1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2014-2015 Hisilicon Limited.
4 */
5
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25
26 #define SERVICE_TIMER_HZ (1 * HZ)
27
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35
fill_v2_desc_hw(struct hnae_ring * ring,void * priv,int size,int send_sz,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37 int send_sz, dma_addr_t dma, int frag_end,
38 int buf_num, enum hns_desc_type type, int mtu)
39 {
40 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42 struct iphdr *iphdr;
43 struct ipv6hdr *ipv6hdr;
44 struct sk_buff *skb;
45 __be16 protocol;
46 u8 bn_pid = 0;
47 u8 rrcfv = 0;
48 u8 ip_offset = 0;
49 u8 tvsvsn = 0;
50 u16 mss = 0;
51 u8 l4_len = 0;
52 u16 paylen = 0;
53
54 desc_cb->priv = priv;
55 desc_cb->length = size;
56 desc_cb->dma = dma;
57 desc_cb->type = type;
58
59 desc->addr = cpu_to_le64(dma);
60 desc->tx.send_size = cpu_to_le16((u16)send_sz);
61
62 /* config bd buffer end */
63 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65
66 /* fill port_id in the tx bd for sending management pkts */
67 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69
70 if (type == DESC_TYPE_SKB) {
71 skb = (struct sk_buff *)priv;
72
73 if (skb->ip_summed == CHECKSUM_PARTIAL) {
74 skb_reset_mac_len(skb);
75 protocol = skb->protocol;
76 ip_offset = ETH_HLEN;
77
78 if (protocol == htons(ETH_P_8021Q)) {
79 ip_offset += VLAN_HLEN;
80 protocol = vlan_get_protocol(skb);
81 skb->protocol = protocol;
82 }
83
84 if (skb->protocol == htons(ETH_P_IP)) {
85 iphdr = ip_hdr(skb);
86 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88
89 /* check for tcp/udp header */
90 if (iphdr->protocol == IPPROTO_TCP &&
91 skb_is_gso(skb)) {
92 hnae_set_bit(tvsvsn,
93 HNSV2_TXD_TSE_B, 1);
94 l4_len = tcp_hdrlen(skb);
95 mss = skb_shinfo(skb)->gso_size;
96 paylen = skb->len - SKB_TMP_LEN(skb);
97 }
98 } else if (skb->protocol == htons(ETH_P_IPV6)) {
99 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100 ipv6hdr = ipv6_hdr(skb);
101 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102
103 /* check for tcp/udp header */
104 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106 hnae_set_bit(tvsvsn,
107 HNSV2_TXD_TSE_B, 1);
108 l4_len = tcp_hdrlen(skb);
109 mss = skb_shinfo(skb)->gso_size;
110 paylen = skb->len - SKB_TMP_LEN(skb);
111 }
112 }
113 desc->tx.ip_offset = ip_offset;
114 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115 desc->tx.mss = cpu_to_le16(mss);
116 desc->tx.l4_len = l4_len;
117 desc->tx.paylen = cpu_to_le16(paylen);
118 }
119 }
120
121 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122
123 desc->tx.bn_pid = bn_pid;
124 desc->tx.ra_ri_cs_fe_vld = rrcfv;
125
126 ring_ptr_move_fw(ring, next_to_use);
127 }
128
fill_v2_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130 int size, dma_addr_t dma, int frag_end,
131 int buf_num, enum hns_desc_type type, int mtu)
132 {
133 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134 buf_num, type, mtu);
135 }
136
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138 { "HISI00C1", 0 },
139 { "HISI00C2", 0 },
140 { },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143
fill_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)144 static void fill_desc(struct hnae_ring *ring, void *priv,
145 int size, dma_addr_t dma, int frag_end,
146 int buf_num, enum hns_desc_type type, int mtu)
147 {
148 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 struct sk_buff *skb;
151 __be16 protocol;
152 u32 ip_offset;
153 u32 asid_bufnum_pid = 0;
154 u32 flag_ipoffset = 0;
155
156 desc_cb->priv = priv;
157 desc_cb->length = size;
158 desc_cb->dma = dma;
159 desc_cb->type = type;
160
161 desc->addr = cpu_to_le64(dma);
162 desc->tx.send_size = cpu_to_le16((u16)size);
163
164 /*config bd buffer end */
165 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166
167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168
169 if (type == DESC_TYPE_SKB) {
170 skb = (struct sk_buff *)priv;
171
172 if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 protocol = skb->protocol;
174 ip_offset = ETH_HLEN;
175
176 /*if it is a SW VLAN check the next protocol*/
177 if (protocol == htons(ETH_P_8021Q)) {
178 ip_offset += VLAN_HLEN;
179 protocol = vlan_get_protocol(skb);
180 skb->protocol = protocol;
181 }
182
183 if (skb->protocol == htons(ETH_P_IP)) {
184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 /* check for tcp/udp header */
186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187
188 } else if (skb->protocol == htons(ETH_P_IPV6)) {
189 /* ipv6 has not l3 cs, check for L4 header */
190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 }
192
193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 }
195 }
196
197 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198
199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201
202 ring_ptr_move_fw(ring, next_to_use);
203 }
204
unfill_desc(struct hnae_ring * ring)205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 ring_ptr_move_bw(ring, next_to_use);
208 }
209
hns_nic_maybe_stop_tx(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)210 static int hns_nic_maybe_stop_tx(
211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 struct sk_buff *skb = *out_skb;
214 struct sk_buff *new_skb = NULL;
215 int buf_num;
216
217 /* no. of segments (plus a header) */
218 buf_num = skb_shinfo(skb)->nr_frags + 1;
219
220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 if (ring_space(ring) < 1)
222 return -EBUSY;
223
224 new_skb = skb_copy(skb, GFP_ATOMIC);
225 if (!new_skb)
226 return -ENOMEM;
227
228 dev_kfree_skb_any(skb);
229 *out_skb = new_skb;
230 buf_num = 1;
231 } else if (buf_num > ring_space(ring)) {
232 return -EBUSY;
233 }
234
235 *bnum = buf_num;
236 return 0;
237 }
238
hns_nic_maybe_stop_tso(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)239 static int hns_nic_maybe_stop_tso(
240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 int i;
243 int size;
244 int buf_num;
245 int frag_num;
246 struct sk_buff *skb = *out_skb;
247 struct sk_buff *new_skb = NULL;
248 skb_frag_t *frag;
249
250 size = skb_headlen(skb);
251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252
253 frag_num = skb_shinfo(skb)->nr_frags;
254 for (i = 0; i < frag_num; i++) {
255 frag = &skb_shinfo(skb)->frags[i];
256 size = skb_frag_size(frag);
257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 }
259
260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 if (ring_space(ring) < buf_num)
263 return -EBUSY;
264 /* manual split the send packet */
265 new_skb = skb_copy(skb, GFP_ATOMIC);
266 if (!new_skb)
267 return -ENOMEM;
268 dev_kfree_skb_any(skb);
269 *out_skb = new_skb;
270
271 } else if (ring_space(ring) < buf_num) {
272 return -EBUSY;
273 }
274
275 *bnum = buf_num;
276 return 0;
277 }
278
fill_tso_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280 int size, dma_addr_t dma, int frag_end,
281 int buf_num, enum hns_desc_type type, int mtu)
282 {
283 int frag_buf_num;
284 int sizeoflast;
285 int k;
286
287 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288 sizeoflast = size % BD_MAX_SEND_SIZE;
289 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290
291 /* when the frag size is bigger than hardware, split this frag */
292 for (k = 0; k < frag_buf_num; k++)
293 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294 (k == frag_buf_num - 1) ?
295 sizeoflast : BD_MAX_SEND_SIZE,
296 dma + BD_MAX_SEND_SIZE * k,
297 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298 buf_num,
299 (type == DESC_TYPE_SKB && !k) ?
300 DESC_TYPE_SKB : DESC_TYPE_PAGE,
301 mtu);
302 }
303
hns_nic_net_xmit_hw(struct net_device * ndev,struct sk_buff * skb,struct hns_nic_ring_data * ring_data)304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305 struct sk_buff *skb,
306 struct hns_nic_ring_data *ring_data)
307 {
308 struct hns_nic_priv *priv = netdev_priv(ndev);
309 struct hnae_ring *ring = ring_data->ring;
310 struct device *dev = ring_to_dev(ring);
311 struct netdev_queue *dev_queue;
312 skb_frag_t *frag;
313 int buf_num;
314 int seg_num;
315 dma_addr_t dma;
316 int size, next_to_use;
317 int i;
318
319 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320 case -EBUSY:
321 ring->stats.tx_busy++;
322 goto out_net_tx_busy;
323 case -ENOMEM:
324 ring->stats.sw_err_cnt++;
325 netdev_err(ndev, "no memory to xmit!\n");
326 goto out_err_tx_ok;
327 default:
328 break;
329 }
330
331 /* no. of segments (plus a header) */
332 seg_num = skb_shinfo(skb)->nr_frags + 1;
333 next_to_use = ring->next_to_use;
334
335 /* fill the first part */
336 size = skb_headlen(skb);
337 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338 if (dma_mapping_error(dev, dma)) {
339 netdev_err(ndev, "TX head DMA map failed\n");
340 ring->stats.sw_err_cnt++;
341 goto out_err_tx_ok;
342 }
343 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344 buf_num, DESC_TYPE_SKB, ndev->mtu);
345
346 /* fill the fragments */
347 for (i = 1; i < seg_num; i++) {
348 frag = &skb_shinfo(skb)->frags[i - 1];
349 size = skb_frag_size(frag);
350 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351 if (dma_mapping_error(dev, dma)) {
352 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353 ring->stats.sw_err_cnt++;
354 goto out_map_frag_fail;
355 }
356 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357 seg_num - 1 == i ? 1 : 0, buf_num,
358 DESC_TYPE_PAGE, ndev->mtu);
359 }
360
361 /*complete translate all packets*/
362 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363 netdev_tx_sent_queue(dev_queue, skb->len);
364
365 netif_trans_update(ndev);
366 ndev->stats.tx_bytes += skb->len;
367 ndev->stats.tx_packets++;
368
369 wmb(); /* commit all data before submit */
370 assert(skb->queue_mapping < priv->ae_handle->q_num);
371 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372
373 return NETDEV_TX_OK;
374
375 out_map_frag_fail:
376
377 while (ring->next_to_use != next_to_use) {
378 unfill_desc(ring);
379 if (ring->next_to_use != next_to_use)
380 dma_unmap_page(dev,
381 ring->desc_cb[ring->next_to_use].dma,
382 ring->desc_cb[ring->next_to_use].length,
383 DMA_TO_DEVICE);
384 else
385 dma_unmap_single(dev,
386 ring->desc_cb[next_to_use].dma,
387 ring->desc_cb[next_to_use].length,
388 DMA_TO_DEVICE);
389 }
390
391 out_err_tx_ok:
392
393 dev_kfree_skb_any(skb);
394 return NETDEV_TX_OK;
395
396 out_net_tx_busy:
397
398 netif_stop_subqueue(ndev, skb->queue_mapping);
399
400 /* Herbert's original patch had:
401 * smp_mb__after_netif_stop_queue();
402 * but since that doesn't exist yet, just open code it.
403 */
404 smp_mb();
405 return NETDEV_TX_BUSY;
406 }
407
hns_nic_reuse_page(struct sk_buff * skb,int i,struct hnae_ring * ring,int pull_len,struct hnae_desc_cb * desc_cb)408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409 struct hnae_ring *ring, int pull_len,
410 struct hnae_desc_cb *desc_cb)
411 {
412 struct hnae_desc *desc;
413 u32 truesize;
414 int size;
415 int last_offset;
416 bool twobufs;
417
418 twobufs = ((PAGE_SIZE < 8192) &&
419 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420
421 desc = &ring->desc[ring->next_to_clean];
422 size = le16_to_cpu(desc->rx.size);
423
424 if (twobufs) {
425 truesize = hnae_buf_size(ring);
426 } else {
427 truesize = ALIGN(size, L1_CACHE_BYTES);
428 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429 }
430
431 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432 size - pull_len, truesize);
433
434 /* avoid re-using remote pages,flag default unreuse */
435 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436 return;
437
438 if (twobufs) {
439 /* if we are only owner of page we can reuse it */
440 if (likely(page_count(desc_cb->priv) == 1)) {
441 /* flip page offset to other buffer */
442 desc_cb->page_offset ^= truesize;
443
444 desc_cb->reuse_flag = 1;
445 /* bump ref count on page before it is given*/
446 get_page(desc_cb->priv);
447 }
448 return;
449 }
450
451 /* move offset up to the next cache line */
452 desc_cb->page_offset += truesize;
453
454 if (desc_cb->page_offset <= last_offset) {
455 desc_cb->reuse_flag = 1;
456 /* bump ref count on page before it is given*/
457 get_page(desc_cb->priv);
458 }
459 }
460
get_v2rx_desc_bnum(u32 bnum_flag,int * out_bnum)461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463 *out_bnum = hnae_get_field(bnum_flag,
464 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466
get_rx_desc_bnum(u32 bnum_flag,int * out_bnum)467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469 *out_bnum = hnae_get_field(bnum_flag,
470 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472
hns_nic_rx_checksum(struct hns_nic_ring_data * ring_data,struct sk_buff * skb,u32 flag)473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474 struct sk_buff *skb, u32 flag)
475 {
476 struct net_device *netdev = ring_data->napi.dev;
477 u32 l3id;
478 u32 l4id;
479
480 /* check if RX checksum offload is enabled */
481 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482 return;
483
484 /* In hardware, we only support checksum for the following protocols:
485 * 1) IPv4,
486 * 2) TCP(over IPv4 or IPv6),
487 * 3) UDP(over IPv4 or IPv6),
488 * 4) SCTP(over IPv4 or IPv6)
489 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
490 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
491 *
492 * Hardware limitation:
493 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
494 * Error" bit (which usually can be used to indicate whether checksum
495 * was calculated by the hardware and if there was any error encountered
496 * during checksum calculation).
497 *
498 * Software workaround:
499 * We do get info within the RX descriptor about the kind of L3/L4
500 * protocol coming in the packet and the error status. These errors
501 * might not just be checksum errors but could be related to version,
502 * length of IPv4, UDP, TCP etc.
503 * Because there is no-way of knowing if it is a L3/L4 error due to bad
504 * checksum or any other L3/L4 error, we will not (cannot) convey
505 * checksum status for such cases to upper stack and will not maintain
506 * the RX L3/L4 checksum counters as well.
507 */
508
509 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511
512 /* check L3 protocol for which checksum is supported */
513 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514 return;
515
516 /* check for any(not just checksum)flagged L3 protocol errors */
517 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518 return;
519
520 /* we do not support checksum of fragmented packets */
521 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522 return;
523
524 /* check L4 protocol for which checksum is supported */
525 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527 (l4id != HNS_RX_FLAG_L4ID_SCTP))
528 return;
529
530 /* check for any(not just checksum)flagged L4 protocol errors */
531 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532 return;
533
534 /* now, this has to be a packet with valid RX checksum */
535 skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537
hns_nic_poll_rx_skb(struct hns_nic_ring_data * ring_data,struct sk_buff ** out_skb,int * out_bnum)538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539 struct sk_buff **out_skb, int *out_bnum)
540 {
541 struct hnae_ring *ring = ring_data->ring;
542 struct net_device *ndev = ring_data->napi.dev;
543 struct hns_nic_priv *priv = netdev_priv(ndev);
544 struct sk_buff *skb;
545 struct hnae_desc *desc;
546 struct hnae_desc_cb *desc_cb;
547 unsigned char *va;
548 int bnum, length, i;
549 int pull_len;
550 u32 bnum_flag;
551
552 desc = &ring->desc[ring->next_to_clean];
553 desc_cb = &ring->desc_cb[ring->next_to_clean];
554
555 prefetch(desc);
556
557 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558
559 /* prefetch first cache line of first page */
560 prefetch(va);
561 #if L1_CACHE_BYTES < 128
562 prefetch(va + L1_CACHE_BYTES);
563 #endif
564
565 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
566 HNS_RX_HEAD_SIZE);
567 if (unlikely(!skb)) {
568 netdev_err(ndev, "alloc rx skb fail\n");
569 ring->stats.sw_err_cnt++;
570 return -ENOMEM;
571 }
572
573 prefetchw(skb->data);
574 length = le16_to_cpu(desc->rx.pkt_len);
575 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
576 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
577 *out_bnum = bnum;
578
579 if (length <= HNS_RX_HEAD_SIZE) {
580 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
581
582 /* we can reuse buffer as-is, just make sure it is local */
583 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
584 desc_cb->reuse_flag = 1;
585 else /* this page cannot be reused so discard it */
586 put_page(desc_cb->priv);
587
588 ring_ptr_move_fw(ring, next_to_clean);
589
590 if (unlikely(bnum != 1)) { /* check err*/
591 *out_bnum = 1;
592 goto out_bnum_err;
593 }
594 } else {
595 ring->stats.seg_pkt_cnt++;
596
597 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
598 memcpy(__skb_put(skb, pull_len), va,
599 ALIGN(pull_len, sizeof(long)));
600
601 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
602 ring_ptr_move_fw(ring, next_to_clean);
603
604 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
605 *out_bnum = 1;
606 goto out_bnum_err;
607 }
608 for (i = 1; i < bnum; i++) {
609 desc = &ring->desc[ring->next_to_clean];
610 desc_cb = &ring->desc_cb[ring->next_to_clean];
611
612 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
613 ring_ptr_move_fw(ring, next_to_clean);
614 }
615 }
616
617 /* check except process, free skb and jump the desc */
618 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
619 out_bnum_err:
620 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
621 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
622 bnum, ring->max_desc_num_per_pkt,
623 length, (int)MAX_SKB_FRAGS,
624 ((u64 *)desc)[0], ((u64 *)desc)[1]);
625 ring->stats.err_bd_num++;
626 dev_kfree_skb_any(skb);
627 return -EDOM;
628 }
629
630 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
631
632 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
633 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
634 ((u64 *)desc)[0], ((u64 *)desc)[1]);
635 ring->stats.non_vld_descs++;
636 dev_kfree_skb_any(skb);
637 return -EINVAL;
638 }
639
640 if (unlikely((!desc->rx.pkt_len) ||
641 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
642 ring->stats.err_pkt_len++;
643 dev_kfree_skb_any(skb);
644 return -EFAULT;
645 }
646
647 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
648 ring->stats.l2_err++;
649 dev_kfree_skb_any(skb);
650 return -EFAULT;
651 }
652
653 ring->stats.rx_pkts++;
654 ring->stats.rx_bytes += skb->len;
655
656 /* indicate to upper stack if our hardware has already calculated
657 * the RX checksum
658 */
659 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
660
661 return 0;
662 }
663
664 static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data * ring_data,int cleand_count)665 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
666 {
667 int i, ret;
668 struct hnae_desc_cb res_cbs;
669 struct hnae_desc_cb *desc_cb;
670 struct hnae_ring *ring = ring_data->ring;
671 struct net_device *ndev = ring_data->napi.dev;
672
673 for (i = 0; i < cleand_count; i++) {
674 desc_cb = &ring->desc_cb[ring->next_to_use];
675 if (desc_cb->reuse_flag) {
676 ring->stats.reuse_pg_cnt++;
677 hnae_reuse_buffer(ring, ring->next_to_use);
678 } else {
679 ret = hnae_reserve_buffer_map(ring, &res_cbs);
680 if (ret) {
681 ring->stats.sw_err_cnt++;
682 netdev_err(ndev, "hnae reserve buffer map failed.\n");
683 break;
684 }
685 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
686 }
687
688 ring_ptr_move_fw(ring, next_to_use);
689 }
690
691 wmb(); /* make all data has been write before submit */
692 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
693 }
694
695 /* return error number for error or number of desc left to take
696 */
hns_nic_rx_up_pro(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)697 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
698 struct sk_buff *skb)
699 {
700 struct net_device *ndev = ring_data->napi.dev;
701
702 skb->protocol = eth_type_trans(skb, ndev);
703 (void)napi_gro_receive(&ring_data->napi, skb);
704 }
705
hns_desc_unused(struct hnae_ring * ring)706 static int hns_desc_unused(struct hnae_ring *ring)
707 {
708 int ntc = ring->next_to_clean;
709 int ntu = ring->next_to_use;
710
711 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
712 }
713
714 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
715 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
716
717 #define HNS_COAL_BDNUM 3
718
hns_coal_rx_bdnum(struct hnae_ring * ring)719 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
720 {
721 bool coal_enable = ring->q->handle->coal_adapt_en;
722
723 if (coal_enable &&
724 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
725 return HNS_COAL_BDNUM;
726 else
727 return 0;
728 }
729
hns_update_rx_rate(struct hnae_ring * ring)730 static void hns_update_rx_rate(struct hnae_ring *ring)
731 {
732 bool coal_enable = ring->q->handle->coal_adapt_en;
733 u32 time_passed_ms;
734 u64 total_bytes;
735
736 if (!coal_enable ||
737 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
738 return;
739
740 /* ring->stats.rx_bytes overflowed */
741 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
742 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
743 ring->coal_last_jiffies = jiffies;
744 return;
745 }
746
747 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
748 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
749 do_div(total_bytes, time_passed_ms);
750 ring->coal_rx_rate = total_bytes >> 10;
751
752 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
753 ring->coal_last_jiffies = jiffies;
754 }
755
756 /**
757 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
758 **/
smooth_alg(u32 new_param,u32 old_param)759 static u32 smooth_alg(u32 new_param, u32 old_param)
760 {
761 u32 gap = (new_param > old_param) ? new_param - old_param
762 : old_param - new_param;
763
764 if (gap > 8)
765 gap >>= 3;
766
767 if (new_param > old_param)
768 return old_param + gap;
769 else
770 return old_param - gap;
771 }
772
773 /**
774 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
775 * @ring_data: pointer to hns_nic_ring_data
776 **/
hns_nic_adpt_coalesce(struct hns_nic_ring_data * ring_data)777 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
778 {
779 struct hnae_ring *ring = ring_data->ring;
780 struct hnae_handle *handle = ring->q->handle;
781 u32 new_coal_param, old_coal_param = ring->coal_param;
782
783 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
784 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
785 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
786 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
787 else
788 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
789
790 if (new_coal_param == old_coal_param &&
791 new_coal_param == handle->coal_param)
792 return;
793
794 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
795 ring->coal_param = new_coal_param;
796
797 /**
798 * Because all ring in one port has one coalesce param, when one ring
799 * calculate its own coalesce param, it cannot write to hardware at
800 * once. There are three conditions as follows:
801 * 1. current ring's coalesce param is larger than the hardware.
802 * 2. or ring which adapt last time can change again.
803 * 3. timeout.
804 */
805 if (new_coal_param == handle->coal_param) {
806 handle->coal_last_jiffies = jiffies;
807 handle->coal_ring_idx = ring_data->queue_index;
808 } else if (new_coal_param > handle->coal_param ||
809 handle->coal_ring_idx == ring_data->queue_index ||
810 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
811 handle->dev->ops->set_coalesce_usecs(handle,
812 new_coal_param);
813 handle->dev->ops->set_coalesce_frames(handle,
814 1, new_coal_param);
815 handle->coal_param = new_coal_param;
816 handle->coal_ring_idx = ring_data->queue_index;
817 handle->coal_last_jiffies = jiffies;
818 }
819 }
820
hns_nic_rx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)821 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
822 int budget, void *v)
823 {
824 struct hnae_ring *ring = ring_data->ring;
825 struct sk_buff *skb;
826 int num, bnum;
827 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
828 int recv_pkts, recv_bds, clean_count, err;
829 int unused_count = hns_desc_unused(ring);
830
831 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
832 rmb(); /* make sure num taken effect before the other data is touched */
833
834 recv_pkts = 0, recv_bds = 0, clean_count = 0;
835 num -= unused_count;
836
837 while (recv_pkts < budget && recv_bds < num) {
838 /* reuse or realloc buffers */
839 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
840 hns_nic_alloc_rx_buffers(ring_data,
841 clean_count + unused_count);
842 clean_count = 0;
843 unused_count = hns_desc_unused(ring);
844 }
845
846 /* poll one pkt */
847 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
848 if (unlikely(!skb)) /* this fault cannot be repaired */
849 goto out;
850
851 recv_bds += bnum;
852 clean_count += bnum;
853 if (unlikely(err)) { /* do jump the err */
854 recv_pkts++;
855 continue;
856 }
857
858 /* do update ip stack process*/
859 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
860 ring_data, skb);
861 recv_pkts++;
862 }
863
864 out:
865 /* make all data has been write before submit */
866 if (clean_count + unused_count > 0)
867 hns_nic_alloc_rx_buffers(ring_data,
868 clean_count + unused_count);
869
870 return recv_pkts;
871 }
872
hns_nic_rx_fini_pro(struct hns_nic_ring_data * ring_data)873 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
874 {
875 struct hnae_ring *ring = ring_data->ring;
876 int num = 0;
877 bool rx_stopped;
878
879 hns_update_rx_rate(ring);
880
881 /* for hardware bug fixed */
882 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
883 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
884
885 if (num <= hns_coal_rx_bdnum(ring)) {
886 if (ring->q->handle->coal_adapt_en)
887 hns_nic_adpt_coalesce(ring_data);
888
889 rx_stopped = true;
890 } else {
891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
892 ring_data->ring, 1);
893
894 rx_stopped = false;
895 }
896
897 return rx_stopped;
898 }
899
hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data * ring_data)900 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
901 {
902 struct hnae_ring *ring = ring_data->ring;
903 int num;
904
905 hns_update_rx_rate(ring);
906 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
907
908 if (num <= hns_coal_rx_bdnum(ring)) {
909 if (ring->q->handle->coal_adapt_en)
910 hns_nic_adpt_coalesce(ring_data);
911
912 return true;
913 }
914
915 return false;
916 }
917
hns_nic_reclaim_one_desc(struct hnae_ring * ring,int * bytes,int * pkts)918 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
919 int *bytes, int *pkts)
920 {
921 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
922
923 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
924 (*bytes) += desc_cb->length;
925 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
926 hnae_free_buffer_detach(ring, ring->next_to_clean);
927
928 ring_ptr_move_fw(ring, next_to_clean);
929 }
930
is_valid_clean_head(struct hnae_ring * ring,int h)931 static int is_valid_clean_head(struct hnae_ring *ring, int h)
932 {
933 int u = ring->next_to_use;
934 int c = ring->next_to_clean;
935
936 if (unlikely(h > ring->desc_num))
937 return 0;
938
939 assert(u > 0 && u < ring->desc_num);
940 assert(c > 0 && c < ring->desc_num);
941 assert(u != c && h != c); /* must be checked before call this func */
942
943 return u > c ? (h > c && h <= u) : (h > c || h <= u);
944 }
945
946 /* reclaim all desc in one budget
947 * return error or number of desc left
948 */
hns_nic_tx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)949 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
950 int budget, void *v)
951 {
952 struct hnae_ring *ring = ring_data->ring;
953 struct net_device *ndev = ring_data->napi.dev;
954 struct netdev_queue *dev_queue;
955 struct hns_nic_priv *priv = netdev_priv(ndev);
956 int head;
957 int bytes, pkts;
958
959 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
960 rmb(); /* make sure head is ready before touch any data */
961
962 if (is_ring_empty(ring) || head == ring->next_to_clean)
963 return 0; /* no data to poll */
964
965 if (!is_valid_clean_head(ring, head)) {
966 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
967 ring->next_to_use, ring->next_to_clean);
968 ring->stats.io_err_cnt++;
969 return -EIO;
970 }
971
972 bytes = 0;
973 pkts = 0;
974 while (head != ring->next_to_clean) {
975 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
976 /* issue prefetch for next Tx descriptor */
977 prefetch(&ring->desc_cb[ring->next_to_clean]);
978 }
979 /* update tx ring statistics. */
980 ring->stats.tx_pkts += pkts;
981 ring->stats.tx_bytes += bytes;
982
983 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
984 netdev_tx_completed_queue(dev_queue, pkts, bytes);
985
986 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
987 netif_carrier_on(ndev);
988
989 if (unlikely(pkts && netif_carrier_ok(ndev) &&
990 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
991 /* Make sure that anybody stopping the queue after this
992 * sees the new next_to_clean.
993 */
994 smp_mb();
995 if (netif_tx_queue_stopped(dev_queue) &&
996 !test_bit(NIC_STATE_DOWN, &priv->state)) {
997 netif_tx_wake_queue(dev_queue);
998 ring->stats.restart_queue++;
999 }
1000 }
1001 return 0;
1002 }
1003
hns_nic_tx_fini_pro(struct hns_nic_ring_data * ring_data)1004 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1005 {
1006 struct hnae_ring *ring = ring_data->ring;
1007 int head;
1008
1009 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1010
1011 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1012
1013 if (head != ring->next_to_clean) {
1014 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1015 ring_data->ring, 1);
1016
1017 return false;
1018 } else {
1019 return true;
1020 }
1021 }
1022
hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1023 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1024 {
1025 struct hnae_ring *ring = ring_data->ring;
1026 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1027
1028 if (head == ring->next_to_clean)
1029 return true;
1030 else
1031 return false;
1032 }
1033
hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data * ring_data)1034 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1035 {
1036 struct hnae_ring *ring = ring_data->ring;
1037 struct net_device *ndev = ring_data->napi.dev;
1038 struct netdev_queue *dev_queue;
1039 int head;
1040 int bytes, pkts;
1041
1042 head = ring->next_to_use; /* ntu :soft setted ring position*/
1043 bytes = 0;
1044 pkts = 0;
1045 while (head != ring->next_to_clean)
1046 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1047
1048 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1049 netdev_tx_reset_queue(dev_queue);
1050 }
1051
hns_nic_common_poll(struct napi_struct * napi,int budget)1052 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1053 {
1054 int clean_complete = 0;
1055 struct hns_nic_ring_data *ring_data =
1056 container_of(napi, struct hns_nic_ring_data, napi);
1057 struct hnae_ring *ring = ring_data->ring;
1058
1059 try_again:
1060 clean_complete += ring_data->poll_one(
1061 ring_data, budget - clean_complete,
1062 ring_data->ex_process);
1063
1064 if (clean_complete < budget) {
1065 if (ring_data->fini_process(ring_data)) {
1066 napi_complete(napi);
1067 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1068 } else {
1069 goto try_again;
1070 }
1071 }
1072
1073 return clean_complete;
1074 }
1075
hns_irq_handle(int irq,void * dev)1076 static irqreturn_t hns_irq_handle(int irq, void *dev)
1077 {
1078 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1079
1080 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1081 ring_data->ring, 1);
1082 napi_schedule(&ring_data->napi);
1083
1084 return IRQ_HANDLED;
1085 }
1086
1087 /**
1088 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1089 *@ndev: net device
1090 */
hns_nic_adjust_link(struct net_device * ndev)1091 static void hns_nic_adjust_link(struct net_device *ndev)
1092 {
1093 struct hns_nic_priv *priv = netdev_priv(ndev);
1094 struct hnae_handle *h = priv->ae_handle;
1095 int state = 1;
1096
1097 /* If there is no phy, do not need adjust link */
1098 if (ndev->phydev) {
1099 /* When phy link down, do nothing */
1100 if (ndev->phydev->link == 0)
1101 return;
1102
1103 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1104 ndev->phydev->duplex)) {
1105 /* because Hi161X chip don't support to change gmac
1106 * speed and duplex with traffic. Delay 200ms to
1107 * make sure there is no more data in chip FIFO.
1108 */
1109 netif_carrier_off(ndev);
1110 msleep(200);
1111 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1112 ndev->phydev->duplex);
1113 netif_carrier_on(ndev);
1114 }
1115 }
1116
1117 state = state && h->dev->ops->get_status(h);
1118
1119 if (state != priv->link) {
1120 if (state) {
1121 netif_carrier_on(ndev);
1122 netif_tx_wake_all_queues(ndev);
1123 netdev_info(ndev, "link up\n");
1124 } else {
1125 netif_carrier_off(ndev);
1126 netdev_info(ndev, "link down\n");
1127 }
1128 priv->link = state;
1129 }
1130 }
1131
1132 /**
1133 *hns_nic_init_phy - init phy
1134 *@ndev: net device
1135 *@h: ae handle
1136 * Return 0 on success, negative on failure
1137 */
hns_nic_init_phy(struct net_device * ndev,struct hnae_handle * h)1138 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1139 {
1140 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1141 struct phy_device *phy_dev = h->phy_dev;
1142 int ret;
1143
1144 if (!h->phy_dev)
1145 return 0;
1146
1147 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1148 linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1149 linkmode_copy(phy_dev->advertising, phy_dev->supported);
1150
1151 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1152 phy_dev->autoneg = false;
1153
1154 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1155 phy_dev->dev_flags = 0;
1156
1157 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1158 h->phy_if);
1159 } else {
1160 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1161 }
1162 if (unlikely(ret))
1163 return -ENODEV;
1164
1165 phy_attached_info(phy_dev);
1166
1167 return 0;
1168 }
1169
hns_nic_ring_open(struct net_device * netdev,int idx)1170 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1171 {
1172 struct hns_nic_priv *priv = netdev_priv(netdev);
1173 struct hnae_handle *h = priv->ae_handle;
1174
1175 napi_enable(&priv->ring_data[idx].napi);
1176
1177 enable_irq(priv->ring_data[idx].ring->irq);
1178 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1179
1180 return 0;
1181 }
1182
hns_nic_net_set_mac_address(struct net_device * ndev,void * p)1183 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1184 {
1185 struct hns_nic_priv *priv = netdev_priv(ndev);
1186 struct hnae_handle *h = priv->ae_handle;
1187 struct sockaddr *mac_addr = p;
1188 int ret;
1189
1190 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1191 return -EADDRNOTAVAIL;
1192
1193 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1194 if (ret) {
1195 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1196 return ret;
1197 }
1198
1199 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1200
1201 return 0;
1202 }
1203
hns_nic_update_stats(struct net_device * netdev)1204 static void hns_nic_update_stats(struct net_device *netdev)
1205 {
1206 struct hns_nic_priv *priv = netdev_priv(netdev);
1207 struct hnae_handle *h = priv->ae_handle;
1208
1209 h->dev->ops->update_stats(h, &netdev->stats);
1210 }
1211
1212 /* set mac addr if it is configed. or leave it to the AE driver */
hns_init_mac_addr(struct net_device * ndev)1213 static void hns_init_mac_addr(struct net_device *ndev)
1214 {
1215 struct hns_nic_priv *priv = netdev_priv(ndev);
1216
1217 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1218 eth_hw_addr_random(ndev);
1219 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1220 ndev->dev_addr);
1221 }
1222 }
1223
hns_nic_ring_close(struct net_device * netdev,int idx)1224 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1225 {
1226 struct hns_nic_priv *priv = netdev_priv(netdev);
1227 struct hnae_handle *h = priv->ae_handle;
1228
1229 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1230 disable_irq(priv->ring_data[idx].ring->irq);
1231
1232 napi_disable(&priv->ring_data[idx].napi);
1233 }
1234
hns_nic_init_affinity_mask(int q_num,int ring_idx,struct hnae_ring * ring,cpumask_t * mask)1235 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1236 struct hnae_ring *ring, cpumask_t *mask)
1237 {
1238 int cpu;
1239
1240 /* Diffrent irq banlance between 16core and 32core.
1241 * The cpu mask set by ring index according to the ring flag
1242 * which indicate the ring is tx or rx.
1243 */
1244 if (q_num == num_possible_cpus()) {
1245 if (is_tx_ring(ring))
1246 cpu = ring_idx;
1247 else
1248 cpu = ring_idx - q_num;
1249 } else {
1250 if (is_tx_ring(ring))
1251 cpu = ring_idx * 2;
1252 else
1253 cpu = (ring_idx - q_num) * 2 + 1;
1254 }
1255
1256 cpumask_clear(mask);
1257 cpumask_set_cpu(cpu, mask);
1258
1259 return cpu;
1260 }
1261
hns_nic_free_irq(int q_num,struct hns_nic_priv * priv)1262 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1263 {
1264 int i;
1265
1266 for (i = 0; i < q_num * 2; i++) {
1267 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1268 irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1269 NULL);
1270 free_irq(priv->ring_data[i].ring->irq,
1271 &priv->ring_data[i]);
1272 priv->ring_data[i].ring->irq_init_flag =
1273 RCB_IRQ_NOT_INITED;
1274 }
1275 }
1276 }
1277
hns_nic_init_irq(struct hns_nic_priv * priv)1278 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1279 {
1280 struct hnae_handle *h = priv->ae_handle;
1281 struct hns_nic_ring_data *rd;
1282 int i;
1283 int ret;
1284 int cpu;
1285
1286 for (i = 0; i < h->q_num * 2; i++) {
1287 rd = &priv->ring_data[i];
1288
1289 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1290 break;
1291
1292 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1293 "%s-%s%d", priv->netdev->name,
1294 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1295
1296 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1297
1298 ret = request_irq(rd->ring->irq,
1299 hns_irq_handle, 0, rd->ring->ring_name, rd);
1300 if (ret) {
1301 netdev_err(priv->netdev, "request irq(%d) fail\n",
1302 rd->ring->irq);
1303 goto out_free_irq;
1304 }
1305 disable_irq(rd->ring->irq);
1306
1307 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1308 rd->ring, &rd->mask);
1309
1310 if (cpu_online(cpu))
1311 irq_set_affinity_hint(rd->ring->irq,
1312 &rd->mask);
1313
1314 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1315 }
1316
1317 return 0;
1318
1319 out_free_irq:
1320 hns_nic_free_irq(h->q_num, priv);
1321 return ret;
1322 }
1323
hns_nic_net_up(struct net_device * ndev)1324 static int hns_nic_net_up(struct net_device *ndev)
1325 {
1326 struct hns_nic_priv *priv = netdev_priv(ndev);
1327 struct hnae_handle *h = priv->ae_handle;
1328 int i, j;
1329 int ret;
1330
1331 if (!test_bit(NIC_STATE_DOWN, &priv->state))
1332 return 0;
1333
1334 ret = hns_nic_init_irq(priv);
1335 if (ret != 0) {
1336 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1337 return ret;
1338 }
1339
1340 for (i = 0; i < h->q_num * 2; i++) {
1341 ret = hns_nic_ring_open(ndev, i);
1342 if (ret)
1343 goto out_has_some_queues;
1344 }
1345
1346 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1347 if (ret)
1348 goto out_set_mac_addr_err;
1349
1350 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1351 if (ret)
1352 goto out_start_err;
1353
1354 if (ndev->phydev)
1355 phy_start(ndev->phydev);
1356
1357 clear_bit(NIC_STATE_DOWN, &priv->state);
1358 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1359
1360 return 0;
1361
1362 out_start_err:
1363 netif_stop_queue(ndev);
1364 out_set_mac_addr_err:
1365 out_has_some_queues:
1366 for (j = i - 1; j >= 0; j--)
1367 hns_nic_ring_close(ndev, j);
1368
1369 hns_nic_free_irq(h->q_num, priv);
1370 set_bit(NIC_STATE_DOWN, &priv->state);
1371
1372 return ret;
1373 }
1374
hns_nic_net_down(struct net_device * ndev)1375 static void hns_nic_net_down(struct net_device *ndev)
1376 {
1377 int i;
1378 struct hnae_ae_ops *ops;
1379 struct hns_nic_priv *priv = netdev_priv(ndev);
1380
1381 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1382 return;
1383
1384 (void)del_timer_sync(&priv->service_timer);
1385 netif_tx_stop_all_queues(ndev);
1386 netif_carrier_off(ndev);
1387 netif_tx_disable(ndev);
1388 priv->link = 0;
1389
1390 if (ndev->phydev)
1391 phy_stop(ndev->phydev);
1392
1393 ops = priv->ae_handle->dev->ops;
1394
1395 if (ops->stop)
1396 ops->stop(priv->ae_handle);
1397
1398 netif_tx_stop_all_queues(ndev);
1399
1400 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1401 hns_nic_ring_close(ndev, i);
1402 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1403
1404 /* clean tx buffers*/
1405 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1406 }
1407 }
1408
hns_nic_net_reset(struct net_device * ndev)1409 void hns_nic_net_reset(struct net_device *ndev)
1410 {
1411 struct hns_nic_priv *priv = netdev_priv(ndev);
1412 struct hnae_handle *handle = priv->ae_handle;
1413
1414 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1415 usleep_range(1000, 2000);
1416
1417 (void)hnae_reinit_handle(handle);
1418
1419 clear_bit(NIC_STATE_RESETTING, &priv->state);
1420 }
1421
hns_nic_net_reinit(struct net_device * netdev)1422 void hns_nic_net_reinit(struct net_device *netdev)
1423 {
1424 struct hns_nic_priv *priv = netdev_priv(netdev);
1425 enum hnae_port_type type = priv->ae_handle->port_type;
1426
1427 netif_trans_update(priv->netdev);
1428 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1429 usleep_range(1000, 2000);
1430
1431 hns_nic_net_down(netdev);
1432
1433 /* Only do hns_nic_net_reset in debug mode
1434 * because of hardware limitation.
1435 */
1436 if (type == HNAE_PORT_DEBUG)
1437 hns_nic_net_reset(netdev);
1438
1439 (void)hns_nic_net_up(netdev);
1440 clear_bit(NIC_STATE_REINITING, &priv->state);
1441 }
1442
hns_nic_net_open(struct net_device * ndev)1443 static int hns_nic_net_open(struct net_device *ndev)
1444 {
1445 struct hns_nic_priv *priv = netdev_priv(ndev);
1446 struct hnae_handle *h = priv->ae_handle;
1447 int ret;
1448
1449 if (test_bit(NIC_STATE_TESTING, &priv->state))
1450 return -EBUSY;
1451
1452 priv->link = 0;
1453 netif_carrier_off(ndev);
1454
1455 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1456 if (ret < 0) {
1457 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1458 ret);
1459 return ret;
1460 }
1461
1462 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1463 if (ret < 0) {
1464 netdev_err(ndev,
1465 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1466 return ret;
1467 }
1468
1469 ret = hns_nic_net_up(ndev);
1470 if (ret) {
1471 netdev_err(ndev,
1472 "hns net up fail, ret=%d!\n", ret);
1473 return ret;
1474 }
1475
1476 return 0;
1477 }
1478
hns_nic_net_stop(struct net_device * ndev)1479 static int hns_nic_net_stop(struct net_device *ndev)
1480 {
1481 hns_nic_net_down(ndev);
1482
1483 return 0;
1484 }
1485
1486 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1487 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
hns_nic_net_timeout(struct net_device * ndev)1488 static void hns_nic_net_timeout(struct net_device *ndev)
1489 {
1490 struct hns_nic_priv *priv = netdev_priv(ndev);
1491
1492 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1493 ndev->watchdog_timeo *= 2;
1494 netdev_info(ndev, "watchdog_timo changed to %d.\n",
1495 ndev->watchdog_timeo);
1496 } else {
1497 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1498 hns_tx_timeout_reset(priv);
1499 }
1500 }
1501
hns_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1502 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1503 int cmd)
1504 {
1505 struct phy_device *phy_dev = netdev->phydev;
1506
1507 if (!netif_running(netdev))
1508 return -EINVAL;
1509
1510 if (!phy_dev)
1511 return -ENOTSUPP;
1512
1513 return phy_mii_ioctl(phy_dev, ifr, cmd);
1514 }
1515
hns_nic_net_xmit(struct sk_buff * skb,struct net_device * ndev)1516 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1517 struct net_device *ndev)
1518 {
1519 struct hns_nic_priv *priv = netdev_priv(ndev);
1520
1521 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1522
1523 return hns_nic_net_xmit_hw(ndev, skb,
1524 &tx_ring_data(priv, skb->queue_mapping));
1525 }
1526
hns_nic_drop_rx_fetch(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)1527 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1528 struct sk_buff *skb)
1529 {
1530 dev_kfree_skb_any(skb);
1531 }
1532
1533 #define HNS_LB_TX_RING 0
hns_assemble_skb(struct net_device * ndev)1534 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1535 {
1536 struct sk_buff *skb;
1537 struct ethhdr *ethhdr;
1538 int frame_len;
1539
1540 /* allocate test skb */
1541 skb = alloc_skb(64, GFP_KERNEL);
1542 if (!skb)
1543 return NULL;
1544
1545 skb_put(skb, 64);
1546 skb->dev = ndev;
1547 memset(skb->data, 0xFF, skb->len);
1548
1549 /* must be tcp/ip package */
1550 ethhdr = (struct ethhdr *)skb->data;
1551 ethhdr->h_proto = htons(ETH_P_IP);
1552
1553 frame_len = skb->len & (~1ul);
1554 memset(&skb->data[frame_len / 2], 0xAA,
1555 frame_len / 2 - 1);
1556
1557 skb->queue_mapping = HNS_LB_TX_RING;
1558
1559 return skb;
1560 }
1561
hns_enable_serdes_lb(struct net_device * ndev)1562 static int hns_enable_serdes_lb(struct net_device *ndev)
1563 {
1564 struct hns_nic_priv *priv = netdev_priv(ndev);
1565 struct hnae_handle *h = priv->ae_handle;
1566 struct hnae_ae_ops *ops = h->dev->ops;
1567 int speed, duplex;
1568 int ret;
1569
1570 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1571 if (ret)
1572 return ret;
1573
1574 ret = ops->start ? ops->start(h) : 0;
1575 if (ret)
1576 return ret;
1577
1578 /* link adjust duplex*/
1579 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1580 speed = 1000;
1581 else
1582 speed = 10000;
1583 duplex = 1;
1584
1585 ops->adjust_link(h, speed, duplex);
1586
1587 /* wait h/w ready */
1588 mdelay(300);
1589
1590 return 0;
1591 }
1592
hns_disable_serdes_lb(struct net_device * ndev)1593 static void hns_disable_serdes_lb(struct net_device *ndev)
1594 {
1595 struct hns_nic_priv *priv = netdev_priv(ndev);
1596 struct hnae_handle *h = priv->ae_handle;
1597 struct hnae_ae_ops *ops = h->dev->ops;
1598
1599 ops->stop(h);
1600 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1601 }
1602
1603 /**
1604 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1605 *function as follows:
1606 * 1. if one rx ring has found the page_offset is not equal 0 between head
1607 * and tail, it means that the chip fetched the wrong descs for the ring
1608 * which buffer size is 4096.
1609 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1610 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1611 * recieving all packages and it will fetch new descriptions.
1612 * 4. recover to the original state.
1613 *
1614 *@ndev: net device
1615 */
hns_nic_clear_all_rx_fetch(struct net_device * ndev)1616 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1617 {
1618 struct hns_nic_priv *priv = netdev_priv(ndev);
1619 struct hnae_handle *h = priv->ae_handle;
1620 struct hnae_ae_ops *ops = h->dev->ops;
1621 struct hns_nic_ring_data *rd;
1622 struct hnae_ring *ring;
1623 struct sk_buff *skb;
1624 u32 *org_indir;
1625 u32 *cur_indir;
1626 int indir_size;
1627 int head, tail;
1628 int fetch_num;
1629 int i, j;
1630 bool found;
1631 int retry_times;
1632 int ret = 0;
1633
1634 /* alloc indir memory */
1635 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1636 org_indir = kzalloc(indir_size, GFP_KERNEL);
1637 if (!org_indir)
1638 return -ENOMEM;
1639
1640 /* store the orginal indirection */
1641 ops->get_rss(h, org_indir, NULL, NULL);
1642
1643 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1644 if (!cur_indir) {
1645 ret = -ENOMEM;
1646 goto cur_indir_alloc_err;
1647 }
1648
1649 /* set loopback */
1650 if (hns_enable_serdes_lb(ndev)) {
1651 ret = -EINVAL;
1652 goto enable_serdes_lb_err;
1653 }
1654
1655 /* foreach every rx ring to clear fetch desc */
1656 for (i = 0; i < h->q_num; i++) {
1657 ring = &h->qs[i]->rx_ring;
1658 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1659 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1660 found = false;
1661 fetch_num = ring_dist(ring, head, tail);
1662
1663 while (head != tail) {
1664 if (ring->desc_cb[head].page_offset != 0) {
1665 found = true;
1666 break;
1667 }
1668
1669 head++;
1670 if (head == ring->desc_num)
1671 head = 0;
1672 }
1673
1674 if (found) {
1675 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1676 cur_indir[j] = i;
1677 ops->set_rss(h, cur_indir, NULL, 0);
1678
1679 for (j = 0; j < fetch_num; j++) {
1680 /* alloc one skb and init */
1681 skb = hns_assemble_skb(ndev);
1682 if (!skb)
1683 goto out;
1684 rd = &tx_ring_data(priv, skb->queue_mapping);
1685 hns_nic_net_xmit_hw(ndev, skb, rd);
1686
1687 retry_times = 0;
1688 while (retry_times++ < 10) {
1689 mdelay(10);
1690 /* clean rx */
1691 rd = &rx_ring_data(priv, i);
1692 if (rd->poll_one(rd, fetch_num,
1693 hns_nic_drop_rx_fetch))
1694 break;
1695 }
1696
1697 retry_times = 0;
1698 while (retry_times++ < 10) {
1699 mdelay(10);
1700 /* clean tx ring 0 send package */
1701 rd = &tx_ring_data(priv,
1702 HNS_LB_TX_RING);
1703 if (rd->poll_one(rd, fetch_num, NULL))
1704 break;
1705 }
1706 }
1707 }
1708 }
1709
1710 out:
1711 /* restore everything */
1712 ops->set_rss(h, org_indir, NULL, 0);
1713 hns_disable_serdes_lb(ndev);
1714 enable_serdes_lb_err:
1715 kfree(cur_indir);
1716 cur_indir_alloc_err:
1717 kfree(org_indir);
1718
1719 return ret;
1720 }
1721
hns_nic_change_mtu(struct net_device * ndev,int new_mtu)1722 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1723 {
1724 struct hns_nic_priv *priv = netdev_priv(ndev);
1725 struct hnae_handle *h = priv->ae_handle;
1726 bool if_running = netif_running(ndev);
1727 int ret;
1728
1729 /* MTU < 68 is an error and causes problems on some kernels */
1730 if (new_mtu < 68)
1731 return -EINVAL;
1732
1733 /* MTU no change */
1734 if (new_mtu == ndev->mtu)
1735 return 0;
1736
1737 if (!h->dev->ops->set_mtu)
1738 return -ENOTSUPP;
1739
1740 if (if_running) {
1741 (void)hns_nic_net_stop(ndev);
1742 msleep(100);
1743 }
1744
1745 if (priv->enet_ver != AE_VERSION_1 &&
1746 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1747 new_mtu > BD_SIZE_2048_MAX_MTU) {
1748 /* update desc */
1749 hnae_reinit_all_ring_desc(h);
1750
1751 /* clear the package which the chip has fetched */
1752 ret = hns_nic_clear_all_rx_fetch(ndev);
1753
1754 /* the page offset must be consist with desc */
1755 hnae_reinit_all_ring_page_off(h);
1756
1757 if (ret) {
1758 netdev_err(ndev, "clear the fetched desc fail\n");
1759 goto out;
1760 }
1761 }
1762
1763 ret = h->dev->ops->set_mtu(h, new_mtu);
1764 if (ret) {
1765 netdev_err(ndev, "set mtu fail, return value %d\n",
1766 ret);
1767 goto out;
1768 }
1769
1770 /* finally, set new mtu to netdevice */
1771 ndev->mtu = new_mtu;
1772
1773 out:
1774 if (if_running) {
1775 if (hns_nic_net_open(ndev)) {
1776 netdev_err(ndev, "hns net open fail\n");
1777 ret = -EINVAL;
1778 }
1779 }
1780
1781 return ret;
1782 }
1783
hns_nic_set_features(struct net_device * netdev,netdev_features_t features)1784 static int hns_nic_set_features(struct net_device *netdev,
1785 netdev_features_t features)
1786 {
1787 struct hns_nic_priv *priv = netdev_priv(netdev);
1788
1789 switch (priv->enet_ver) {
1790 case AE_VERSION_1:
1791 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1792 netdev_info(netdev, "enet v1 do not support tso!\n");
1793 break;
1794 default:
1795 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1796 priv->ops.fill_desc = fill_tso_desc;
1797 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798 /* The chip only support 7*4096 */
1799 netif_set_gso_max_size(netdev, 7 * 4096);
1800 } else {
1801 priv->ops.fill_desc = fill_v2_desc;
1802 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1803 }
1804 break;
1805 }
1806 netdev->features = features;
1807 return 0;
1808 }
1809
hns_nic_fix_features(struct net_device * netdev,netdev_features_t features)1810 static netdev_features_t hns_nic_fix_features(
1811 struct net_device *netdev, netdev_features_t features)
1812 {
1813 struct hns_nic_priv *priv = netdev_priv(netdev);
1814
1815 switch (priv->enet_ver) {
1816 case AE_VERSION_1:
1817 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1818 NETIF_F_HW_VLAN_CTAG_FILTER);
1819 break;
1820 default:
1821 break;
1822 }
1823 return features;
1824 }
1825
hns_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)1826 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1827 {
1828 struct hns_nic_priv *priv = netdev_priv(netdev);
1829 struct hnae_handle *h = priv->ae_handle;
1830
1831 if (h->dev->ops->add_uc_addr)
1832 return h->dev->ops->add_uc_addr(h, addr);
1833
1834 return 0;
1835 }
1836
hns_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)1837 static int hns_nic_uc_unsync(struct net_device *netdev,
1838 const unsigned char *addr)
1839 {
1840 struct hns_nic_priv *priv = netdev_priv(netdev);
1841 struct hnae_handle *h = priv->ae_handle;
1842
1843 if (h->dev->ops->rm_uc_addr)
1844 return h->dev->ops->rm_uc_addr(h, addr);
1845
1846 return 0;
1847 }
1848
1849 /**
1850 * nic_set_multicast_list - set mutl mac address
1851 * @netdev: net device
1852 * @p: mac address
1853 *
1854 * return void
1855 */
hns_set_multicast_list(struct net_device * ndev)1856 static void hns_set_multicast_list(struct net_device *ndev)
1857 {
1858 struct hns_nic_priv *priv = netdev_priv(ndev);
1859 struct hnae_handle *h = priv->ae_handle;
1860 struct netdev_hw_addr *ha = NULL;
1861
1862 if (!h) {
1863 netdev_err(ndev, "hnae handle is null\n");
1864 return;
1865 }
1866
1867 if (h->dev->ops->clr_mc_addr)
1868 if (h->dev->ops->clr_mc_addr(h))
1869 netdev_err(ndev, "clear multicast address fail\n");
1870
1871 if (h->dev->ops->set_mc_addr) {
1872 netdev_for_each_mc_addr(ha, ndev)
1873 if (h->dev->ops->set_mc_addr(h, ha->addr))
1874 netdev_err(ndev, "set multicast fail\n");
1875 }
1876 }
1877
hns_nic_set_rx_mode(struct net_device * ndev)1878 static void hns_nic_set_rx_mode(struct net_device *ndev)
1879 {
1880 struct hns_nic_priv *priv = netdev_priv(ndev);
1881 struct hnae_handle *h = priv->ae_handle;
1882
1883 if (h->dev->ops->set_promisc_mode) {
1884 if (ndev->flags & IFF_PROMISC)
1885 h->dev->ops->set_promisc_mode(h, 1);
1886 else
1887 h->dev->ops->set_promisc_mode(h, 0);
1888 }
1889
1890 hns_set_multicast_list(ndev);
1891
1892 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1893 netdev_err(ndev, "sync uc address fail\n");
1894 }
1895
hns_nic_get_stats64(struct net_device * ndev,struct rtnl_link_stats64 * stats)1896 static void hns_nic_get_stats64(struct net_device *ndev,
1897 struct rtnl_link_stats64 *stats)
1898 {
1899 int idx = 0;
1900 u64 tx_bytes = 0;
1901 u64 rx_bytes = 0;
1902 u64 tx_pkts = 0;
1903 u64 rx_pkts = 0;
1904 struct hns_nic_priv *priv = netdev_priv(ndev);
1905 struct hnae_handle *h = priv->ae_handle;
1906
1907 for (idx = 0; idx < h->q_num; idx++) {
1908 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1909 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1910 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1911 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1912 }
1913
1914 stats->tx_bytes = tx_bytes;
1915 stats->tx_packets = tx_pkts;
1916 stats->rx_bytes = rx_bytes;
1917 stats->rx_packets = rx_pkts;
1918
1919 stats->rx_errors = ndev->stats.rx_errors;
1920 stats->multicast = ndev->stats.multicast;
1921 stats->rx_length_errors = ndev->stats.rx_length_errors;
1922 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1923 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1924
1925 stats->tx_errors = ndev->stats.tx_errors;
1926 stats->rx_dropped = ndev->stats.rx_dropped;
1927 stats->tx_dropped = ndev->stats.tx_dropped;
1928 stats->collisions = ndev->stats.collisions;
1929 stats->rx_over_errors = ndev->stats.rx_over_errors;
1930 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1931 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1932 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1933 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1934 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1935 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1936 stats->tx_window_errors = ndev->stats.tx_window_errors;
1937 stats->rx_compressed = ndev->stats.rx_compressed;
1938 stats->tx_compressed = ndev->stats.tx_compressed;
1939 }
1940
1941 static u16
hns_nic_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)1942 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1943 struct net_device *sb_dev)
1944 {
1945 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1946 struct hns_nic_priv *priv = netdev_priv(ndev);
1947
1948 /* fix hardware broadcast/multicast packets queue loopback */
1949 if (!AE_IS_VER1(priv->enet_ver) &&
1950 is_multicast_ether_addr(eth_hdr->h_dest))
1951 return 0;
1952 else
1953 return netdev_pick_tx(ndev, skb, NULL);
1954 }
1955
1956 static const struct net_device_ops hns_nic_netdev_ops = {
1957 .ndo_open = hns_nic_net_open,
1958 .ndo_stop = hns_nic_net_stop,
1959 .ndo_start_xmit = hns_nic_net_xmit,
1960 .ndo_tx_timeout = hns_nic_net_timeout,
1961 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1962 .ndo_change_mtu = hns_nic_change_mtu,
1963 .ndo_do_ioctl = hns_nic_do_ioctl,
1964 .ndo_set_features = hns_nic_set_features,
1965 .ndo_fix_features = hns_nic_fix_features,
1966 .ndo_get_stats64 = hns_nic_get_stats64,
1967 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1968 .ndo_select_queue = hns_nic_select_queue,
1969 };
1970
hns_nic_update_link_status(struct net_device * netdev)1971 static void hns_nic_update_link_status(struct net_device *netdev)
1972 {
1973 struct hns_nic_priv *priv = netdev_priv(netdev);
1974
1975 struct hnae_handle *h = priv->ae_handle;
1976
1977 if (h->phy_dev) {
1978 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1979 return;
1980
1981 (void)genphy_read_status(h->phy_dev);
1982 }
1983 hns_nic_adjust_link(netdev);
1984 }
1985
1986 /* for dumping key regs*/
hns_nic_dump(struct hns_nic_priv * priv)1987 static void hns_nic_dump(struct hns_nic_priv *priv)
1988 {
1989 struct hnae_handle *h = priv->ae_handle;
1990 struct hnae_ae_ops *ops = h->dev->ops;
1991 u32 *data, reg_num, i;
1992
1993 if (ops->get_regs_len && ops->get_regs) {
1994 reg_num = ops->get_regs_len(priv->ae_handle);
1995 reg_num = (reg_num + 3ul) & ~3ul;
1996 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1997 if (data) {
1998 ops->get_regs(priv->ae_handle, data);
1999 for (i = 0; i < reg_num; i += 4)
2000 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2001 i, data[i], data[i + 1],
2002 data[i + 2], data[i + 3]);
2003 kfree(data);
2004 }
2005 }
2006
2007 for (i = 0; i < h->q_num; i++) {
2008 pr_info("tx_queue%d_next_to_clean:%d\n",
2009 i, h->qs[i]->tx_ring.next_to_clean);
2010 pr_info("tx_queue%d_next_to_use:%d\n",
2011 i, h->qs[i]->tx_ring.next_to_use);
2012 pr_info("rx_queue%d_next_to_clean:%d\n",
2013 i, h->qs[i]->rx_ring.next_to_clean);
2014 pr_info("rx_queue%d_next_to_use:%d\n",
2015 i, h->qs[i]->rx_ring.next_to_use);
2016 }
2017 }
2018
2019 /* for resetting subtask */
hns_nic_reset_subtask(struct hns_nic_priv * priv)2020 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2021 {
2022 enum hnae_port_type type = priv->ae_handle->port_type;
2023
2024 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2025 return;
2026 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2027
2028 /* If we're already down, removing or resetting, just bail */
2029 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2030 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2031 test_bit(NIC_STATE_RESETTING, &priv->state))
2032 return;
2033
2034 hns_nic_dump(priv);
2035 netdev_info(priv->netdev, "try to reset %s port!\n",
2036 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2037
2038 rtnl_lock();
2039 /* put off any impending NetWatchDogTimeout */
2040 netif_trans_update(priv->netdev);
2041 hns_nic_net_reinit(priv->netdev);
2042
2043 rtnl_unlock();
2044 }
2045
2046 /* for doing service complete*/
hns_nic_service_event_complete(struct hns_nic_priv * priv)2047 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2048 {
2049 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2050 /* make sure to commit the things */
2051 smp_mb__before_atomic();
2052 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2053 }
2054
hns_nic_service_task(struct work_struct * work)2055 static void hns_nic_service_task(struct work_struct *work)
2056 {
2057 struct hns_nic_priv *priv
2058 = container_of(work, struct hns_nic_priv, service_task);
2059 struct hnae_handle *h = priv->ae_handle;
2060
2061 hns_nic_reset_subtask(priv);
2062 hns_nic_update_link_status(priv->netdev);
2063 h->dev->ops->update_led_status(h);
2064 hns_nic_update_stats(priv->netdev);
2065
2066 hns_nic_service_event_complete(priv);
2067 }
2068
hns_nic_task_schedule(struct hns_nic_priv * priv)2069 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2070 {
2071 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2072 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2073 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2074 (void)schedule_work(&priv->service_task);
2075 }
2076
hns_nic_service_timer(struct timer_list * t)2077 static void hns_nic_service_timer(struct timer_list *t)
2078 {
2079 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2080
2081 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2082
2083 hns_nic_task_schedule(priv);
2084 }
2085
2086 /**
2087 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2088 * @priv: driver private struct
2089 **/
hns_tx_timeout_reset(struct hns_nic_priv * priv)2090 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2091 {
2092 /* Do the reset outside of interrupt context */
2093 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2094 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2095 netdev_warn(priv->netdev,
2096 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2097 priv->tx_timeout_count, priv->state);
2098 priv->tx_timeout_count++;
2099 hns_nic_task_schedule(priv);
2100 }
2101 }
2102
hns_nic_init_ring_data(struct hns_nic_priv * priv)2103 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2104 {
2105 struct hnae_handle *h = priv->ae_handle;
2106 struct hns_nic_ring_data *rd;
2107 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2108 int i;
2109
2110 if (h->q_num > NIC_MAX_Q_PER_VF) {
2111 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2112 return -EINVAL;
2113 }
2114
2115 priv->ring_data = kzalloc(array3_size(h->q_num,
2116 sizeof(*priv->ring_data), 2),
2117 GFP_KERNEL);
2118 if (!priv->ring_data)
2119 return -ENOMEM;
2120
2121 for (i = 0; i < h->q_num; i++) {
2122 rd = &priv->ring_data[i];
2123 rd->queue_index = i;
2124 rd->ring = &h->qs[i]->tx_ring;
2125 rd->poll_one = hns_nic_tx_poll_one;
2126 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2127 hns_nic_tx_fini_pro_v2;
2128
2129 netif_napi_add(priv->netdev, &rd->napi,
2130 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2131 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2132 }
2133 for (i = h->q_num; i < h->q_num * 2; i++) {
2134 rd = &priv->ring_data[i];
2135 rd->queue_index = i - h->q_num;
2136 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2137 rd->poll_one = hns_nic_rx_poll_one;
2138 rd->ex_process = hns_nic_rx_up_pro;
2139 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2140 hns_nic_rx_fini_pro_v2;
2141
2142 netif_napi_add(priv->netdev, &rd->napi,
2143 hns_nic_common_poll, NAPI_POLL_WEIGHT);
2144 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2145 }
2146
2147 return 0;
2148 }
2149
hns_nic_uninit_ring_data(struct hns_nic_priv * priv)2150 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2151 {
2152 struct hnae_handle *h = priv->ae_handle;
2153 int i;
2154
2155 for (i = 0; i < h->q_num * 2; i++) {
2156 netif_napi_del(&priv->ring_data[i].napi);
2157 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2158 (void)irq_set_affinity_hint(
2159 priv->ring_data[i].ring->irq,
2160 NULL);
2161 free_irq(priv->ring_data[i].ring->irq,
2162 &priv->ring_data[i]);
2163 }
2164
2165 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2166 }
2167 kfree(priv->ring_data);
2168 }
2169
hns_nic_set_priv_ops(struct net_device * netdev)2170 static void hns_nic_set_priv_ops(struct net_device *netdev)
2171 {
2172 struct hns_nic_priv *priv = netdev_priv(netdev);
2173 struct hnae_handle *h = priv->ae_handle;
2174
2175 if (AE_IS_VER1(priv->enet_ver)) {
2176 priv->ops.fill_desc = fill_desc;
2177 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2178 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2179 } else {
2180 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2181 if ((netdev->features & NETIF_F_TSO) ||
2182 (netdev->features & NETIF_F_TSO6)) {
2183 priv->ops.fill_desc = fill_tso_desc;
2184 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2185 /* This chip only support 7*4096 */
2186 netif_set_gso_max_size(netdev, 7 * 4096);
2187 } else {
2188 priv->ops.fill_desc = fill_v2_desc;
2189 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2190 }
2191 /* enable tso when init
2192 * control tso on/off through TSE bit in bd
2193 */
2194 h->dev->ops->set_tso_stats(h, 1);
2195 }
2196 }
2197
hns_nic_try_get_ae(struct net_device * ndev)2198 static int hns_nic_try_get_ae(struct net_device *ndev)
2199 {
2200 struct hns_nic_priv *priv = netdev_priv(ndev);
2201 struct hnae_handle *h;
2202 int ret;
2203
2204 h = hnae_get_handle(&priv->netdev->dev,
2205 priv->fwnode, priv->port_id, NULL);
2206 if (IS_ERR_OR_NULL(h)) {
2207 ret = -ENODEV;
2208 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2209 goto out;
2210 }
2211 priv->ae_handle = h;
2212
2213 ret = hns_nic_init_phy(ndev, h);
2214 if (ret) {
2215 dev_err(priv->dev, "probe phy device fail!\n");
2216 goto out_init_phy;
2217 }
2218
2219 ret = hns_nic_init_ring_data(priv);
2220 if (ret) {
2221 ret = -ENOMEM;
2222 goto out_init_ring_data;
2223 }
2224
2225 hns_nic_set_priv_ops(ndev);
2226
2227 ret = register_netdev(ndev);
2228 if (ret) {
2229 dev_err(priv->dev, "probe register netdev fail!\n");
2230 goto out_reg_ndev_fail;
2231 }
2232 return 0;
2233
2234 out_reg_ndev_fail:
2235 hns_nic_uninit_ring_data(priv);
2236 priv->ring_data = NULL;
2237 out_init_phy:
2238 out_init_ring_data:
2239 hnae_put_handle(priv->ae_handle);
2240 priv->ae_handle = NULL;
2241 out:
2242 return ret;
2243 }
2244
hns_nic_notifier_action(struct notifier_block * nb,unsigned long action,void * data)2245 static int hns_nic_notifier_action(struct notifier_block *nb,
2246 unsigned long action, void *data)
2247 {
2248 struct hns_nic_priv *priv =
2249 container_of(nb, struct hns_nic_priv, notifier_block);
2250
2251 assert(action == HNAE_AE_REGISTER);
2252
2253 if (!hns_nic_try_get_ae(priv->netdev)) {
2254 hnae_unregister_notifier(&priv->notifier_block);
2255 priv->notifier_block.notifier_call = NULL;
2256 }
2257 return 0;
2258 }
2259
hns_nic_dev_probe(struct platform_device * pdev)2260 static int hns_nic_dev_probe(struct platform_device *pdev)
2261 {
2262 struct device *dev = &pdev->dev;
2263 struct net_device *ndev;
2264 struct hns_nic_priv *priv;
2265 u32 port_id;
2266 int ret;
2267
2268 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2269 if (!ndev)
2270 return -ENOMEM;
2271
2272 platform_set_drvdata(pdev, ndev);
2273
2274 priv = netdev_priv(ndev);
2275 priv->dev = dev;
2276 priv->netdev = ndev;
2277
2278 if (dev_of_node(dev)) {
2279 struct device_node *ae_node;
2280
2281 if (of_device_is_compatible(dev->of_node,
2282 "hisilicon,hns-nic-v1"))
2283 priv->enet_ver = AE_VERSION_1;
2284 else
2285 priv->enet_ver = AE_VERSION_2;
2286
2287 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2288 if (!ae_node) {
2289 ret = -ENODEV;
2290 dev_err(dev, "not find ae-handle\n");
2291 goto out_read_prop_fail;
2292 }
2293 priv->fwnode = &ae_node->fwnode;
2294 } else if (is_acpi_node(dev->fwnode)) {
2295 struct fwnode_reference_args args;
2296
2297 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2298 priv->enet_ver = AE_VERSION_1;
2299 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2300 priv->enet_ver = AE_VERSION_2;
2301 else
2302 return -ENXIO;
2303
2304 /* try to find port-idx-in-ae first */
2305 ret = acpi_node_get_property_reference(dev->fwnode,
2306 "ae-handle", 0, &args);
2307 if (ret) {
2308 dev_err(dev, "not find ae-handle\n");
2309 goto out_read_prop_fail;
2310 }
2311 if (!is_acpi_device_node(args.fwnode)) {
2312 ret = -EINVAL;
2313 goto out_read_prop_fail;
2314 }
2315 priv->fwnode = args.fwnode;
2316 } else {
2317 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2318 return -ENXIO;
2319 }
2320
2321 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2322 if (ret) {
2323 /* only for old code compatible */
2324 ret = device_property_read_u32(dev, "port-id", &port_id);
2325 if (ret)
2326 goto out_read_prop_fail;
2327 /* for old dts, we need to caculate the port offset */
2328 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2329 : port_id - HNS_SRV_OFFSET;
2330 }
2331 priv->port_id = port_id;
2332
2333 hns_init_mac_addr(ndev);
2334
2335 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2336 ndev->priv_flags |= IFF_UNICAST_FLT;
2337 ndev->netdev_ops = &hns_nic_netdev_ops;
2338 hns_ethtool_set_ops(ndev);
2339
2340 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2341 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2342 NETIF_F_GRO;
2343 ndev->vlan_features |=
2344 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2345 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2346
2347 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2348 ndev->min_mtu = MAC_MIN_MTU;
2349 switch (priv->enet_ver) {
2350 case AE_VERSION_2:
2351 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2352 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2353 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2354 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2355 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2356 ndev->max_mtu = MAC_MAX_MTU_V2 -
2357 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2358 break;
2359 default:
2360 ndev->max_mtu = MAC_MAX_MTU -
2361 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2362 break;
2363 }
2364
2365 SET_NETDEV_DEV(ndev, dev);
2366
2367 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2368 dev_dbg(dev, "set mask to 64bit\n");
2369 else
2370 dev_err(dev, "set mask to 64bit fail!\n");
2371
2372 /* carrier off reporting is important to ethtool even BEFORE open */
2373 netif_carrier_off(ndev);
2374
2375 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2376 INIT_WORK(&priv->service_task, hns_nic_service_task);
2377
2378 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2379 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2380 set_bit(NIC_STATE_DOWN, &priv->state);
2381
2382 if (hns_nic_try_get_ae(priv->netdev)) {
2383 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2384 ret = hnae_register_notifier(&priv->notifier_block);
2385 if (ret) {
2386 dev_err(dev, "register notifier fail!\n");
2387 goto out_notify_fail;
2388 }
2389 dev_dbg(dev, "has not handle, register notifier!\n");
2390 }
2391
2392 return 0;
2393
2394 out_notify_fail:
2395 (void)cancel_work_sync(&priv->service_task);
2396 out_read_prop_fail:
2397 /* safe for ACPI FW */
2398 of_node_put(to_of_node(priv->fwnode));
2399 free_netdev(ndev);
2400 return ret;
2401 }
2402
hns_nic_dev_remove(struct platform_device * pdev)2403 static int hns_nic_dev_remove(struct platform_device *pdev)
2404 {
2405 struct net_device *ndev = platform_get_drvdata(pdev);
2406 struct hns_nic_priv *priv = netdev_priv(ndev);
2407
2408 if (ndev->reg_state != NETREG_UNINITIALIZED)
2409 unregister_netdev(ndev);
2410
2411 if (priv->ring_data)
2412 hns_nic_uninit_ring_data(priv);
2413 priv->ring_data = NULL;
2414
2415 if (ndev->phydev)
2416 phy_disconnect(ndev->phydev);
2417
2418 if (!IS_ERR_OR_NULL(priv->ae_handle))
2419 hnae_put_handle(priv->ae_handle);
2420 priv->ae_handle = NULL;
2421 if (priv->notifier_block.notifier_call)
2422 hnae_unregister_notifier(&priv->notifier_block);
2423 priv->notifier_block.notifier_call = NULL;
2424
2425 set_bit(NIC_STATE_REMOVING, &priv->state);
2426 (void)cancel_work_sync(&priv->service_task);
2427
2428 /* safe for ACPI FW */
2429 of_node_put(to_of_node(priv->fwnode));
2430
2431 free_netdev(ndev);
2432 return 0;
2433 }
2434
2435 static const struct of_device_id hns_enet_of_match[] = {
2436 {.compatible = "hisilicon,hns-nic-v1",},
2437 {.compatible = "hisilicon,hns-nic-v2",},
2438 {},
2439 };
2440
2441 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2442
2443 static struct platform_driver hns_nic_dev_driver = {
2444 .driver = {
2445 .name = "hns-nic",
2446 .of_match_table = hns_enet_of_match,
2447 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2448 },
2449 .probe = hns_nic_dev_probe,
2450 .remove = hns_nic_dev_remove,
2451 };
2452
2453 module_platform_driver(hns_nic_dev_driver);
2454
2455 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2456 MODULE_AUTHOR("Hisilicon, Inc.");
2457 MODULE_LICENSE("GPL");
2458 MODULE_ALIAS("platform:hns-nic");
2459