIO4,
1389 		.mwdma_mask	= ATA_MWDMA2,
1390 	}
1391 };
1392 
1393 /**
1394  *	hpt366_init_one	-	called when an HPT366 is found
1395  *	@dev: the hpt366 device
1396  *	@id: the matching pci id
1397  *
1398  *	Called when the PCI registration layer (or the IDE initialization)
1399  *	finds a device matching our IDE device tables.
1400  */
hpt366_init_one(struct pci_dev * dev,const struct pci_device_id * id)1401 static int hpt366_init_one(struct pci_dev *dev, const struct pci_device_id *id)
1402 {
1403 	const struct hpt_info *info = NULL;
1404 	struct hpt_info *dyn_info;
1405 	struct pci_dev *dev2 = NULL;
1406 	struct ide_port_info d;
1407 	u8 idx = id->driver_data;
1408 	u8 rev = dev->revision;
1409 	int ret;
1410 
1411 	if ((idx == 0 || idx == 4) && (PCI_FUNC(dev->devfn) & 1))
1412 		return -ENODEV;
1413 
1414 	switch (idx) {
1415 	case 0:
1416 		if (rev < 3)
1417 			info = &hpt36x;
1418 		else {
1419 			switch (min_t(u8, rev, 6)) {
1420 			case 3: info = &hpt370;  break;
1421 			case 4: info = &hpt370a; break;
1422 			case 5: info = &hpt372;  break;
1423 			case 6: info = &hpt372n; break;
1424 			}
1425 			idx++;
1426 		}
1427 		break;
1428 	case 1:
1429 		info = (rev > 1) ? &hpt372n : &hpt372a;
1430 		break;
1431 	case 2:
1432 		info = (rev > 1) ? &hpt302n : &hpt302;
1433 		break;
1434 	case 3:
1435 		hpt371_init(dev);
1436 		info = (rev > 1) ? &hpt371n : &hpt371;
1437 		break;
1438 	case 4:
1439 		info = &hpt374;
1440 		break;
1441 	case 5:
1442 		info = &hpt372n;
1443 		break;
1444 	}
1445 
1446 	printk(KERN_INFO DRV_NAME ": %s chipset detected\n", info->chip_name);
1447 
1448 	d = hpt366_chipsets[min_t(u8, idx, 1)];
1449 
1450 	d.udma_mask = info->udma_mask;
1451 
1452 	/* fixup ->dma_ops for HPT370/HPT370A */
1453 	if (info == &hpt370 || info == &hpt370a)
1454 		d.dma_ops = &hpt370_dma_ops;
1455 
1456 	if (info == &hpt36x || info == &hpt374)
1457 		dev2 = pci_get_slot(dev->bus, dev->devfn + 1);
1458 
1459 	dyn_info = kcalloc(dev2 ? 2 : 1, sizeof(*dyn_info), GFP_KERNEL);
1460 	if (dyn_info == NULL) {
1461 		printk(KERN_ERR "%s %s: out of memory!\n",
1462 			d.name, pci_name(dev));
1463 		pci_dev_put(dev2);
1464 		return -ENOMEM;
1465 	}
1466 
1467 	/*
1468 	 * Copy everything from a static "template" structure
1469 	 * to just allocated per-chip hpt_info structure.
1470 	 */
1471 	memcpy(dyn_info, info, sizeof(*dyn_info));
1472 
1473 	if (dev2) {
1474 		memcpy(dyn_info + 1, info, sizeof(*dyn_info));
1475 
1476 		if (info == &hpt374)
1477 			hpt374_init(dev, dev2);
1478 		else {
1479 			if (hpt36x_init(dev, dev2))
1480 				d.host_flags &= ~IDE_HFLAG_NON_BOOTABLE;
1481 		}
1482 
1483 		ret = ide_pci_init_two(dev, dev2, &d, dyn_info);
1484 		if (ret < 0) {
1485 			pci_dev_put(dev2);
1486 			kfree(dyn_info);
1487 		}
1488 		return ret;
1489 	}
1490 
1491 	ret = ide_pci_init_one(dev, &d, dyn_info);
1492 	if (ret < 0)
1493 		kfree(dyn_info);
1494 
1495 	return ret;
1496 }
1497 
hpt366_remove(struct pci_dev * dev)1498 static void hpt366_remove(struct pci_dev *dev)
1499 {
1500 	struct ide_host *host = pci_get_drvdata(dev);
1501 	struct ide_info *info = host->host_priv;
1502 	struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
1503 
1504 	ide_pci_remove(dev);
1505 	pci_dev_put(dev2);
1506 	kfree(info);
1507 }
1508 
1509 static const struct pci_device_id hpt366_pci_tbl[] = {
1510 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT366),  0 },
1511 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372),  1 },
1512 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT302),  2 },
1513 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT371),  3 },
1514 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT374),  4 },
1515 	{ PCI_VDEVICE(TTI, PCI_DEVICE_ID_TTI_HPT372N), 5 },
1516 	{ 0, },
1517 };
1518 MODULE_DEVICE_TABLE(pci, hpt366_pci_tbl);
1519 
1520 static struct pci_driver hpt366_pci_driver = {
1521 	.name		= "HPT366_IDE",
1522 	.id_table	= hpt366_pci_tbl,
1523 	.probe		= hpt366_init_one,
1524 	.remove		= hpt366_remove,
1525 	.suspend	= ide_pci_suspend,
1526 	.resume		= ide_pci_resume,
1527 };
1528 
hpt366_ide_init(void)1529 static int __init hpt366_ide_init(void)
1530 {
1531 	return ide_pci_register_driver(&hpt366_pci_driver);
1532 }
1533 
hpt366_ide_exit(void)1534 static void __exit hpt366_ide_exit(void)
1535 {
1536 	pci_unregister_driver(&hpt366_pci_driver);
1537 }
1538 
1539 module_init(hpt366_ide_init);
1540 module_exit(hpt366_ide_exit);
1541 
1542 MODULE_AUTHOR("Andre Hedrick");
1543 MODULE_DESCRIPTION("PCI driver module for Highpoint HPT366 IDE");
1544 MODULE_LICENSE("GPL");
1545