1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_heartbeat.h"
118 #include "intel_engine_pm.h"
119 #include "intel_engine_stats.h"
120 #include "intel_execlists_submission.h"
121 #include "intel_gt.h"
122 #include "intel_gt_irq.h"
123 #include "intel_gt_pm.h"
124 #include "intel_gt_requests.h"
125 #include "intel_lrc.h"
126 #include "intel_lrc_reg.h"
127 #include "intel_mocs.h"
128 #include "intel_reset.h"
129 #include "intel_ring.h"
130 #include "intel_workarounds.h"
131 #include "shmem_utils.h"
132 
133 #define RING_EXECLIST_QFULL		(1 << 0x2)
134 #define RING_EXECLIST1_VALID		(1 << 0x3)
135 #define RING_EXECLIST0_VALID		(1 << 0x4)
136 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
137 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
138 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
139 
140 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
141 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
142 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
143 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
144 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
145 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
146 
147 #define GEN8_CTX_STATUS_COMPLETED_MASK \
148 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
149 
150 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
151 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
152 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
153 #define GEN12_IDLE_CTX_ID		0x7FF
154 #define GEN12_CSB_CTX_VALID(csb_dw) \
155 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
156 
157 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
158 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
159 #define XEHP_IDLE_CTX_ID			0xFFFF
160 #define XEHP_CSB_CTX_VALID(csb_dw) \
161 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
162 
163 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
164 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
165 
166 struct virtual_engine {
167 	struct intel_engine_cs base;
168 	struct intel_context context;
169 	struct rcu_work rcu;
170 
171 	/*
172 	 * We allow only a single request through the virtual engine at a time
173 	 * (each request in the timeline waits for the completion fence of
174 	 * the previous before being submitted). By restricting ourselves to
175 	 * only submitting a single request, each request is placed on to a
176 	 * physical to maximise load spreading (by virtue of the late greedy
177 	 * scheduling -- each real engine takes the next available request
178 	 * upon idling).
179 	 */
180 	struct i915_request *request;
181 
182 	/*
183 	 * We keep a rbtree of available virtual engines inside each physical
184 	 * engine, sorted by priority. Here we preallocate the nodes we need
185 	 * for the virtual engine, indexed by physical_engine->id.
186 	 */
187 	struct ve_node {
188 		struct rb_node rb;
189 		int prio;
190 	} nodes[I915_NUM_ENGINES];
191 
192 	/* And finally, which physical engines this virtual engine maps onto. */
193 	unsigned int num_siblings;
194 	struct intel_engine_cs *siblings[];
195 };
196 
to_virtual_engine(struct intel_engine_cs * engine)197 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
198 {
199 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
200 	return container_of(engine, struct virtual_engine, base);
201 }
202 
203 static struct intel_context *
204 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count);
205 
206 static struct i915_request *
__active_request(const struct intel_timeline * const tl,struct i915_request * rq,int error)207 __active_request(const struct intel_timeline * const tl,
208 		 struct i915_request *rq,
209 		 int error)
210 {
211 	struct i915_request *active = rq;
212 
213 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
214 		if (__i915_request_is_complete(rq))
215 			break;
216 
217 		if (error) {
218 			i915_request_set_error_once(rq, error);
219 			__i915_request_skip(rq);
220 		}
221 		active = rq;
222 	}
223 
224 	return active;
225 }
226 
227 static struct i915_request *
active_request(const struct intel_timeline * const tl,struct i915_request * rq)228 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
229 {
230 	return __active_request(tl, rq, 0);
231 }
232 
ring_set_paused(const struct intel_engine_cs * engine,int state)233 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
234 {
235 	/*
236 	 * We inspect HWS_PREEMPT with a semaphore inside
237 	 * engine->emit_fini_breadcrumb. If the dword is true,
238 	 * the ring is paused as the semaphore will busywait
239 	 * until the dword is false.
240 	 */
241 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
242 	if (state)
243 		wmb();
244 }
245 
to_priolist(struct rb_node * rb)246 static struct i915_priolist *to_priolist(struct rb_node *rb)
247 {
248 	return rb_entry(rb, struct i915_priolist, node);
249 }
250 
rq_prio(const struct i915_request * rq)251 static int rq_prio(const struct i915_request *rq)
252 {
253 	return READ_ONCE(rq->sched.attr.priority);
254 }
255 
effective_prio(const struct i915_request * rq)256 static int effective_prio(const struct i915_request *rq)
257 {
258 	int prio = rq_prio(rq);
259 
260 	/*
261 	 * If this request is special and must not be interrupted at any
262 	 * cost, so be it. Note we are only checking the most recent request
263 	 * in the context and so may be masking an earlier vip request. It
264 	 * is hoped that under the conditions where nopreempt is used, this
265 	 * will not matter (i.e. all requests to that context will be
266 	 * nopreempt for as long as desired).
267 	 */
268 	if (i915_request_has_nopreempt(rq))
269 		prio = I915_PRIORITY_UNPREEMPTABLE;
270 
271 	return prio;
272 }
273 
queue_prio(const struct i915_sched_engine * sched_engine)274 static int queue_prio(const struct i915_sched_engine *sched_engine)
275 {
276 	struct rb_node *rb;
277 
278 	rb = rb_first_cached(&sched_engine->queue);
279 	if (!rb)
280 		return INT_MIN;
281 
282 	return to_priolist(rb)->priority;
283 }
284 
virtual_prio(const struct intel_engine_execlists * el)285 static int virtual_prio(const struct intel_engine_execlists *el)
286 {
287 	struct rb_node *rb = rb_first_cached(&el->virtual);
288 
289 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
290 }
291 
need_preempt(const struct intel_engine_cs * engine,const struct i915_request * rq)292 static bool need_preempt(const struct intel_engine_cs *engine,
293 			 const struct i915_request *rq)
294 {
295 	int last_prio;
296 
297 	if (!intel_engine_has_semaphores(engine))
298 		return false;
299 
300 	/*
301 	 * Check if the current priority hint merits a preemption attempt.
302 	 *
303 	 * We record the highest value priority we saw during rescheduling
304 	 * prior to this dequeue, therefore we know that if it is strictly
305 	 * less than the current tail of ESLP[0], we do not need to force
306 	 * a preempt-to-idle cycle.
307 	 *
308 	 * However, the priority hint is a mere hint that we may need to
309 	 * preempt. If that hint is stale or we may be trying to preempt
310 	 * ourselves, ignore the request.
311 	 *
312 	 * More naturally we would write
313 	 *      prio >= max(0, last);
314 	 * except that we wish to prevent triggering preemption at the same
315 	 * priority level: the task that is running should remain running
316 	 * to preserve FIFO ordering of dependencies.
317 	 */
318 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
319 	if (engine->sched_engine->queue_priority_hint <= last_prio)
320 		return false;
321 
322 	/*
323 	 * Check against the first request in ELSP[1], it will, thanks to the
324 	 * power of PI, be the highest priority of that context.
325 	 */
326 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
327 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
328 		return true;
329 
330 	/*
331 	 * If the inflight context did not trigger the preemption, then maybe
332 	 * it was the set of queued requests? Pick the highest priority in
333 	 * the queue (the first active priolist) and see if it deserves to be
334 	 * running instead of ELSP[0].
335 	 *
336 	 * The highest priority request in the queue can not be either
337 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
338 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
339 	 */
340 	return max(virtual_prio(&engine->execlists),
341 		   queue_prio(engine->sched_engine)) > last_prio;
342 }
343 
344 __maybe_unused static bool
assert_priority_queue(const struct i915_request * prev,const struct i915_request * next)345 assert_priority_queue(const struct i915_request *prev,
346 		      const struct i915_request *next)
347 {
348 	/*
349 	 * Without preemption, the prev may refer to the still active element
350 	 * which we refuse to let go.
351 	 *
352 	 * Even with preemption, there are times when we think it is better not
353 	 * to preempt and leave an ostensibly lower priority request in flight.
354 	 */
355 	if (i915_request_is_active(prev))
356 		return true;
357 
358 	return rq_prio(prev) >= rq_prio(next);
359 }
360 
361 static struct i915_request *
__unwind_incomplete_requests(struct intel_engine_cs * engine)362 __unwind_incomplete_requests(struct intel_engine_cs *engine)
363 {
364 	struct i915_request *rq, *rn, *active = NULL;
365 	struct list_head *pl;
366 	int prio = I915_PRIORITY_INVALID;
367 
368 	lockdep_assert_held(&engine->sched_engine->lock);
369 
370 	list_for_each_entry_safe_reverse(rq, rn,
371 					 &engine->sched_engine->requests,
372 					 sched.link) {
373 		if (__i915_request_is_complete(rq)) {
374 			list_del_init(&rq->sched.link);
375 			continue;
376 		}
377 
378 		__i915_request_unsubmit(rq);
379 
380 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
381 		if (rq_prio(rq) != prio) {
382 			prio = rq_prio(rq);
383 			pl = i915_sched_lookup_priolist(engine->sched_engine,
384 							prio);
385 		}
386 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
387 
388 		list_move(&rq->sched.link, pl);
389 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
390 
391 		/* Check in case we rollback so far we wrap [size/2] */
392 		if (intel_ring_direction(rq->ring,
393 					 rq->tail,
394 					 rq->ring->tail + 8) > 0)
395 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
396 
397 		active = rq;
398 	}
399 
400 	return active;
401 }
402 
403 struct i915_request *
execlists_unwind_incomplete_requests(struct intel_engine_execlists * execlists)404 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
405 {
406 	struct intel_engine_cs *engine =
407 		container_of(execlists, typeof(*engine), execlists);
408 
409 	return __unwind_incomplete_requests(engine);
410 }
411 
412 static void
execlists_context_status_change(struct i915_request * rq,unsigned long status)413 execlists_context_status_change(struct i915_request *rq, unsigned long status)
414 {
415 	/*
416 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
417 	 * The compiler should eliminate this function as dead-code.
418 	 */
419 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
420 		return;
421 
422 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
423 				   status, rq);
424 }
425 
reset_active(struct i915_request * rq,struct intel_engine_cs * engine)426 static void reset_active(struct i915_request *rq,
427 			 struct intel_engine_cs *engine)
428 {
429 	struct intel_context * const ce = rq->context;
430 	u32 head;
431 
432 	/*
433 	 * The executing context has been cancelled. We want to prevent
434 	 * further execution along this context and propagate the error on
435 	 * to anything depending on its results.
436 	 *
437 	 * In __i915_request_submit(), we apply the -EIO and remove the
438 	 * requests' payloads for any banned requests. But first, we must
439 	 * rewind the context back to the start of the incomplete request so
440 	 * that we do not jump back into the middle of the batch.
441 	 *
442 	 * We preserve the breadcrumbs and semaphores of the incomplete
443 	 * requests so that inter-timeline dependencies (i.e other timelines)
444 	 * remain correctly ordered. And we defer to __i915_request_submit()
445 	 * so that all asynchronous waits are correctly handled.
446 	 */
447 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
448 		     rq->fence.context, rq->fence.seqno);
449 
450 	/* On resubmission of the active request, payload will be scrubbed */
451 	if (__i915_request_is_complete(rq))
452 		head = rq->tail;
453 	else
454 		head = __active_request(ce->timeline, rq, -EIO)->head;
455 	head = intel_ring_wrap(ce->ring, head);
456 
457 	/* Scrub the context image to prevent replaying the previous batch */
458 	lrc_init_regs(ce, engine, true);
459 
460 	/* We've switched away, so this should be a no-op, but intent matters */
461 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
462 }
463 
bad_request(const struct i915_request * rq)464 static bool bad_request(const struct i915_request *rq)
465 {
466 	return rq->fence.error && i915_request_started(rq);
467 }
468 
469 static struct intel_engine_cs *
__execlists_schedule_in(struct i915_request * rq)470 __execlists_schedule_in(struct i915_request *rq)
471 {
472 	struct intel_engine_cs * const engine = rq->engine;
473 	struct intel_context * const ce = rq->context;
474 
475 	intel_context_get(ce);
476 
477 	if (unlikely(intel_context_is_closed(ce) &&
478 		     !intel_engine_has_heartbeat(engine)))
479 		intel_context_set_banned(ce);
480 
481 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
482 		reset_active(rq, engine);
483 
484 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
485 		lrc_check_regs(ce, engine, "before");
486 
487 	if (ce->tag) {
488 		/* Use a fixed tag for OA and friends */
489 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
490 		ce->lrc.ccid = ce->tag;
491 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
492 		/* We don't need a strict matching tag, just different values */
493 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
494 
495 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
496 		clear_bit(tag - 1, &engine->context_tag);
497 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
498 
499 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
500 
501 	} else {
502 		/* We don't need a strict matching tag, just different values */
503 		unsigned int tag = __ffs(engine->context_tag);
504 
505 		GEM_BUG_ON(tag >= BITS_PER_LONG);
506 		__clear_bit(tag, &engine->context_tag);
507 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
508 
509 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
510 	}
511 
512 	ce->lrc.ccid |= engine->execlists.ccid;
513 
514 	__intel_gt_pm_get(engine->gt);
515 	if (engine->fw_domain && !engine->fw_active++)
516 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
517 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
518 	intel_engine_context_in(engine);
519 
520 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
521 
522 	return engine;
523 }
524 
execlists_schedule_in(struct i915_request * rq,int idx)525 static void execlists_schedule_in(struct i915_request *rq, int idx)
526 {
527 	struct intel_context * const ce = rq->context;
528 	struct intel_engine_cs *old;
529 
530 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
531 	trace_i915_request_in(rq, idx);
532 
533 	old = ce->inflight;
534 	if (!old)
535 		old = __execlists_schedule_in(rq);
536 	WRITE_ONCE(ce->inflight, ptr_inc(old));
537 
538 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
539 }
540 
541 static void
resubmit_virtual_request(struct i915_request * rq,struct virtual_engine * ve)542 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
543 {
544 	struct intel_engine_cs *engine = rq->engine;
545 
546 	spin_lock_irq(&engine->sched_engine->lock);
547 
548 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
549 	WRITE_ONCE(rq->engine, &ve->base);
550 	ve->base.submit_request(rq);
551 
552 	spin_unlock_irq(&engine->sched_engine->lock);
553 }
554 
kick_siblings(struct i915_request * rq,struct intel_context * ce)555 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
556 {
557 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
558 	struct intel_engine_cs *engine = rq->engine;
559 
560 	/*
561 	 * After this point, the rq may be transferred to a new sibling, so
562 	 * before we clear ce->inflight make sure that the context has been
563 	 * removed from the b->signalers and furthermore we need to make sure
564 	 * that the concurrent iterator in signal_irq_work is no longer
565 	 * following ce->signal_link.
566 	 */
567 	if (!list_empty(&ce->signals))
568 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
569 
570 	/*
571 	 * This engine is now too busy to run this virtual request, so
572 	 * see if we can find an alternative engine for it to execute on.
573 	 * Once a request has become bonded to this engine, we treat it the
574 	 * same as other native request.
575 	 */
576 	if (i915_request_in_priority_queue(rq) &&
577 	    rq->execution_mask != engine->mask)
578 		resubmit_virtual_request(rq, ve);
579 
580 	if (READ_ONCE(ve->request))
581 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
582 }
583 
__execlists_schedule_out(struct i915_request * const rq,struct intel_context * const ce)584 static void __execlists_schedule_out(struct i915_request * const rq,
585 				     struct intel_context * const ce)
586 {
587 	struct intel_engine_cs * const engine = rq->engine;
588 	unsigned int ccid;
589 
590 	/*
591 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
592 	 * schedule_out can race with schedule_in meaning that we should
593 	 * refrain from doing non-trivial work here.
594 	 */
595 
596 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
597 	GEM_BUG_ON(ce->inflight != engine);
598 
599 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
600 		lrc_check_regs(ce, engine, "after");
601 
602 	/*
603 	 * If we have just completed this context, the engine may now be
604 	 * idle and we want to re-enter powersaving.
605 	 */
606 	if (intel_timeline_is_last(ce->timeline, rq) &&
607 	    __i915_request_is_complete(rq))
608 		intel_engine_add_retire(engine, ce->timeline);
609 
610 	ccid = ce->lrc.ccid;
611 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
612 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
613 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
614 	} else {
615 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
616 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
617 	}
618 
619 	if (ccid < BITS_PER_LONG) {
620 		GEM_BUG_ON(ccid == 0);
621 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
622 		__set_bit(ccid - 1, &engine->context_tag);
623 	}
624 
625 	lrc_update_runtime(ce);
626 	intel_engine_context_out(engine);
627 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
628 	if (engine->fw_domain && !--engine->fw_active)
629 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
630 	intel_gt_pm_put_async(engine->gt);
631 
632 	/*
633 	 * If this is part of a virtual engine, its next request may
634 	 * have been blocked waiting for access to the active context.
635 	 * We have to kick all the siblings again in case we need to
636 	 * switch (e.g. the next request is not runnable on this
637 	 * engine). Hopefully, we will already have submitted the next
638 	 * request before the tasklet runs and do not need to rebuild
639 	 * each virtual tree and kick everyone again.
640 	 */
641 	if (ce->engine != engine)
642 		kick_siblings(rq, ce);
643 
644 	WRITE_ONCE(ce->inflight, NULL);
645 	intel_context_put(ce);
646 }
647 
execlists_schedule_out(struct i915_request * rq)648 static inline void execlists_schedule_out(struct i915_request *rq)
649 {
650 	struct intel_context * const ce = rq->context;
651 
652 	trace_i915_request_out(rq);
653 
654 	GEM_BUG_ON(!ce->inflight);
655 	ce->inflight = ptr_dec(ce->inflight);
656 	if (!__intel_context_inflight_count(ce->inflight))
657 		__execlists_schedule_out(rq, ce);
658 
659 	i915_request_put(rq);
660 }
661 
execlists_update_context(struct i915_request * rq)662 static u64 execlists_update_context(struct i915_request *rq)
663 {
664 	struct intel_context *ce = rq->context;
665 	u64 desc = ce->lrc.desc;
666 	u32 tail, prev;
667 
668 	/*
669 	 * WaIdleLiteRestore:bdw,skl
670 	 *
671 	 * We should never submit the context with the same RING_TAIL twice
672 	 * just in case we submit an empty ring, which confuses the HW.
673 	 *
674 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
675 	 * the normal request to be able to always advance the RING_TAIL on
676 	 * subsequent resubmissions (for lite restore). Should that fail us,
677 	 * and we try and submit the same tail again, force the context
678 	 * reload.
679 	 *
680 	 * If we need to return to a preempted context, we need to skip the
681 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
682 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
683 	 * an earlier request.
684 	 */
685 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
686 	prev = rq->ring->tail;
687 	tail = intel_ring_set_tail(rq->ring, rq->tail);
688 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
689 		desc |= CTX_DESC_FORCE_RESTORE;
690 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
691 	rq->tail = rq->wa_tail;
692 
693 	/*
694 	 * Make sure the context image is complete before we submit it to HW.
695 	 *
696 	 * Ostensibly, writes (including the WCB) should be flushed prior to
697 	 * an uncached write such as our mmio register access, the empirical
698 	 * evidence (esp. on Braswell) suggests that the WC write into memory
699 	 * may not be visible to the HW prior to the completion of the UC
700 	 * register write and that we may begin execution from the context
701 	 * before its image is complete leading to invalid PD chasing.
702 	 */
703 	wmb();
704 
705 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
706 	return desc;
707 }
708 
write_desc(struct intel_engine_execlists * execlists,u64 desc,u32 port)709 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
710 {
711 	if (execlists->ctrl_reg) {
712 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
713 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
714 	} else {
715 		writel(upper_32_bits(desc), execlists->submit_reg);
716 		writel(lower_32_bits(desc), execlists->submit_reg);
717 	}
718 }
719 
720 static __maybe_unused char *
dump_port(char * buf,int buflen,const char * prefix,struct i915_request * rq)721 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
722 {
723 	if (!rq)
724 		return "";
725 
726 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
727 		 prefix,
728 		 rq->context->lrc.ccid,
729 		 rq->fence.context, rq->fence.seqno,
730 		 __i915_request_is_complete(rq) ? "!" :
731 		 __i915_request_has_started(rq) ? "*" :
732 		 "",
733 		 rq_prio(rq));
734 
735 	return buf;
736 }
737 
738 static __maybe_unused noinline void
trace_ports(const struct intel_engine_execlists * execlists,const char * msg,struct i915_request * const * ports)739 trace_ports(const struct intel_engine_execlists *execlists,
740 	    const char *msg,
741 	    struct i915_request * const *ports)
742 {
743 	const struct intel_engine_cs *engine =
744 		container_of(execlists, typeof(*engine), execlists);
745 	char __maybe_unused p0[40], p1[40];
746 
747 	if (!ports[0])
748 		return;
749 
750 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
751 		     dump_port(p0, sizeof(p0), "", ports[0]),
752 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
753 }
754 
755 static bool
reset_in_progress(const struct intel_engine_cs * engine)756 reset_in_progress(const struct intel_engine_cs *engine)
757 {
758 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
759 }
760 
761 static __maybe_unused noinline bool
assert_pending_valid(const struct intel_engine_execlists * execlists,const char * msg)762 assert_pending_valid(const struct intel_engine_execlists *execlists,
763 		     const char *msg)
764 {
765 	struct intel_engine_cs *engine =
766 		container_of(execlists, typeof(*engine), execlists);
767 	struct i915_request * const *port, *rq, *prev = NULL;
768 	struct intel_context *ce = NULL;
769 	u32 ccid = -1;
770 
771 	trace_ports(execlists, msg, execlists->pending);
772 
773 	/* We may be messing around with the lists during reset, lalala */
774 	if (reset_in_progress(engine))
775 		return true;
776 
777 	if (!execlists->pending[0]) {
778 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
779 			      engine->name);
780 		return false;
781 	}
782 
783 	if (execlists->pending[execlists_num_ports(execlists)]) {
784 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
785 			      engine->name, execlists_num_ports(execlists));
786 		return false;
787 	}
788 
789 	for (port = execlists->pending; (rq = *port); port++) {
790 		unsigned long flags;
791 		bool ok = true;
792 
793 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
794 		GEM_BUG_ON(!i915_request_is_active(rq));
795 
796 		if (ce == rq->context) {
797 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
798 				      engine->name,
799 				      ce->timeline->fence_context,
800 				      port - execlists->pending);
801 			return false;
802 		}
803 		ce = rq->context;
804 
805 		if (ccid == ce->lrc.ccid) {
806 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
807 				      engine->name,
808 				      ccid, ce->timeline->fence_context,
809 				      port - execlists->pending);
810 			return false;
811 		}
812 		ccid = ce->lrc.ccid;
813 
814 		/*
815 		 * Sentinels are supposed to be the last request so they flush
816 		 * the current execution off the HW. Check that they are the only
817 		 * request in the pending submission.
818 		 *
819 		 * NB: Due to the async nature of preempt-to-busy and request
820 		 * cancellation we need to handle the case where request
821 		 * becomes a sentinel in parallel to CSB processing.
822 		 */
823 		if (prev && i915_request_has_sentinel(prev) &&
824 		    !READ_ONCE(prev->fence.error)) {
825 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
826 				      engine->name,
827 				      ce->timeline->fence_context,
828 				      port - execlists->pending);
829 			return false;
830 		}
831 		prev = rq;
832 
833 		/*
834 		 * We want virtual requests to only be in the first slot so
835 		 * that they are never stuck behind a hog and can be immediately
836 		 * transferred onto the next idle engine.
837 		 */
838 		if (rq->execution_mask != engine->mask &&
839 		    port != execlists->pending) {
840 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
841 				      engine->name,
842 				      ce->timeline->fence_context,
843 				      port - execlists->pending);
844 			return false;
845 		}
846 
847 		/* Hold tightly onto the lock to prevent concurrent retires! */
848 		if (!spin_trylock_irqsave(&rq->lock, flags))
849 			continue;
850 
851 		if (__i915_request_is_complete(rq))
852 			goto unlock;
853 
854 		if (i915_active_is_idle(&ce->active) &&
855 		    !intel_context_is_barrier(ce)) {
856 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
857 				      engine->name,
858 				      ce->timeline->fence_context,
859 				      port - execlists->pending);
860 			ok = false;
861 			goto unlock;
862 		}
863 
864 		if (!i915_vma_is_pinned(ce->state)) {
865 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
866 				      engine->name,
867 				      ce->timeline->fence_context,
868 				      port - execlists->pending);
869 			ok = false;
870 			goto unlock;
871 		}
872 
873 		if (!i915_vma_is_pinned(ce->ring->vma)) {
874 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
875 				      engine->name,
876 				      ce->timeline->fence_context,
877 				      port - execlists->pending);
878 			ok = false;
879 			goto unlock;
880 		}
881 
882 unlock:
883 		spin_unlock_irqrestore(&rq->lock, flags);
884 		if (!ok)
885 			return false;
886 	}
887 
888 	return ce;
889 }
890 
execlists_submit_ports(struct intel_engine_cs * engine)891 static void execlists_submit_ports(struct intel_engine_cs *engine)
892 {
893 	struct intel_engine_execlists *execlists = &engine->execlists;
894 	unsigned int n;
895 
896 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
897 
898 	/*
899 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
900 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
901 	 * not be relinquished until the device is idle (see
902 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
903 	 * that all ELSP are drained i.e. we have processed the CSB,
904 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
905 	 */
906 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
907 
908 	/*
909 	 * ELSQ note: the submit queue is not cleared after being submitted
910 	 * to the HW so we need to make sure we always clean it up. This is
911 	 * currently ensured by the fact that we always write the same number
912 	 * of elsq entries, keep this in mind before changing the loop below.
913 	 */
914 	for (n = execlists_num_ports(execlists); n--; ) {
915 		struct i915_request *rq = execlists->pending[n];
916 
917 		write_desc(execlists,
918 			   rq ? execlists_update_context(rq) : 0,
919 			   n);
920 	}
921 
922 	/* we need to manually load the submit queue */
923 	if (execlists->ctrl_reg)
924 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
925 }
926 
ctx_single_port_submission(const struct intel_context * ce)927 static bool ctx_single_port_submission(const struct intel_context *ce)
928 {
929 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
930 		intel_context_force_single_submission(ce));
931 }
932 
can_merge_ctx(const struct intel_context * prev,const struct intel_context * next)933 static bool can_merge_ctx(const struct intel_context *prev,
934 			  const struct intel_context *next)
935 {
936 	if (prev != next)
937 		return false;
938 
939 	if (ctx_single_port_submission(prev))
940 		return false;
941 
942 	return true;
943 }
944 
i915_request_flags(const struct i915_request * rq)945 static unsigned long i915_request_flags(const struct i915_request *rq)
946 {
947 	return READ_ONCE(rq->fence.flags);
948 }
949 
can_merge_rq(const struct i915_request * prev,const struct i915_request * next)950 static bool can_merge_rq(const struct i915_request *prev,
951 			 const struct i915_request *next)
952 {
953 	GEM_BUG_ON(prev == next);
954 	GEM_BUG_ON(!assert_priority_queue(prev, next));
955 
956 	/*
957 	 * We do not submit known completed requests. Therefore if the next
958 	 * request is already completed, we can pretend to merge it in
959 	 * with the previous context (and we will skip updating the ELSP
960 	 * and tracking). Thus hopefully keeping the ELSP full with active
961 	 * contexts, despite the best efforts of preempt-to-busy to confuse
962 	 * us.
963 	 */
964 	if (__i915_request_is_complete(next))
965 		return true;
966 
967 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
968 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
969 		      BIT(I915_FENCE_FLAG_SENTINEL))))
970 		return false;
971 
972 	if (!can_merge_ctx(prev->context, next->context))
973 		return false;
974 
975 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
976 	return true;
977 }
978 
virtual_matches(const struct virtual_engine * ve,const struct i915_request * rq,const struct intel_engine_cs * engine)979 static bool virtual_matches(const struct virtual_engine *ve,
980 			    const struct i915_request *rq,
981 			    const struct intel_engine_cs *engine)
982 {
983 	const struct intel_engine_cs *inflight;
984 
985 	if (!rq)
986 		return false;
987 
988 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
989 		return false;
990 
991 	/*
992 	 * We track when the HW has completed saving the context image
993 	 * (i.e. when we have seen the final CS event switching out of
994 	 * the context) and must not overwrite the context image before
995 	 * then. This restricts us to only using the active engine
996 	 * while the previous virtualized request is inflight (so
997 	 * we reuse the register offsets). This is a very small
998 	 * hystersis on the greedy seelction algorithm.
999 	 */
1000 	inflight = intel_context_inflight(&ve->context);
1001 	if (inflight && inflight != engine)
1002 		return false;
1003 
1004 	return true;
1005 }
1006 
1007 static struct virtual_engine *
first_virtual_engine(struct intel_engine_cs * engine)1008 first_virtual_engine(struct intel_engine_cs *engine)
1009 {
1010 	struct intel_engine_execlists *el = &engine->execlists;
1011 	struct rb_node *rb = rb_first_cached(&el->virtual);
1012 
1013 	while (rb) {
1014 		struct virtual_engine *ve =
1015 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1016 		struct i915_request *rq = READ_ONCE(ve->request);
1017 
1018 		/* lazily cleanup after another engine handled rq */
1019 		if (!rq || !virtual_matches(ve, rq, engine)) {
1020 			rb_erase_cached(rb, &el->virtual);
1021 			RB_CLEAR_NODE(rb);
1022 			rb = rb_first_cached(&el->virtual);
1023 			continue;
1024 		}
1025 
1026 		return ve;
1027 	}
1028 
1029 	return NULL;
1030 }
1031 
virtual_xfer_context(struct virtual_engine * ve,struct intel_engine_cs * engine)1032 static void virtual_xfer_context(struct virtual_engine *ve,
1033 				 struct intel_engine_cs *engine)
1034 {
1035 	unsigned int n;
1036 
1037 	if (likely(engine == ve->siblings[0]))
1038 		return;
1039 
1040 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1041 	if (!intel_engine_has_relative_mmio(engine))
1042 		lrc_update_offsets(&ve->context, engine);
1043 
1044 	/*
1045 	 * Move the bound engine to the top of the list for
1046 	 * future execution. We then kick this tasklet first
1047 	 * before checking others, so that we preferentially
1048 	 * reuse this set of bound registers.
1049 	 */
1050 	for (n = 1; n < ve->num_siblings; n++) {
1051 		if (ve->siblings[n] == engine) {
1052 			swap(ve->siblings[n], ve->siblings[0]);
1053 			break;
1054 		}
1055 	}
1056 }
1057 
defer_request(struct i915_request * rq,struct list_head * const pl)1058 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1059 {
1060 	LIST_HEAD(list);
1061 
1062 	/*
1063 	 * We want to move the interrupted request to the back of
1064 	 * the round-robin list (i.e. its priority level), but
1065 	 * in doing so, we must then move all requests that were in
1066 	 * flight and were waiting for the interrupted request to
1067 	 * be run after it again.
1068 	 */
1069 	do {
1070 		struct i915_dependency *p;
1071 
1072 		GEM_BUG_ON(i915_request_is_active(rq));
1073 		list_move_tail(&rq->sched.link, pl);
1074 
1075 		for_each_waiter(p, rq) {
1076 			struct i915_request *w =
1077 				container_of(p->waiter, typeof(*w), sched);
1078 
1079 			if (p->flags & I915_DEPENDENCY_WEAK)
1080 				continue;
1081 
1082 			/* Leave semaphores spinning on the other engines */
1083 			if (w->engine != rq->engine)
1084 				continue;
1085 
1086 			/* No waiter should start before its signaler */
1087 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1088 				   __i915_request_has_started(w) &&
1089 				   !__i915_request_is_complete(rq));
1090 
1091 			if (!i915_request_is_ready(w))
1092 				continue;
1093 
1094 			if (rq_prio(w) < rq_prio(rq))
1095 				continue;
1096 
1097 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1098 			GEM_BUG_ON(i915_request_is_active(w));
1099 			list_move_tail(&w->sched.link, &list);
1100 		}
1101 
1102 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1103 	} while (rq);
1104 }
1105 
defer_active(struct intel_engine_cs * engine)1106 static void defer_active(struct intel_engine_cs *engine)
1107 {
1108 	struct i915_request *rq;
1109 
1110 	rq = __unwind_incomplete_requests(engine);
1111 	if (!rq)
1112 		return;
1113 
1114 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1115 						     rq_prio(rq)));
1116 }
1117 
1118 static bool
timeslice_yield(const struct intel_engine_execlists * el,const struct i915_request * rq)1119 timeslice_yield(const struct intel_engine_execlists *el,
1120 		const struct i915_request *rq)
1121 {
1122 	/*
1123 	 * Once bitten, forever smitten!
1124 	 *
1125 	 * If the active context ever busy-waited on a semaphore,
1126 	 * it will be treated as a hog until the end of its timeslice (i.e.
1127 	 * until it is scheduled out and replaced by a new submission,
1128 	 * possibly even its own lite-restore). The HW only sends an interrupt
1129 	 * on the first miss, and we do know if that semaphore has been
1130 	 * signaled, or even if it is now stuck on another semaphore. Play
1131 	 * safe, yield if it might be stuck -- it will be given a fresh
1132 	 * timeslice in the near future.
1133 	 */
1134 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1135 }
1136 
needs_timeslice(const struct intel_engine_cs * engine,const struct i915_request * rq)1137 static bool needs_timeslice(const struct intel_engine_cs *engine,
1138 			    const struct i915_request *rq)
1139 {
1140 	if (!intel_engine_has_timeslices(engine))
1141 		return false;
1142 
1143 	/* If not currently active, or about to switch, wait for next event */
1144 	if (!rq || __i915_request_is_complete(rq))
1145 		return false;
1146 
1147 	/* We do not need to start the timeslice until after the ACK */
1148 	if (READ_ONCE(engine->execlists.pending[0]))
1149 		return false;
1150 
1151 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1152 	if (!list_is_last_rcu(&rq->sched.link,
1153 			      &engine->sched_engine->requests)) {
1154 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1155 		return true;
1156 	}
1157 
1158 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1159 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1160 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1161 		return true;
1162 	}
1163 
1164 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1165 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1166 		return true;
1167 	}
1168 
1169 	return false;
1170 }
1171 
1172 static bool
timeslice_expired(struct intel_engine_cs * engine,const struct i915_request * rq)1173 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1174 {
1175 	const struct intel_engine_execlists *el = &engine->execlists;
1176 
1177 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1178 		return false;
1179 
1180 	if (!needs_timeslice(engine, rq))
1181 		return false;
1182 
1183 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1184 }
1185 
timeslice(const struct intel_engine_cs * engine)1186 static unsigned long timeslice(const struct intel_engine_cs *engine)
1187 {
1188 	return READ_ONCE(engine->props.timeslice_duration_ms);
1189 }
1190 
start_timeslice(struct intel_engine_cs * engine)1191 static void start_timeslice(struct intel_engine_cs *engine)
1192 {
1193 	struct intel_engine_execlists *el = &engine->execlists;
1194 	unsigned long duration;
1195 
1196 	/* Disable the timer if there is nothing to switch to */
1197 	duration = 0;
1198 	if (needs_timeslice(engine, *el->active)) {
1199 		/* Avoid continually prolonging an active timeslice */
1200 		if (timer_active(&el->timer)) {
1201 			/*
1202 			 * If we just submitted a new ELSP after an old
1203 			 * context, that context may have already consumed
1204 			 * its timeslice, so recheck.
1205 			 */
1206 			if (!timer_pending(&el->timer))
1207 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1208 			return;
1209 		}
1210 
1211 		duration = timeslice(engine);
1212 	}
1213 
1214 	set_timer_ms(&el->timer, duration);
1215 }
1216 
record_preemption(struct intel_engine_execlists * execlists)1217 static void record_preemption(struct intel_engine_execlists *execlists)
1218 {
1219 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1220 }
1221 
active_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1222 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1223 					    const struct i915_request *rq)
1224 {
1225 	if (!rq)
1226 		return 0;
1227 
1228 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1229 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1230 		return 1;
1231 
1232 	return READ_ONCE(engine->props.preempt_timeout_ms);
1233 }
1234 
set_preempt_timeout(struct intel_engine_cs * engine,const struct i915_request * rq)1235 static void set_preempt_timeout(struct intel_engine_cs *engine,
1236 				const struct i915_request *rq)
1237 {
1238 	if (!intel_engine_has_preempt_reset(engine))
1239 		return;
1240 
1241 	set_timer_ms(&engine->execlists.preempt,
1242 		     active_preempt_timeout(engine, rq));
1243 }
1244 
completed(const struct i915_request * rq)1245 static bool completed(const struct i915_request *rq)
1246 {
1247 	if (i915_request_has_sentinel(rq))
1248 		return false;
1249 
1250 	return __i915_request_is_complete(rq);
1251 }
1252 
execlists_dequeue(struct intel_engine_cs * engine)1253 static void execlists_dequeue(struct intel_engine_cs *engine)
1254 {
1255 	struct intel_engine_execlists * const execlists = &engine->execlists;
1256 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1257 	struct i915_request **port = execlists->pending;
1258 	struct i915_request ** const last_port = port + execlists->port_mask;
1259 	struct i915_request *last, * const *active;
1260 	struct virtual_engine *ve;
1261 	struct rb_node *rb;
1262 	bool submit = false;
1263 
1264 	/*
1265 	 * Hardware submission is through 2 ports. Conceptually each port
1266 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1267 	 * static for a context, and unique to each, so we only execute
1268 	 * requests belonging to a single context from each ring. RING_HEAD
1269 	 * is maintained by the CS in the context image, it marks the place
1270 	 * where it got up to last time, and through RING_TAIL we tell the CS
1271 	 * where we want to execute up to this time.
1272 	 *
1273 	 * In this list the requests are in order of execution. Consecutive
1274 	 * requests from the same context are adjacent in the ringbuffer. We
1275 	 * can combine these requests into a single RING_TAIL update:
1276 	 *
1277 	 *              RING_HEAD...req1...req2
1278 	 *                                    ^- RING_TAIL
1279 	 * since to execute req2 the CS must first execute req1.
1280 	 *
1281 	 * Our goal then is to point each port to the end of a consecutive
1282 	 * sequence of requests as being the most optimal (fewest wake ups
1283 	 * and context switches) submission.
1284 	 */
1285 
1286 	spin_lock(&sched_engine->lock);
1287 
1288 	/*
1289 	 * If the queue is higher priority than the last
1290 	 * request in the currently active context, submit afresh.
1291 	 * We will resubmit again afterwards in case we need to split
1292 	 * the active context to interject the preemption request,
1293 	 * i.e. we will retrigger preemption following the ack in case
1294 	 * of trouble.
1295 	 *
1296 	 */
1297 	active = execlists->active;
1298 	while ((last = *active) && completed(last))
1299 		active++;
1300 
1301 	if (last) {
1302 		if (need_preempt(engine, last)) {
1303 			ENGINE_TRACE(engine,
1304 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1305 				     last->fence.context,
1306 				     last->fence.seqno,
1307 				     last->sched.attr.priority,
1308 				     sched_engine->queue_priority_hint);
1309 			record_preemption(execlists);
1310 
1311 			/*
1312 			 * Don't let the RING_HEAD advance past the breadcrumb
1313 			 * as we unwind (and until we resubmit) so that we do
1314 			 * not accidentally tell it to go backwards.
1315 			 */
1316 			ring_set_paused(engine, 1);
1317 
1318 			/*
1319 			 * Note that we have not stopped the GPU at this point,
1320 			 * so we are unwinding the incomplete requests as they
1321 			 * remain inflight and so by the time we do complete
1322 			 * the preemption, some of the unwound requests may
1323 			 * complete!
1324 			 */
1325 			__unwind_incomplete_requests(engine);
1326 
1327 			last = NULL;
1328 		} else if (timeslice_expired(engine, last)) {
1329 			ENGINE_TRACE(engine,
1330 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1331 				     yesno(timer_expired(&execlists->timer)),
1332 				     last->fence.context, last->fence.seqno,
1333 				     rq_prio(last),
1334 				     sched_engine->queue_priority_hint,
1335 				     yesno(timeslice_yield(execlists, last)));
1336 
1337 			/*
1338 			 * Consume this timeslice; ensure we start a new one.
1339 			 *
1340 			 * The timeslice expired, and we will unwind the
1341 			 * running contexts and recompute the next ELSP.
1342 			 * If that submit will be the same pair of contexts
1343 			 * (due to dependency ordering), we will skip the
1344 			 * submission. If we don't cancel the timer now,
1345 			 * we will see that the timer has expired and
1346 			 * reschedule the tasklet; continually until the
1347 			 * next context switch or other preeemption event.
1348 			 *
1349 			 * Since we have decided to reschedule based on
1350 			 * consumption of this timeslice, if we submit the
1351 			 * same context again, grant it a full timeslice.
1352 			 */
1353 			cancel_timer(&execlists->timer);
1354 			ring_set_paused(engine, 1);
1355 			defer_active(engine);
1356 
1357 			/*
1358 			 * Unlike for preemption, if we rewind and continue
1359 			 * executing the same context as previously active,
1360 			 * the order of execution will remain the same and
1361 			 * the tail will only advance. We do not need to
1362 			 * force a full context restore, as a lite-restore
1363 			 * is sufficient to resample the monotonic TAIL.
1364 			 *
1365 			 * If we switch to any other context, similarly we
1366 			 * will not rewind TAIL of current context, and
1367 			 * normal save/restore will preserve state and allow
1368 			 * us to later continue executing the same request.
1369 			 */
1370 			last = NULL;
1371 		} else {
1372 			/*
1373 			 * Otherwise if we already have a request pending
1374 			 * for execution after the current one, we can
1375 			 * just wait until the next CS event before
1376 			 * queuing more. In either case we will force a
1377 			 * lite-restore preemption event, but if we wait
1378 			 * we hopefully coalesce several updates into a single
1379 			 * submission.
1380 			 */
1381 			if (active[1]) {
1382 				/*
1383 				 * Even if ELSP[1] is occupied and not worthy
1384 				 * of timeslices, our queue might be.
1385 				 */
1386 				spin_unlock(&sched_engine->lock);
1387 				return;
1388 			}
1389 		}
1390 	}
1391 
1392 	/* XXX virtual is always taking precedence */
1393 	while ((ve = first_virtual_engine(engine))) {
1394 		struct i915_request *rq;
1395 
1396 		spin_lock(&ve->base.sched_engine->lock);
1397 
1398 		rq = ve->request;
1399 		if (unlikely(!virtual_matches(ve, rq, engine)))
1400 			goto unlock; /* lost the race to a sibling */
1401 
1402 		GEM_BUG_ON(rq->engine != &ve->base);
1403 		GEM_BUG_ON(rq->context != &ve->context);
1404 
1405 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1406 			spin_unlock(&ve->base.sched_engine->lock);
1407 			break;
1408 		}
1409 
1410 		if (last && !can_merge_rq(last, rq)) {
1411 			spin_unlock(&ve->base.sched_engine->lock);
1412 			spin_unlock(&engine->sched_engine->lock);
1413 			return; /* leave this for another sibling */
1414 		}
1415 
1416 		ENGINE_TRACE(engine,
1417 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1418 			     rq->fence.context,
1419 			     rq->fence.seqno,
1420 			     __i915_request_is_complete(rq) ? "!" :
1421 			     __i915_request_has_started(rq) ? "*" :
1422 			     "",
1423 			     yesno(engine != ve->siblings[0]));
1424 
1425 		WRITE_ONCE(ve->request, NULL);
1426 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1427 
1428 		rb = &ve->nodes[engine->id].rb;
1429 		rb_erase_cached(rb, &execlists->virtual);
1430 		RB_CLEAR_NODE(rb);
1431 
1432 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1433 		WRITE_ONCE(rq->engine, engine);
1434 
1435 		if (__i915_request_submit(rq)) {
1436 			/*
1437 			 * Only after we confirm that we will submit
1438 			 * this request (i.e. it has not already
1439 			 * completed), do we want to update the context.
1440 			 *
1441 			 * This serves two purposes. It avoids
1442 			 * unnecessary work if we are resubmitting an
1443 			 * already completed request after timeslicing.
1444 			 * But more importantly, it prevents us altering
1445 			 * ve->siblings[] on an idle context, where
1446 			 * we may be using ve->siblings[] in
1447 			 * virtual_context_enter / virtual_context_exit.
1448 			 */
1449 			virtual_xfer_context(ve, engine);
1450 			GEM_BUG_ON(ve->siblings[0] != engine);
1451 
1452 			submit = true;
1453 			last = rq;
1454 		}
1455 
1456 		i915_request_put(rq);
1457 unlock:
1458 		spin_unlock(&ve->base.sched_engine->lock);
1459 
1460 		/*
1461 		 * Hmm, we have a bunch of virtual engine requests,
1462 		 * but the first one was already completed (thanks
1463 		 * preempt-to-busy!). Keep looking at the veng queue
1464 		 * until we have no more relevant requests (i.e.
1465 		 * the normal submit queue has higher priority).
1466 		 */
1467 		if (submit)
1468 			break;
1469 	}
1470 
1471 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1472 		struct i915_priolist *p = to_priolist(rb);
1473 		struct i915_request *rq, *rn;
1474 
1475 		priolist_for_each_request_consume(rq, rn, p) {
1476 			bool merge = true;
1477 
1478 			/*
1479 			 * Can we combine this request with the current port?
1480 			 * It has to be the same context/ringbuffer and not
1481 			 * have any exceptions (e.g. GVT saying never to
1482 			 * combine contexts).
1483 			 *
1484 			 * If we can combine the requests, we can execute both
1485 			 * by updating the RING_TAIL to point to the end of the
1486 			 * second request, and so we never need to tell the
1487 			 * hardware about the first.
1488 			 */
1489 			if (last && !can_merge_rq(last, rq)) {
1490 				/*
1491 				 * If we are on the second port and cannot
1492 				 * combine this request with the last, then we
1493 				 * are done.
1494 				 */
1495 				if (port == last_port)
1496 					goto done;
1497 
1498 				/*
1499 				 * We must not populate both ELSP[] with the
1500 				 * same LRCA, i.e. we must submit 2 different
1501 				 * contexts if we submit 2 ELSP.
1502 				 */
1503 				if (last->context == rq->context)
1504 					goto done;
1505 
1506 				if (i915_request_has_sentinel(last))
1507 					goto done;
1508 
1509 				/*
1510 				 * We avoid submitting virtual requests into
1511 				 * the secondary ports so that we can migrate
1512 				 * the request immediately to another engine
1513 				 * rather than wait for the primary request.
1514 				 */
1515 				if (rq->execution_mask != engine->mask)
1516 					goto done;
1517 
1518 				/*
1519 				 * If GVT overrides us we only ever submit
1520 				 * port[0], leaving port[1] empty. Note that we
1521 				 * also have to be careful that we don't queue
1522 				 * the same context (even though a different
1523 				 * request) to the second port.
1524 				 */
1525 				if (ctx_single_port_submission(last->context) ||
1526 				    ctx_single_port_submission(rq->context))
1527 					goto done;
1528 
1529 				merge = false;
1530 			}
1531 
1532 			if (__i915_request_submit(rq)) {
1533 				if (!merge) {
1534 					*port++ = i915_request_get(last);
1535 					last = NULL;
1536 				}
1537 
1538 				GEM_BUG_ON(last &&
1539 					   !can_merge_ctx(last->context,
1540 							  rq->context));
1541 				GEM_BUG_ON(last &&
1542 					   i915_seqno_passed(last->fence.seqno,
1543 							     rq->fence.seqno));
1544 
1545 				submit = true;
1546 				last = rq;
1547 			}
1548 		}
1549 
1550 		rb_erase_cached(&p->node, &sched_engine->queue);
1551 		i915_priolist_free(p);
1552 	}
1553 done:
1554 	*port++ = i915_request_get(last);
1555 
1556 	/*
1557 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1558 	 *
1559 	 * We choose the priority hint such that if we add a request of greater
1560 	 * priority than this, we kick the submission tasklet to decide on
1561 	 * the right order of submitting the requests to hardware. We must
1562 	 * also be prepared to reorder requests as they are in-flight on the
1563 	 * HW. We derive the priority hint then as the first "hole" in
1564 	 * the HW submission ports and if there are no available slots,
1565 	 * the priority of the lowest executing request, i.e. last.
1566 	 *
1567 	 * When we do receive a higher priority request ready to run from the
1568 	 * user, see queue_request(), the priority hint is bumped to that
1569 	 * request triggering preemption on the next dequeue (or subsequent
1570 	 * interrupt for secondary ports).
1571 	 */
1572 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1573 	i915_sched_engine_reset_on_empty(sched_engine);
1574 	spin_unlock(&sched_engine->lock);
1575 
1576 	/*
1577 	 * We can skip poking the HW if we ended up with exactly the same set
1578 	 * of requests as currently running, e.g. trying to timeslice a pair
1579 	 * of ordered contexts.
1580 	 */
1581 	if (submit &&
1582 	    memcmp(active,
1583 		   execlists->pending,
1584 		   (port - execlists->pending) * sizeof(*port))) {
1585 		*port = NULL;
1586 		while (port-- != execlists->pending)
1587 			execlists_schedule_in(*port, port - execlists->pending);
1588 
1589 		WRITE_ONCE(execlists->yield, -1);
1590 		set_preempt_timeout(engine, *active);
1591 		execlists_submit_ports(engine);
1592 	} else {
1593 		ring_set_paused(engine, 0);
1594 		while (port-- != execlists->pending)
1595 			i915_request_put(*port);
1596 		*execlists->pending = NULL;
1597 	}
1598 }
1599 
execlists_dequeue_irq(struct intel_engine_cs * engine)1600 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1601 {
1602 	local_irq_disable(); /* Suspend interrupts across request submission */
1603 	execlists_dequeue(engine);
1604 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1605 }
1606 
clear_ports(struct i915_request ** ports,int count)1607 static void clear_ports(struct i915_request **ports, int count)
1608 {
1609 	memset_p((void **)ports, NULL, count);
1610 }
1611 
1612 static void
copy_ports(struct i915_request ** dst,struct i915_request ** src,int count)1613 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1614 {
1615 	/* A memcpy_p() would be very useful here! */
1616 	while (count--)
1617 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1618 }
1619 
1620 static struct i915_request **
cancel_port_requests(struct intel_engine_execlists * const execlists,struct i915_request ** inactive)1621 cancel_port_requests(struct intel_engine_execlists * const execlists,
1622 		     struct i915_request **inactive)
1623 {
1624 	struct i915_request * const *port;
1625 
1626 	for (port = execlists->pending; *port; port++)
1627 		*inactive++ = *port;
1628 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1629 
1630 	/* Mark the end of active before we overwrite *active */
1631 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1632 		*inactive++ = *port;
1633 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1634 
1635 	smp_wmb(); /* complete the seqlock for execlists_active() */
1636 	WRITE_ONCE(execlists->active, execlists->inflight);
1637 
1638 	/* Having cancelled all outstanding process_csb(), stop their timers */
1639 	GEM_BUG_ON(execlists->pending[0]);
1640 	cancel_timer(&execlists->timer);
1641 	cancel_timer(&execlists->preempt);
1642 
1643 	return inactive;
1644 }
1645 
invalidate_csb_entries(const u64 * first,const u64 * last)1646 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1647 {
1648 	clflush((void *)first);
1649 	clflush((void *)last);
1650 }
1651 
1652 /*
1653  * Starting with Gen12, the status has a new format:
1654  *
1655  *     bit  0:     switched to new queue
1656  *     bit  1:     reserved
1657  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1658  *                 switch detail is set to "wait on semaphore"
1659  *     bits 3-5:   engine class
1660  *     bits 6-11:  engine instance
1661  *     bits 12-14: reserved
1662  *     bits 15-25: sw context id of the lrc the GT switched to
1663  *     bits 26-31: sw counter of the lrc the GT switched to
1664  *     bits 32-35: context switch detail
1665  *                  - 0: ctx complete
1666  *                  - 1: wait on sync flip
1667  *                  - 2: wait on vblank
1668  *                  - 3: wait on scanline
1669  *                  - 4: wait on semaphore
1670  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1671  *                       WAIT_FOR_EVENT)
1672  *     bit  36:    reserved
1673  *     bits 37-43: wait detail (for switch detail 1 to 4)
1674  *     bits 44-46: reserved
1675  *     bits 47-57: sw context id of the lrc the GT switched away from
1676  *     bits 58-63: sw counter of the lrc the GT switched away from
1677  *
1678  * Xe_HP csb shuffles things around compared to TGL:
1679  *
1680  *     bits 0-3:   context switch detail (same possible values as TGL)
1681  *     bits 4-9:   engine instance
1682  *     bits 10-25: sw context id of the lrc the GT switched to
1683  *     bits 26-31: sw counter of the lrc the GT switched to
1684  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1685  *                 switch detail is set to "wait on semaphore"
1686  *     bit  33:    switched to new queue
1687  *     bits 34-41: wait detail (for switch detail 1 to 4)
1688  *     bits 42-57: sw context id of the lrc the GT switched away from
1689  *     bits 58-63: sw counter of the lrc the GT switched away from
1690  */
1691 static inline bool
__gen12_csb_parse(bool ctx_to_valid,bool ctx_away_valid,bool new_queue,u8 switch_detail)1692 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1693 		  u8 switch_detail)
1694 {
1695 	/*
1696 	 * The context switch detail is not guaranteed to be 5 when a preemption
1697 	 * occurs, so we can't just check for that. The check below works for
1698 	 * all the cases we care about, including preemptions of WAIT
1699 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1700 	 * would require some extra handling, but we don't support that.
1701 	 */
1702 	if (!ctx_away_valid || new_queue) {
1703 		GEM_BUG_ON(!ctx_to_valid);
1704 		return true;
1705 	}
1706 
1707 	/*
1708 	 * switch detail = 5 is covered by the case above and we do not expect a
1709 	 * context switch on an unsuccessful wait instruction since we always
1710 	 * use polling mode.
1711 	 */
1712 	GEM_BUG_ON(switch_detail);
1713 	return false;
1714 }
1715 
xehp_csb_parse(const u64 csb)1716 static bool xehp_csb_parse(const u64 csb)
1717 {
1718 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1719 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1720 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1721 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1722 }
1723 
gen12_csb_parse(const u64 csb)1724 static bool gen12_csb_parse(const u64 csb)
1725 {
1726 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1727 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1728 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1729 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1730 }
1731 
gen8_csb_parse(const u64 csb)1732 static bool gen8_csb_parse(const u64 csb)
1733 {
1734 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1735 }
1736 
1737 static noinline u64
wa_csb_read(const struct intel_engine_cs * engine,u64 * const csb)1738 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1739 {
1740 	u64 entry;
1741 
1742 	/*
1743 	 * Reading from the HWSP has one particular advantage: we can detect
1744 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1745 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1746 	 * we prefer the path that is self-checking and as a last resort,
1747 	 * return the mmio value.
1748 	 *
1749 	 * tgl,dg1:HSDES#22011327657
1750 	 */
1751 	preempt_disable();
1752 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1753 		int idx = csb - engine->execlists.csb_status;
1754 		int status;
1755 
1756 		status = GEN8_EXECLISTS_STATUS_BUF;
1757 		if (idx >= 6) {
1758 			status = GEN11_EXECLISTS_STATUS_BUF2;
1759 			idx -= 6;
1760 		}
1761 		status += sizeof(u64) * idx;
1762 
1763 		entry = intel_uncore_read64(engine->uncore,
1764 					    _MMIO(engine->mmio_base + status));
1765 	}
1766 	preempt_enable();
1767 
1768 	return entry;
1769 }
1770 
csb_read(const struct intel_engine_cs * engine,u64 * const csb)1771 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1772 {
1773 	u64 entry = READ_ONCE(*csb);
1774 
1775 	/*
1776 	 * Unfortunately, the GPU does not always serialise its write
1777 	 * of the CSB entries before its write of the CSB pointer, at least
1778 	 * from the perspective of the CPU, using what is known as a Global
1779 	 * Observation Point. We may read a new CSB tail pointer, but then
1780 	 * read the stale CSB entries, causing us to misinterpret the
1781 	 * context-switch events, and eventually declare the GPU hung.
1782 	 *
1783 	 * icl:HSDES#1806554093
1784 	 * tgl:HSDES#22011248461
1785 	 */
1786 	if (unlikely(entry == -1))
1787 		entry = wa_csb_read(engine, csb);
1788 
1789 	/* Consume this entry so that we can spot its future reuse. */
1790 	WRITE_ONCE(*csb, -1);
1791 
1792 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1793 	return entry;
1794 }
1795 
new_timeslice(struct intel_engine_execlists * el)1796 static void new_timeslice(struct intel_engine_execlists *el)
1797 {
1798 	/* By cancelling, we will start afresh in start_timeslice() */
1799 	cancel_timer(&el->timer);
1800 }
1801 
1802 static struct i915_request **
process_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)1803 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1804 {
1805 	struct intel_engine_execlists * const execlists = &engine->execlists;
1806 	u64 * const buf = execlists->csb_status;
1807 	const u8 num_entries = execlists->csb_size;
1808 	struct i915_request **prev;
1809 	u8 head, tail;
1810 
1811 	/*
1812 	 * As we modify our execlists state tracking we require exclusive
1813 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1814 	 * and we assume that is only inside the reset paths and so serialised.
1815 	 */
1816 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1817 		   !reset_in_progress(engine));
1818 
1819 	/*
1820 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1821 	 * When reading from the csb_write mmio register, we have to be
1822 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1823 	 * the low 4bits. As it happens we know the next 4bits are always
1824 	 * zero and so we can simply masked off the low u8 of the register
1825 	 * and treat it identically to reading from the HWSP (without having
1826 	 * to use explicit shifting and masking, and probably bifurcating
1827 	 * the code to handle the legacy mmio read).
1828 	 */
1829 	head = execlists->csb_head;
1830 	tail = READ_ONCE(*execlists->csb_write);
1831 	if (unlikely(head == tail))
1832 		return inactive;
1833 
1834 	/*
1835 	 * We will consume all events from HW, or at least pretend to.
1836 	 *
1837 	 * The sequence of events from the HW is deterministic, and derived
1838 	 * from our writes to the ELSP, with a smidgen of variability for
1839 	 * the arrival of the asynchronous requests wrt to the inflight
1840 	 * execution. If the HW sends an event that does not correspond with
1841 	 * the one we are expecting, we have to abandon all hope as we lose
1842 	 * all tracking of what the engine is actually executing. We will
1843 	 * only detect we are out of sequence with the HW when we get an
1844 	 * 'impossible' event because we have already drained our own
1845 	 * preemption/promotion queue. If this occurs, we know that we likely
1846 	 * lost track of execution earlier and must unwind and restart, the
1847 	 * simplest way is by stop processing the event queue and force the
1848 	 * engine to reset.
1849 	 */
1850 	execlists->csb_head = tail;
1851 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1852 
1853 	/*
1854 	 * Hopefully paired with a wmb() in HW!
1855 	 *
1856 	 * We must complete the read of the write pointer before any reads
1857 	 * from the CSB, so that we do not see stale values. Without an rmb
1858 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1859 	 * we perform the READ_ONCE(*csb_write).
1860 	 */
1861 	rmb();
1862 
1863 	/* Remember who was last running under the timer */
1864 	prev = inactive;
1865 	*prev = NULL;
1866 
1867 	do {
1868 		bool promote;
1869 		u64 csb;
1870 
1871 		if (++head == num_entries)
1872 			head = 0;
1873 
1874 		/*
1875 		 * We are flying near dragons again.
1876 		 *
1877 		 * We hold a reference to the request in execlist_port[]
1878 		 * but no more than that. We are operating in softirq
1879 		 * context and so cannot hold any mutex or sleep. That
1880 		 * prevents us stopping the requests we are processing
1881 		 * in port[] from being retired simultaneously (the
1882 		 * breadcrumb will be complete before we see the
1883 		 * context-switch). As we only hold the reference to the
1884 		 * request, any pointer chasing underneath the request
1885 		 * is subject to a potential use-after-free. Thus we
1886 		 * store all of the bookkeeping within port[] as
1887 		 * required, and avoid using unguarded pointers beneath
1888 		 * request itself. The same applies to the atomic
1889 		 * status notifier.
1890 		 */
1891 
1892 		csb = csb_read(engine, buf + head);
1893 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1894 			     head, upper_32_bits(csb), lower_32_bits(csb));
1895 
1896 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1897 			promote = xehp_csb_parse(csb);
1898 		else if (GRAPHICS_VER(engine->i915) >= 12)
1899 			promote = gen12_csb_parse(csb);
1900 		else
1901 			promote = gen8_csb_parse(csb);
1902 		if (promote) {
1903 			struct i915_request * const *old = execlists->active;
1904 
1905 			if (GEM_WARN_ON(!*execlists->pending)) {
1906 				execlists->error_interrupt |= ERROR_CSB;
1907 				break;
1908 			}
1909 
1910 			ring_set_paused(engine, 0);
1911 
1912 			/* Point active to the new ELSP; prevent overwriting */
1913 			WRITE_ONCE(execlists->active, execlists->pending);
1914 			smp_wmb(); /* notify execlists_active() */
1915 
1916 			/* cancel old inflight, prepare for switch */
1917 			trace_ports(execlists, "preempted", old);
1918 			while (*old)
1919 				*inactive++ = *old++;
1920 
1921 			/* switch pending to inflight */
1922 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1923 			copy_ports(execlists->inflight,
1924 				   execlists->pending,
1925 				   execlists_num_ports(execlists));
1926 			smp_wmb(); /* complete the seqlock */
1927 			WRITE_ONCE(execlists->active, execlists->inflight);
1928 
1929 			/* XXX Magic delay for tgl */
1930 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1931 
1932 			WRITE_ONCE(execlists->pending[0], NULL);
1933 		} else {
1934 			if (GEM_WARN_ON(!*execlists->active)) {
1935 				execlists->error_interrupt |= ERROR_CSB;
1936 				break;
1937 			}
1938 
1939 			/* port0 completed, advanced to port1 */
1940 			trace_ports(execlists, "completed", execlists->active);
1941 
1942 			/*
1943 			 * We rely on the hardware being strongly
1944 			 * ordered, that the breadcrumb write is
1945 			 * coherent (visible from the CPU) before the
1946 			 * user interrupt is processed. One might assume
1947 			 * that the breadcrumb write being before the
1948 			 * user interrupt and the CS event for the context
1949 			 * switch would therefore be before the CS event
1950 			 * itself...
1951 			 */
1952 			if (GEM_SHOW_DEBUG() &&
1953 			    !__i915_request_is_complete(*execlists->active)) {
1954 				struct i915_request *rq = *execlists->active;
1955 				const u32 *regs __maybe_unused =
1956 					rq->context->lrc_reg_state;
1957 
1958 				ENGINE_TRACE(engine,
1959 					     "context completed before request!\n");
1960 				ENGINE_TRACE(engine,
1961 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1962 					     ENGINE_READ(engine, RING_START),
1963 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1964 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1965 					     ENGINE_READ(engine, RING_CTL),
1966 					     ENGINE_READ(engine, RING_MI_MODE));
1967 				ENGINE_TRACE(engine,
1968 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1969 					     i915_ggtt_offset(rq->ring->vma),
1970 					     rq->head, rq->tail,
1971 					     rq->fence.context,
1972 					     lower_32_bits(rq->fence.seqno),
1973 					     hwsp_seqno(rq));
1974 				ENGINE_TRACE(engine,
1975 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1976 					     regs[CTX_RING_START],
1977 					     regs[CTX_RING_HEAD],
1978 					     regs[CTX_RING_TAIL]);
1979 			}
1980 
1981 			*inactive++ = *execlists->active++;
1982 
1983 			GEM_BUG_ON(execlists->active - execlists->inflight >
1984 				   execlists_num_ports(execlists));
1985 		}
1986 	} while (head != tail);
1987 
1988 	/*
1989 	 * Gen11 has proven to fail wrt global observation point between
1990 	 * entry and tail update, failing on the ordering and thus
1991 	 * we see an old entry in the context status buffer.
1992 	 *
1993 	 * Forcibly evict out entries for the next gpu csb update,
1994 	 * to increase the odds that we get a fresh entries with non
1995 	 * working hardware. The cost for doing so comes out mostly with
1996 	 * the wash as hardware, working or not, will need to do the
1997 	 * invalidation before.
1998 	 */
1999 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2000 
2001 	/*
2002 	 * We assume that any event reflects a change in context flow
2003 	 * and merits a fresh timeslice. We reinstall the timer after
2004 	 * inspecting the queue to see if we need to resumbit.
2005 	 */
2006 	if (*prev != *execlists->active) /* elide lite-restores */
2007 		new_timeslice(execlists);
2008 
2009 	return inactive;
2010 }
2011 
post_process_csb(struct i915_request ** port,struct i915_request ** last)2012 static void post_process_csb(struct i915_request **port,
2013 			     struct i915_request **last)
2014 {
2015 	while (port != last)
2016 		execlists_schedule_out(*port++);
2017 }
2018 
__execlists_hold(struct i915_request * rq)2019 static void __execlists_hold(struct i915_request *rq)
2020 {
2021 	LIST_HEAD(list);
2022 
2023 	do {
2024 		struct i915_dependency *p;
2025 
2026 		if (i915_request_is_active(rq))
2027 			__i915_request_unsubmit(rq);
2028 
2029 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2030 		list_move_tail(&rq->sched.link,
2031 			       &rq->engine->sched_engine->hold);
2032 		i915_request_set_hold(rq);
2033 		RQ_TRACE(rq, "on hold\n");
2034 
2035 		for_each_waiter(p, rq) {
2036 			struct i915_request *w =
2037 				container_of(p->waiter, typeof(*w), sched);
2038 
2039 			if (p->flags & I915_DEPENDENCY_WEAK)
2040 				continue;
2041 
2042 			/* Leave semaphores spinning on the other engines */
2043 			if (w->engine != rq->engine)
2044 				continue;
2045 
2046 			if (!i915_request_is_ready(w))
2047 				continue;
2048 
2049 			if (__i915_request_is_complete(w))
2050 				continue;
2051 
2052 			if (i915_request_on_hold(w))
2053 				continue;
2054 
2055 			list_move_tail(&w->sched.link, &list);
2056 		}
2057 
2058 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2059 	} while (rq);
2060 }
2061 
execlists_hold(struct intel_engine_cs * engine,struct i915_request * rq)2062 static bool execlists_hold(struct intel_engine_cs *engine,
2063 			   struct i915_request *rq)
2064 {
2065 	if (i915_request_on_hold(rq))
2066 		return false;
2067 
2068 	spin_lock_irq(&engine->sched_engine->lock);
2069 
2070 	if (__i915_request_is_complete(rq)) { /* too late! */
2071 		rq = NULL;
2072 		goto unlock;
2073 	}
2074 
2075 	/*
2076 	 * Transfer this request onto the hold queue to prevent it
2077 	 * being resumbitted to HW (and potentially completed) before we have
2078 	 * released it. Since we may have already submitted following
2079 	 * requests, we need to remove those as well.
2080 	 */
2081 	GEM_BUG_ON(i915_request_on_hold(rq));
2082 	GEM_BUG_ON(rq->engine != engine);
2083 	__execlists_hold(rq);
2084 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2085 
2086 unlock:
2087 	spin_unlock_irq(&engine->sched_engine->lock);
2088 	return rq;
2089 }
2090 
hold_request(const struct i915_request * rq)2091 static bool hold_request(const struct i915_request *rq)
2092 {
2093 	struct i915_dependency *p;
2094 	bool result = false;
2095 
2096 	/*
2097 	 * If one of our ancestors is on hold, we must also be on hold,
2098 	 * otherwise we will bypass it and execute before it.
2099 	 */
2100 	rcu_read_lock();
2101 	for_each_signaler(p, rq) {
2102 		const struct i915_request *s =
2103 			container_of(p->signaler, typeof(*s), sched);
2104 
2105 		if (s->engine != rq->engine)
2106 			continue;
2107 
2108 		result = i915_request_on_hold(s);
2109 		if (result)
2110 			break;
2111 	}
2112 	rcu_read_unlock();
2113 
2114 	return result;
2115 }
2116 
__execlists_unhold(struct i915_request * rq)2117 static void __execlists_unhold(struct i915_request *rq)
2118 {
2119 	LIST_HEAD(list);
2120 
2121 	do {
2122 		struct i915_dependency *p;
2123 
2124 		RQ_TRACE(rq, "hold release\n");
2125 
2126 		GEM_BUG_ON(!i915_request_on_hold(rq));
2127 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2128 
2129 		i915_request_clear_hold(rq);
2130 		list_move_tail(&rq->sched.link,
2131 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2132 							  rq_prio(rq)));
2133 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2134 
2135 		/* Also release any children on this engine that are ready */
2136 		for_each_waiter(p, rq) {
2137 			struct i915_request *w =
2138 				container_of(p->waiter, typeof(*w), sched);
2139 
2140 			if (p->flags & I915_DEPENDENCY_WEAK)
2141 				continue;
2142 
2143 			/* Propagate any change in error status */
2144 			if (rq->fence.error)
2145 				i915_request_set_error_once(w, rq->fence.error);
2146 
2147 			if (w->engine != rq->engine)
2148 				continue;
2149 
2150 			if (!i915_request_on_hold(w))
2151 				continue;
2152 
2153 			/* Check that no other parents are also on hold */
2154 			if (hold_request(w))
2155 				continue;
2156 
2157 			list_move_tail(&w->sched.link, &list);
2158 		}
2159 
2160 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2161 	} while (rq);
2162 }
2163 
execlists_unhold(struct intel_engine_cs * engine,struct i915_request * rq)2164 static void execlists_unhold(struct intel_engine_cs *engine,
2165 			     struct i915_request *rq)
2166 {
2167 	spin_lock_irq(&engine->sched_engine->lock);
2168 
2169 	/*
2170 	 * Move this request back to the priority queue, and all of its
2171 	 * children and grandchildren that were suspended along with it.
2172 	 */
2173 	__execlists_unhold(rq);
2174 
2175 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2176 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2177 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2178 	}
2179 
2180 	spin_unlock_irq(&engine->sched_engine->lock);
2181 }
2182 
2183 struct execlists_capture {
2184 	struct work_struct work;
2185 	struct i915_request *rq;
2186 	struct i915_gpu_coredump *error;
2187 };
2188 
execlists_capture_work(struct work_struct * work)2189 static void execlists_capture_work(struct work_struct *work)
2190 {
2191 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2192 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2193 	struct intel_engine_cs *engine = cap->rq->engine;
2194 	struct intel_gt_coredump *gt = cap->error->gt;
2195 	struct intel_engine_capture_vma *vma;
2196 
2197 	/* Compress all the objects attached to the request, slow! */
2198 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2199 	if (vma) {
2200 		struct i915_vma_compress *compress =
2201 			i915_vma_capture_prepare(gt);
2202 
2203 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2204 		i915_vma_capture_finish(gt, compress);
2205 	}
2206 
2207 	gt->simulated = gt->engine->simulated;
2208 	cap->error->simulated = gt->simulated;
2209 
2210 	/* Publish the error state, and announce it to the world */
2211 	i915_error_state_store(cap->error);
2212 	i915_gpu_coredump_put(cap->error);
2213 
2214 	/* Return this request and all that depend upon it for signaling */
2215 	execlists_unhold(engine, cap->rq);
2216 	i915_request_put(cap->rq);
2217 
2218 	kfree(cap);
2219 }
2220 
capture_regs(struct intel_engine_cs * engine)2221 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2222 {
2223 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2224 	struct execlists_capture *cap;
2225 
2226 	cap = kmalloc(sizeof(*cap), gfp);
2227 	if (!cap)
2228 		return NULL;
2229 
2230 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2231 	if (!cap->error)
2232 		goto err_cap;
2233 
2234 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2235 	if (!cap->error->gt)
2236 		goto err_gpu;
2237 
2238 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2239 	if (!cap->error->gt->engine)
2240 		goto err_gt;
2241 
2242 	cap->error->gt->engine->hung = true;
2243 
2244 	return cap;
2245 
2246 err_gt:
2247 	kfree(cap->error->gt);
2248 err_gpu:
2249 	kfree(cap->error);
2250 err_cap:
2251 	kfree(cap);
2252 	return NULL;
2253 }
2254 
2255 static struct i915_request *
active_context(struct intel_engine_cs * engine,u32 ccid)2256 active_context(struct intel_engine_cs *engine, u32 ccid)
2257 {
2258 	const struct intel_engine_execlists * const el = &engine->execlists;
2259 	struct i915_request * const *port, *rq;
2260 
2261 	/*
2262 	 * Use the most recent result from process_csb(), but just in case
2263 	 * we trigger an error (via interrupt) before the first CS event has
2264 	 * been written, peek at the next submission.
2265 	 */
2266 
2267 	for (port = el->active; (rq = *port); port++) {
2268 		if (rq->context->lrc.ccid == ccid) {
2269 			ENGINE_TRACE(engine,
2270 				     "ccid:%x found at active:%zd\n",
2271 				     ccid, port - el->active);
2272 			return rq;
2273 		}
2274 	}
2275 
2276 	for (port = el->pending; (rq = *port); port++) {
2277 		if (rq->context->lrc.ccid == ccid) {
2278 			ENGINE_TRACE(engine,
2279 				     "ccid:%x found at pending:%zd\n",
2280 				     ccid, port - el->pending);
2281 			return rq;
2282 		}
2283 	}
2284 
2285 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2286 	return NULL;
2287 }
2288 
active_ccid(struct intel_engine_cs * engine)2289 static u32 active_ccid(struct intel_engine_cs *engine)
2290 {
2291 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2292 }
2293 
execlists_capture(struct intel_engine_cs * engine)2294 static void execlists_capture(struct intel_engine_cs *engine)
2295 {
2296 	struct execlists_capture *cap;
2297 
2298 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2299 		return;
2300 
2301 	/*
2302 	 * We need to _quickly_ capture the engine state before we reset.
2303 	 * We are inside an atomic section (softirq) here and we are delaying
2304 	 * the forced preemption event.
2305 	 */
2306 	cap = capture_regs(engine);
2307 	if (!cap)
2308 		return;
2309 
2310 	spin_lock_irq(&engine->sched_engine->lock);
2311 	cap->rq = active_context(engine, active_ccid(engine));
2312 	if (cap->rq) {
2313 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2314 		cap->rq = i915_request_get_rcu(cap->rq);
2315 	}
2316 	spin_unlock_irq(&engine->sched_engine->lock);
2317 	if (!cap->rq)
2318 		goto err_free;
2319 
2320 	/*
2321 	 * Remove the request from the execlists queue, and take ownership
2322 	 * of the request. We pass it to our worker who will _slowly_ compress
2323 	 * all the pages the _user_ requested for debugging their batch, after
2324 	 * which we return it to the queue for signaling.
2325 	 *
2326 	 * By removing them from the execlists queue, we also remove the
2327 	 * requests from being processed by __unwind_incomplete_requests()
2328 	 * during the intel_engine_reset(), and so they will *not* be replayed
2329 	 * afterwards.
2330 	 *
2331 	 * Note that because we have not yet reset the engine at this point,
2332 	 * it is possible for the request that we have identified as being
2333 	 * guilty, did in fact complete and we will then hit an arbitration
2334 	 * point allowing the outstanding preemption to succeed. The likelihood
2335 	 * of that is very low (as capturing of the engine registers should be
2336 	 * fast enough to run inside an irq-off atomic section!), so we will
2337 	 * simply hold that request accountable for being non-preemptible
2338 	 * long enough to force the reset.
2339 	 */
2340 	if (!execlists_hold(engine, cap->rq))
2341 		goto err_rq;
2342 
2343 	INIT_WORK(&cap->work, execlists_capture_work);
2344 	schedule_work(&cap->work);
2345 	return;
2346 
2347 err_rq:
2348 	i915_request_put(cap->rq);
2349 err_free:
2350 	i915_gpu_coredump_put(cap->error);
2351 	kfree(cap);
2352 }
2353 
execlists_reset(struct intel_engine_cs * engine,const char * msg)2354 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2355 {
2356 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2357 	unsigned long *lock = &engine->gt->reset.flags;
2358 
2359 	if (!intel_has_reset_engine(engine->gt))
2360 		return;
2361 
2362 	if (test_and_set_bit(bit, lock))
2363 		return;
2364 
2365 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2366 
2367 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2368 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2369 
2370 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2371 	execlists_capture(engine);
2372 	intel_engine_reset(engine, msg);
2373 
2374 	tasklet_enable(&engine->sched_engine->tasklet);
2375 	clear_and_wake_up_bit(bit, lock);
2376 }
2377 
preempt_timeout(const struct intel_engine_cs * const engine)2378 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2379 {
2380 	const struct timer_list *t = &engine->execlists.preempt;
2381 
2382 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2383 		return false;
2384 
2385 	if (!timer_expired(t))
2386 		return false;
2387 
2388 	return engine->execlists.pending[0];
2389 }
2390 
2391 /*
2392  * Check the unread Context Status Buffers and manage the submission of new
2393  * contexts to the ELSP accordingly.
2394  */
execlists_submission_tasklet(struct tasklet_struct * t)2395 static void execlists_submission_tasklet(struct tasklet_struct *t)
2396 {
2397 	struct i915_sched_engine *sched_engine =
2398 		from_tasklet(sched_engine, t, tasklet);
2399 	struct intel_engine_cs * const engine = sched_engine->private_data;
2400 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2401 	struct i915_request **inactive;
2402 
2403 	rcu_read_lock();
2404 	inactive = process_csb(engine, post);
2405 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2406 
2407 	if (unlikely(preempt_timeout(engine))) {
2408 		cancel_timer(&engine->execlists.preempt);
2409 		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2410 	}
2411 
2412 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2413 		const char *msg;
2414 
2415 		/* Generate the error message in priority wrt to the user! */
2416 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2417 			msg = "CS error"; /* thrown by a user payload */
2418 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2419 			msg = "invalid CSB event";
2420 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2421 			msg = "preemption time out";
2422 		else
2423 			msg = "internal error";
2424 
2425 		engine->execlists.error_interrupt = 0;
2426 		execlists_reset(engine, msg);
2427 	}
2428 
2429 	if (!engine->execlists.pending[0]) {
2430 		execlists_dequeue_irq(engine);
2431 		start_timeslice(engine);
2432 	}
2433 
2434 	post_process_csb(post, inactive);
2435 	rcu_read_unlock();
2436 }
2437 
execlists_irq_handler(struct intel_engine_cs * engine,u16 iir)2438 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2439 {
2440 	bool tasklet = false;
2441 
2442 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2443 		u32 eir;
2444 
2445 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2446 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2447 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2448 
2449 		/* Disable the error interrupt until after the reset */
2450 		if (likely(eir)) {
2451 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2452 			ENGINE_WRITE(engine, RING_EIR, eir);
2453 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2454 			tasklet = true;
2455 		}
2456 	}
2457 
2458 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2459 		WRITE_ONCE(engine->execlists.yield,
2460 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2461 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2462 			     engine->execlists.yield);
2463 		if (del_timer(&engine->execlists.timer))
2464 			tasklet = true;
2465 	}
2466 
2467 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2468 		tasklet = true;
2469 
2470 	if (iir & GT_RENDER_USER_INTERRUPT)
2471 		intel_engine_signal_breadcrumbs(engine);
2472 
2473 	if (tasklet)
2474 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2475 }
2476 
__execlists_kick(struct intel_engine_execlists * execlists)2477 static void __execlists_kick(struct intel_engine_execlists *execlists)
2478 {
2479 	struct intel_engine_cs *engine =
2480 		container_of(execlists, typeof(*engine), execlists);
2481 
2482 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2483 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2484 }
2485 
2486 #define execlists_kick(t, member) \
2487 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2488 
execlists_timeslice(struct timer_list * timer)2489 static void execlists_timeslice(struct timer_list *timer)
2490 {
2491 	execlists_kick(timer, timer);
2492 }
2493 
execlists_preempt(struct timer_list * timer)2494 static void execlists_preempt(struct timer_list *timer)
2495 {
2496 	execlists_kick(timer, preempt);
2497 }
2498 
queue_request(struct intel_engine_cs * engine,struct i915_request * rq)2499 static void queue_request(struct intel_engine_cs *engine,
2500 			  struct i915_request *rq)
2501 {
2502 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2503 	list_add_tail(&rq->sched.link,
2504 		      i915_sched_lookup_priolist(engine->sched_engine,
2505 						 rq_prio(rq)));
2506 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2507 }
2508 
submit_queue(struct intel_engine_cs * engine,const struct i915_request * rq)2509 static bool submit_queue(struct intel_engine_cs *engine,
2510 			 const struct i915_request *rq)
2511 {
2512 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2513 
2514 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2515 		return false;
2516 
2517 	sched_engine->queue_priority_hint = rq_prio(rq);
2518 	return true;
2519 }
2520 
ancestor_on_hold(const struct intel_engine_cs * engine,const struct i915_request * rq)2521 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2522 			     const struct i915_request *rq)
2523 {
2524 	GEM_BUG_ON(i915_request_on_hold(rq));
2525 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2526 }
2527 
execlists_submit_request(struct i915_request * request)2528 static void execlists_submit_request(struct i915_request *request)
2529 {
2530 	struct intel_engine_cs *engine = request->engine;
2531 	unsigned long flags;
2532 
2533 	/* Will be called from irq-context when using foreign fences. */
2534 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2535 
2536 	if (unlikely(ancestor_on_hold(engine, request))) {
2537 		RQ_TRACE(request, "ancestor on hold\n");
2538 		list_add_tail(&request->sched.link,
2539 			      &engine->sched_engine->hold);
2540 		i915_request_set_hold(request);
2541 	} else {
2542 		queue_request(engine, request);
2543 
2544 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2545 		GEM_BUG_ON(list_empty(&request->sched.link));
2546 
2547 		if (submit_queue(engine, request))
2548 			__execlists_kick(&engine->execlists);
2549 	}
2550 
2551 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2552 }
2553 
2554 static int
__execlists_context_pre_pin(struct intel_context * ce,struct intel_engine_cs * engine,struct i915_gem_ww_ctx * ww,void ** vaddr)2555 __execlists_context_pre_pin(struct intel_context *ce,
2556 			    struct intel_engine_cs *engine,
2557 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2558 {
2559 	int err;
2560 
2561 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2562 	if (err)
2563 		return err;
2564 
2565 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2566 		lrc_init_state(ce, engine, *vaddr);
2567 
2568 		 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
execlists_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)2574 static int execlists_context_pre_pin(struct intel_context *ce,
2575 				     struct i915_gem_ww_ctx *ww,
2576 				     void **vaddr)
2577 {
2578 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2579 }
2580 
execlists_context_pin(struct intel_context * ce,void * vaddr)2581 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2582 {
2583 	return lrc_pin(ce, ce->engine, vaddr);
2584 }
2585 
execlists_context_alloc(struct intel_context * ce)2586 static int execlists_context_alloc(struct intel_context *ce)
2587 {
2588 	return lrc_alloc(ce, ce->engine);
2589 }
2590 
execlists_context_cancel_request(struct intel_context * ce,struct i915_request * rq)2591 static void execlists_context_cancel_request(struct intel_context *ce,
2592 					     struct i915_request *rq)
2593 {
2594 	struct intel_engine_cs *engine = NULL;
2595 
2596 	i915_request_active_engine(rq, &engine);
2597 
2598 	if (engine && intel_engine_pulse(engine))
2599 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2600 				      "request cancellation by %s",
2601 				      current->comm);
2602 }
2603 
2604 static const struct intel_context_ops execlists_context_ops = {
2605 	.flags = COPS_HAS_INFLIGHT,
2606 
2607 	.alloc = execlists_context_alloc,
2608 
2609 	.cancel_request = execlists_context_cancel_request,
2610 
2611 	.pre_pin = execlists_context_pre_pin,
2612 	.pin = execlists_context_pin,
2613 	.unpin = lrc_unpin,
2614 	.post_unpin = lrc_post_unpin,
2615 
2616 	.enter = intel_context_enter_engine,
2617 	.exit = intel_context_exit_engine,
2618 
2619 	.reset = lrc_reset,
2620 	.destroy = lrc_destroy,
2621 
2622 	.create_virtual = execlists_create_virtual,
2623 };
2624 
emit_pdps(struct i915_request * rq)2625 static int emit_pdps(struct i915_request *rq)
2626 {
2627 	const struct intel_engine_cs * const engine = rq->engine;
2628 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2629 	int err, i;
2630 	u32 *cs;
2631 
2632 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2633 
2634 	/*
2635 	 * Beware ye of the dragons, this sequence is magic!
2636 	 *
2637 	 * Small changes to this sequence can cause anything from
2638 	 * GPU hangs to forcewake errors and machine lockups!
2639 	 */
2640 
2641 	cs = intel_ring_begin(rq, 2);
2642 	if (IS_ERR(cs))
2643 		return PTR_ERR(cs);
2644 
2645 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2646 	*cs++ = MI_NOOP;
2647 	intel_ring_advance(rq, cs);
2648 
2649 	/* Flush any residual operations from the context load */
2650 	err = engine->emit_flush(rq, EMIT_FLUSH);
2651 	if (err)
2652 		return err;
2653 
2654 	/* Magic required to prevent forcewake errors! */
2655 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2656 	if (err)
2657 		return err;
2658 
2659 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2660 	if (IS_ERR(cs))
2661 		return PTR_ERR(cs);
2662 
2663 	/* Ensure the LRI have landed before we invalidate & continue */
2664 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2665 	for (i = GEN8_3LVL_PDPES; i--; ) {
2666 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2667 		u32 base = engine->mmio_base;
2668 
2669 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2670 		*cs++ = upper_32_bits(pd_daddr);
2671 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2672 		*cs++ = lower_32_bits(pd_daddr);
2673 	}
2674 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2675 	intel_ring_advance(rq, cs);
2676 
2677 	intel_ring_advance(rq, cs);
2678 
2679 	return 0;
2680 }
2681 
execlists_request_alloc(struct i915_request * request)2682 static int execlists_request_alloc(struct i915_request *request)
2683 {
2684 	int ret;
2685 
2686 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2687 
2688 	/*
2689 	 * Flush enough space to reduce the likelihood of waiting after
2690 	 * we start building the request - in which case we will just
2691 	 * have to repeat work.
2692 	 */
2693 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2694 
2695 	/*
2696 	 * Note that after this point, we have committed to using
2697 	 * this request as it is being used to both track the
2698 	 * state of engine initialisation and liveness of the
2699 	 * golden renderstate above. Think twice before you try
2700 	 * to cancel/unwind this request now.
2701 	 */
2702 
2703 	if (!i915_vm_is_4lvl(request->context->vm)) {
2704 		ret = emit_pdps(request);
2705 		if (ret)
2706 			return ret;
2707 	}
2708 
2709 	/* Unconditionally invalidate GPU caches and TLBs. */
2710 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2711 	if (ret)
2712 		return ret;
2713 
2714 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2715 	return 0;
2716 }
2717 
reset_csb_pointers(struct intel_engine_cs * engine)2718 static void reset_csb_pointers(struct intel_engine_cs *engine)
2719 {
2720 	struct intel_engine_execlists * const execlists = &engine->execlists;
2721 	const unsigned int reset_value = execlists->csb_size - 1;
2722 
2723 	ring_set_paused(engine, 0);
2724 
2725 	/*
2726 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2727 	 * Bludgeon them with a mmio update to be sure.
2728 	 */
2729 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2730 		     0xffff << 16 | reset_value << 8 | reset_value);
2731 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2732 
2733 	/*
2734 	 * After a reset, the HW starts writing into CSB entry [0]. We
2735 	 * therefore have to set our HEAD pointer back one entry so that
2736 	 * the *first* entry we check is entry 0. To complicate this further,
2737 	 * as we don't wait for the first interrupt after reset, we have to
2738 	 * fake the HW write to point back to the last entry so that our
2739 	 * inline comparison of our cached head position against the last HW
2740 	 * write works even before the first interrupt.
2741 	 */
2742 	execlists->csb_head = reset_value;
2743 	WRITE_ONCE(*execlists->csb_write, reset_value);
2744 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2745 
2746 	/* Check that the GPU does indeed update the CSB entries! */
2747 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2748 	invalidate_csb_entries(&execlists->csb_status[0],
2749 			       &execlists->csb_status[reset_value]);
2750 
2751 	/* Once more for luck and our trusty paranoia */
2752 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2753 		     0xffff << 16 | reset_value << 8 | reset_value);
2754 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2755 
2756 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2757 }
2758 
sanitize_hwsp(struct intel_engine_cs * engine)2759 static void sanitize_hwsp(struct intel_engine_cs *engine)
2760 {
2761 	struct intel_timeline *tl;
2762 
2763 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2764 		intel_timeline_reset_seqno(tl);
2765 }
2766 
execlists_sanitize(struct intel_engine_cs * engine)2767 static void execlists_sanitize(struct intel_engine_cs *engine)
2768 {
2769 	GEM_BUG_ON(execlists_active(&engine->execlists));
2770 
2771 	/*
2772 	 * Poison residual state on resume, in case the suspend didn't!
2773 	 *
2774 	 * We have to assume that across suspend/resume (or other loss
2775 	 * of control) that the contents of our pinned buffers has been
2776 	 * lost, replaced by garbage. Since this doesn't always happen,
2777 	 * let's poison such state so that we more quickly spot when
2778 	 * we falsely assume it has been preserved.
2779 	 */
2780 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2781 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2782 
2783 	reset_csb_pointers(engine);
2784 
2785 	/*
2786 	 * The kernel_context HWSP is stored in the status_page. As above,
2787 	 * that may be lost on resume/initialisation, and so we need to
2788 	 * reset the value in the HWSP.
2789 	 */
2790 	sanitize_hwsp(engine);
2791 
2792 	/* And scrub the dirty cachelines for the HWSP */
2793 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2794 }
2795 
enable_error_interrupt(struct intel_engine_cs * engine)2796 static void enable_error_interrupt(struct intel_engine_cs *engine)
2797 {
2798 	u32 status;
2799 
2800 	engine->execlists.error_interrupt = 0;
2801 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2802 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2803 
2804 	status = ENGINE_READ(engine, RING_ESR);
2805 	if (unlikely(status)) {
2806 		drm_err(&engine->i915->drm,
2807 			"engine '%s' resumed still in error: %08x\n",
2808 			engine->name, status);
2809 		__intel_gt_reset(engine->gt, engine->mask);
2810 	}
2811 
2812 	/*
2813 	 * On current gen8+, we have 2 signals to play with
2814 	 *
2815 	 * - I915_ERROR_INSTUCTION (bit 0)
2816 	 *
2817 	 *    Generate an error if the command parser encounters an invalid
2818 	 *    instruction
2819 	 *
2820 	 *    This is a fatal error.
2821 	 *
2822 	 * - CP_PRIV (bit 2)
2823 	 *
2824 	 *    Generate an error on privilege violation (where the CP replaces
2825 	 *    the instruction with a no-op). This also fires for writes into
2826 	 *    read-only scratch pages.
2827 	 *
2828 	 *    This is a non-fatal error, parsing continues.
2829 	 *
2830 	 * * there are a few others defined for odd HW that we do not use
2831 	 *
2832 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2833 	 * error (as the HW is validating and suppressing the mistakes), we
2834 	 * only unmask the instruction error bit.
2835 	 */
2836 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2837 }
2838 
enable_execlists(struct intel_engine_cs * engine)2839 static void enable_execlists(struct intel_engine_cs *engine)
2840 {
2841 	u32 mode;
2842 
2843 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2844 
2845 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2846 
2847 	if (GRAPHICS_VER(engine->i915) >= 11)
2848 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2849 	else
2850 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2851 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2852 
2853 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2854 
2855 	ENGINE_WRITE_FW(engine,
2856 			RING_HWS_PGA,
2857 			i915_ggtt_offset(engine->status_page.vma));
2858 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2859 
2860 	enable_error_interrupt(engine);
2861 }
2862 
execlists_resume(struct intel_engine_cs * engine)2863 static int execlists_resume(struct intel_engine_cs *engine)
2864 {
2865 	intel_mocs_init_engine(engine);
2866 	intel_breadcrumbs_reset(engine->breadcrumbs);
2867 
2868 	enable_execlists(engine);
2869 
2870 	return 0;
2871 }
2872 
execlists_reset_prepare(struct intel_engine_cs * engine)2873 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2874 {
2875 	ENGINE_TRACE(engine, "depth<-%d\n",
2876 		     atomic_read(&engine->sched_engine->tasklet.count));
2877 
2878 	/*
2879 	 * Prevent request submission to the hardware until we have
2880 	 * completed the reset in i915_gem_reset_finish(). If a request
2881 	 * is completed by one engine, it may then queue a request
2882 	 * to a second via its execlists->tasklet *just* as we are
2883 	 * calling engine->resume() and also writing the ELSP.
2884 	 * Turning off the execlists->tasklet until the reset is over
2885 	 * prevents the race.
2886 	 */
2887 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2888 	GEM_BUG_ON(!reset_in_progress(engine));
2889 
2890 	/*
2891 	 * We stop engines, otherwise we might get failed reset and a
2892 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2893 	 * from system hang if batchbuffer is progressing when
2894 	 * the reset is issued, regardless of READY_TO_RESET ack.
2895 	 * Thus assume it is best to stop engines on all gens
2896 	 * where we have a gpu reset.
2897 	 *
2898 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2899 	 *
2900 	 * FIXME: Wa for more modern gens needs to be validated
2901 	 */
2902 	ring_set_paused(engine, 1);
2903 	intel_engine_stop_cs(engine);
2904 
2905 	engine->execlists.reset_ccid = active_ccid(engine);
2906 }
2907 
2908 static struct i915_request **
reset_csb(struct intel_engine_cs * engine,struct i915_request ** inactive)2909 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2910 {
2911 	struct intel_engine_execlists * const execlists = &engine->execlists;
2912 
2913 	mb(); /* paranoia: read the CSB pointers from after the reset */
2914 	clflush(execlists->csb_write);
2915 	mb();
2916 
2917 	inactive = process_csb(engine, inactive); /* drain preemption events */
2918 
2919 	/* Following the reset, we need to reload the CSB read/write pointers */
2920 	reset_csb_pointers(engine);
2921 
2922 	return inactive;
2923 }
2924 
2925 static void
execlists_reset_active(struct intel_engine_cs * engine,bool stalled)2926 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2927 {
2928 	struct intel_context *ce;
2929 	struct i915_request *rq;
2930 	u32 head;
2931 
2932 	/*
2933 	 * Save the currently executing context, even if we completed
2934 	 * its request, it was still running at the time of the
2935 	 * reset and will have been clobbered.
2936 	 */
2937 	rq = active_context(engine, engine->execlists.reset_ccid);
2938 	if (!rq)
2939 		return;
2940 
2941 	ce = rq->context;
2942 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2943 
2944 	if (__i915_request_is_complete(rq)) {
2945 		/* Idle context; tidy up the ring so we can restart afresh */
2946 		head = intel_ring_wrap(ce->ring, rq->tail);
2947 		goto out_replay;
2948 	}
2949 
2950 	/* We still have requests in-flight; the engine should be active */
2951 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2952 
2953 	/* Context has requests still in-flight; it should not be idle! */
2954 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2955 
2956 	rq = active_request(ce->timeline, rq);
2957 	head = intel_ring_wrap(ce->ring, rq->head);
2958 	GEM_BUG_ON(head == ce->ring->tail);
2959 
2960 	/*
2961 	 * If this request hasn't started yet, e.g. it is waiting on a
2962 	 * semaphore, we need to avoid skipping the request or else we
2963 	 * break the signaling chain. However, if the context is corrupt
2964 	 * the request will not restart and we will be stuck with a wedged
2965 	 * device. It is quite often the case that if we issue a reset
2966 	 * while the GPU is loading the context image, that the context
2967 	 * image becomes corrupt.
2968 	 *
2969 	 * Otherwise, if we have not started yet, the request should replay
2970 	 * perfectly and we do not need to flag the result as being erroneous.
2971 	 */
2972 	if (!__i915_request_has_started(rq))
2973 		goto out_replay;
2974 
2975 	/*
2976 	 * If the request was innocent, we leave the request in the ELSP
2977 	 * and will try to replay it on restarting. The context image may
2978 	 * have been corrupted by the reset, in which case we may have
2979 	 * to service a new GPU hang, but more likely we can continue on
2980 	 * without impact.
2981 	 *
2982 	 * If the request was guilty, we presume the context is corrupt
2983 	 * and have to at least restore the RING register in the context
2984 	 * image back to the expected values to skip over the guilty request.
2985 	 */
2986 	__i915_request_reset(rq, stalled);
2987 
2988 	/*
2989 	 * We want a simple context + ring to execute the breadcrumb update.
2990 	 * We cannot rely on the context being intact across the GPU hang,
2991 	 * so clear it and rebuild just what we need for the breadcrumb.
2992 	 * All pending requests for this context will be zapped, and any
2993 	 * future request will be after userspace has had the opportunity
2994 	 * to recreate its own state.
2995 	 */
2996 out_replay:
2997 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2998 		     head, ce->ring->tail);
2999 	lrc_reset_regs(ce, engine);
3000 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3001 }
3002 
execlists_reset_csb(struct intel_engine_cs * engine,bool stalled)3003 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3004 {
3005 	struct intel_engine_execlists * const execlists = &engine->execlists;
3006 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3007 	struct i915_request **inactive;
3008 
3009 	rcu_read_lock();
3010 	inactive = reset_csb(engine, post);
3011 
3012 	execlists_reset_active(engine, true);
3013 
3014 	inactive = cancel_port_requests(execlists, inactive);
3015 	post_process_csb(post, inactive);
3016 	rcu_read_unlock();
3017 }
3018 
execlists_reset_rewind(struct intel_engine_cs * engine,bool stalled)3019 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3020 {
3021 	unsigned long flags;
3022 
3023 	ENGINE_TRACE(engine, "\n");
3024 
3025 	/* Process the csb, find the guilty context and throw away */
3026 	execlists_reset_csb(engine, stalled);
3027 
3028 	/* Push back any incomplete requests for replay after the reset. */
3029 	rcu_read_lock();
3030 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3031 	__unwind_incomplete_requests(engine);
3032 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3033 	rcu_read_unlock();
3034 }
3035 
nop_submission_tasklet(struct tasklet_struct * t)3036 static void nop_submission_tasklet(struct tasklet_struct *t)
3037 {
3038 	struct i915_sched_engine *sched_engine =
3039 		from_tasklet(sched_engine, t, tasklet);
3040 	struct intel_engine_cs * const engine = sched_engine->private_data;
3041 
3042 	/* The driver is wedged; don't process any more events. */
3043 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3044 }
3045 
execlists_reset_cancel(struct intel_engine_cs * engine)3046 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3047 {
3048 	struct intel_engine_execlists * const execlists = &engine->execlists;
3049 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3050 	struct i915_request *rq, *rn;
3051 	struct rb_node *rb;
3052 	unsigned long flags;
3053 
3054 	ENGINE_TRACE(engine, "\n");
3055 
3056 	/*
3057 	 * Before we call engine->cancel_requests(), we should have exclusive
3058 	 * access to the submission state. This is arranged for us by the
3059 	 * caller disabling the interrupt generation, the tasklet and other
3060 	 * threads that may then access the same state, giving us a free hand
3061 	 * to reset state. However, we still need to let lockdep be aware that
3062 	 * we know this state may be accessed in hardirq context, so we
3063 	 * disable the irq around this manipulation and we want to keep
3064 	 * the spinlock focused on its duties and not accidentally conflate
3065 	 * coverage to the submission's irq state. (Similarly, although we
3066 	 * shouldn't need to disable irq around the manipulation of the
3067 	 * submission's irq state, we also wish to remind ourselves that
3068 	 * it is irq state.)
3069 	 */
3070 	execlists_reset_csb(engine, true);
3071 
3072 	rcu_read_lock();
3073 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3074 
3075 	/* Mark all executing requests as skipped. */
3076 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3077 		i915_request_put(i915_request_mark_eio(rq));
3078 	intel_engine_signal_breadcrumbs(engine);
3079 
3080 	/* Flush the queued requests to the timeline list (for retiring). */
3081 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3082 		struct i915_priolist *p = to_priolist(rb);
3083 
3084 		priolist_for_each_request_consume(rq, rn, p) {
3085 			if (i915_request_mark_eio(rq)) {
3086 				__i915_request_submit(rq);
3087 				i915_request_put(rq);
3088 			}
3089 		}
3090 
3091 		rb_erase_cached(&p->node, &sched_engine->queue);
3092 		i915_priolist_free(p);
3093 	}
3094 
3095 	/* On-hold requests will be flushed to timeline upon their release */
3096 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3097 		i915_request_put(i915_request_mark_eio(rq));
3098 
3099 	/* Cancel all attached virtual engines */
3100 	while ((rb = rb_first_cached(&execlists->virtual))) {
3101 		struct virtual_engine *ve =
3102 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3103 
3104 		rb_erase_cached(rb, &execlists->virtual);
3105 		RB_CLEAR_NODE(rb);
3106 
3107 		spin_lock(&ve->base.sched_engine->lock);
3108 		rq = fetch_and_zero(&ve->request);
3109 		if (rq) {
3110 			if (i915_request_mark_eio(rq)) {
3111 				rq->engine = engine;
3112 				__i915_request_submit(rq);
3113 				i915_request_put(rq);
3114 			}
3115 			i915_request_put(rq);
3116 
3117 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3118 		}
3119 		spin_unlock(&ve->base.sched_engine->lock);
3120 	}
3121 
3122 	/* Remaining _unready_ requests will be nop'ed when submitted */
3123 
3124 	sched_engine->queue_priority_hint = INT_MIN;
3125 	sched_engine->queue = RB_ROOT_CACHED;
3126 
3127 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3128 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3129 
3130 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3131 	rcu_read_unlock();
3132 }
3133 
execlists_reset_finish(struct intel_engine_cs * engine)3134 static void execlists_reset_finish(struct intel_engine_cs *engine)
3135 {
3136 	struct intel_engine_execlists * const execlists = &engine->execlists;
3137 
3138 	/*
3139 	 * After a GPU reset, we may have requests to replay. Do so now while
3140 	 * we still have the forcewake to be sure that the GPU is not allowed
3141 	 * to sleep before we restart and reload a context.
3142 	 *
3143 	 * If the GPU reset fails, the engine may still be alive with requests
3144 	 * inflight. We expect those to complete, or for the device to be
3145 	 * reset as the next level of recovery, and as a final resort we
3146 	 * will declare the device wedged.
3147 	 */
3148 	GEM_BUG_ON(!reset_in_progress(engine));
3149 
3150 	/* And kick in case we missed a new request submission. */
3151 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3152 		__execlists_kick(execlists);
3153 
3154 	ENGINE_TRACE(engine, "depth->%d\n",
3155 		     atomic_read(&engine->sched_engine->tasklet.count));
3156 }
3157 
gen8_logical_ring_enable_irq(struct intel_engine_cs * engine)3158 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3159 {
3160 	ENGINE_WRITE(engine, RING_IMR,
3161 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3162 	ENGINE_POSTING_READ(engine, RING_IMR);
3163 }
3164 
gen8_logical_ring_disable_irq(struct intel_engine_cs * engine)3165 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3166 {
3167 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3168 }
3169 
execlists_park(struct intel_engine_cs * engine)3170 static void execlists_park(struct intel_engine_cs *engine)
3171 {
3172 	cancel_timer(&engine->execlists.timer);
3173 	cancel_timer(&engine->execlists.preempt);
3174 }
3175 
add_to_engine(struct i915_request * rq)3176 static void add_to_engine(struct i915_request *rq)
3177 {
3178 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3179 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3180 }
3181 
remove_from_engine(struct i915_request * rq)3182 static void remove_from_engine(struct i915_request *rq)
3183 {
3184 	struct intel_engine_cs *engine, *locked;
3185 
3186 	/*
3187 	 * Virtual engines complicate acquiring the engine timeline lock,
3188 	 * as their rq->engine pointer is not stable until under that
3189 	 * engine lock. The simple ploy we use is to take the lock then
3190 	 * check that the rq still belongs to the newly locked engine.
3191 	 */
3192 	locked = READ_ONCE(rq->engine);
3193 	spin_lock_irq(&locked->sched_engine->lock);
3194 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3195 		spin_unlock(&locked->sched_engine->lock);
3196 		spin_lock(&engine->sched_engine->lock);
3197 		locked = engine;
3198 	}
3199 	list_del_init(&rq->sched.link);
3200 
3201 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3202 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3203 
3204 	/* Prevent further __await_execution() registering a cb, then flush */
3205 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3206 
3207 	spin_unlock_irq(&locked->sched_engine->lock);
3208 
3209 	i915_request_notify_execute_cb_imm(rq);
3210 }
3211 
can_preempt(struct intel_engine_cs * engine)3212 static bool can_preempt(struct intel_engine_cs *engine)
3213 {
3214 	if (GRAPHICS_VER(engine->i915) > 8)
3215 		return true;
3216 
3217 	/* GPGPU on bdw requires extra w/a; not implemented */
3218 	return engine->class != RENDER_CLASS;
3219 }
3220 
kick_execlists(const struct i915_request * rq,int prio)3221 static void kick_execlists(const struct i915_request *rq, int prio)
3222 {
3223 	struct intel_engine_cs *engine = rq->engine;
3224 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3225 	const struct i915_request *inflight;
3226 
3227 	/*
3228 	 * We only need to kick the tasklet once for the high priority
3229 	 * new context we add into the queue.
3230 	 */
3231 	if (prio <= sched_engine->queue_priority_hint)
3232 		return;
3233 
3234 	rcu_read_lock();
3235 
3236 	/* Nothing currently active? We're overdue for a submission! */
3237 	inflight = execlists_active(&engine->execlists);
3238 	if (!inflight)
3239 		goto unlock;
3240 
3241 	/*
3242 	 * If we are already the currently executing context, don't
3243 	 * bother evaluating if we should preempt ourselves.
3244 	 */
3245 	if (inflight->context == rq->context)
3246 		goto unlock;
3247 
3248 	ENGINE_TRACE(engine,
3249 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3250 		     prio,
3251 		     rq->fence.context, rq->fence.seqno,
3252 		     inflight->fence.context, inflight->fence.seqno,
3253 		     inflight->sched.attr.priority);
3254 
3255 	sched_engine->queue_priority_hint = prio;
3256 
3257 	/*
3258 	 * Allow preemption of low -> normal -> high, but we do
3259 	 * not allow low priority tasks to preempt other low priority
3260 	 * tasks under the impression that latency for low priority
3261 	 * tasks does not matter (as much as background throughput),
3262 	 * so kiss.
3263 	 */
3264 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3265 		tasklet_hi_schedule(&sched_engine->tasklet);
3266 
3267 unlock:
3268 	rcu_read_unlock();
3269 }
3270 
execlists_set_default_submission(struct intel_engine_cs * engine)3271 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3272 {
3273 	engine->submit_request = execlists_submit_request;
3274 	engine->sched_engine->schedule = i915_schedule;
3275 	engine->sched_engine->kick_backend = kick_execlists;
3276 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3277 }
3278 
execlists_shutdown(struct intel_engine_cs * engine)3279 static void execlists_shutdown(struct intel_engine_cs *engine)
3280 {
3281 	/* Synchronise with residual timers and any softirq they raise */
3282 	del_timer_sync(&engine->execlists.timer);
3283 	del_timer_sync(&engine->execlists.preempt);
3284 	tasklet_kill(&engine->sched_engine->tasklet);
3285 }
3286 
execlists_release(struct intel_engine_cs * engine)3287 static void execlists_release(struct intel_engine_cs *engine)
3288 {
3289 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3290 
3291 	execlists_shutdown(engine);
3292 
3293 	intel_engine_cleanup_common(engine);
3294 	lrc_fini_wa_ctx(engine);
3295 }
3296 
3297 static void
logical_ring_default_vfuncs(struct intel_engine_cs * engine)3298 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3299 {
3300 	/* Default vfuncs which can be overridden by each engine. */
3301 
3302 	engine->resume = execlists_resume;
3303 
3304 	engine->cops = &execlists_context_ops;
3305 	engine->request_alloc = execlists_request_alloc;
3306 	engine->add_active_request = add_to_engine;
3307 	engine->remove_active_request = remove_from_engine;
3308 
3309 	engine->reset.prepare = execlists_reset_prepare;
3310 	engine->reset.rewind = execlists_reset_rewind;
3311 	engine->reset.cancel = execlists_reset_cancel;
3312 	engine->reset.finish = execlists_reset_finish;
3313 
3314 	engine->park = execlists_park;
3315 	engine->unpark = NULL;
3316 
3317 	engine->emit_flush = gen8_emit_flush_xcs;
3318 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3319 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3320 	if (GRAPHICS_VER(engine->i915) >= 12) {
3321 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3322 		engine->emit_flush = gen12_emit_flush_xcs;
3323 	}
3324 	engine->set_default_submission = execlists_set_default_submission;
3325 
3326 	if (GRAPHICS_VER(engine->i915) < 11) {
3327 		engine->irq_enable = gen8_logical_ring_enable_irq;
3328 		engine->irq_disable = gen8_logical_ring_disable_irq;
3329 	} else {
3330 		/*
3331 		 * TODO: On Gen11 interrupt masks need to be clear
3332 		 * to allow C6 entry. Keep interrupts enabled at
3333 		 * and take the hit of generating extra interrupts
3334 		 * until a more refined solution exists.
3335 		 */
3336 	}
3337 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3338 
3339 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3340 	if (!intel_vgpu_active(engine->i915)) {
3341 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3342 		if (can_preempt(engine)) {
3343 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3344 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3345 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3346 		}
3347 	}
3348 
3349 	if (intel_engine_has_preemption(engine))
3350 		engine->emit_bb_start = gen8_emit_bb_start;
3351 	else
3352 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3353 }
3354 
logical_ring_default_irqs(struct intel_engine_cs * engine)3355 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3356 {
3357 	unsigned int shift = 0;
3358 
3359 	if (GRAPHICS_VER(engine->i915) < 11) {
3360 		const u8 irq_shifts[] = {
3361 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3362 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3363 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3364 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3365 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3366 		};
3367 
3368 		shift = irq_shifts[engine->id];
3369 	}
3370 
3371 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3372 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3373 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3374 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3375 }
3376 
rcs_submission_override(struct intel_engine_cs * engine)3377 static void rcs_submission_override(struct intel_engine_cs *engine)
3378 {
3379 	switch (GRAPHICS_VER(engine->i915)) {
3380 	case 12:
3381 		engine->emit_flush = gen12_emit_flush_rcs;
3382 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3383 		break;
3384 	case 11:
3385 		engine->emit_flush = gen11_emit_flush_rcs;
3386 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3387 		break;
3388 	default:
3389 		engine->emit_flush = gen8_emit_flush_rcs;
3390 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3391 		break;
3392 	}
3393 }
3394 
intel_execlists_submission_setup(struct intel_engine_cs * engine)3395 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3396 {
3397 	struct intel_engine_execlists * const execlists = &engine->execlists;
3398 	struct drm_i915_private *i915 = engine->i915;
3399 	struct intel_uncore *uncore = engine->uncore;
3400 	u32 base = engine->mmio_base;
3401 
3402 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3403 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3404 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3405 
3406 	logical_ring_default_vfuncs(engine);
3407 	logical_ring_default_irqs(engine);
3408 
3409 	if (engine->class == RENDER_CLASS)
3410 		rcs_submission_override(engine);
3411 
3412 	lrc_init_wa_ctx(engine);
3413 
3414 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3415 		execlists->submit_reg = uncore->regs +
3416 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3417 		execlists->ctrl_reg = uncore->regs +
3418 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3419 
3420 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3421 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3422 				    FW_REG_WRITE);
3423 	} else {
3424 		execlists->submit_reg = uncore->regs +
3425 			i915_mmio_reg_offset(RING_ELSP(base));
3426 	}
3427 
3428 	execlists->csb_status =
3429 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3430 
3431 	execlists->csb_write =
3432 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3433 
3434 	if (GRAPHICS_VER(i915) < 11)
3435 		execlists->csb_size = GEN8_CSB_ENTRIES;
3436 	else
3437 		execlists->csb_size = GEN11_CSB_ENTRIES;
3438 
3439 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3440 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3441 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3442 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3443 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3444 	}
3445 
3446 	/* Finally, take ownership and responsibility for cleanup! */
3447 	engine->sanitize = execlists_sanitize;
3448 	engine->release = execlists_release;
3449 
3450 	return 0;
3451 }
3452 
virtual_queue(struct virtual_engine * ve)3453 static struct list_head *virtual_queue(struct virtual_engine *ve)
3454 {
3455 	return &ve->base.sched_engine->default_priolist.requests;
3456 }
3457 
rcu_virtual_context_destroy(struct work_struct * wrk)3458 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3459 {
3460 	struct virtual_engine *ve =
3461 		container_of(wrk, typeof(*ve), rcu.work);
3462 	unsigned int n;
3463 
3464 	GEM_BUG_ON(ve->context.inflight);
3465 
3466 	/* Preempt-to-busy may leave a stale request behind. */
3467 	if (unlikely(ve->request)) {
3468 		struct i915_request *old;
3469 
3470 		spin_lock_irq(&ve->base.sched_engine->lock);
3471 
3472 		old = fetch_and_zero(&ve->request);
3473 		if (old) {
3474 			GEM_BUG_ON(!__i915_request_is_complete(old));
3475 			__i915_request_submit(old);
3476 			i915_request_put(old);
3477 		}
3478 
3479 		spin_unlock_irq(&ve->base.sched_engine->lock);
3480 	}
3481 
3482 	/*
3483 	 * Flush the tasklet in case it is still running on another core.
3484 	 *
3485 	 * This needs to be done before we remove ourselves from the siblings'
3486 	 * rbtrees as in the case it is running in parallel, it may reinsert
3487 	 * the rb_node into a sibling.
3488 	 */
3489 	tasklet_kill(&ve->base.sched_engine->tasklet);
3490 
3491 	/* Decouple ourselves from the siblings, no more access allowed. */
3492 	for (n = 0; n < ve->num_siblings; n++) {
3493 		struct intel_engine_cs *sibling = ve->siblings[n];
3494 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3495 
3496 		if (RB_EMPTY_NODE(node))
3497 			continue;
3498 
3499 		spin_lock_irq(&sibling->sched_engine->lock);
3500 
3501 		/* Detachment is lazily performed in the sched_engine->tasklet */
3502 		if (!RB_EMPTY_NODE(node))
3503 			rb_erase_cached(node, &sibling->execlists.virtual);
3504 
3505 		spin_unlock_irq(&sibling->sched_engine->lock);
3506 	}
3507 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3508 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3509 
3510 	lrc_fini(&ve->context);
3511 	intel_context_fini(&ve->context);
3512 
3513 	if (ve->base.breadcrumbs)
3514 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3515 	if (ve->base.sched_engine)
3516 		i915_sched_engine_put(ve->base.sched_engine);
3517 	intel_engine_free_request_pool(&ve->base);
3518 
3519 	kfree(ve);
3520 }
3521 
virtual_context_destroy(struct kref * kref)3522 static void virtual_context_destroy(struct kref *kref)
3523 {
3524 	struct virtual_engine *ve =
3525 		container_of(kref, typeof(*ve), context.ref);
3526 
3527 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3528 
3529 	/*
3530 	 * When destroying the virtual engine, we have to be aware that
3531 	 * it may still be in use from an hardirq/softirq context causing
3532 	 * the resubmission of a completed request (background completion
3533 	 * due to preempt-to-busy). Before we can free the engine, we need
3534 	 * to flush the submission code and tasklets that are still potentially
3535 	 * accessing the engine. Flushing the tasklets requires process context,
3536 	 * and since we can guard the resubmit onto the engine with an RCU read
3537 	 * lock, we can delegate the free of the engine to an RCU worker.
3538 	 */
3539 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3540 	queue_rcu_work(system_wq, &ve->rcu);
3541 }
3542 
virtual_engine_initial_hint(struct virtual_engine * ve)3543 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3544 {
3545 	int swp;
3546 
3547 	/*
3548 	 * Pick a random sibling on starting to help spread the load around.
3549 	 *
3550 	 * New contexts are typically created with exactly the same order
3551 	 * of siblings, and often started in batches. Due to the way we iterate
3552 	 * the array of sibling when submitting requests, sibling[0] is
3553 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3554 	 * randomised across the system, we also help spread the load by the
3555 	 * first engine we inspect being different each time.
3556 	 *
3557 	 * NB This does not force us to execute on this engine, it will just
3558 	 * typically be the first we inspect for submission.
3559 	 */
3560 	swp = prandom_u32_max(ve->num_siblings);
3561 	if (swp)
3562 		swap(ve->siblings[swp], ve->siblings[0]);
3563 }
3564 
virtual_context_alloc(struct intel_context * ce)3565 static int virtual_context_alloc(struct intel_context *ce)
3566 {
3567 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3568 
3569 	return lrc_alloc(ce, ve->siblings[0]);
3570 }
3571 
virtual_context_pre_pin(struct intel_context * ce,struct i915_gem_ww_ctx * ww,void ** vaddr)3572 static int virtual_context_pre_pin(struct intel_context *ce,
3573 				   struct i915_gem_ww_ctx *ww,
3574 				   void **vaddr)
3575 {
3576 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3577 
3578 	 /* Note: we must use a real engine class for setting up reg state */
3579 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3580 }
3581 
virtual_context_pin(struct intel_context * ce,void * vaddr)3582 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3583 {
3584 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3585 
3586 	return lrc_pin(ce, ve->siblings[0], vaddr);
3587 }
3588 
virtual_context_enter(struct intel_context * ce)3589 static void virtual_context_enter(struct intel_context *ce)
3590 {
3591 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3592 	unsigned int n;
3593 
3594 	for (n = 0; n < ve->num_siblings; n++)
3595 		intel_engine_pm_get(ve->siblings[n]);
3596 
3597 	intel_timeline_enter(ce->timeline);
3598 }
3599 
virtual_context_exit(struct intel_context * ce)3600 static void virtual_context_exit(struct intel_context *ce)
3601 {
3602 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3603 	unsigned int n;
3604 
3605 	intel_timeline_exit(ce->timeline);
3606 
3607 	for (n = 0; n < ve->num_siblings; n++)
3608 		intel_engine_pm_put(ve->siblings[n]);
3609 }
3610 
3611 static struct intel_engine_cs *
virtual_get_sibling(struct intel_engine_cs * engine,unsigned int sibling)3612 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3613 {
3614 	struct virtual_engine *ve = to_virtual_engine(engine);
3615 
3616 	if (sibling >= ve->num_siblings)
3617 		return NULL;
3618 
3619 	return ve->siblings[sibling];
3620 }
3621 
3622 static const struct intel_context_ops virtual_context_ops = {
3623 	.flags = COPS_HAS_INFLIGHT,
3624 
3625 	.alloc = virtual_context_alloc,
3626 
3627 	.cancel_request = execlists_context_cancel_request,
3628 
3629 	.pre_pin = virtual_context_pre_pin,
3630 	.pin = virtual_context_pin,
3631 	.unpin = lrc_unpin,
3632 	.post_unpin = lrc_post_unpin,
3633 
3634 	.enter = virtual_context_enter,
3635 	.exit = virtual_context_exit,
3636 
3637 	.destroy = virtual_context_destroy,
3638 
3639 	.get_sibling = virtual_get_sibling,
3640 };
3641 
virtual_submission_mask(struct virtual_engine * ve)3642 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3643 {
3644 	struct i915_request *rq;
3645 	intel_engine_mask_t mask;
3646 
3647 	rq = READ_ONCE(ve->request);
3648 	if (!rq)
3649 		return 0;
3650 
3651 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3652 	mask = rq->execution_mask;
3653 	if (unlikely(!mask)) {
3654 		/* Invalid selection, submit to a random engine in error */
3655 		i915_request_set_error_once(rq, -ENODEV);
3656 		mask = ve->siblings[0]->mask;
3657 	}
3658 
3659 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3660 		     rq->fence.context, rq->fence.seqno,
3661 		     mask, ve->base.sched_engine->queue_priority_hint);
3662 
3663 	return mask;
3664 }
3665 
virtual_submission_tasklet(struct tasklet_struct * t)3666 static void virtual_submission_tasklet(struct tasklet_struct *t)
3667 {
3668 	struct i915_sched_engine *sched_engine =
3669 		from_tasklet(sched_engine, t, tasklet);
3670 	struct virtual_engine * const ve =
3671 		(struct virtual_engine *)sched_engine->private_data;
3672 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3673 	intel_engine_mask_t mask;
3674 	unsigned int n;
3675 
3676 	rcu_read_lock();
3677 	mask = virtual_submission_mask(ve);
3678 	rcu_read_unlock();
3679 	if (unlikely(!mask))
3680 		return;
3681 
3682 	for (n = 0; n < ve->num_siblings; n++) {
3683 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3684 		struct ve_node * const node = &ve->nodes[sibling->id];
3685 		struct rb_node **parent, *rb;
3686 		bool first;
3687 
3688 		if (!READ_ONCE(ve->request))
3689 			break; /* already handled by a sibling's tasklet */
3690 
3691 		spin_lock_irq(&sibling->sched_engine->lock);
3692 
3693 		if (unlikely(!(mask & sibling->mask))) {
3694 			if (!RB_EMPTY_NODE(&node->rb)) {
3695 				rb_erase_cached(&node->rb,
3696 						&sibling->execlists.virtual);
3697 				RB_CLEAR_NODE(&node->rb);
3698 			}
3699 
3700 			goto unlock_engine;
3701 		}
3702 
3703 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3704 			/*
3705 			 * Cheat and avoid rebalancing the tree if we can
3706 			 * reuse this node in situ.
3707 			 */
3708 			first = rb_first_cached(&sibling->execlists.virtual) ==
3709 				&node->rb;
3710 			if (prio == node->prio || (prio > node->prio && first))
3711 				goto submit_engine;
3712 
3713 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3714 		}
3715 
3716 		rb = NULL;
3717 		first = true;
3718 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3719 		while (*parent) {
3720 			struct ve_node *other;
3721 
3722 			rb = *parent;
3723 			other = rb_entry(rb, typeof(*other), rb);
3724 			if (prio > other->prio) {
3725 				parent = &rb->rb_left;
3726 			} else {
3727 				parent = &rb->rb_right;
3728 				first = false;
3729 			}
3730 		}
3731 
3732 		rb_link_node(&node->rb, rb, parent);
3733 		rb_insert_color_cached(&node->rb,
3734 				       &sibling->execlists.virtual,
3735 				       first);
3736 
3737 submit_engine:
3738 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3739 		node->prio = prio;
3740 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3741 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3742 
3743 unlock_engine:
3744 		spin_unlock_irq(&sibling->sched_engine->lock);
3745 
3746 		if (intel_context_inflight(&ve->context))
3747 			break;
3748 	}
3749 }
3750 
virtual_submit_request(struct i915_request * rq)3751 static void virtual_submit_request(struct i915_request *rq)
3752 {
3753 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3754 	unsigned long flags;
3755 
3756 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3757 		     rq->fence.context,
3758 		     rq->fence.seqno);
3759 
3760 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3761 
3762 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3763 
3764 	/* By the time we resubmit a request, it may be completed */
3765 	if (__i915_request_is_complete(rq)) {
3766 		__i915_request_submit(rq);
3767 		goto unlock;
3768 	}
3769 
3770 	if (ve->request) { /* background completion from preempt-to-busy */
3771 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3772 		__i915_request_submit(ve->request);
3773 		i915_request_put(ve->request);
3774 	}
3775 
3776 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3777 	ve->request = i915_request_get(rq);
3778 
3779 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3780 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3781 
3782 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3783 
3784 unlock:
3785 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3786 }
3787 
3788 static struct intel_context *
execlists_create_virtual(struct intel_engine_cs ** siblings,unsigned int count)3789 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count)
3790 {
3791 	struct virtual_engine *ve;
3792 	unsigned int n;
3793 	int err;
3794 
3795 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3796 	if (!ve)
3797 		return ERR_PTR(-ENOMEM);
3798 
3799 	ve->base.i915 = siblings[0]->i915;
3800 	ve->base.gt = siblings[0]->gt;
3801 	ve->base.uncore = siblings[0]->uncore;
3802 	ve->base.id = -1;
3803 
3804 	ve->base.class = OTHER_CLASS;
3805 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3806 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3807 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3808 
3809 	/*
3810 	 * The decision on whether to submit a request using semaphores
3811 	 * depends on the saturated state of the engine. We only compute
3812 	 * this during HW submission of the request, and we need for this
3813 	 * state to be globally applied to all requests being submitted
3814 	 * to this engine. Virtual engines encompass more than one physical
3815 	 * engine and so we cannot accurately tell in advance if one of those
3816 	 * engines is already saturated and so cannot afford to use a semaphore
3817 	 * and be pessimized in priority for doing so -- if we are the only
3818 	 * context using semaphores after all other clients have stopped, we
3819 	 * will be starved on the saturated system. Such a global switch for
3820 	 * semaphores is less than ideal, but alas is the current compromise.
3821 	 */
3822 	ve->base.saturated = ALL_ENGINES;
3823 
3824 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3825 
3826 	intel_engine_init_execlists(&ve->base);
3827 
3828 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3829 	if (!ve->base.sched_engine) {
3830 		err = -ENOMEM;
3831 		goto err_put;
3832 	}
3833 	ve->base.sched_engine->private_data = &ve->base;
3834 
3835 	ve->base.cops = &virtual_context_ops;
3836 	ve->base.request_alloc = execlists_request_alloc;
3837 
3838 	ve->base.sched_engine->schedule = i915_schedule;
3839 	ve->base.sched_engine->kick_backend = kick_execlists;
3840 	ve->base.submit_request = virtual_submit_request;
3841 
3842 	INIT_LIST_HEAD(virtual_queue(ve));
3843 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3844 
3845 	intel_context_init(&ve->context, &ve->base);
3846 
3847 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3848 	if (!ve->base.breadcrumbs) {
3849 		err = -ENOMEM;
3850 		goto err_put;
3851 	}
3852 
3853 	for (n = 0; n < count; n++) {
3854 		struct intel_engine_cs *sibling = siblings[n];
3855 
3856 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3857 		if (sibling->mask & ve->base.mask) {
3858 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3859 				  sibling->name);
3860 			err = -EINVAL;
3861 			goto err_put;
3862 		}
3863 
3864 		/*
3865 		 * The virtual engine implementation is tightly coupled to
3866 		 * the execlists backend -- we push out request directly
3867 		 * into a tree inside each physical engine. We could support
3868 		 * layering if we handle cloning of the requests and
3869 		 * submitting a copy into each backend.
3870 		 */
3871 		if (sibling->sched_engine->tasklet.callback !=
3872 		    execlists_submission_tasklet) {
3873 			err = -ENODEV;
3874 			goto err_put;
3875 		}
3876 
3877 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3878 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3879 
3880 		ve->siblings[ve->num_siblings++] = sibling;
3881 		ve->base.mask |= sibling->mask;
3882 
3883 		/*
3884 		 * All physical engines must be compatible for their emission
3885 		 * functions (as we build the instructions during request
3886 		 * construction and do not alter them before submission
3887 		 * on the physical engine). We use the engine class as a guide
3888 		 * here, although that could be refined.
3889 		 */
3890 		if (ve->base.class != OTHER_CLASS) {
3891 			if (ve->base.class != sibling->class) {
3892 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3893 					  sibling->class, ve->base.class);
3894 				err = -EINVAL;
3895 				goto err_put;
3896 			}
3897 			continue;
3898 		}
3899 
3900 		ve->base.class = sibling->class;
3901 		ve->base.uabi_class = sibling->uabi_class;
3902 		snprintf(ve->base.name, sizeof(ve->base.name),
3903 			 "v%dx%d", ve->base.class, count);
3904 		ve->base.context_size = sibling->context_size;
3905 
3906 		ve->base.add_active_request = sibling->add_active_request;
3907 		ve->base.remove_active_request = sibling->remove_active_request;
3908 		ve->base.emit_bb_start = sibling->emit_bb_start;
3909 		ve->base.emit_flush = sibling->emit_flush;
3910 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3911 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3912 		ve->base.emit_fini_breadcrumb_dw =
3913 			sibling->emit_fini_breadcrumb_dw;
3914 
3915 		ve->base.flags = sibling->flags;
3916 	}
3917 
3918 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3919 
3920 	virtual_engine_initial_hint(ve);
3921 	return &ve->context;
3922 
3923 err_put:
3924 	intel_context_put(&ve->context);
3925 	return ERR_PTR(err);
3926 }
3927 
intel_execlists_show_requests(struct intel_engine_cs * engine,struct drm_printer * m,void (* show_request)(struct drm_printer * m,const struct i915_request * rq,const char * prefix,int indent),unsigned int max)3928 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3929 				   struct drm_printer *m,
3930 				   void (*show_request)(struct drm_printer *m,
3931 							const struct i915_request *rq,
3932 							const char *prefix,
3933 							int indent),
3934 				   unsigned int max)
3935 {
3936 	const struct intel_engine_execlists *execlists = &engine->execlists;
3937 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3938 	struct i915_request *rq, *last;
3939 	unsigned long flags;
3940 	unsigned int count;
3941 	struct rb_node *rb;
3942 
3943 	spin_lock_irqsave(&sched_engine->lock, flags);
3944 
3945 	last = NULL;
3946 	count = 0;
3947 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
3948 		if (count++ < max - 1)
3949 			show_request(m, rq, "\t\t", 0);
3950 		else
3951 			last = rq;
3952 	}
3953 	if (last) {
3954 		if (count > max) {
3955 			drm_printf(m,
3956 				   "\t\t...skipping %d executing requests...\n",
3957 				   count - max);
3958 		}
3959 		show_request(m, last, "\t\t", 0);
3960 	}
3961 
3962 	if (sched_engine->queue_priority_hint != INT_MIN)
3963 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3964 			   READ_ONCE(sched_engine->queue_priority_hint));
3965 
3966 	last = NULL;
3967 	count = 0;
3968 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
3969 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3970 
3971 		priolist_for_each_request(rq, p) {
3972 			if (count++ < max - 1)
3973 				show_request(m, rq, "\t\t", 0);
3974 			else
3975 				last = rq;
3976 		}
3977 	}
3978 	if (last) {
3979 		if (count > max) {
3980 			drm_printf(m,
3981 				   "\t\t...skipping %d queued requests...\n",
3982 				   count - max);
3983 		}
3984 		show_request(m, last, "\t\t", 0);
3985 	}
3986 
3987 	last = NULL;
3988 	count = 0;
3989 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3990 		struct virtual_engine *ve =
3991 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3992 		struct i915_request *rq = READ_ONCE(ve->request);
3993 
3994 		if (rq) {
3995 			if (count++ < max - 1)
3996 				show_request(m, rq, "\t\t", 0);
3997 			else
3998 				last = rq;
3999 		}
4000 	}
4001 	if (last) {
4002 		if (count > max) {
4003 			drm_printf(m,
4004 				   "\t\t...skipping %d virtual requests...\n",
4005 				   count - max);
4006 		}
4007 		show_request(m, last, "\t\t", 0);
4008 	}
4009 
4010 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4011 }
4012 
4013 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4014 #include "selftest_execlists.c"
4015 #endif
4016