1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/hpet.h>
7 #include <linux/cpu.h>
8 #include <linux/irq.h>
9
10 #include <asm/hpet.h>
11 #include <asm/time.h>
12
13 #undef pr_fmt
14 #define pr_fmt(fmt) "hpet: " fmt
15
16 enum hpet_mode {
17 HPET_MODE_UNUSED,
18 HPET_MODE_LEGACY,
19 HPET_MODE_CLOCKEVT,
20 HPET_MODE_DEVICE,
21 };
22
23 struct hpet_channel {
24 struct clock_event_device evt;
25 unsigned int num;
26 unsigned int cpu;
27 unsigned int irq;
28 unsigned int in_use;
29 enum hpet_mode mode;
30 unsigned int boot_cfg;
31 char name[10];
32 };
33
34 struct hpet_base {
35 unsigned int nr_channels;
36 unsigned int nr_clockevents;
37 unsigned int boot_cfg;
38 struct hpet_channel *channels;
39 };
40
41 #define HPET_MASK CLOCKSOURCE_MASK(32)
42
43 #define HPET_MIN_CYCLES 128
44 #define HPET_MIN_PROG_DELTA (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
45
46 /*
47 * HPET address is set in acpi/boot.c, when an ACPI entry exists
48 */
49 unsigned long hpet_address;
50 u8 hpet_blockid; /* OS timer block num */
51 bool hpet_msi_disable;
52
53 #ifdef CONFIG_PCI_MSI
54 static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
55 static struct irq_domain *hpet_domain;
56 #endif
57
58 static void __iomem *hpet_virt_address;
59
60 static struct hpet_base hpet_base;
61
62 static bool hpet_legacy_int_enabled;
63 static unsigned long hpet_freq;
64
65 bool boot_hpet_disable;
66 bool hpet_force_user;
67 static bool hpet_verbose;
68
69 static inline
clockevent_to_channel(struct clock_event_device * evt)70 struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
71 {
72 return container_of(evt, struct hpet_channel, evt);
73 }
74
hpet_readl(unsigned int a)75 inline unsigned int hpet_readl(unsigned int a)
76 {
77 return readl(hpet_virt_address + a);
78 }
79
hpet_writel(unsigned int d,unsigned int a)80 static inline void hpet_writel(unsigned int d, unsigned int a)
81 {
82 writel(d, hpet_virt_address + a);
83 }
84
hpet_set_mapping(void)85 static inline void hpet_set_mapping(void)
86 {
87 hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
88 }
89
hpet_clear_mapping(void)90 static inline void hpet_clear_mapping(void)
91 {
92 iounmap(hpet_virt_address);
93 hpet_virt_address = NULL;
94 }
95
96 /*
97 * HPET command line enable / disable
98 */
hpet_setup(char * str)99 static int __init hpet_setup(char *str)
100 {
101 while (str) {
102 char *next = strchr(str, ',');
103
104 if (next)
105 *next++ = 0;
106 if (!strncmp("disable", str, 7))
107 boot_hpet_disable = true;
108 if (!strncmp("force", str, 5))
109 hpet_force_user = true;
110 if (!strncmp("verbose", str, 7))
111 hpet_verbose = true;
112 str = next;
113 }
114 return 1;
115 }
116 __setup("hpet=", hpet_setup);
117
disable_hpet(char * str)118 static int __init disable_hpet(char *str)
119 {
120 boot_hpet_disable = true;
121 return 1;
122 }
123 __setup("nohpet", disable_hpet);
124
is_hpet_capable(void)125 static inline int is_hpet_capable(void)
126 {
127 return !boot_hpet_disable && hpet_address;
128 }
129
130 /**
131 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
132 */
is_hpet_enabled(void)133 int is_hpet_enabled(void)
134 {
135 return is_hpet_capable() && hpet_legacy_int_enabled;
136 }
137 EXPORT_SYMBOL_GPL(is_hpet_enabled);
138
_hpet_print_config(const char * function,int line)139 static void _hpet_print_config(const char *function, int line)
140 {
141 u32 i, id, period, cfg, status, channels, l, h;
142
143 pr_info("%s(%d):\n", function, line);
144
145 id = hpet_readl(HPET_ID);
146 period = hpet_readl(HPET_PERIOD);
147 pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
148
149 cfg = hpet_readl(HPET_CFG);
150 status = hpet_readl(HPET_STATUS);
151 pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
152
153 l = hpet_readl(HPET_COUNTER);
154 h = hpet_readl(HPET_COUNTER+4);
155 pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
156
157 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
158
159 for (i = 0; i < channels; i++) {
160 l = hpet_readl(HPET_Tn_CFG(i));
161 h = hpet_readl(HPET_Tn_CFG(i)+4);
162 pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
163
164 l = hpet_readl(HPET_Tn_CMP(i));
165 h = hpet_readl(HPET_Tn_CMP(i)+4);
166 pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
167
168 l = hpet_readl(HPET_Tn_ROUTE(i));
169 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
170 pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
171 }
172 }
173
174 #define hpet_print_config() \
175 do { \
176 if (hpet_verbose) \
177 _hpet_print_config(__func__, __LINE__); \
178 } while (0)
179
180 /*
181 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
182 * timer 0 and timer 1 in case of RTC emulation.
183 */
184 #ifdef CONFIG_HPET
185
hpet_reserve_platform_timers(void)186 static void __init hpet_reserve_platform_timers(void)
187 {
188 struct hpet_data hd;
189 unsigned int i;
190
191 memset(&hd, 0, sizeof(hd));
192 hd.hd_phys_address = hpet_address;
193 hd.hd_address = hpet_virt_address;
194 hd.hd_nirqs = hpet_base.nr_channels;
195
196 /*
197 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
198 * is wrong for i8259!) not the output IRQ. Many BIOS writers
199 * don't bother configuring *any* comparator interrupts.
200 */
201 hd.hd_irq[0] = HPET_LEGACY_8254;
202 hd.hd_irq[1] = HPET_LEGACY_RTC;
203
204 for (i = 0; i < hpet_base.nr_channels; i++) {
205 struct hpet_channel *hc = hpet_base.channels + i;
206
207 if (i >= 2)
208 hd.hd_irq[i] = hc->irq;
209
210 switch (hc->mode) {
211 case HPET_MODE_UNUSED:
212 case HPET_MODE_DEVICE:
213 hc->mode = HPET_MODE_DEVICE;
214 break;
215 case HPET_MODE_CLOCKEVT:
216 case HPET_MODE_LEGACY:
217 hpet_reserve_timer(&hd, hc->num);
218 break;
219 }
220 }
221
222 hpet_alloc(&hd);
223 }
224
hpet_select_device_channel(void)225 static void __init hpet_select_device_channel(void)
226 {
227 int i;
228
229 for (i = 0; i < hpet_base.nr_channels; i++) {
230 struct hpet_channel *hc = hpet_base.channels + i;
231
232 /* Associate the first unused channel to /dev/hpet */
233 if (hc->mode == HPET_MODE_UNUSED) {
234 hc->mode = HPET_MODE_DEVICE;
235 return;
236 }
237 }
238 }
239
240 #else
hpet_reserve_platform_timers(void)241 static inline void hpet_reserve_platform_timers(void) { }
hpet_select_device_channel(void)242 static inline void hpet_select_device_channel(void) {}
243 #endif
244
245 /* Common HPET functions */
hpet_stop_counter(void)246 static void hpet_stop_counter(void)
247 {
248 u32 cfg = hpet_readl(HPET_CFG);
249
250 cfg &= ~HPET_CFG_ENABLE;
251 hpet_writel(cfg, HPET_CFG);
252 }
253
hpet_reset_counter(void)254 static void hpet_reset_counter(void)
255 {
256 hpet_writel(0, HPET_COUNTER);
257 hpet_writel(0, HPET_COUNTER + 4);
258 }
259
hpet_start_counter(void)260 static void hpet_start_counter(void)
261 {
262 unsigned int cfg = hpet_readl(HPET_CFG);
263
264 cfg |= HPET_CFG_ENABLE;
265 hpet_writel(cfg, HPET_CFG);
266 }
267
hpet_restart_counter(void)268 static void hpet_restart_counter(void)
269 {
270 hpet_stop_counter();
271 hpet_reset_counter();
272 hpet_start_counter();
273 }
274
hpet_resume_device(void)275 static void hpet_resume_device(void)
276 {
277 force_hpet_resume();
278 }
279
hpet_resume_counter(struct clocksource * cs)280 static void hpet_resume_counter(struct clocksource *cs)
281 {
282 hpet_resume_device();
283 hpet_restart_counter();
284 }
285
hpet_enable_legacy_int(void)286 static void hpet_enable_legacy_int(void)
287 {
288 unsigned int cfg = hpet_readl(HPET_CFG);
289
290 cfg |= HPET_CFG_LEGACY;
291 hpet_writel(cfg, HPET_CFG);
292 hpet_legacy_int_enabled = true;
293 }
294
hpet_clkevt_set_state_periodic(struct clock_event_device * evt)295 static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
296 {
297 unsigned int channel = clockevent_to_channel(evt)->num;
298 unsigned int cfg, cmp, now;
299 uint64_t delta;
300
301 hpet_stop_counter();
302 delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
303 delta >>= evt->shift;
304 now = hpet_readl(HPET_COUNTER);
305 cmp = now + (unsigned int)delta;
306 cfg = hpet_readl(HPET_Tn_CFG(channel));
307 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
308 HPET_TN_32BIT;
309 hpet_writel(cfg, HPET_Tn_CFG(channel));
310 hpet_writel(cmp, HPET_Tn_CMP(channel));
311 udelay(1);
312 /*
313 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
314 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
315 * bit is automatically cleared after the first write.
316 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
317 * Publication # 24674)
318 */
319 hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
320 hpet_start_counter();
321 hpet_print_config();
322
323 return 0;
324 }
325
hpet_clkevt_set_state_oneshot(struct clock_event_device * evt)326 static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
327 {
328 unsigned int channel = clockevent_to_channel(evt)->num;
329 unsigned int cfg;
330
331 cfg = hpet_readl(HPET_Tn_CFG(channel));
332 cfg &= ~HPET_TN_PERIODIC;
333 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
334 hpet_writel(cfg, HPET_Tn_CFG(channel));
335
336 return 0;
337 }
338
hpet_clkevt_set_state_shutdown(struct clock_event_device * evt)339 static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
340 {
341 unsigned int channel = clockevent_to_channel(evt)->num;
342 unsigned int cfg;
343
344 cfg = hpet_readl(HPET_Tn_CFG(channel));
345 cfg &= ~HPET_TN_ENABLE;
346 hpet_writel(cfg, HPET_Tn_CFG(channel));
347
348 return 0;
349 }
350
hpet_clkevt_legacy_resume(struct clock_event_device * evt)351 static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
352 {
353 hpet_enable_legacy_int();
354 hpet_print_config();
355 return 0;
356 }
357
358 static int
hpet_clkevt_set_next_event(unsigned long delta,struct clock_event_device * evt)359 hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
360 {
361 unsigned int channel = clockevent_to_channel(evt)->num;
362 u32 cnt;
363 s32 res;
364
365 cnt = hpet_readl(HPET_COUNTER);
366 cnt += (u32) delta;
367 hpet_writel(cnt, HPET_Tn_CMP(channel));
368
369 /*
370 * HPETs are a complete disaster. The compare register is
371 * based on a equal comparison and neither provides a less
372 * than or equal functionality (which would require to take
373 * the wraparound into account) nor a simple count down event
374 * mode. Further the write to the comparator register is
375 * delayed internally up to two HPET clock cycles in certain
376 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
377 * longer delays. We worked around that by reading back the
378 * compare register, but that required another workaround for
379 * ICH9,10 chips where the first readout after write can
380 * return the old stale value. We already had a minimum
381 * programming delta of 5us enforced, but a NMI or SMI hitting
382 * between the counter readout and the comparator write can
383 * move us behind that point easily. Now instead of reading
384 * the compare register back several times, we make the ETIME
385 * decision based on the following: Return ETIME if the
386 * counter value after the write is less than HPET_MIN_CYCLES
387 * away from the event or if the counter is already ahead of
388 * the event. The minimum programming delta for the generic
389 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
390 */
391 res = (s32)(cnt - hpet_readl(HPET_COUNTER));
392
393 return res < HPET_MIN_CYCLES ? -ETIME : 0;
394 }
395
hpet_init_clockevent(struct hpet_channel * hc,unsigned int rating)396 static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
397 {
398 struct clock_event_device *evt = &hc->evt;
399
400 evt->rating = rating;
401 evt->irq = hc->irq;
402 evt->name = hc->name;
403 evt->cpumask = cpumask_of(hc->cpu);
404 evt->set_state_oneshot = hpet_clkevt_set_state_oneshot;
405 evt->set_next_event = hpet_clkevt_set_next_event;
406 evt->set_state_shutdown = hpet_clkevt_set_state_shutdown;
407
408 evt->features = CLOCK_EVT_FEAT_ONESHOT;
409 if (hc->boot_cfg & HPET_TN_PERIODIC) {
410 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
411 evt->set_state_periodic = hpet_clkevt_set_state_periodic;
412 }
413 }
414
hpet_legacy_clockevent_register(struct hpet_channel * hc)415 static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
416 {
417 /*
418 * Start HPET with the boot CPU's cpumask and make it global after
419 * the IO_APIC has been initialized.
420 */
421 hc->cpu = boot_cpu_data.cpu_index;
422 strncpy(hc->name, "hpet", sizeof(hc->name));
423 hpet_init_clockevent(hc, 50);
424
425 hc->evt.tick_resume = hpet_clkevt_legacy_resume;
426
427 /*
428 * Legacy horrors and sins from the past. HPET used periodic mode
429 * unconditionally forever on the legacy channel 0. Removing the
430 * below hack and using the conditional in hpet_init_clockevent()
431 * makes at least Qemu and one hardware machine fail to boot.
432 * There are two issues which cause the boot failure:
433 *
434 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
435 * the next interrupt is not delivered despite the HPET channel
436 * being programmed correctly. Reprogramming the HPET after
437 * switching to IOAPIC makes it work again. After fixing this,
438 * the next issue surfaces:
439 *
440 * #2 Due to the unconditional periodic mode availability the Local
441 * APIC timer calibration can hijack the global clockevents
442 * event handler without causing damage. Using oneshot at this
443 * stage makes if hang because the HPET does not get
444 * reprogrammed due to the handler hijacking. Duh, stupid me!
445 *
446 * Both issues require major surgery and especially the kick HPET
447 * again after enabling IOAPIC results in really nasty hackery.
448 * This 'assume periodic works' magic has survived since HPET
449 * support got added, so it's questionable whether this should be
450 * fixed. Both Qemu and the failing hardware machine support
451 * periodic mode despite the fact that both don't advertise it in
452 * the configuration register and both need that extra kick after
453 * switching to IOAPIC. Seems to be a feature...
454 */
455 hc->evt.features |= CLOCK_EVT_FEAT_PERIODIC;
456 hc->evt.set_state_periodic = hpet_clkevt_set_state_periodic;
457
458 /* Start HPET legacy interrupts */
459 hpet_enable_legacy_int();
460
461 clockevents_config_and_register(&hc->evt, hpet_freq,
462 HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
463 global_clock_event = &hc->evt;
464 pr_debug("Clockevent registered\n");
465 }
466
467 /*
468 * HPET MSI Support
469 */
470 #ifdef CONFIG_PCI_MSI
471
hpet_msi_unmask(struct irq_data * data)472 void hpet_msi_unmask(struct irq_data *data)
473 {
474 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
475 unsigned int cfg;
476
477 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
478 cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
479 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
480 }
481
hpet_msi_mask(struct irq_data * data)482 void hpet_msi_mask(struct irq_data *data)
483 {
484 struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
485 unsigned int cfg;
486
487 cfg = hpet_readl(HPET_Tn_CFG(hc->num));
488 cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
489 hpet_writel(cfg, HPET_Tn_CFG(hc->num));
490 }
491
hpet_msi_write(struct hpet_channel * hc,struct msi_msg * msg)492 void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
493 {
494 hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
495 hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
496 }
497
hpet_clkevt_msi_resume(struct clock_event_device * evt)498 static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
499 {
500 struct hpet_channel *hc = clockevent_to_channel(evt);
501 struct irq_data *data = irq_get_irq_data(hc->irq);
502 struct msi_msg msg;
503
504 /* Restore the MSI msg and unmask the interrupt */
505 irq_chip_compose_msi_msg(data, &msg);
506 hpet_msi_write(hc, &msg);
507 hpet_msi_unmask(data);
508 return 0;
509 }
510
hpet_msi_interrupt_handler(int irq,void * data)511 static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
512 {
513 struct hpet_channel *hc = data;
514 struct clock_event_device *evt = &hc->evt;
515
516 if (!evt->event_handler) {
517 pr_info("Spurious interrupt HPET channel %d\n", hc->num);
518 return IRQ_HANDLED;
519 }
520
521 evt->event_handler(evt);
522 return IRQ_HANDLED;
523 }
524
hpet_setup_msi_irq(struct hpet_channel * hc)525 static int hpet_setup_msi_irq(struct hpet_channel *hc)
526 {
527 if (request_irq(hc->irq, hpet_msi_interrupt_handler,
528 IRQF_TIMER | IRQF_NOBALANCING,
529 hc->name, hc))
530 return -1;
531
532 disable_irq(hc->irq);
533 irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
534 enable_irq(hc->irq);
535
536 pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
537
538 return 0;
539 }
540
541 /* Invoked from the hotplug callback on @cpu */
init_one_hpet_msi_clockevent(struct hpet_channel * hc,int cpu)542 static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
543 {
544 struct clock_event_device *evt = &hc->evt;
545
546 hc->cpu = cpu;
547 per_cpu(cpu_hpet_channel, cpu) = hc;
548 hpet_setup_msi_irq(hc);
549
550 hpet_init_clockevent(hc, 110);
551 evt->tick_resume = hpet_clkevt_msi_resume;
552
553 clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
554 0x7FFFFFFF);
555 }
556
hpet_get_unused_clockevent(void)557 static struct hpet_channel *hpet_get_unused_clockevent(void)
558 {
559 int i;
560
561 for (i = 0; i < hpet_base.nr_channels; i++) {
562 struct hpet_channel *hc = hpet_base.channels + i;
563
564 if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
565 continue;
566 hc->in_use = 1;
567 return hc;
568 }
569 return NULL;
570 }
571
hpet_cpuhp_online(unsigned int cpu)572 static int hpet_cpuhp_online(unsigned int cpu)
573 {
574 struct hpet_channel *hc = hpet_get_unused_clockevent();
575
576 if (hc)
577 init_one_hpet_msi_clockevent(hc, cpu);
578 return 0;
579 }
580
hpet_cpuhp_dead(unsigned int cpu)581 static int hpet_cpuhp_dead(unsigned int cpu)
582 {
583 struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
584
585 if (!hc)
586 return 0;
587 free_irq(hc->irq, hc);
588 hc->in_use = 0;
589 per_cpu(cpu_hpet_channel, cpu) = NULL;
590 return 0;
591 }
592
hpet_select_clockevents(void)593 static void __init hpet_select_clockevents(void)
594 {
595 unsigned int i;
596
597 hpet_base.nr_clockevents = 0;
598
599 /* No point if MSI is disabled or CPU has an Always Runing APIC Timer */
600 if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
601 return;
602
603 hpet_print_config();
604
605 hpet_domain = hpet_create_irq_domain(hpet_blockid);
606 if (!hpet_domain)
607 return;
608
609 for (i = 0; i < hpet_base.nr_channels; i++) {
610 struct hpet_channel *hc = hpet_base.channels + i;
611 int irq;
612
613 if (hc->mode != HPET_MODE_UNUSED)
614 continue;
615
616 /* Only consider HPET channel with MSI support */
617 if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
618 continue;
619
620 sprintf(hc->name, "hpet%d", i);
621
622 irq = hpet_assign_irq(hpet_domain, hc, hc->num);
623 if (irq <= 0)
624 continue;
625
626 hc->irq = irq;
627 hc->mode = HPET_MODE_CLOCKEVT;
628
629 if (++hpet_base.nr_clockevents == num_possible_cpus())
630 break;
631 }
632
633 pr_info("%d channels of %d reserved for per-cpu timers\n",
634 hpet_base.nr_channels, hpet_base.nr_clockevents);
635 }
636
637 #else
638
hpet_select_clockevents(void)639 static inline void hpet_select_clockevents(void) { }
640
641 #define hpet_cpuhp_online NULL
642 #define hpet_cpuhp_dead NULL
643
644 #endif
645
646 /*
647 * Clock source related code
648 */
649 #if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
650 /*
651 * Reading the HPET counter is a very slow operation. If a large number of
652 * CPUs are trying to access the HPET counter simultaneously, it can cause
653 * massive delays and slow down system performance dramatically. This may
654 * happen when HPET is the default clock source instead of TSC. For a
655 * really large system with hundreds of CPUs, the slowdown may be so
656 * severe, that it can actually crash the system because of a NMI watchdog
657 * soft lockup, for example.
658 *
659 * If multiple CPUs are trying to access the HPET counter at the same time,
660 * we don't actually need to read the counter multiple times. Instead, the
661 * other CPUs can use the counter value read by the first CPU in the group.
662 *
663 * This special feature is only enabled on x86-64 systems. It is unlikely
664 * that 32-bit x86 systems will have enough CPUs to require this feature
665 * with its associated locking overhead. We also need 64-bit atomic read.
666 *
667 * The lock and the HPET value are stored together and can be read in a
668 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
669 * is 32 bits in size.
670 */
671 union hpet_lock {
672 struct {
673 arch_spinlock_t lock;
674 u32 value;
675 };
676 u64 lockval;
677 };
678
679 static union hpet_lock hpet __cacheline_aligned = {
680 { .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
681 };
682
read_hpet(struct clocksource * cs)683 static u64 read_hpet(struct clocksource *cs)
684 {
685 unsigned long flags;
686 union hpet_lock old, new;
687
688 BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
689
690 /*
691 * Read HPET directly if in NMI.
692 */
693 if (in_nmi())
694 return (u64)hpet_readl(HPET_COUNTER);
695
696 /*
697 * Read the current state of the lock and HPET value atomically.
698 */
699 old.lockval = READ_ONCE(hpet.lockval);
700
701 if (arch_spin_is_locked(&old.lock))
702 goto contended;
703
704 local_irq_save(flags);
705 if (arch_spin_trylock(&hpet.lock)) {
706 new.value = hpet_readl(HPET_COUNTER);
707 /*
708 * Use WRITE_ONCE() to prevent store tearing.
709 */
710 WRITE_ONCE(hpet.value, new.value);
711 arch_spin_unlock(&hpet.lock);
712 local_irq_restore(flags);
713 return (u64)new.value;
714 }
715 local_irq_restore(flags);
716
717 contended:
718 /*
719 * Contended case
720 * --------------
721 * Wait until the HPET value change or the lock is free to indicate
722 * its value is up-to-date.
723 *
724 * It is possible that old.value has already contained the latest
725 * HPET value while the lock holder was in the process of releasing
726 * the lock. Checking for lock state change will enable us to return
727 * the value immediately instead of waiting for the next HPET reader
728 * to come along.
729 */
730 do {
731 cpu_relax();
732 new.lockval = READ_ONCE(hpet.lockval);
733 } while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
734
735 return (u64)new.value;
736 }
737 #else
738 /*
739 * For UP or 32-bit.
740 */
read_hpet(struct clocksource * cs)741 static u64 read_hpet(struct clocksource *cs)
742 {
743 return (u64)hpet_readl(HPET_COUNTER);
744 }
745 #endif
746
747 static struct clocksource clocksource_hpet = {
748 .name = "hpet",
749 .rating = 250,
750 .read = read_hpet,
751 .mask = HPET_MASK,
752 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
753 .resume = hpet_resume_counter,
754 };
755
756 /*
757 * AMD SB700 based systems with spread spectrum enabled use a SMM based
758 * HPET emulation to provide proper frequency setting.
759 *
760 * On such systems the SMM code is initialized with the first HPET register
761 * access and takes some time to complete. During this time the config
762 * register reads 0xffffffff. We check for max 1000 loops whether the
763 * config register reads a non-0xffffffff value to make sure that the
764 * HPET is up and running before we proceed any further.
765 *
766 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
767 *
768 * On non-SB700 based machines this check is only done once and has no
769 * side effects.
770 */
hpet_cfg_working(void)771 static bool __init hpet_cfg_working(void)
772 {
773 int i;
774
775 for (i = 0; i < 1000; i++) {
776 if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
777 return true;
778 }
779
780 pr_warn("Config register invalid. Disabling HPET\n");
781 return false;
782 }
783
hpet_counting(void)784 static bool __init hpet_counting(void)
785 {
786 u64 start, now, t1;
787
788 hpet_restart_counter();
789
790 t1 = hpet_readl(HPET_COUNTER);
791 start = rdtsc();
792
793 /*
794 * We don't know the TSC frequency yet, but waiting for
795 * 200000 TSC cycles is safe:
796 * 4 GHz == 50us
797 * 1 GHz == 200us
798 */
799 do {
800 if (t1 != hpet_readl(HPET_COUNTER))
801 return true;
802 now = rdtsc();
803 } while ((now - start) < 200000UL);
804
805 pr_warn("Counter not counting. HPET disabled\n");
806 return false;
807 }
808
809 /**
810 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
811 */
hpet_enable(void)812 int __init hpet_enable(void)
813 {
814 u32 hpet_period, cfg, id, irq;
815 unsigned int i, channels;
816 struct hpet_channel *hc;
817 u64 freq;
818
819 if (!is_hpet_capable())
820 return 0;
821
822 hpet_set_mapping();
823 if (!hpet_virt_address)
824 return 0;
825
826 /* Validate that the config register is working */
827 if (!hpet_cfg_working())
828 goto out_nohpet;
829
830 /*
831 * Read the period and check for a sane value:
832 */
833 hpet_period = hpet_readl(HPET_PERIOD);
834 if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
835 goto out_nohpet;
836
837 /* The period is a femtoseconds value. Convert it to a frequency. */
838 freq = FSEC_PER_SEC;
839 do_div(freq, hpet_period);
840 hpet_freq = freq;
841
842 /*
843 * Read the HPET ID register to retrieve the IRQ routing
844 * information and the number of channels
845 */
846 id = hpet_readl(HPET_ID);
847 hpet_print_config();
848
849 /* This is the HPET channel number which is zero based */
850 channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
851
852 /*
853 * The legacy routing mode needs at least two channels, tick timer
854 * and the rtc emulation channel.
855 */
856 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
857 goto out_nohpet;
858
859 hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
860 if (!hc) {
861 pr_warn("Disabling HPET.\n");
862 goto out_nohpet;
863 }
864 hpet_base.channels = hc;
865 hpet_base.nr_channels = channels;
866
867 /* Read, store and sanitize the global configuration */
868 cfg = hpet_readl(HPET_CFG);
869 hpet_base.boot_cfg = cfg;
870 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
871 hpet_writel(cfg, HPET_CFG);
872 if (cfg)
873 pr_warn("Global config: Unknown bits %#x\n", cfg);
874
875 /* Read, store and sanitize the per channel configuration */
876 for (i = 0; i < channels; i++, hc++) {
877 hc->num = i;
878
879 cfg = hpet_readl(HPET_Tn_CFG(i));
880 hc->boot_cfg = cfg;
881 irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
882 hc->irq = irq;
883
884 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
885 hpet_writel(cfg, HPET_Tn_CFG(i));
886
887 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
888 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
889 | HPET_TN_FSB | HPET_TN_FSB_CAP);
890 if (cfg)
891 pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
892 }
893 hpet_print_config();
894
895 /*
896 * Validate that the counter is counting. This needs to be done
897 * after sanitizing the config registers to properly deal with
898 * force enabled HPETs.
899 */
900 if (!hpet_counting())
901 goto out_nohpet;
902
903 clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
904
905 if (id & HPET_ID_LEGSUP) {
906 hpet_legacy_clockevent_register(&hpet_base.channels[0]);
907 hpet_base.channels[0].mode = HPET_MODE_LEGACY;
908 if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
909 hpet_base.channels[1].mode = HPET_MODE_LEGACY;
910 return 1;
911 }
912 return 0;
913
914 out_nohpet:
915 kfree(hpet_base.channels);
916 hpet_base.channels = NULL;
917 hpet_base.nr_channels = 0;
918 hpet_clear_mapping();
919 hpet_address = 0;
920 return 0;
921 }
922
923 /*
924 * The late initialization runs after the PCI quirks have been invoked
925 * which might have detected a system on which the HPET can be enforced.
926 *
927 * Also, the MSI machinery is not working yet when the HPET is initialized
928 * early.
929 *
930 * If the HPET is enabled, then:
931 *
932 * 1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
933 * 2) Reserve up to num_possible_cpus() channels as per CPU clockevents
934 * 3) Setup /dev/hpet if CONFIG_HPET=y
935 * 4) Register hotplug callbacks when clockevents are available
936 */
hpet_late_init(void)937 static __init int hpet_late_init(void)
938 {
939 int ret;
940
941 if (!hpet_address) {
942 if (!force_hpet_address)
943 return -ENODEV;
944
945 hpet_address = force_hpet_address;
946 hpet_enable();
947 }
948
949 if (!hpet_virt_address)
950 return -ENODEV;
951
952 hpet_select_device_channel();
953 hpet_select_clockevents();
954 hpet_reserve_platform_timers();
955 hpet_print_config();
956
957 if (!hpet_base.nr_clockevents)
958 return 0;
959
960 ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
961 hpet_cpuhp_online, NULL);
962 if (ret)
963 return ret;
964 ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
965 hpet_cpuhp_dead);
966 if (ret)
967 goto err_cpuhp;
968 return 0;
969
970 err_cpuhp:
971 cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
972 return ret;
973 }
974 fs_initcall(hpet_late_init);
975
hpet_disable(void)976 void hpet_disable(void)
977 {
978 unsigned int i;
979 u32 cfg;
980
981 if (!is_hpet_capable() || !hpet_virt_address)
982 return;
983
984 /* Restore boot configuration with the enable bit cleared */
985 cfg = hpet_base.boot_cfg;
986 cfg &= ~HPET_CFG_ENABLE;
987 hpet_writel(cfg, HPET_CFG);
988
989 /* Restore the channel boot configuration */
990 for (i = 0; i < hpet_base.nr_channels; i++)
991 hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
992
993 /* If the HPET was enabled at boot time, reenable it */
994 if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
995 hpet_writel(hpet_base.boot_cfg, HPET_CFG);
996 }
997
998 #ifdef CONFIG_HPET_EMULATE_RTC
999
1000 /*
1001 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1002 * is enabled, we support RTC interrupt functionality in software.
1003 *
1004 * RTC has 3 kinds of interrupts:
1005 *
1006 * 1) Update Interrupt - generate an interrupt, every second, when the
1007 * RTC clock is updated
1008 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1009 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1010 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1011 *
1012 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1013 * DEFAULT_RTC_INT_FREQ.
1014 *
1015 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1016 *
1017 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1018 * if it's higher.
1019 */
1020 #include <linux/mc146818rtc.h>
1021 #include <linux/rtc.h>
1022
1023 #define DEFAULT_RTC_INT_FREQ 64
1024 #define DEFAULT_RTC_SHIFT 6
1025 #define RTC_NUM_INTS 1
1026
1027 static unsigned long hpet_rtc_flags;
1028 static int hpet_prev_update_sec;
1029 static struct rtc_time hpet_alarm_time;
1030 static unsigned long hpet_pie_count;
1031 static u32 hpet_t1_cmp;
1032 static u32 hpet_default_delta;
1033 static u32 hpet_pie_delta;
1034 static unsigned long hpet_pie_limit;
1035
1036 static rtc_irq_handler irq_handler;
1037
1038 /*
1039 * Check that the HPET counter c1 is ahead of c2
1040 */
hpet_cnt_ahead(u32 c1,u32 c2)1041 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1042 {
1043 return (s32)(c2 - c1) < 0;
1044 }
1045
1046 /*
1047 * Registers a IRQ handler.
1048 */
hpet_register_irq_handler(rtc_irq_handler handler)1049 int hpet_register_irq_handler(rtc_irq_handler handler)
1050 {
1051 if (!is_hpet_enabled())
1052 return -ENODEV;
1053 if (irq_handler)
1054 return -EBUSY;
1055
1056 irq_handler = handler;
1057
1058 return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1061
1062 /*
1063 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1064 * and does cleanup.
1065 */
hpet_unregister_irq_handler(rtc_irq_handler handler)1066 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1067 {
1068 if (!is_hpet_enabled())
1069 return;
1070
1071 irq_handler = NULL;
1072 hpet_rtc_flags = 0;
1073 }
1074 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1075
1076 /*
1077 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1078 * is not supported by all HPET implementations for channel 1.
1079 *
1080 * hpet_rtc_timer_init() is called when the rtc is initialized.
1081 */
hpet_rtc_timer_init(void)1082 int hpet_rtc_timer_init(void)
1083 {
1084 unsigned int cfg, cnt, delta;
1085 unsigned long flags;
1086
1087 if (!is_hpet_enabled())
1088 return 0;
1089
1090 if (!hpet_default_delta) {
1091 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1092 uint64_t clc;
1093
1094 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1095 clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1096 hpet_default_delta = clc;
1097 }
1098
1099 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1100 delta = hpet_default_delta;
1101 else
1102 delta = hpet_pie_delta;
1103
1104 local_irq_save(flags);
1105
1106 cnt = delta + hpet_readl(HPET_COUNTER);
1107 hpet_writel(cnt, HPET_T1_CMP);
1108 hpet_t1_cmp = cnt;
1109
1110 cfg = hpet_readl(HPET_T1_CFG);
1111 cfg &= ~HPET_TN_PERIODIC;
1112 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1113 hpet_writel(cfg, HPET_T1_CFG);
1114
1115 local_irq_restore(flags);
1116
1117 return 1;
1118 }
1119 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1120
hpet_disable_rtc_channel(void)1121 static void hpet_disable_rtc_channel(void)
1122 {
1123 u32 cfg = hpet_readl(HPET_T1_CFG);
1124
1125 cfg &= ~HPET_TN_ENABLE;
1126 hpet_writel(cfg, HPET_T1_CFG);
1127 }
1128
1129 /*
1130 * The functions below are called from rtc driver.
1131 * Return 0 if HPET is not being used.
1132 * Otherwise do the necessary changes and return 1.
1133 */
hpet_mask_rtc_irq_bit(unsigned long bit_mask)1134 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1135 {
1136 if (!is_hpet_enabled())
1137 return 0;
1138
1139 hpet_rtc_flags &= ~bit_mask;
1140 if (unlikely(!hpet_rtc_flags))
1141 hpet_disable_rtc_channel();
1142
1143 return 1;
1144 }
1145 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1146
hpet_set_rtc_irq_bit(unsigned long bit_mask)1147 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1148 {
1149 unsigned long oldbits = hpet_rtc_flags;
1150
1151 if (!is_hpet_enabled())
1152 return 0;
1153
1154 hpet_rtc_flags |= bit_mask;
1155
1156 if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1157 hpet_prev_update_sec = -1;
1158
1159 if (!oldbits)
1160 hpet_rtc_timer_init();
1161
1162 return 1;
1163 }
1164 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1165
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)1166 int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1167 {
1168 if (!is_hpet_enabled())
1169 return 0;
1170
1171 hpet_alarm_time.tm_hour = hrs;
1172 hpet_alarm_time.tm_min = min;
1173 hpet_alarm_time.tm_sec = sec;
1174
1175 return 1;
1176 }
1177 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1178
hpet_set_periodic_freq(unsigned long freq)1179 int hpet_set_periodic_freq(unsigned long freq)
1180 {
1181 uint64_t clc;
1182
1183 if (!is_hpet_enabled())
1184 return 0;
1185
1186 if (freq <= DEFAULT_RTC_INT_FREQ) {
1187 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1188 } else {
1189 struct clock_event_device *evt = &hpet_base.channels[0].evt;
1190
1191 clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1192 do_div(clc, freq);
1193 clc >>= evt->shift;
1194 hpet_pie_delta = clc;
1195 hpet_pie_limit = 0;
1196 }
1197
1198 return 1;
1199 }
1200 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1201
hpet_rtc_dropped_irq(void)1202 int hpet_rtc_dropped_irq(void)
1203 {
1204 return is_hpet_enabled();
1205 }
1206 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1207
hpet_rtc_timer_reinit(void)1208 static void hpet_rtc_timer_reinit(void)
1209 {
1210 unsigned int delta;
1211 int lost_ints = -1;
1212
1213 if (unlikely(!hpet_rtc_flags))
1214 hpet_disable_rtc_channel();
1215
1216 if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1217 delta = hpet_default_delta;
1218 else
1219 delta = hpet_pie_delta;
1220
1221 /*
1222 * Increment the comparator value until we are ahead of the
1223 * current count.
1224 */
1225 do {
1226 hpet_t1_cmp += delta;
1227 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1228 lost_ints++;
1229 } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1230
1231 if (lost_ints) {
1232 if (hpet_rtc_flags & RTC_PIE)
1233 hpet_pie_count += lost_ints;
1234 if (printk_ratelimit())
1235 pr_warn("Lost %d RTC interrupts\n", lost_ints);
1236 }
1237 }
1238
hpet_rtc_interrupt(int irq,void * dev_id)1239 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1240 {
1241 struct rtc_time curr_time;
1242 unsigned long rtc_int_flag = 0;
1243
1244 hpet_rtc_timer_reinit();
1245 memset(&curr_time, 0, sizeof(struct rtc_time));
1246
1247 if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1248 mc146818_get_time(&curr_time);
1249
1250 if (hpet_rtc_flags & RTC_UIE &&
1251 curr_time.tm_sec != hpet_prev_update_sec) {
1252 if (hpet_prev_update_sec >= 0)
1253 rtc_int_flag = RTC_UF;
1254 hpet_prev_update_sec = curr_time.tm_sec;
1255 }
1256
1257 if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
1258 rtc_int_flag |= RTC_PF;
1259 hpet_pie_count = 0;
1260 }
1261
1262 if (hpet_rtc_flags & RTC_AIE &&
1263 (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1264 (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1265 (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1266 rtc_int_flag |= RTC_AF;
1267
1268 if (rtc_int_flag) {
1269 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1270 if (irq_handler)
1271 irq_handler(rtc_int_flag, dev_id);
1272 }
1273 return IRQ_HANDLED;
1274 }
1275 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1276 #endif
1277