1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29
30 #define SERVICE_TIMER_HZ (1 * HZ)
31
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42
fill_v2_desc_hw(struct hnae_ring * ring,void * priv,int size,int send_sz,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
44 int send_sz, dma_addr_t dma, int frag_end,
45 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 struct iphdr *iphdr;
50 struct ipv6hdr *ipv6hdr;
51 struct sk_buff *skb;
52 __be16 protocol;
53 u8 bn_pid = 0;
54 u8 rrcfv = 0;
55 u8 ip_offset = 0;
56 u8 tvsvsn = 0;
57 u16 mss = 0;
58 u8 l4_len = 0;
59 u16 paylen = 0;
60
61 desc_cb->priv = priv;
62 desc_cb->length = size;
63 desc_cb->dma = dma;
64 desc_cb->type = type;
65
66 desc->addr = cpu_to_le64(dma);
67 desc->tx.send_size = cpu_to_le16((u16)send_sz);
68
69 /* config bd buffer end */
70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72
73 /* fill port_id in the tx bd for sending management pkts */
74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76
77 if (type == DESC_TYPE_SKB) {
78 skb = (struct sk_buff *)priv;
79
80 if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 skb_reset_mac_len(skb);
82 protocol = skb->protocol;
83 ip_offset = ETH_HLEN;
84
85 if (protocol == htons(ETH_P_8021Q)) {
86 ip_offset += VLAN_HLEN;
87 protocol = vlan_get_protocol(skb);
88 skb->protocol = protocol;
89 }
90
91 if (skb->protocol == htons(ETH_P_IP)) {
92 iphdr = ip_hdr(skb);
93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95
96 /* check for tcp/udp header */
97 if (iphdr->protocol == IPPROTO_TCP &&
98 skb_is_gso(skb)) {
99 hnae_set_bit(tvsvsn,
100 HNSV2_TXD_TSE_B, 1);
101 l4_len = tcp_hdrlen(skb);
102 mss = skb_shinfo(skb)->gso_size;
103 paylen = skb->len - SKB_TMP_LEN(skb);
104 }
105 } else if (skb->protocol == htons(ETH_P_IPV6)) {
106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 ipv6hdr = ipv6_hdr(skb);
108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109
110 /* check for tcp/udp header */
111 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 hnae_set_bit(tvsvsn,
114 HNSV2_TXD_TSE_B, 1);
115 l4_len = tcp_hdrlen(skb);
116 mss = skb_shinfo(skb)->gso_size;
117 paylen = skb->len - SKB_TMP_LEN(skb);
118 }
119 }
120 desc->tx.ip_offset = ip_offset;
121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 desc->tx.mss = cpu_to_le16(mss);
123 desc->tx.l4_len = l4_len;
124 desc->tx.paylen = cpu_to_le16(paylen);
125 }
126 }
127
128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129
130 desc->tx.bn_pid = bn_pid;
131 desc->tx.ra_ri_cs_fe_vld = rrcfv;
132
133 ring_ptr_move_fw(ring, next_to_use);
134 }
135
fill_v2_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)136 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
137 int size, dma_addr_t dma, int frag_end,
138 int buf_num, enum hns_desc_type type, int mtu)
139 {
140 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
141 buf_num, type, mtu);
142 }
143
144 static const struct acpi_device_id hns_enet_acpi_match[] = {
145 { "HISI00C1", 0 },
146 { "HISI00C2", 0 },
147 { },
148 };
149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
150
fill_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)151 static void fill_desc(struct hnae_ring *ring, void *priv,
152 int size, dma_addr_t dma, int frag_end,
153 int buf_num, enum hns_desc_type type, int mtu)
154 {
155 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
156 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
157 struct sk_buff *skb;
158 __be16 protocol;
159 u32 ip_offset;
160 u32 asid_bufnum_pid = 0;
161 u32 flag_ipoffset = 0;
162
163 desc_cb->priv = priv;
164 desc_cb->length = size;
165 desc_cb->dma = dma;
166 desc_cb->type = type;
167
168 desc->addr = cpu_to_le64(dma);
169 desc->tx.send_size = cpu_to_le16((u16)size);
170
171 /*config bd buffer end */
172 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
173
174 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
175
176 if (type == DESC_TYPE_SKB) {
177 skb = (struct sk_buff *)priv;
178
179 if (skb->ip_summed == CHECKSUM_PARTIAL) {
180 protocol = skb->protocol;
181 ip_offset = ETH_HLEN;
182
183 /*if it is a SW VLAN check the next protocol*/
184 if (protocol == htons(ETH_P_8021Q)) {
185 ip_offset += VLAN_HLEN;
186 protocol = vlan_get_protocol(skb);
187 skb->protocol = protocol;
188 }
189
190 if (skb->protocol == htons(ETH_P_IP)) {
191 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
192 /* check for tcp/udp header */
193 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
194
195 } else if (skb->protocol == htons(ETH_P_IPV6)) {
196 /* ipv6 has not l3 cs, check for L4 header */
197 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
198 }
199
200 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
201 }
202 }
203
204 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
205
206 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
207 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
208
209 ring_ptr_move_fw(ring, next_to_use);
210 }
211
unfill_desc(struct hnae_ring * ring)212 static void unfill_desc(struct hnae_ring *ring)
213 {
214 ring_ptr_move_bw(ring, next_to_use);
215 }
216
hns_nic_maybe_stop_tx(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)217 static int hns_nic_maybe_stop_tx(
218 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
219 {
220 struct sk_buff *skb = *out_skb;
221 struct sk_buff *new_skb = NULL;
222 int buf_num;
223
224 /* no. of segments (plus a header) */
225 buf_num = skb_shinfo(skb)->nr_frags + 1;
226
227 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
228 if (ring_space(ring) < 1)
229 return -EBUSY;
230
231 new_skb = skb_copy(skb, GFP_ATOMIC);
232 if (!new_skb)
233 return -ENOMEM;
234
235 dev_kfree_skb_any(skb);
236 *out_skb = new_skb;
237 buf_num = 1;
238 } else if (buf_num > ring_space(ring)) {
239 return -EBUSY;
240 }
241
242 *bnum = buf_num;
243 return 0;
244 }
245
hns_nic_maybe_stop_tso(struct sk_buff ** out_skb,int * bnum,struct hnae_ring * ring)246 static int hns_nic_maybe_stop_tso(
247 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
248 {
249 int i;
250 int size;
251 int buf_num;
252 int frag_num;
253 struct sk_buff *skb = *out_skb;
254 struct sk_buff *new_skb = NULL;
255 struct skb_frag_struct *frag;
256
257 size = skb_headlen(skb);
258 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259
260 frag_num = skb_shinfo(skb)->nr_frags;
261 for (i = 0; i < frag_num; i++) {
262 frag = &skb_shinfo(skb)->frags[i];
263 size = skb_frag_size(frag);
264 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
265 }
266
267 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
268 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
269 if (ring_space(ring) < buf_num)
270 return -EBUSY;
271 /* manual split the send packet */
272 new_skb = skb_copy(skb, GFP_ATOMIC);
273 if (!new_skb)
274 return -ENOMEM;
275 dev_kfree_skb_any(skb);
276 *out_skb = new_skb;
277
278 } else if (ring_space(ring) < buf_num) {
279 return -EBUSY;
280 }
281
282 *bnum = buf_num;
283 return 0;
284 }
285
fill_tso_desc(struct hnae_ring * ring,void * priv,int size,dma_addr_t dma,int frag_end,int buf_num,enum hns_desc_type type,int mtu)286 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
287 int size, dma_addr_t dma, int frag_end,
288 int buf_num, enum hns_desc_type type, int mtu)
289 {
290 int frag_buf_num;
291 int sizeoflast;
292 int k;
293
294 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
295 sizeoflast = size % BD_MAX_SEND_SIZE;
296 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
297
298 /* when the frag size is bigger than hardware, split this frag */
299 for (k = 0; k < frag_buf_num; k++)
300 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
301 (k == frag_buf_num - 1) ?
302 sizeoflast : BD_MAX_SEND_SIZE,
303 dma + BD_MAX_SEND_SIZE * k,
304 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
305 buf_num,
306 (type == DESC_TYPE_SKB && !k) ?
307 DESC_TYPE_SKB : DESC_TYPE_PAGE,
308 mtu);
309 }
310
hns_nic_net_xmit_hw(struct net_device * ndev,struct sk_buff * skb,struct hns_nic_ring_data * ring_data)311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
312 struct sk_buff *skb,
313 struct hns_nic_ring_data *ring_data)
314 {
315 struct hns_nic_priv *priv = netdev_priv(ndev);
316 struct hnae_ring *ring = ring_data->ring;
317 struct device *dev = ring_to_dev(ring);
318 struct netdev_queue *dev_queue;
319 struct skb_frag_struct *frag;
320 int buf_num;
321 int seg_num;
322 dma_addr_t dma;
323 int size, next_to_use;
324 int i;
325
326 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
327 case -EBUSY:
328 ring->stats.tx_busy++;
329 goto out_net_tx_busy;
330 case -ENOMEM:
331 ring->stats.sw_err_cnt++;
332 netdev_err(ndev, "no memory to xmit!\n");
333 goto out_err_tx_ok;
334 default:
335 break;
336 }
337
338 /* no. of segments (plus a header) */
339 seg_num = skb_shinfo(skb)->nr_frags + 1;
340 next_to_use = ring->next_to_use;
341
342 /* fill the first part */
343 size = skb_headlen(skb);
344 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
345 if (dma_mapping_error(dev, dma)) {
346 netdev_err(ndev, "TX head DMA map failed\n");
347 ring->stats.sw_err_cnt++;
348 goto out_err_tx_ok;
349 }
350 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
351 buf_num, DESC_TYPE_SKB, ndev->mtu);
352
353 /* fill the fragments */
354 for (i = 1; i < seg_num; i++) {
355 frag = &skb_shinfo(skb)->frags[i - 1];
356 size = skb_frag_size(frag);
357 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
358 if (dma_mapping_error(dev, dma)) {
359 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
360 ring->stats.sw_err_cnt++;
361 goto out_map_frag_fail;
362 }
363 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
364 seg_num - 1 == i ? 1 : 0, buf_num,
365 DESC_TYPE_PAGE, ndev->mtu);
366 }
367
368 /*complete translate all packets*/
369 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
370 netdev_tx_sent_queue(dev_queue, skb->len);
371
372 netif_trans_update(ndev);
373 ndev->stats.tx_bytes += skb->len;
374 ndev->stats.tx_packets++;
375
376 wmb(); /* commit all data before submit */
377 assert(skb->queue_mapping < priv->ae_handle->q_num);
378 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
379 ring->stats.tx_pkts++;
380 ring->stats.tx_bytes += skb->len;
381
382 return NETDEV_TX_OK;
383
384 out_map_frag_fail:
385
386 while (ring->next_to_use != next_to_use) {
387 unfill_desc(ring);
388 if (ring->next_to_use != next_to_use)
389 dma_unmap_page(dev,
390 ring->desc_cb[ring->next_to_use].dma,
391 ring->desc_cb[ring->next_to_use].length,
392 DMA_TO_DEVICE);
393 else
394 dma_unmap_single(dev,
395 ring->desc_cb[next_to_use].dma,
396 ring->desc_cb[next_to_use].length,
397 DMA_TO_DEVICE);
398 }
399
400 out_err_tx_ok:
401
402 dev_kfree_skb_any(skb);
403 return NETDEV_TX_OK;
404
405 out_net_tx_busy:
406
407 netif_stop_subqueue(ndev, skb->queue_mapping);
408
409 /* Herbert's original patch had:
410 * smp_mb__after_netif_stop_queue();
411 * but since that doesn't exist yet, just open code it.
412 */
413 smp_mb();
414 return NETDEV_TX_BUSY;
415 }
416
hns_nic_reuse_page(struct sk_buff * skb,int i,struct hnae_ring * ring,int pull_len,struct hnae_desc_cb * desc_cb)417 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
418 struct hnae_ring *ring, int pull_len,
419 struct hnae_desc_cb *desc_cb)
420 {
421 struct hnae_desc *desc;
422 u32 truesize;
423 int size;
424 int last_offset;
425 bool twobufs;
426
427 twobufs = ((PAGE_SIZE < 8192) &&
428 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
429
430 desc = &ring->desc[ring->next_to_clean];
431 size = le16_to_cpu(desc->rx.size);
432
433 if (twobufs) {
434 truesize = hnae_buf_size(ring);
435 } else {
436 truesize = ALIGN(size, L1_CACHE_BYTES);
437 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
438 }
439
440 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
441 size - pull_len, truesize);
442
443 /* avoid re-using remote pages,flag default unreuse */
444 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
445 return;
446
447 if (twobufs) {
448 /* if we are only owner of page we can reuse it */
449 if (likely(page_count(desc_cb->priv) == 1)) {
450 /* flip page offset to other buffer */
451 desc_cb->page_offset ^= truesize;
452
453 desc_cb->reuse_flag = 1;
454 /* bump ref count on page before it is given*/
455 get_page(desc_cb->priv);
456 }
457 return;
458 }
459
460 /* move offset up to the next cache line */
461 desc_cb->page_offset += truesize;
462
463 if (desc_cb->page_offset <= last_offset) {
464 desc_cb->reuse_flag = 1;
465 /* bump ref count on page before it is given*/
466 get_page(desc_cb->priv);
467 }
468 }
469
get_v2rx_desc_bnum(u32 bnum_flag,int * out_bnum)470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
471 {
472 *out_bnum = hnae_get_field(bnum_flag,
473 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
474 }
475
get_rx_desc_bnum(u32 bnum_flag,int * out_bnum)476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
477 {
478 *out_bnum = hnae_get_field(bnum_flag,
479 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
480 }
481
hns_nic_rx_checksum(struct hns_nic_ring_data * ring_data,struct sk_buff * skb,u32 flag)482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
483 struct sk_buff *skb, u32 flag)
484 {
485 struct net_device *netdev = ring_data->napi.dev;
486 u32 l3id;
487 u32 l4id;
488
489 /* check if RX checksum offload is enabled */
490 if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
491 return;
492
493 /* In hardware, we only support checksum for the following protocols:
494 * 1) IPv4,
495 * 2) TCP(over IPv4 or IPv6),
496 * 3) UDP(over IPv4 or IPv6),
497 * 4) SCTP(over IPv4 or IPv6)
498 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
499 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
500 *
501 * Hardware limitation:
502 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
503 * Error" bit (which usually can be used to indicate whether checksum
504 * was calculated by the hardware and if there was any error encountered
505 * during checksum calculation).
506 *
507 * Software workaround:
508 * We do get info within the RX descriptor about the kind of L3/L4
509 * protocol coming in the packet and the error status. These errors
510 * might not just be checksum errors but could be related to version,
511 * length of IPv4, UDP, TCP etc.
512 * Because there is no-way of knowing if it is a L3/L4 error due to bad
513 * checksum or any other L3/L4 error, we will not (cannot) convey
514 * checksum status for such cases to upper stack and will not maintain
515 * the RX L3/L4 checksum counters as well.
516 */
517
518 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
519 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
520
521 /* check L3 protocol for which checksum is supported */
522 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
523 return;
524
525 /* check for any(not just checksum)flagged L3 protocol errors */
526 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
527 return;
528
529 /* we do not support checksum of fragmented packets */
530 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
531 return;
532
533 /* check L4 protocol for which checksum is supported */
534 if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
535 (l4id != HNS_RX_FLAG_L4ID_UDP) &&
536 (l4id != HNS_RX_FLAG_L4ID_SCTP))
537 return;
538
539 /* check for any(not just checksum)flagged L4 protocol errors */
540 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
541 return;
542
543 /* now, this has to be a packet with valid RX checksum */
544 skb->ip_summed = CHECKSUM_UNNECESSARY;
545 }
546
hns_nic_poll_rx_skb(struct hns_nic_ring_data * ring_data,struct sk_buff ** out_skb,int * out_bnum)547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
548 struct sk_buff **out_skb, int *out_bnum)
549 {
550 struct hnae_ring *ring = ring_data->ring;
551 struct net_device *ndev = ring_data->napi.dev;
552 struct hns_nic_priv *priv = netdev_priv(ndev);
553 struct sk_buff *skb;
554 struct hnae_desc *desc;
555 struct hnae_desc_cb *desc_cb;
556 unsigned char *va;
557 int bnum, length, i;
558 int pull_len;
559 u32 bnum_flag;
560
561 desc = &ring->desc[ring->next_to_clean];
562 desc_cb = &ring->desc_cb[ring->next_to_clean];
563
564 prefetch(desc);
565
566 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
567
568 /* prefetch first cache line of first page */
569 prefetch(va);
570 #if L1_CACHE_BYTES < 128
571 prefetch(va + L1_CACHE_BYTES);
572 #endif
573
574 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
575 HNS_RX_HEAD_SIZE);
576 if (unlikely(!skb)) {
577 netdev_err(ndev, "alloc rx skb fail\n");
578 ring->stats.sw_err_cnt++;
579 return -ENOMEM;
580 }
581
582 prefetchw(skb->data);
583 length = le16_to_cpu(desc->rx.pkt_len);
584 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
585 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
586 *out_bnum = bnum;
587
588 if (length <= HNS_RX_HEAD_SIZE) {
589 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
590
591 /* we can reuse buffer as-is, just make sure it is local */
592 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
593 desc_cb->reuse_flag = 1;
594 else /* this page cannot be reused so discard it */
595 put_page(desc_cb->priv);
596
597 ring_ptr_move_fw(ring, next_to_clean);
598
599 if (unlikely(bnum != 1)) { /* check err*/
600 *out_bnum = 1;
601 goto out_bnum_err;
602 }
603 } else {
604 ring->stats.seg_pkt_cnt++;
605
606 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
607 memcpy(__skb_put(skb, pull_len), va,
608 ALIGN(pull_len, sizeof(long)));
609
610 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
611 ring_ptr_move_fw(ring, next_to_clean);
612
613 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
614 *out_bnum = 1;
615 goto out_bnum_err;
616 }
617 for (i = 1; i < bnum; i++) {
618 desc = &ring->desc[ring->next_to_clean];
619 desc_cb = &ring->desc_cb[ring->next_to_clean];
620
621 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
622 ring_ptr_move_fw(ring, next_to_clean);
623 }
624 }
625
626 /* check except process, free skb and jump the desc */
627 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
628 out_bnum_err:
629 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
630 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
631 bnum, ring->max_desc_num_per_pkt,
632 length, (int)MAX_SKB_FRAGS,
633 ((u64 *)desc)[0], ((u64 *)desc)[1]);
634 ring->stats.err_bd_num++;
635 dev_kfree_skb_any(skb);
636 return -EDOM;
637 }
638
639 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
640
641 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
642 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
643 ((u64 *)desc)[0], ((u64 *)desc)[1]);
644 ring->stats.non_vld_descs++;
645 dev_kfree_skb_any(skb);
646 return -EINVAL;
647 }
648
649 if (unlikely((!desc->rx.pkt_len) ||
650 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
651 ring->stats.err_pkt_len++;
652 dev_kfree_skb_any(skb);
653 return -EFAULT;
654 }
655
656 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
657 ring->stats.l2_err++;
658 dev_kfree_skb_any(skb);
659 return -EFAULT;
660 }
661
662 ring->stats.rx_pkts++;
663 ring->stats.rx_bytes += skb->len;
664
665 /* indicate to upper stack if our hardware has already calculated
666 * the RX checksum
667 */
668 hns_nic_rx_checksum(ring_data, skb, bnum_flag);
669
670 return 0;
671 }
672
673 static void
hns_nic_alloc_rx_buffers(struct hns_nic_ring_data * ring_data,int cleand_count)674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
675 {
676 int i, ret;
677 struct hnae_desc_cb res_cbs;
678 struct hnae_desc_cb *desc_cb;
679 struct hnae_ring *ring = ring_data->ring;
680 struct net_device *ndev = ring_data->napi.dev;
681
682 for (i = 0; i < cleand_count; i++) {
683 desc_cb = &ring->desc_cb[ring->next_to_use];
684 if (desc_cb->reuse_flag) {
685 ring->stats.reuse_pg_cnt++;
686 hnae_reuse_buffer(ring, ring->next_to_use);
687 } else {
688 ret = hnae_reserve_buffer_map(ring, &res_cbs);
689 if (ret) {
690 ring->stats.sw_err_cnt++;
691 netdev_err(ndev, "hnae reserve buffer map failed.\n");
692 break;
693 }
694 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
695 }
696
697 ring_ptr_move_fw(ring, next_to_use);
698 }
699
700 wmb(); /* make all data has been write before submit */
701 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
702 }
703
704 /* return error number for error or number of desc left to take
705 */
hns_nic_rx_up_pro(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
707 struct sk_buff *skb)
708 {
709 struct net_device *ndev = ring_data->napi.dev;
710
711 skb->protocol = eth_type_trans(skb, ndev);
712 (void)napi_gro_receive(&ring_data->napi, skb);
713 }
714
hns_desc_unused(struct hnae_ring * ring)715 static int hns_desc_unused(struct hnae_ring *ring)
716 {
717 int ntc = ring->next_to_clean;
718 int ntu = ring->next_to_use;
719
720 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
721 }
722
723 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */
724 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */
725
726 #define HNS_COAL_BDNUM 3
727
hns_coal_rx_bdnum(struct hnae_ring * ring)728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
729 {
730 bool coal_enable = ring->q->handle->coal_adapt_en;
731
732 if (coal_enable &&
733 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
734 return HNS_COAL_BDNUM;
735 else
736 return 0;
737 }
738
hns_update_rx_rate(struct hnae_ring * ring)739 static void hns_update_rx_rate(struct hnae_ring *ring)
740 {
741 bool coal_enable = ring->q->handle->coal_adapt_en;
742 u32 time_passed_ms;
743 u64 total_bytes;
744
745 if (!coal_enable ||
746 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
747 return;
748
749 /* ring->stats.rx_bytes overflowed */
750 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
751 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
752 ring->coal_last_jiffies = jiffies;
753 return;
754 }
755
756 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
757 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
758 do_div(total_bytes, time_passed_ms);
759 ring->coal_rx_rate = total_bytes >> 10;
760
761 ring->coal_last_rx_bytes = ring->stats.rx_bytes;
762 ring->coal_last_jiffies = jiffies;
763 }
764
765 /**
766 * smooth_alg - smoothing algrithm for adjusting coalesce parameter
767 **/
smooth_alg(u32 new_param,u32 old_param)768 static u32 smooth_alg(u32 new_param, u32 old_param)
769 {
770 u32 gap = (new_param > old_param) ? new_param - old_param
771 : old_param - new_param;
772
773 if (gap > 8)
774 gap >>= 3;
775
776 if (new_param > old_param)
777 return old_param + gap;
778 else
779 return old_param - gap;
780 }
781
782 /**
783 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
784 * @ring_data: pointer to hns_nic_ring_data
785 **/
hns_nic_adpt_coalesce(struct hns_nic_ring_data * ring_data)786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
787 {
788 struct hnae_ring *ring = ring_data->ring;
789 struct hnae_handle *handle = ring->q->handle;
790 u32 new_coal_param, old_coal_param = ring->coal_param;
791
792 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
793 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
794 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
795 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
796 else
797 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
798
799 if (new_coal_param == old_coal_param &&
800 new_coal_param == handle->coal_param)
801 return;
802
803 new_coal_param = smooth_alg(new_coal_param, old_coal_param);
804 ring->coal_param = new_coal_param;
805
806 /**
807 * Because all ring in one port has one coalesce param, when one ring
808 * calculate its own coalesce param, it cannot write to hardware at
809 * once. There are three conditions as follows:
810 * 1. current ring's coalesce param is larger than the hardware.
811 * 2. or ring which adapt last time can change again.
812 * 3. timeout.
813 */
814 if (new_coal_param == handle->coal_param) {
815 handle->coal_last_jiffies = jiffies;
816 handle->coal_ring_idx = ring_data->queue_index;
817 } else if (new_coal_param > handle->coal_param ||
818 handle->coal_ring_idx == ring_data->queue_index ||
819 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
820 handle->dev->ops->set_coalesce_usecs(handle,
821 new_coal_param);
822 handle->dev->ops->set_coalesce_frames(handle,
823 1, new_coal_param);
824 handle->coal_param = new_coal_param;
825 handle->coal_ring_idx = ring_data->queue_index;
826 handle->coal_last_jiffies = jiffies;
827 }
828 }
829
hns_nic_rx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
831 int budget, void *v)
832 {
833 struct hnae_ring *ring = ring_data->ring;
834 struct sk_buff *skb;
835 int num, bnum;
836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
837 int recv_pkts, recv_bds, clean_count, err;
838 int unused_count = hns_desc_unused(ring);
839
840 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
841 rmb(); /* make sure num taken effect before the other data is touched */
842
843 recv_pkts = 0, recv_bds = 0, clean_count = 0;
844 num -= unused_count;
845
846 while (recv_pkts < budget && recv_bds < num) {
847 /* reuse or realloc buffers */
848 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
849 hns_nic_alloc_rx_buffers(ring_data,
850 clean_count + unused_count);
851 clean_count = 0;
852 unused_count = hns_desc_unused(ring);
853 }
854
855 /* poll one pkt */
856 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
857 if (unlikely(!skb)) /* this fault cannot be repaired */
858 goto out;
859
860 recv_bds += bnum;
861 clean_count += bnum;
862 if (unlikely(err)) { /* do jump the err */
863 recv_pkts++;
864 continue;
865 }
866
867 /* do update ip stack process*/
868 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
869 ring_data, skb);
870 recv_pkts++;
871 }
872
873 out:
874 /* make all data has been write before submit */
875 if (clean_count + unused_count > 0)
876 hns_nic_alloc_rx_buffers(ring_data,
877 clean_count + unused_count);
878
879 return recv_pkts;
880 }
881
hns_nic_rx_fini_pro(struct hns_nic_ring_data * ring_data)882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
883 {
884 struct hnae_ring *ring = ring_data->ring;
885 int num = 0;
886 bool rx_stopped;
887
888 hns_update_rx_rate(ring);
889
890 /* for hardware bug fixed */
891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
892 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893
894 if (num <= hns_coal_rx_bdnum(ring)) {
895 if (ring->q->handle->coal_adapt_en)
896 hns_nic_adpt_coalesce(ring_data);
897
898 rx_stopped = true;
899 } else {
900 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
901 ring_data->ring, 1);
902
903 rx_stopped = false;
904 }
905
906 return rx_stopped;
907 }
908
hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data * ring_data)909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
910 {
911 struct hnae_ring *ring = ring_data->ring;
912 int num;
913
914 hns_update_rx_rate(ring);
915 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
916
917 if (num <= hns_coal_rx_bdnum(ring)) {
918 if (ring->q->handle->coal_adapt_en)
919 hns_nic_adpt_coalesce(ring_data);
920
921 return true;
922 }
923
924 return false;
925 }
926
hns_nic_reclaim_one_desc(struct hnae_ring * ring,int * bytes,int * pkts)927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
928 int *bytes, int *pkts)
929 {
930 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
931
932 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
933 (*bytes) += desc_cb->length;
934 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
935 hnae_free_buffer_detach(ring, ring->next_to_clean);
936
937 ring_ptr_move_fw(ring, next_to_clean);
938 }
939
is_valid_clean_head(struct hnae_ring * ring,int h)940 static int is_valid_clean_head(struct hnae_ring *ring, int h)
941 {
942 int u = ring->next_to_use;
943 int c = ring->next_to_clean;
944
945 if (unlikely(h > ring->desc_num))
946 return 0;
947
948 assert(u > 0 && u < ring->desc_num);
949 assert(c > 0 && c < ring->desc_num);
950 assert(u != c && h != c); /* must be checked before call this func */
951
952 return u > c ? (h > c && h <= u) : (h > c || h <= u);
953 }
954
955 /* netif_tx_lock will turn down the performance, set only when necessary */
956 #ifdef CONFIG_NET_POLL_CONTROLLER
957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
959 #else
960 #define NETIF_TX_LOCK(ring)
961 #define NETIF_TX_UNLOCK(ring)
962 #endif
963
964 /* reclaim all desc in one budget
965 * return error or number of desc left
966 */
hns_nic_tx_poll_one(struct hns_nic_ring_data * ring_data,int budget,void * v)967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
968 int budget, void *v)
969 {
970 struct hnae_ring *ring = ring_data->ring;
971 struct net_device *ndev = ring_data->napi.dev;
972 struct netdev_queue *dev_queue;
973 struct hns_nic_priv *priv = netdev_priv(ndev);
974 int head;
975 int bytes, pkts;
976
977 NETIF_TX_LOCK(ring);
978
979 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
980 rmb(); /* make sure head is ready before touch any data */
981
982 if (is_ring_empty(ring) || head == ring->next_to_clean) {
983 NETIF_TX_UNLOCK(ring);
984 return 0; /* no data to poll */
985 }
986
987 if (!is_valid_clean_head(ring, head)) {
988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989 ring->next_to_use, ring->next_to_clean);
990 ring->stats.io_err_cnt++;
991 NETIF_TX_UNLOCK(ring);
992 return -EIO;
993 }
994
995 bytes = 0;
996 pkts = 0;
997 while (head != ring->next_to_clean) {
998 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
999 /* issue prefetch for next Tx descriptor */
1000 prefetch(&ring->desc_cb[ring->next_to_clean]);
1001 }
1002
1003 NETIF_TX_UNLOCK(ring);
1004
1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006 netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007
1008 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009 netif_carrier_on(ndev);
1010
1011 if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013 /* Make sure that anybody stopping the queue after this
1014 * sees the new next_to_clean.
1015 */
1016 smp_mb();
1017 if (netif_tx_queue_stopped(dev_queue) &&
1018 !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019 netif_tx_wake_queue(dev_queue);
1020 ring->stats.restart_queue++;
1021 }
1022 }
1023 return 0;
1024 }
1025
hns_nic_tx_fini_pro(struct hns_nic_ring_data * ring_data)1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028 struct hnae_ring *ring = ring_data->ring;
1029 int head;
1030
1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032
1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034
1035 if (head != ring->next_to_clean) {
1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037 ring_data->ring, 1);
1038
1039 return false;
1040 } else {
1041 return true;
1042 }
1043 }
1044
hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data * ring_data)1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047 struct hnae_ring *ring = ring_data->ring;
1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049
1050 if (head == ring->next_to_clean)
1051 return true;
1052 else
1053 return false;
1054 }
1055
hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data * ring_data)1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058 struct hnae_ring *ring = ring_data->ring;
1059 struct net_device *ndev = ring_data->napi.dev;
1060 struct netdev_queue *dev_queue;
1061 int head;
1062 int bytes, pkts;
1063
1064 NETIF_TX_LOCK(ring);
1065
1066 head = ring->next_to_use; /* ntu :soft setted ring position*/
1067 bytes = 0;
1068 pkts = 0;
1069 while (head != ring->next_to_clean)
1070 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1071
1072 NETIF_TX_UNLOCK(ring);
1073
1074 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1075 netdev_tx_reset_queue(dev_queue);
1076 }
1077
hns_nic_common_poll(struct napi_struct * napi,int budget)1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1079 {
1080 int clean_complete = 0;
1081 struct hns_nic_ring_data *ring_data =
1082 container_of(napi, struct hns_nic_ring_data, napi);
1083 struct hnae_ring *ring = ring_data->ring;
1084
1085 try_again:
1086 clean_complete += ring_data->poll_one(
1087 ring_data, budget - clean_complete,
1088 ring_data->ex_process);
1089
1090 if (clean_complete < budget) {
1091 if (ring_data->fini_process(ring_data)) {
1092 napi_complete(napi);
1093 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1094 } else {
1095 goto try_again;
1096 }
1097 }
1098
1099 return clean_complete;
1100 }
1101
hns_irq_handle(int irq,void * dev)1102 static irqreturn_t hns_irq_handle(int irq, void *dev)
1103 {
1104 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1105
1106 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1107 ring_data->ring, 1);
1108 napi_schedule(&ring_data->napi);
1109
1110 return IRQ_HANDLED;
1111 }
1112
1113 /**
1114 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1115 *@ndev: net device
1116 */
hns_nic_adjust_link(struct net_device * ndev)1117 static void hns_nic_adjust_link(struct net_device *ndev)
1118 {
1119 struct hns_nic_priv *priv = netdev_priv(ndev);
1120 struct hnae_handle *h = priv->ae_handle;
1121 int state = 1;
1122
1123 /* If there is no phy, do not need adjust link */
1124 if (ndev->phydev) {
1125 /* When phy link down, do nothing */
1126 if (ndev->phydev->link == 0)
1127 return;
1128
1129 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1130 ndev->phydev->duplex)) {
1131 /* because Hi161X chip don't support to change gmac
1132 * speed and duplex with traffic. Delay 200ms to
1133 * make sure there is no more data in chip FIFO.
1134 */
1135 netif_carrier_off(ndev);
1136 msleep(200);
1137 h->dev->ops->adjust_link(h, ndev->phydev->speed,
1138 ndev->phydev->duplex);
1139 netif_carrier_on(ndev);
1140 }
1141 }
1142
1143 state = state && h->dev->ops->get_status(h);
1144
1145 if (state != priv->link) {
1146 if (state) {
1147 netif_carrier_on(ndev);
1148 netif_tx_wake_all_queues(ndev);
1149 netdev_info(ndev, "link up\n");
1150 } else {
1151 netif_carrier_off(ndev);
1152 netdev_info(ndev, "link down\n");
1153 }
1154 priv->link = state;
1155 }
1156 }
1157
1158 /**
1159 *hns_nic_init_phy - init phy
1160 *@ndev: net device
1161 *@h: ae handle
1162 * Return 0 on success, negative on failure
1163 */
hns_nic_init_phy(struct net_device * ndev,struct hnae_handle * h)1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1165 {
1166 struct phy_device *phy_dev = h->phy_dev;
1167 int ret;
1168
1169 if (!h->phy_dev)
1170 return 0;
1171
1172 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1173 phy_dev->dev_flags = 0;
1174
1175 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1176 h->phy_if);
1177 } else {
1178 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1179 }
1180 if (unlikely(ret))
1181 return -ENODEV;
1182
1183 phy_dev->supported &= h->if_support;
1184 phy_dev->advertising = phy_dev->supported;
1185
1186 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1187 phy_dev->autoneg = false;
1188
1189 return 0;
1190 }
1191
hns_nic_ring_open(struct net_device * netdev,int idx)1192 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1193 {
1194 struct hns_nic_priv *priv = netdev_priv(netdev);
1195 struct hnae_handle *h = priv->ae_handle;
1196
1197 napi_enable(&priv->ring_data[idx].napi);
1198
1199 enable_irq(priv->ring_data[idx].ring->irq);
1200 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1201
1202 return 0;
1203 }
1204
hns_nic_net_set_mac_address(struct net_device * ndev,void * p)1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1206 {
1207 struct hns_nic_priv *priv = netdev_priv(ndev);
1208 struct hnae_handle *h = priv->ae_handle;
1209 struct sockaddr *mac_addr = p;
1210 int ret;
1211
1212 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1213 return -EADDRNOTAVAIL;
1214
1215 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1216 if (ret) {
1217 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1218 return ret;
1219 }
1220
1221 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1222
1223 return 0;
1224 }
1225
hns_nic_update_stats(struct net_device * netdev)1226 static void hns_nic_update_stats(struct net_device *netdev)
1227 {
1228 struct hns_nic_priv *priv = netdev_priv(netdev);
1229 struct hnae_handle *h = priv->ae_handle;
1230
1231 h->dev->ops->update_stats(h, &netdev->stats);
1232 }
1233
1234 /* set mac addr if it is configed. or leave it to the AE driver */
hns_init_mac_addr(struct net_device * ndev)1235 static void hns_init_mac_addr(struct net_device *ndev)
1236 {
1237 struct hns_nic_priv *priv = netdev_priv(ndev);
1238
1239 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1240 eth_hw_addr_random(ndev);
1241 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1242 ndev->dev_addr);
1243 }
1244 }
1245
hns_nic_ring_close(struct net_device * netdev,int idx)1246 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1247 {
1248 struct hns_nic_priv *priv = netdev_priv(netdev);
1249 struct hnae_handle *h = priv->ae_handle;
1250
1251 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1252 disable_irq(priv->ring_data[idx].ring->irq);
1253
1254 napi_disable(&priv->ring_data[idx].napi);
1255 }
1256
hns_nic_init_affinity_mask(int q_num,int ring_idx,struct hnae_ring * ring,cpumask_t * mask)1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1258 struct hnae_ring *ring, cpumask_t *mask)
1259 {
1260 int cpu;
1261
1262 /* Diffrent irq banlance between 16core and 32core.
1263 * The cpu mask set by ring index according to the ring flag
1264 * which indicate the ring is tx or rx.
1265 */
1266 if (q_num == num_possible_cpus()) {
1267 if (is_tx_ring(ring))
1268 cpu = ring_idx;
1269 else
1270 cpu = ring_idx - q_num;
1271 } else {
1272 if (is_tx_ring(ring))
1273 cpu = ring_idx * 2;
1274 else
1275 cpu = (ring_idx - q_num) * 2 + 1;
1276 }
1277
1278 cpumask_clear(mask);
1279 cpumask_set_cpu(cpu, mask);
1280
1281 return cpu;
1282 }
1283
hns_nic_init_irq(struct hns_nic_priv * priv)1284 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1285 {
1286 struct hnae_handle *h = priv->ae_handle;
1287 struct hns_nic_ring_data *rd;
1288 int i;
1289 int ret;
1290 int cpu;
1291
1292 for (i = 0; i < h->q_num * 2; i++) {
1293 rd = &priv->ring_data[i];
1294
1295 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1296 break;
1297
1298 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1299 "%s-%s%d", priv->netdev->name,
1300 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1301
1302 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1303
1304 ret = request_irq(rd->ring->irq,
1305 hns_irq_handle, 0, rd->ring->ring_name, rd);
1306 if (ret) {
1307 netdev_err(priv->netdev, "request irq(%d) fail\n",
1308 rd->ring->irq);
1309 return ret;
1310 }
1311 disable_irq(rd->ring->irq);
1312
1313 cpu = hns_nic_init_affinity_mask(h->q_num, i,
1314 rd->ring, &rd->mask);
1315
1316 if (cpu_online(cpu))
1317 irq_set_affinity_hint(rd->ring->irq,
1318 &rd->mask);
1319
1320 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1321 }
1322
1323 return 0;
1324 }
1325
hns_nic_net_up(struct net_device * ndev)1326 static int hns_nic_net_up(struct net_device *ndev)
1327 {
1328 struct hns_nic_priv *priv = netdev_priv(ndev);
1329 struct hnae_handle *h = priv->ae_handle;
1330 int i, j;
1331 int ret;
1332
1333 ret = hns_nic_init_irq(priv);
1334 if (ret != 0) {
1335 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1336 return ret;
1337 }
1338
1339 for (i = 0; i < h->q_num * 2; i++) {
1340 ret = hns_nic_ring_open(ndev, i);
1341 if (ret)
1342 goto out_has_some_queues;
1343 }
1344
1345 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1346 if (ret)
1347 goto out_set_mac_addr_err;
1348
1349 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1350 if (ret)
1351 goto out_start_err;
1352
1353 if (ndev->phydev)
1354 phy_start(ndev->phydev);
1355
1356 clear_bit(NIC_STATE_DOWN, &priv->state);
1357 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1358
1359 return 0;
1360
1361 out_start_err:
1362 netif_stop_queue(ndev);
1363 out_set_mac_addr_err:
1364 out_has_some_queues:
1365 for (j = i - 1; j >= 0; j--)
1366 hns_nic_ring_close(ndev, j);
1367
1368 set_bit(NIC_STATE_DOWN, &priv->state);
1369
1370 return ret;
1371 }
1372
hns_nic_net_down(struct net_device * ndev)1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375 int i;
1376 struct hnae_ae_ops *ops;
1377 struct hns_nic_priv *priv = netdev_priv(ndev);
1378
1379 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380 return;
1381
1382 (void)del_timer_sync(&priv->service_timer);
1383 netif_tx_stop_all_queues(ndev);
1384 netif_carrier_off(ndev);
1385 netif_tx_disable(ndev);
1386 priv->link = 0;
1387
1388 if (ndev->phydev)
1389 phy_stop(ndev->phydev);
1390
1391 ops = priv->ae_handle->dev->ops;
1392
1393 if (ops->stop)
1394 ops->stop(priv->ae_handle);
1395
1396 netif_tx_stop_all_queues(ndev);
1397
1398 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399 hns_nic_ring_close(ndev, i);
1400 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401
1402 /* clean tx buffers*/
1403 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404 }
1405 }
1406
hns_nic_net_reset(struct net_device * ndev)1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409 struct hns_nic_priv *priv = netdev_priv(ndev);
1410 struct hnae_handle *handle = priv->ae_handle;
1411
1412 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413 usleep_range(1000, 2000);
1414
1415 (void)hnae_reinit_handle(handle);
1416
1417 clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419
hns_nic_net_reinit(struct net_device * netdev)1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422 struct hns_nic_priv *priv = netdev_priv(netdev);
1423 enum hnae_port_type type = priv->ae_handle->port_type;
1424
1425 netif_trans_update(priv->netdev);
1426 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427 usleep_range(1000, 2000);
1428
1429 hns_nic_net_down(netdev);
1430
1431 /* Only do hns_nic_net_reset in debug mode
1432 * because of hardware limitation.
1433 */
1434 if (type == HNAE_PORT_DEBUG)
1435 hns_nic_net_reset(netdev);
1436
1437 (void)hns_nic_net_up(netdev);
1438 clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440
hns_nic_net_open(struct net_device * ndev)1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443 struct hns_nic_priv *priv = netdev_priv(ndev);
1444 struct hnae_handle *h = priv->ae_handle;
1445 int ret;
1446
1447 if (test_bit(NIC_STATE_TESTING, &priv->state))
1448 return -EBUSY;
1449
1450 priv->link = 0;
1451 netif_carrier_off(ndev);
1452
1453 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454 if (ret < 0) {
1455 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456 ret);
1457 return ret;
1458 }
1459
1460 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461 if (ret < 0) {
1462 netdev_err(ndev,
1463 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464 return ret;
1465 }
1466
1467 ret = hns_nic_net_up(ndev);
1468 if (ret) {
1469 netdev_err(ndev,
1470 "hns net up fail, ret=%d!\n", ret);
1471 return ret;
1472 }
1473
1474 return 0;
1475 }
1476
hns_nic_net_stop(struct net_device * ndev)1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479 hns_nic_net_down(ndev);
1480
1481 return 0;
1482 }
1483
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
hns_nic_net_timeout(struct net_device * ndev)1485 static void hns_nic_net_timeout(struct net_device *ndev)
1486 {
1487 struct hns_nic_priv *priv = netdev_priv(ndev);
1488
1489 hns_tx_timeout_reset(priv);
1490 }
1491
hns_nic_do_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)1492 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1493 int cmd)
1494 {
1495 struct phy_device *phy_dev = netdev->phydev;
1496
1497 if (!netif_running(netdev))
1498 return -EINVAL;
1499
1500 if (!phy_dev)
1501 return -ENOTSUPP;
1502
1503 return phy_mii_ioctl(phy_dev, ifr, cmd);
1504 }
1505
hns_nic_net_xmit(struct sk_buff * skb,struct net_device * ndev)1506 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1507 struct net_device *ndev)
1508 {
1509 struct hns_nic_priv *priv = netdev_priv(ndev);
1510
1511 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1512
1513 return hns_nic_net_xmit_hw(ndev, skb,
1514 &tx_ring_data(priv, skb->queue_mapping));
1515 }
1516
hns_nic_drop_rx_fetch(struct hns_nic_ring_data * ring_data,struct sk_buff * skb)1517 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1518 struct sk_buff *skb)
1519 {
1520 dev_kfree_skb_any(skb);
1521 }
1522
1523 #define HNS_LB_TX_RING 0
hns_assemble_skb(struct net_device * ndev)1524 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1525 {
1526 struct sk_buff *skb;
1527 struct ethhdr *ethhdr;
1528 int frame_len;
1529
1530 /* allocate test skb */
1531 skb = alloc_skb(64, GFP_KERNEL);
1532 if (!skb)
1533 return NULL;
1534
1535 skb_put(skb, 64);
1536 skb->dev = ndev;
1537 memset(skb->data, 0xFF, skb->len);
1538
1539 /* must be tcp/ip package */
1540 ethhdr = (struct ethhdr *)skb->data;
1541 ethhdr->h_proto = htons(ETH_P_IP);
1542
1543 frame_len = skb->len & (~1ul);
1544 memset(&skb->data[frame_len / 2], 0xAA,
1545 frame_len / 2 - 1);
1546
1547 skb->queue_mapping = HNS_LB_TX_RING;
1548
1549 return skb;
1550 }
1551
hns_enable_serdes_lb(struct net_device * ndev)1552 static int hns_enable_serdes_lb(struct net_device *ndev)
1553 {
1554 struct hns_nic_priv *priv = netdev_priv(ndev);
1555 struct hnae_handle *h = priv->ae_handle;
1556 struct hnae_ae_ops *ops = h->dev->ops;
1557 int speed, duplex;
1558 int ret;
1559
1560 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1561 if (ret)
1562 return ret;
1563
1564 ret = ops->start ? ops->start(h) : 0;
1565 if (ret)
1566 return ret;
1567
1568 /* link adjust duplex*/
1569 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1570 speed = 1000;
1571 else
1572 speed = 10000;
1573 duplex = 1;
1574
1575 ops->adjust_link(h, speed, duplex);
1576
1577 /* wait h/w ready */
1578 mdelay(300);
1579
1580 return 0;
1581 }
1582
hns_disable_serdes_lb(struct net_device * ndev)1583 static void hns_disable_serdes_lb(struct net_device *ndev)
1584 {
1585 struct hns_nic_priv *priv = netdev_priv(ndev);
1586 struct hnae_handle *h = priv->ae_handle;
1587 struct hnae_ae_ops *ops = h->dev->ops;
1588
1589 ops->stop(h);
1590 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1591 }
1592
1593 /**
1594 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1595 *function as follows:
1596 * 1. if one rx ring has found the page_offset is not equal 0 between head
1597 * and tail, it means that the chip fetched the wrong descs for the ring
1598 * which buffer size is 4096.
1599 * 2. we set the chip serdes loopback and set rss indirection to the ring.
1600 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1601 * recieving all packages and it will fetch new descriptions.
1602 * 4. recover to the original state.
1603 *
1604 *@ndev: net device
1605 */
hns_nic_clear_all_rx_fetch(struct net_device * ndev)1606 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1607 {
1608 struct hns_nic_priv *priv = netdev_priv(ndev);
1609 struct hnae_handle *h = priv->ae_handle;
1610 struct hnae_ae_ops *ops = h->dev->ops;
1611 struct hns_nic_ring_data *rd;
1612 struct hnae_ring *ring;
1613 struct sk_buff *skb;
1614 u32 *org_indir;
1615 u32 *cur_indir;
1616 int indir_size;
1617 int head, tail;
1618 int fetch_num;
1619 int i, j;
1620 bool found;
1621 int retry_times;
1622 int ret = 0;
1623
1624 /* alloc indir memory */
1625 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1626 org_indir = kzalloc(indir_size, GFP_KERNEL);
1627 if (!org_indir)
1628 return -ENOMEM;
1629
1630 /* store the orginal indirection */
1631 ops->get_rss(h, org_indir, NULL, NULL);
1632
1633 cur_indir = kzalloc(indir_size, GFP_KERNEL);
1634 if (!cur_indir) {
1635 ret = -ENOMEM;
1636 goto cur_indir_alloc_err;
1637 }
1638
1639 /* set loopback */
1640 if (hns_enable_serdes_lb(ndev)) {
1641 ret = -EINVAL;
1642 goto enable_serdes_lb_err;
1643 }
1644
1645 /* foreach every rx ring to clear fetch desc */
1646 for (i = 0; i < h->q_num; i++) {
1647 ring = &h->qs[i]->rx_ring;
1648 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1649 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1650 found = false;
1651 fetch_num = ring_dist(ring, head, tail);
1652
1653 while (head != tail) {
1654 if (ring->desc_cb[head].page_offset != 0) {
1655 found = true;
1656 break;
1657 }
1658
1659 head++;
1660 if (head == ring->desc_num)
1661 head = 0;
1662 }
1663
1664 if (found) {
1665 for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1666 cur_indir[j] = i;
1667 ops->set_rss(h, cur_indir, NULL, 0);
1668
1669 for (j = 0; j < fetch_num; j++) {
1670 /* alloc one skb and init */
1671 skb = hns_assemble_skb(ndev);
1672 if (!skb)
1673 goto out;
1674 rd = &tx_ring_data(priv, skb->queue_mapping);
1675 hns_nic_net_xmit_hw(ndev, skb, rd);
1676
1677 retry_times = 0;
1678 while (retry_times++ < 10) {
1679 mdelay(10);
1680 /* clean rx */
1681 rd = &rx_ring_data(priv, i);
1682 if (rd->poll_one(rd, fetch_num,
1683 hns_nic_drop_rx_fetch))
1684 break;
1685 }
1686
1687 retry_times = 0;
1688 while (retry_times++ < 10) {
1689 mdelay(10);
1690 /* clean tx ring 0 send package */
1691 rd = &tx_ring_data(priv,
1692 HNS_LB_TX_RING);
1693 if (rd->poll_one(rd, fetch_num, NULL))
1694 break;
1695 }
1696 }
1697 }
1698 }
1699
1700 out:
1701 /* restore everything */
1702 ops->set_rss(h, org_indir, NULL, 0);
1703 hns_disable_serdes_lb(ndev);
1704 enable_serdes_lb_err:
1705 kfree(cur_indir);
1706 cur_indir_alloc_err:
1707 kfree(org_indir);
1708
1709 return ret;
1710 }
1711
hns_nic_change_mtu(struct net_device * ndev,int new_mtu)1712 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1713 {
1714 struct hns_nic_priv *priv = netdev_priv(ndev);
1715 struct hnae_handle *h = priv->ae_handle;
1716 bool if_running = netif_running(ndev);
1717 int ret;
1718
1719 /* MTU < 68 is an error and causes problems on some kernels */
1720 if (new_mtu < 68)
1721 return -EINVAL;
1722
1723 /* MTU no change */
1724 if (new_mtu == ndev->mtu)
1725 return 0;
1726
1727 if (!h->dev->ops->set_mtu)
1728 return -ENOTSUPP;
1729
1730 if (if_running) {
1731 (void)hns_nic_net_stop(ndev);
1732 msleep(100);
1733 }
1734
1735 if (priv->enet_ver != AE_VERSION_1 &&
1736 ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1737 new_mtu > BD_SIZE_2048_MAX_MTU) {
1738 /* update desc */
1739 hnae_reinit_all_ring_desc(h);
1740
1741 /* clear the package which the chip has fetched */
1742 ret = hns_nic_clear_all_rx_fetch(ndev);
1743
1744 /* the page offset must be consist with desc */
1745 hnae_reinit_all_ring_page_off(h);
1746
1747 if (ret) {
1748 netdev_err(ndev, "clear the fetched desc fail\n");
1749 goto out;
1750 }
1751 }
1752
1753 ret = h->dev->ops->set_mtu(h, new_mtu);
1754 if (ret) {
1755 netdev_err(ndev, "set mtu fail, return value %d\n",
1756 ret);
1757 goto out;
1758 }
1759
1760 /* finally, set new mtu to netdevice */
1761 ndev->mtu = new_mtu;
1762
1763 out:
1764 if (if_running) {
1765 if (hns_nic_net_open(ndev)) {
1766 netdev_err(ndev, "hns net open fail\n");
1767 ret = -EINVAL;
1768 }
1769 }
1770
1771 return ret;
1772 }
1773
hns_nic_set_features(struct net_device * netdev,netdev_features_t features)1774 static int hns_nic_set_features(struct net_device *netdev,
1775 netdev_features_t features)
1776 {
1777 struct hns_nic_priv *priv = netdev_priv(netdev);
1778
1779 switch (priv->enet_ver) {
1780 case AE_VERSION_1:
1781 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1782 netdev_info(netdev, "enet v1 do not support tso!\n");
1783 break;
1784 default:
1785 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1786 priv->ops.fill_desc = fill_tso_desc;
1787 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1788 /* The chip only support 7*4096 */
1789 netif_set_gso_max_size(netdev, 7 * 4096);
1790 } else {
1791 priv->ops.fill_desc = fill_v2_desc;
1792 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1793 }
1794 break;
1795 }
1796 netdev->features = features;
1797 return 0;
1798 }
1799
hns_nic_fix_features(struct net_device * netdev,netdev_features_t features)1800 static netdev_features_t hns_nic_fix_features(
1801 struct net_device *netdev, netdev_features_t features)
1802 {
1803 struct hns_nic_priv *priv = netdev_priv(netdev);
1804
1805 switch (priv->enet_ver) {
1806 case AE_VERSION_1:
1807 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1808 NETIF_F_HW_VLAN_CTAG_FILTER);
1809 break;
1810 default:
1811 break;
1812 }
1813 return features;
1814 }
1815
hns_nic_uc_sync(struct net_device * netdev,const unsigned char * addr)1816 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1817 {
1818 struct hns_nic_priv *priv = netdev_priv(netdev);
1819 struct hnae_handle *h = priv->ae_handle;
1820
1821 if (h->dev->ops->add_uc_addr)
1822 return h->dev->ops->add_uc_addr(h, addr);
1823
1824 return 0;
1825 }
1826
hns_nic_uc_unsync(struct net_device * netdev,const unsigned char * addr)1827 static int hns_nic_uc_unsync(struct net_device *netdev,
1828 const unsigned char *addr)
1829 {
1830 struct hns_nic_priv *priv = netdev_priv(netdev);
1831 struct hnae_handle *h = priv->ae_handle;
1832
1833 if (h->dev->ops->rm_uc_addr)
1834 return h->dev->ops->rm_uc_addr(h, addr);
1835
1836 return 0;
1837 }
1838
1839 /**
1840 * nic_set_multicast_list - set mutl mac address
1841 * @netdev: net device
1842 * @p: mac address
1843 *
1844 * return void
1845 */
hns_set_multicast_list(struct net_device * ndev)1846 static void hns_set_multicast_list(struct net_device *ndev)
1847 {
1848 struct hns_nic_priv *priv = netdev_priv(ndev);
1849 struct hnae_handle *h = priv->ae_handle;
1850 struct netdev_hw_addr *ha = NULL;
1851
1852 if (!h) {
1853 netdev_err(ndev, "hnae handle is null\n");
1854 return;
1855 }
1856
1857 if (h->dev->ops->clr_mc_addr)
1858 if (h->dev->ops->clr_mc_addr(h))
1859 netdev_err(ndev, "clear multicast address fail\n");
1860
1861 if (h->dev->ops->set_mc_addr) {
1862 netdev_for_each_mc_addr(ha, ndev)
1863 if (h->dev->ops->set_mc_addr(h, ha->addr))
1864 netdev_err(ndev, "set multicast fail\n");
1865 }
1866 }
1867
hns_nic_set_rx_mode(struct net_device * ndev)1868 static void hns_nic_set_rx_mode(struct net_device *ndev)
1869 {
1870 struct hns_nic_priv *priv = netdev_priv(ndev);
1871 struct hnae_handle *h = priv->ae_handle;
1872
1873 if (h->dev->ops->set_promisc_mode) {
1874 if (ndev->flags & IFF_PROMISC)
1875 h->dev->ops->set_promisc_mode(h, 1);
1876 else
1877 h->dev->ops->set_promisc_mode(h, 0);
1878 }
1879
1880 hns_set_multicast_list(ndev);
1881
1882 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1883 netdev_err(ndev, "sync uc address fail\n");
1884 }
1885
hns_nic_get_stats64(struct net_device * ndev,struct rtnl_link_stats64 * stats)1886 static void hns_nic_get_stats64(struct net_device *ndev,
1887 struct rtnl_link_stats64 *stats)
1888 {
1889 int idx = 0;
1890 u64 tx_bytes = 0;
1891 u64 rx_bytes = 0;
1892 u64 tx_pkts = 0;
1893 u64 rx_pkts = 0;
1894 struct hns_nic_priv *priv = netdev_priv(ndev);
1895 struct hnae_handle *h = priv->ae_handle;
1896
1897 for (idx = 0; idx < h->q_num; idx++) {
1898 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1899 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1900 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1901 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1902 }
1903
1904 stats->tx_bytes = tx_bytes;
1905 stats->tx_packets = tx_pkts;
1906 stats->rx_bytes = rx_bytes;
1907 stats->rx_packets = rx_pkts;
1908
1909 stats->rx_errors = ndev->stats.rx_errors;
1910 stats->multicast = ndev->stats.multicast;
1911 stats->rx_length_errors = ndev->stats.rx_length_errors;
1912 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1913 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1914
1915 stats->tx_errors = ndev->stats.tx_errors;
1916 stats->rx_dropped = ndev->stats.rx_dropped;
1917 stats->tx_dropped = ndev->stats.tx_dropped;
1918 stats->collisions = ndev->stats.collisions;
1919 stats->rx_over_errors = ndev->stats.rx_over_errors;
1920 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1921 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1922 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1923 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1924 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1925 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1926 stats->tx_window_errors = ndev->stats.tx_window_errors;
1927 stats->rx_compressed = ndev->stats.rx_compressed;
1928 stats->tx_compressed = ndev->stats.tx_compressed;
1929 }
1930
1931 static u16
hns_nic_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)1932 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1933 struct net_device *sb_dev,
1934 select_queue_fallback_t fallback)
1935 {
1936 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1937 struct hns_nic_priv *priv = netdev_priv(ndev);
1938
1939 /* fix hardware broadcast/multicast packets queue loopback */
1940 if (!AE_IS_VER1(priv->enet_ver) &&
1941 is_multicast_ether_addr(eth_hdr->h_dest))
1942 return 0;
1943 else
1944 return fallback(ndev, skb, NULL);
1945 }
1946
1947 static const struct net_device_ops hns_nic_netdev_ops = {
1948 .ndo_open = hns_nic_net_open,
1949 .ndo_stop = hns_nic_net_stop,
1950 .ndo_start_xmit = hns_nic_net_xmit,
1951 .ndo_tx_timeout = hns_nic_net_timeout,
1952 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1953 .ndo_change_mtu = hns_nic_change_mtu,
1954 .ndo_do_ioctl = hns_nic_do_ioctl,
1955 .ndo_set_features = hns_nic_set_features,
1956 .ndo_fix_features = hns_nic_fix_features,
1957 .ndo_get_stats64 = hns_nic_get_stats64,
1958 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1959 .ndo_select_queue = hns_nic_select_queue,
1960 };
1961
hns_nic_update_link_status(struct net_device * netdev)1962 static void hns_nic_update_link_status(struct net_device *netdev)
1963 {
1964 struct hns_nic_priv *priv = netdev_priv(netdev);
1965
1966 struct hnae_handle *h = priv->ae_handle;
1967
1968 if (h->phy_dev) {
1969 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1970 return;
1971
1972 (void)genphy_read_status(h->phy_dev);
1973 }
1974 hns_nic_adjust_link(netdev);
1975 }
1976
1977 /* for dumping key regs*/
hns_nic_dump(struct hns_nic_priv * priv)1978 static void hns_nic_dump(struct hns_nic_priv *priv)
1979 {
1980 struct hnae_handle *h = priv->ae_handle;
1981 struct hnae_ae_ops *ops = h->dev->ops;
1982 u32 *data, reg_num, i;
1983
1984 if (ops->get_regs_len && ops->get_regs) {
1985 reg_num = ops->get_regs_len(priv->ae_handle);
1986 reg_num = (reg_num + 3ul) & ~3ul;
1987 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1988 if (data) {
1989 ops->get_regs(priv->ae_handle, data);
1990 for (i = 0; i < reg_num; i += 4)
1991 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1992 i, data[i], data[i + 1],
1993 data[i + 2], data[i + 3]);
1994 kfree(data);
1995 }
1996 }
1997
1998 for (i = 0; i < h->q_num; i++) {
1999 pr_info("tx_queue%d_next_to_clean:%d\n",
2000 i, h->qs[i]->tx_ring.next_to_clean);
2001 pr_info("tx_queue%d_next_to_use:%d\n",
2002 i, h->qs[i]->tx_ring.next_to_use);
2003 pr_info("rx_queue%d_next_to_clean:%d\n",
2004 i, h->qs[i]->rx_ring.next_to_clean);
2005 pr_info("rx_queue%d_next_to_use:%d\n",
2006 i, h->qs[i]->rx_ring.next_to_use);
2007 }
2008 }
2009
2010 /* for resetting subtask */
hns_nic_reset_subtask(struct hns_nic_priv * priv)2011 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2012 {
2013 enum hnae_port_type type = priv->ae_handle->port_type;
2014
2015 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2016 return;
2017 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2018
2019 /* If we're already down, removing or resetting, just bail */
2020 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2021 test_bit(NIC_STATE_REMOVING, &priv->state) ||
2022 test_bit(NIC_STATE_RESETTING, &priv->state))
2023 return;
2024
2025 hns_nic_dump(priv);
2026 netdev_info(priv->netdev, "try to reset %s port!\n",
2027 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2028
2029 rtnl_lock();
2030 /* put off any impending NetWatchDogTimeout */
2031 netif_trans_update(priv->netdev);
2032 hns_nic_net_reinit(priv->netdev);
2033
2034 rtnl_unlock();
2035 }
2036
2037 /* for doing service complete*/
hns_nic_service_event_complete(struct hns_nic_priv * priv)2038 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2039 {
2040 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2041 /* make sure to commit the things */
2042 smp_mb__before_atomic();
2043 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2044 }
2045
hns_nic_service_task(struct work_struct * work)2046 static void hns_nic_service_task(struct work_struct *work)
2047 {
2048 struct hns_nic_priv *priv
2049 = container_of(work, struct hns_nic_priv, service_task);
2050 struct hnae_handle *h = priv->ae_handle;
2051
2052 hns_nic_update_link_status(priv->netdev);
2053 h->dev->ops->update_led_status(h);
2054 hns_nic_update_stats(priv->netdev);
2055
2056 hns_nic_reset_subtask(priv);
2057 hns_nic_service_event_complete(priv);
2058 }
2059
hns_nic_task_schedule(struct hns_nic_priv * priv)2060 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2061 {
2062 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2063 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2064 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2065 (void)schedule_work(&priv->service_task);
2066 }
2067
hns_nic_service_timer(struct timer_list * t)2068 static void hns_nic_service_timer(struct timer_list *t)
2069 {
2070 struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2071
2072 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2073
2074 hns_nic_task_schedule(priv);
2075 }
2076
2077 /**
2078 * hns_tx_timeout_reset - initiate reset due to Tx timeout
2079 * @priv: driver private struct
2080 **/
hns_tx_timeout_reset(struct hns_nic_priv * priv)2081 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2082 {
2083 /* Do the reset outside of interrupt context */
2084 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2085 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2086 netdev_warn(priv->netdev,
2087 "initiating reset due to tx timeout(%llu,0x%lx)\n",
2088 priv->tx_timeout_count, priv->state);
2089 priv->tx_timeout_count++;
2090 hns_nic_task_schedule(priv);
2091 }
2092 }
2093
hns_nic_init_ring_data(struct hns_nic_priv * priv)2094 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2095 {
2096 struct hnae_handle *h = priv->ae_handle;
2097 struct hns_nic_ring_data *rd;
2098 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2099 int i;
2100
2101 if (h->q_num > NIC_MAX_Q_PER_VF) {
2102 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2103 return -EINVAL;
2104 }
2105
2106 priv->ring_data = kzalloc(array3_size(h->q_num,
2107 sizeof(*priv->ring_data), 2),
2108 GFP_KERNEL);
2109 if (!priv->ring_data)
2110 return -ENOMEM;
2111
2112 for (i = 0; i < h->q_num; i++) {
2113 rd = &priv->ring_data[i];
2114 rd->queue_index = i;
2115 rd->ring = &h->qs[i]->tx_ring;
2116 rd->poll_one = hns_nic_tx_poll_one;
2117 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2118 hns_nic_tx_fini_pro_v2;
2119
2120 netif_napi_add(priv->netdev, &rd->napi,
2121 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2122 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2123 }
2124 for (i = h->q_num; i < h->q_num * 2; i++) {
2125 rd = &priv->ring_data[i];
2126 rd->queue_index = i - h->q_num;
2127 rd->ring = &h->qs[i - h->q_num]->rx_ring;
2128 rd->poll_one = hns_nic_rx_poll_one;
2129 rd->ex_process = hns_nic_rx_up_pro;
2130 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2131 hns_nic_rx_fini_pro_v2;
2132
2133 netif_napi_add(priv->netdev, &rd->napi,
2134 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2135 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2136 }
2137
2138 return 0;
2139 }
2140
hns_nic_uninit_ring_data(struct hns_nic_priv * priv)2141 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2142 {
2143 struct hnae_handle *h = priv->ae_handle;
2144 int i;
2145
2146 for (i = 0; i < h->q_num * 2; i++) {
2147 netif_napi_del(&priv->ring_data[i].napi);
2148 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2149 (void)irq_set_affinity_hint(
2150 priv->ring_data[i].ring->irq,
2151 NULL);
2152 free_irq(priv->ring_data[i].ring->irq,
2153 &priv->ring_data[i]);
2154 }
2155
2156 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2157 }
2158 kfree(priv->ring_data);
2159 }
2160
hns_nic_set_priv_ops(struct net_device * netdev)2161 static void hns_nic_set_priv_ops(struct net_device *netdev)
2162 {
2163 struct hns_nic_priv *priv = netdev_priv(netdev);
2164 struct hnae_handle *h = priv->ae_handle;
2165
2166 if (AE_IS_VER1(priv->enet_ver)) {
2167 priv->ops.fill_desc = fill_desc;
2168 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2169 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2170 } else {
2171 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2172 if ((netdev->features & NETIF_F_TSO) ||
2173 (netdev->features & NETIF_F_TSO6)) {
2174 priv->ops.fill_desc = fill_tso_desc;
2175 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2176 /* This chip only support 7*4096 */
2177 netif_set_gso_max_size(netdev, 7 * 4096);
2178 } else {
2179 priv->ops.fill_desc = fill_v2_desc;
2180 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2181 }
2182 /* enable tso when init
2183 * control tso on/off through TSE bit in bd
2184 */
2185 h->dev->ops->set_tso_stats(h, 1);
2186 }
2187 }
2188
hns_nic_try_get_ae(struct net_device * ndev)2189 static int hns_nic_try_get_ae(struct net_device *ndev)
2190 {
2191 struct hns_nic_priv *priv = netdev_priv(ndev);
2192 struct hnae_handle *h;
2193 int ret;
2194
2195 h = hnae_get_handle(&priv->netdev->dev,
2196 priv->fwnode, priv->port_id, NULL);
2197 if (IS_ERR_OR_NULL(h)) {
2198 ret = -ENODEV;
2199 dev_dbg(priv->dev, "has not handle, register notifier!\n");
2200 goto out;
2201 }
2202 priv->ae_handle = h;
2203
2204 ret = hns_nic_init_phy(ndev, h);
2205 if (ret) {
2206 dev_err(priv->dev, "probe phy device fail!\n");
2207 goto out_init_phy;
2208 }
2209
2210 ret = hns_nic_init_ring_data(priv);
2211 if (ret) {
2212 ret = -ENOMEM;
2213 goto out_init_ring_data;
2214 }
2215
2216 hns_nic_set_priv_ops(ndev);
2217
2218 ret = register_netdev(ndev);
2219 if (ret) {
2220 dev_err(priv->dev, "probe register netdev fail!\n");
2221 goto out_reg_ndev_fail;
2222 }
2223 return 0;
2224
2225 out_reg_ndev_fail:
2226 hns_nic_uninit_ring_data(priv);
2227 priv->ring_data = NULL;
2228 out_init_phy:
2229 out_init_ring_data:
2230 hnae_put_handle(priv->ae_handle);
2231 priv->ae_handle = NULL;
2232 out:
2233 return ret;
2234 }
2235
hns_nic_notifier_action(struct notifier_block * nb,unsigned long action,void * data)2236 static int hns_nic_notifier_action(struct notifier_block *nb,
2237 unsigned long action, void *data)
2238 {
2239 struct hns_nic_priv *priv =
2240 container_of(nb, struct hns_nic_priv, notifier_block);
2241
2242 assert(action == HNAE_AE_REGISTER);
2243
2244 if (!hns_nic_try_get_ae(priv->netdev)) {
2245 hnae_unregister_notifier(&priv->notifier_block);
2246 priv->notifier_block.notifier_call = NULL;
2247 }
2248 return 0;
2249 }
2250
hns_nic_dev_probe(struct platform_device * pdev)2251 static int hns_nic_dev_probe(struct platform_device *pdev)
2252 {
2253 struct device *dev = &pdev->dev;
2254 struct net_device *ndev;
2255 struct hns_nic_priv *priv;
2256 u32 port_id;
2257 int ret;
2258
2259 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2260 if (!ndev)
2261 return -ENOMEM;
2262
2263 platform_set_drvdata(pdev, ndev);
2264
2265 priv = netdev_priv(ndev);
2266 priv->dev = dev;
2267 priv->netdev = ndev;
2268
2269 if (dev_of_node(dev)) {
2270 struct device_node *ae_node;
2271
2272 if (of_device_is_compatible(dev->of_node,
2273 "hisilicon,hns-nic-v1"))
2274 priv->enet_ver = AE_VERSION_1;
2275 else
2276 priv->enet_ver = AE_VERSION_2;
2277
2278 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2279 if (!ae_node) {
2280 ret = -ENODEV;
2281 dev_err(dev, "not find ae-handle\n");
2282 goto out_read_prop_fail;
2283 }
2284 priv->fwnode = &ae_node->fwnode;
2285 } else if (is_acpi_node(dev->fwnode)) {
2286 struct fwnode_reference_args args;
2287
2288 if (acpi_dev_found(hns_enet_acpi_match[0].id))
2289 priv->enet_ver = AE_VERSION_1;
2290 else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2291 priv->enet_ver = AE_VERSION_2;
2292 else
2293 return -ENXIO;
2294
2295 /* try to find port-idx-in-ae first */
2296 ret = acpi_node_get_property_reference(dev->fwnode,
2297 "ae-handle", 0, &args);
2298 if (ret) {
2299 dev_err(dev, "not find ae-handle\n");
2300 goto out_read_prop_fail;
2301 }
2302 if (!is_acpi_device_node(args.fwnode)) {
2303 ret = -EINVAL;
2304 goto out_read_prop_fail;
2305 }
2306 priv->fwnode = args.fwnode;
2307 } else {
2308 dev_err(dev, "cannot read cfg data from OF or acpi\n");
2309 return -ENXIO;
2310 }
2311
2312 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2313 if (ret) {
2314 /* only for old code compatible */
2315 ret = device_property_read_u32(dev, "port-id", &port_id);
2316 if (ret)
2317 goto out_read_prop_fail;
2318 /* for old dts, we need to caculate the port offset */
2319 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2320 : port_id - HNS_SRV_OFFSET;
2321 }
2322 priv->port_id = port_id;
2323
2324 hns_init_mac_addr(ndev);
2325
2326 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2327 ndev->priv_flags |= IFF_UNICAST_FLT;
2328 ndev->netdev_ops = &hns_nic_netdev_ops;
2329 hns_ethtool_set_ops(ndev);
2330
2331 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2332 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2333 NETIF_F_GRO;
2334 ndev->vlan_features |=
2335 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2336 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2337
2338 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2339 ndev->min_mtu = MAC_MIN_MTU;
2340 switch (priv->enet_ver) {
2341 case AE_VERSION_2:
2342 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2343 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2344 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2345 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2346 ndev->max_mtu = MAC_MAX_MTU_V2 -
2347 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2348 break;
2349 default:
2350 ndev->max_mtu = MAC_MAX_MTU -
2351 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2352 break;
2353 }
2354
2355 SET_NETDEV_DEV(ndev, dev);
2356
2357 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2358 dev_dbg(dev, "set mask to 64bit\n");
2359 else
2360 dev_err(dev, "set mask to 64bit fail!\n");
2361
2362 /* carrier off reporting is important to ethtool even BEFORE open */
2363 netif_carrier_off(ndev);
2364
2365 timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2366 INIT_WORK(&priv->service_task, hns_nic_service_task);
2367
2368 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2369 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2370 set_bit(NIC_STATE_DOWN, &priv->state);
2371
2372 if (hns_nic_try_get_ae(priv->netdev)) {
2373 priv->notifier_block.notifier_call = hns_nic_notifier_action;
2374 ret = hnae_register_notifier(&priv->notifier_block);
2375 if (ret) {
2376 dev_err(dev, "register notifier fail!\n");
2377 goto out_notify_fail;
2378 }
2379 dev_dbg(dev, "has not handle, register notifier!\n");
2380 }
2381
2382 return 0;
2383
2384 out_notify_fail:
2385 (void)cancel_work_sync(&priv->service_task);
2386 out_read_prop_fail:
2387 free_netdev(ndev);
2388 return ret;
2389 }
2390
hns_nic_dev_remove(struct platform_device * pdev)2391 static int hns_nic_dev_remove(struct platform_device *pdev)
2392 {
2393 struct net_device *ndev = platform_get_drvdata(pdev);
2394 struct hns_nic_priv *priv = netdev_priv(ndev);
2395
2396 if (ndev->reg_state != NETREG_UNINITIALIZED)
2397 unregister_netdev(ndev);
2398
2399 if (priv->ring_data)
2400 hns_nic_uninit_ring_data(priv);
2401 priv->ring_data = NULL;
2402
2403 if (ndev->phydev)
2404 phy_disconnect(ndev->phydev);
2405
2406 if (!IS_ERR_OR_NULL(priv->ae_handle))
2407 hnae_put_handle(priv->ae_handle);
2408 priv->ae_handle = NULL;
2409 if (priv->notifier_block.notifier_call)
2410 hnae_unregister_notifier(&priv->notifier_block);
2411 priv->notifier_block.notifier_call = NULL;
2412
2413 set_bit(NIC_STATE_REMOVING, &priv->state);
2414 (void)cancel_work_sync(&priv->service_task);
2415
2416 free_netdev(ndev);
2417 return 0;
2418 }
2419
2420 static const struct of_device_id hns_enet_of_match[] = {
2421 {.compatible = "hisilicon,hns-nic-v1",},
2422 {.compatible = "hisilicon,hns-nic-v2",},
2423 {},
2424 };
2425
2426 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2427
2428 static struct platform_driver hns_nic_dev_driver = {
2429 .driver = {
2430 .name = "hns-nic",
2431 .of_match_table = hns_enet_of_match,
2432 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2433 },
2434 .probe = hns_nic_dev_probe,
2435 .remove = hns_nic_dev_remove,
2436 };
2437
2438 module_platform_driver(hns_nic_dev_driver);
2439
2440 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2441 MODULE_AUTHOR("Hisilicon, Inc.");
2442 MODULE_LICENSE("GPL");
2443 MODULE_ALIAS("platform:hns-nic");
2444