1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4 
5 #ifdef __KERNEL__
6 
7 /*
8  * RCU-protected list version
9  */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12 
13 /*
14  * Why is there no list_empty_rcu()?  Because list_empty() serves this
15  * purpose.  The list_empty() function fetches the RCU-protected pointer
16  * and compares it to the address of the list head, but neither dereferences
17  * this pointer itself nor provides this pointer to the caller.  Therefore,
18  * it is not necessary to use rcu_dereference(), so that list_empty() can
19  * be used anywhere you would want to use a list_empty_rcu().
20  */
21 
22 /*
23  * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24  * @list: list to be initialized
25  *
26  * You should instead use INIT_LIST_HEAD() for normal initialization and
27  * cleanup tasks, when readers have no access to the list being initialized.
28  * However, if the list being initialized is visible to readers, you
29  * need to keep the compiler from being too mischievous.
30  */
INIT_LIST_HEAD_RCU(struct list_head * list)31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33 	WRITE_ONCE(list->next, list);
34 	WRITE_ONCE(list->prev, list);
35 }
36 
37 /*
38  * return the ->next pointer of a list_head in an rcu safe
39  * way, we must not access it directly
40  */
41 #define list_next_rcu(list)	(*((struct list_head __rcu **)(&(list)->next)))
42 
43 /*
44  * Check during list traversal that we are within an RCU reader
45  */
46 
47 #define check_arg_count_one(dummy)
48 
49 #ifdef CONFIG_PROVE_RCU_LIST
50 #define __list_check_rcu(dummy, cond, extra...)				\
51 	({								\
52 	check_arg_count_one(extra);					\
53 	RCU_LOCKDEP_WARN(!cond && !rcu_read_lock_any_held(),		\
54 			 "RCU-list traversed in non-reader section!");	\
55 	 })
56 #else
57 #define __list_check_rcu(dummy, cond, extra...)				\
58 	({ check_arg_count_one(extra); })
59 #endif
60 
61 /*
62  * Insert a new entry between two known consecutive entries.
63  *
64  * This is only for internal list manipulation where we know
65  * the prev/next entries already!
66  */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)67 static inline void __list_add_rcu(struct list_head *new,
68 		struct list_head *prev, struct list_head *next)
69 {
70 	if (!__list_add_valid(new, prev, next))
71 		return;
72 
73 	new->next = next;
74 	new->prev = prev;
75 	rcu_assign_pointer(list_next_rcu(prev), new);
76 	next->prev = new;
77 }
78 
79 /**
80  * list_add_rcu - add a new entry to rcu-protected list
81  * @new: new entry to be added
82  * @head: list head to add it after
83  *
84  * Insert a new entry after the specified head.
85  * This is good for implementing stacks.
86  *
87  * The caller must take whatever precautions are necessary
88  * (such as holding appropriate locks) to avoid racing
89  * with another list-mutation primitive, such as list_add_rcu()
90  * or list_del_rcu(), running on this same list.
91  * However, it is perfectly legal to run concurrently with
92  * the _rcu list-traversal primitives, such as
93  * list_for_each_entry_rcu().
94  */
list_add_rcu(struct list_head * new,struct list_head * head)95 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
96 {
97 	__list_add_rcu(new, head, head->next);
98 }
99 
100 /**
101  * list_add_tail_rcu - add a new entry to rcu-protected list
102  * @new: new entry to be added
103  * @head: list head to add it before
104  *
105  * Insert a new entry before the specified head.
106  * This is useful for implementing queues.
107  *
108  * The caller must take whatever precautions are necessary
109  * (such as holding appropriate locks) to avoid racing
110  * with another list-mutation primitive, such as list_add_tail_rcu()
111  * or list_del_rcu(), running on this same list.
112  * However, it is perfectly legal to run concurrently with
113  * the _rcu list-traversal primitives, such as
114  * list_for_each_entry_rcu().
115  */
list_add_tail_rcu(struct list_head * new,struct list_head * head)116 static inline void list_add_tail_rcu(struct list_head *new,
117 					struct list_head *head)
118 {
119 	__list_add_rcu(new, head->prev, head);
120 }
121 
122 /**
123  * list_del_rcu - deletes entry from list without re-initialization
124  * @entry: the element to delete from the list.
125  *
126  * Note: list_empty() on entry does not return true after this,
127  * the entry is in an undefined state. It is useful for RCU based
128  * lockfree traversal.
129  *
130  * In particular, it means that we can not poison the forward
131  * pointers that may still be used for walking the list.
132  *
133  * The caller must take whatever precautions are necessary
134  * (such as holding appropriate locks) to avoid racing
135  * with another list-mutation primitive, such as list_del_rcu()
136  * or list_add_rcu(), running on this same list.
137  * However, it is perfectly legal to run concurrently with
138  * the _rcu list-traversal primitives, such as
139  * list_for_each_entry_rcu().
140  *
141  * Note that the caller is not permitted to immediately free
142  * the newly deleted entry.  Instead, either synchronize_rcu()
143  * or call_rcu() must be used to defer freeing until an RCU
144  * grace period has elapsed.
145  */
list_del_rcu(struct list_head * entry)146 static inline void list_del_rcu(struct list_head *entry)
147 {
148 	__list_del_entry(entry);
149 	entry->prev = LIST_POISON2;
150 }
151 
152 /**
153  * hlist_del_init_rcu - deletes entry from hash list with re-initialization
154  * @n: the element to delete from the hash list.
155  *
156  * Note: list_unhashed() on the node return true after this. It is
157  * useful for RCU based read lockfree traversal if the writer side
158  * must know if the list entry is still hashed or already unhashed.
159  *
160  * In particular, it means that we can not poison the forward pointers
161  * that may still be used for walking the hash list and we can only
162  * zero the pprev pointer so list_unhashed() will return true after
163  * this.
164  *
165  * The caller must take whatever precautions are necessary (such as
166  * holding appropriate locks) to avoid racing with another
167  * list-mutation primitive, such as hlist_add_head_rcu() or
168  * hlist_del_rcu(), running on this same list.  However, it is
169  * perfectly legal to run concurrently with the _rcu list-traversal
170  * primitives, such as hlist_for_each_entry_rcu().
171  */
hlist_del_init_rcu(struct hlist_node * n)172 static inline void hlist_del_init_rcu(struct hlist_node *n)
173 {
174 	if (!hlist_unhashed(n)) {
175 		__hlist_del(n);
176 		n->pprev = NULL;
177 	}
178 }
179 
180 /**
181  * list_replace_rcu - replace old entry by new one
182  * @old : the element to be replaced
183  * @new : the new element to insert
184  *
185  * The @old entry will be replaced with the @new entry atomically.
186  * Note: @old should not be empty.
187  */
list_replace_rcu(struct list_head * old,struct list_head * new)188 static inline void list_replace_rcu(struct list_head *old,
189 				struct list_head *new)
190 {
191 	new->next = old->next;
192 	new->prev = old->prev;
193 	rcu_assign_pointer(list_next_rcu(new->prev), new);
194 	new->next->prev = new;
195 	old->prev = LIST_POISON2;
196 }
197 
198 /**
199  * __list_splice_init_rcu - join an RCU-protected list into an existing list.
200  * @list:	the RCU-protected list to splice
201  * @prev:	points to the last element of the existing list
202  * @next:	points to the first element of the existing list
203  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
204  *
205  * The list pointed to by @prev and @next can be RCU-read traversed
206  * concurrently with this function.
207  *
208  * Note that this function blocks.
209  *
210  * Important note: the caller must take whatever action is necessary to prevent
211  * any other updates to the existing list.  In principle, it is possible to
212  * modify the list as soon as sync() begins execution. If this sort of thing
213  * becomes necessary, an alternative version based on call_rcu() could be
214  * created.  But only if -really- needed -- there is no shortage of RCU API
215  * members.
216  */
__list_splice_init_rcu(struct list_head * list,struct list_head * prev,struct list_head * next,void (* sync)(void))217 static inline void __list_splice_init_rcu(struct list_head *list,
218 					  struct list_head *prev,
219 					  struct list_head *next,
220 					  void (*sync)(void))
221 {
222 	struct list_head *first = list->next;
223 	struct list_head *last = list->prev;
224 
225 	/*
226 	 * "first" and "last" tracking list, so initialize it.  RCU readers
227 	 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
228 	 * instead of INIT_LIST_HEAD().
229 	 */
230 
231 	INIT_LIST_HEAD_RCU(list);
232 
233 	/*
234 	 * At this point, the list body still points to the source list.
235 	 * Wait for any readers to finish using the list before splicing
236 	 * the list body into the new list.  Any new readers will see
237 	 * an empty list.
238 	 */
239 
240 	sync();
241 
242 	/*
243 	 * Readers are finished with the source list, so perform splice.
244 	 * The order is important if the new list is global and accessible
245 	 * to concurrent RCU readers.  Note that RCU readers are not
246 	 * permitted to traverse the prev pointers without excluding
247 	 * this function.
248 	 */
249 
250 	last->next = next;
251 	rcu_assign_pointer(list_next_rcu(prev), first);
252 	first->prev = prev;
253 	next->prev = last;
254 }
255 
256 /**
257  * list_splice_init_rcu - splice an RCU-protected list into an existing list,
258  *                        designed for stacks.
259  * @list:	the RCU-protected list to splice
260  * @head:	the place in the existing list to splice the first list into
261  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
262  */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))263 static inline void list_splice_init_rcu(struct list_head *list,
264 					struct list_head *head,
265 					void (*sync)(void))
266 {
267 	if (!list_empty(list))
268 		__list_splice_init_rcu(list, head, head->next, sync);
269 }
270 
271 /**
272  * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
273  *                             list, designed for queues.
274  * @list:	the RCU-protected list to splice
275  * @head:	the place in the existing list to splice the first list into
276  * @sync:	synchronize_rcu, synchronize_rcu_expedited, ...
277  */
list_splice_tail_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))278 static inline void list_splice_tail_init_rcu(struct list_head *list,
279 					     struct list_head *head,
280 					     void (*sync)(void))
281 {
282 	if (!list_empty(list))
283 		__list_splice_init_rcu(list, head->prev, head, sync);
284 }
285 
286 /**
287  * list_entry_rcu - get the struct for this entry
288  * @ptr:        the &struct list_head pointer.
289  * @type:       the type of the struct this is embedded in.
290  * @member:     the name of the list_head within the struct.
291  *
292  * This primitive may safely run concurrently with the _rcu list-mutation
293  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
294  */
295 #define list_entry_rcu(ptr, type, member) \
296 	container_of(READ_ONCE(ptr), type, member)
297 
298 /*
299  * Where are list_empty_rcu() and list_first_entry_rcu()?
300  *
301  * Implementing those functions following their counterparts list_empty() and
302  * list_first_entry() is not advisable because they lead to subtle race
303  * conditions as the following snippet shows:
304  *
305  * if (!list_empty_rcu(mylist)) {
306  *	struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
307  *	do_something(bar);
308  * }
309  *
310  * The list may not be empty when list_empty_rcu checks it, but it may be when
311  * list_first_entry_rcu rereads the ->next pointer.
312  *
313  * Rereading the ->next pointer is not a problem for list_empty() and
314  * list_first_entry() because they would be protected by a lock that blocks
315  * writers.
316  *
317  * See list_first_or_null_rcu for an alternative.
318  */
319 
320 /**
321  * list_first_or_null_rcu - get the first element from a list
322  * @ptr:        the list head to take the element from.
323  * @type:       the type of the struct this is embedded in.
324  * @member:     the name of the list_head within the struct.
325  *
326  * Note that if the list is empty, it returns NULL.
327  *
328  * This primitive may safely run concurrently with the _rcu list-mutation
329  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
330  */
331 #define list_first_or_null_rcu(ptr, type, member) \
332 ({ \
333 	struct list_head *__ptr = (ptr); \
334 	struct list_head *__next = READ_ONCE(__ptr->next); \
335 	likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
336 })
337 
338 /**
339  * list_next_or_null_rcu - get the first element from a list
340  * @head:	the head for the list.
341  * @ptr:        the list head to take the next element from.
342  * @type:       the type of the struct this is embedded in.
343  * @member:     the name of the list_head within the struct.
344  *
345  * Note that if the ptr is at the end of the list, NULL is returned.
346  *
347  * This primitive may safely run concurrently with the _rcu list-mutation
348  * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
349  */
350 #define list_next_or_null_rcu(head, ptr, type, member) \
351 ({ \
352 	struct list_head *__head = (head); \
353 	struct list_head *__ptr = (ptr); \
354 	struct list_head *__next = READ_ONCE(__ptr->next); \
355 	likely(__next != __head) ? list_entry_rcu(__next, type, \
356 						  member) : NULL; \
357 })
358 
359 /**
360  * list_for_each_entry_rcu	-	iterate over rcu list of given type
361  * @pos:	the type * to use as a loop cursor.
362  * @head:	the head for your list.
363  * @member:	the name of the list_head within the struct.
364  * @cond:	optional lockdep expression if called from non-RCU protection.
365  *
366  * This list-traversal primitive may safely run concurrently with
367  * the _rcu list-mutation primitives such as list_add_rcu()
368  * as long as the traversal is guarded by rcu_read_lock().
369  */
370 #define list_for_each_entry_rcu(pos, head, member, cond...)		\
371 	for (__list_check_rcu(dummy, ## cond, 0),			\
372 	     pos = list_entry_rcu((head)->next, typeof(*pos), member);	\
373 		&pos->member != (head);					\
374 		pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
375 
376 /**
377  * list_entry_lockless - get the struct for this entry
378  * @ptr:        the &struct list_head pointer.
379  * @type:       the type of the struct this is embedded in.
380  * @member:     the name of the list_head within the struct.
381  *
382  * This primitive may safely run concurrently with the _rcu
383  * list-mutation primitives such as list_add_rcu(), but requires some
384  * implicit RCU read-side guarding.  One example is running within a special
385  * exception-time environment where preemption is disabled and where lockdep
386  * cannot be invoked.  Another example is when items are added to the list,
387  * but never deleted.
388  */
389 #define list_entry_lockless(ptr, type, member) \
390 	container_of((typeof(ptr))READ_ONCE(ptr), type, member)
391 
392 /**
393  * list_for_each_entry_lockless - iterate over rcu list of given type
394  * @pos:	the type * to use as a loop cursor.
395  * @head:	the head for your list.
396  * @member:	the name of the list_struct within the struct.
397  *
398  * This primitive may safely run concurrently with the _rcu
399  * list-mutation primitives such as list_add_rcu(), but requires some
400  * implicit RCU read-side guarding.  One example is running within a special
401  * exception-time environment where preemption is disabled and where lockdep
402  * cannot be invoked.  Another example is when items are added to the list,
403  * but never deleted.
404  */
405 #define list_for_each_entry_lockless(pos, head, member) \
406 	for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
407 	     &pos->member != (head); \
408 	     pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
409 
410 /**
411  * list_for_each_entry_continue_rcu - continue iteration over list of given type
412  * @pos:	the type * to use as a loop cursor.
413  * @head:	the head for your list.
414  * @member:	the name of the list_head within the struct.
415  *
416  * Continue to iterate over list of given type, continuing after
417  * the current position which must have been in the list when the RCU read
418  * lock was taken.
419  * This would typically require either that you obtained the node from a
420  * previous walk of the list in the same RCU read-side critical section, or
421  * that you held some sort of non-RCU reference (such as a reference count)
422  * to keep the node alive *and* in the list.
423  *
424  * This iterator is similar to list_for_each_entry_from_rcu() except
425  * this starts after the given position and that one starts at the given
426  * position.
427  */
428 #define list_for_each_entry_continue_rcu(pos, head, member) 		\
429 	for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
430 	     &pos->member != (head);	\
431 	     pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
432 
433 /**
434  * list_for_each_entry_from_rcu - iterate over a list from current point
435  * @pos:	the type * to use as a loop cursor.
436  * @head:	the head for your list.
437  * @member:	the name of the list_node within the struct.
438  *
439  * Iterate over the tail of a list starting from a given position,
440  * which must have been in the list when the RCU read lock was taken.
441  * This would typically require either that you obtained the node from a
442  * previous walk of the list in the same RCU read-side critical section, or
443  * that you held some sort of non-RCU reference (such as a reference count)
444  * to keep the node alive *and* in the list.
445  *
446  * This iterator is similar to list_for_each_entry_continue_rcu() except
447  * this starts from the given position and that one starts from the position
448  * after the given position.
449  */
450 #define list_for_each_entry_from_rcu(pos, head, member)			\
451 	for (; &(pos)->member != (head);					\
452 		pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
453 
454 /**
455  * hlist_del_rcu - deletes entry from hash list without re-initialization
456  * @n: the element to delete from the hash list.
457  *
458  * Note: list_unhashed() on entry does not return true after this,
459  * the entry is in an undefined state. It is useful for RCU based
460  * lockfree traversal.
461  *
462  * In particular, it means that we can not poison the forward
463  * pointers that may still be used for walking the hash list.
464  *
465  * The caller must take whatever precautions are necessary
466  * (such as holding appropriate locks) to avoid racing
467  * with another list-mutation primitive, such as hlist_add_head_rcu()
468  * or hlist_del_rcu(), running on this same list.
469  * However, it is perfectly legal to run concurrently with
470  * the _rcu list-traversal primitives, such as
471  * hlist_for_each_entry().
472  */
hlist_del_rcu(struct hlist_node * n)473 static inline void hlist_del_rcu(struct hlist_node *n)
474 {
475 	__hlist_del(n);
476 	n->pprev = LIST_POISON2;
477 }
478 
479 /**
480  * hlist_replace_rcu - replace old entry by new one
481  * @old : the element to be replaced
482  * @new : the new element to insert
483  *
484  * The @old entry will be replaced with the @new entry atomically.
485  */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)486 static inline void hlist_replace_rcu(struct hlist_node *old,
487 					struct hlist_node *new)
488 {
489 	struct hlist_node *next = old->next;
490 
491 	new->next = next;
492 	new->pprev = old->pprev;
493 	rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
494 	if (next)
495 		new->next->pprev = &new->next;
496 	old->pprev = LIST_POISON2;
497 }
498 
499 /*
500  * return the first or the next element in an RCU protected hlist
501  */
502 #define hlist_first_rcu(head)	(*((struct hlist_node __rcu **)(&(head)->first)))
503 #define hlist_next_rcu(node)	(*((struct hlist_node __rcu **)(&(node)->next)))
504 #define hlist_pprev_rcu(node)	(*((struct hlist_node __rcu **)((node)->pprev)))
505 
506 /**
507  * hlist_add_head_rcu
508  * @n: the element to add to the hash list.
509  * @h: the list to add to.
510  *
511  * Description:
512  * Adds the specified element to the specified hlist,
513  * while permitting racing traversals.
514  *
515  * The caller must take whatever precautions are necessary
516  * (such as holding appropriate locks) to avoid racing
517  * with another list-mutation primitive, such as hlist_add_head_rcu()
518  * or hlist_del_rcu(), running on this same list.
519  * However, it is perfectly legal to run concurrently with
520  * the _rcu list-traversal primitives, such as
521  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
522  * problems on Alpha CPUs.  Regardless of the type of CPU, the
523  * list-traversal primitive must be guarded by rcu_read_lock().
524  */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)525 static inline void hlist_add_head_rcu(struct hlist_node *n,
526 					struct hlist_head *h)
527 {
528 	struct hlist_node *first = h->first;
529 
530 	n->next = first;
531 	n->pprev = &h->first;
532 	rcu_assign_pointer(hlist_first_rcu(h), n);
533 	if (first)
534 		first->pprev = &n->next;
535 }
536 
537 /**
538  * hlist_add_tail_rcu
539  * @n: the element to add to the hash list.
540  * @h: the list to add to.
541  *
542  * Description:
543  * Adds the specified element to the specified hlist,
544  * while permitting racing traversals.
545  *
546  * The caller must take whatever precautions are necessary
547  * (such as holding appropriate locks) to avoid racing
548  * with another list-mutation primitive, such as hlist_add_head_rcu()
549  * or hlist_del_rcu(), running on this same list.
550  * However, it is perfectly legal to run concurrently with
551  * the _rcu list-traversal primitives, such as
552  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
553  * problems on Alpha CPUs.  Regardless of the type of CPU, the
554  * list-traversal primitive must be guarded by rcu_read_lock().
555  */
hlist_add_tail_rcu(struct hlist_node * n,struct hlist_head * h)556 static inline void hlist_add_tail_rcu(struct hlist_node *n,
557 				      struct hlist_head *h)
558 {
559 	struct hlist_node *i, *last = NULL;
560 
561 	/* Note: write side code, so rcu accessors are not needed. */
562 	for (i = h->first; i; i = i->next)
563 		last = i;
564 
565 	if (last) {
566 		n->next = last->next;
567 		n->pprev = &last->next;
568 		rcu_assign_pointer(hlist_next_rcu(last), n);
569 	} else {
570 		hlist_add_head_rcu(n, h);
571 	}
572 }
573 
574 /**
575  * hlist_add_before_rcu
576  * @n: the new element to add to the hash list.
577  * @next: the existing element to add the new element before.
578  *
579  * Description:
580  * Adds the specified element to the specified hlist
581  * before the specified node while permitting racing traversals.
582  *
583  * The caller must take whatever precautions are necessary
584  * (such as holding appropriate locks) to avoid racing
585  * with another list-mutation primitive, such as hlist_add_head_rcu()
586  * or hlist_del_rcu(), running on this same list.
587  * However, it is perfectly legal to run concurrently with
588  * the _rcu list-traversal primitives, such as
589  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
590  * problems on Alpha CPUs.
591  */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)592 static inline void hlist_add_before_rcu(struct hlist_node *n,
593 					struct hlist_node *next)
594 {
595 	n->pprev = next->pprev;
596 	n->next = next;
597 	rcu_assign_pointer(hlist_pprev_rcu(n), n);
598 	next->pprev = &n->next;
599 }
600 
601 /**
602  * hlist_add_behind_rcu
603  * @n: the new element to add to the hash list.
604  * @prev: the existing element to add the new element after.
605  *
606  * Description:
607  * Adds the specified element to the specified hlist
608  * after the specified node while permitting racing traversals.
609  *
610  * The caller must take whatever precautions are necessary
611  * (such as holding appropriate locks) to avoid racing
612  * with another list-mutation primitive, such as hlist_add_head_rcu()
613  * or hlist_del_rcu(), running on this same list.
614  * However, it is perfectly legal to run concurrently with
615  * the _rcu list-traversal primitives, such as
616  * hlist_for_each_entry_rcu(), used to prevent memory-consistency
617  * problems on Alpha CPUs.
618  */
hlist_add_behind_rcu(struct hlist_node * n,struct hlist_node * prev)619 static inline void hlist_add_behind_rcu(struct hlist_node *n,
620 					struct hlist_node *prev)
621 {
622 	n->next = prev->next;
623 	n->pprev = &prev->next;
624 	rcu_assign_pointer(hlist_next_rcu(prev), n);
625 	if (n->next)
626 		n->next->pprev = &n->next;
627 }
628 
629 #define __hlist_for_each_rcu(pos, head)				\
630 	for (pos = rcu_dereference(hlist_first_rcu(head));	\
631 	     pos;						\
632 	     pos = rcu_dereference(hlist_next_rcu(pos)))
633 
634 /**
635  * hlist_for_each_entry_rcu - iterate over rcu list of given type
636  * @pos:	the type * to use as a loop cursor.
637  * @head:	the head for your list.
638  * @member:	the name of the hlist_node within the struct.
639  * @cond:	optional lockdep expression if called from non-RCU protection.
640  *
641  * This list-traversal primitive may safely run concurrently with
642  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
643  * as long as the traversal is guarded by rcu_read_lock().
644  */
645 #define hlist_for_each_entry_rcu(pos, head, member, cond...)		\
646 	for (__list_check_rcu(dummy, ## cond, 0),			\
647 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
648 			typeof(*(pos)), member);			\
649 		pos;							\
650 		pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
651 			&(pos)->member)), typeof(*(pos)), member))
652 
653 /**
654  * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
655  * @pos:	the type * to use as a loop cursor.
656  * @head:	the head for your list.
657  * @member:	the name of the hlist_node within the struct.
658  *
659  * This list-traversal primitive may safely run concurrently with
660  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
661  * as long as the traversal is guarded by rcu_read_lock().
662  *
663  * This is the same as hlist_for_each_entry_rcu() except that it does
664  * not do any RCU debugging or tracing.
665  */
666 #define hlist_for_each_entry_rcu_notrace(pos, head, member)			\
667 	for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
668 			typeof(*(pos)), member);			\
669 		pos;							\
670 		pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
671 			&(pos)->member)), typeof(*(pos)), member))
672 
673 /**
674  * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
675  * @pos:	the type * to use as a loop cursor.
676  * @head:	the head for your list.
677  * @member:	the name of the hlist_node within the struct.
678  *
679  * This list-traversal primitive may safely run concurrently with
680  * the _rcu list-mutation primitives such as hlist_add_head_rcu()
681  * as long as the traversal is guarded by rcu_read_lock().
682  */
683 #define hlist_for_each_entry_rcu_bh(pos, head, member)			\
684 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
685 			typeof(*(pos)), member);			\
686 		pos;							\
687 		pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
688 			&(pos)->member)), typeof(*(pos)), member))
689 
690 /**
691  * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
692  * @pos:	the type * to use as a loop cursor.
693  * @member:	the name of the hlist_node within the struct.
694  */
695 #define hlist_for_each_entry_continue_rcu(pos, member)			\
696 	for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
697 			&(pos)->member)), typeof(*(pos)), member);	\
698 	     pos;							\
699 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
700 			&(pos)->member)), typeof(*(pos)), member))
701 
702 /**
703  * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
704  * @pos:	the type * to use as a loop cursor.
705  * @member:	the name of the hlist_node within the struct.
706  */
707 #define hlist_for_each_entry_continue_rcu_bh(pos, member)		\
708 	for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
709 			&(pos)->member)), typeof(*(pos)), member);	\
710 	     pos;							\
711 	     pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(	\
712 			&(pos)->member)), typeof(*(pos)), member))
713 
714 /**
715  * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
716  * @pos:	the type * to use as a loop cursor.
717  * @member:	the name of the hlist_node within the struct.
718  */
719 #define hlist_for_each_entry_from_rcu(pos, member)			\
720 	for (; pos;							\
721 	     pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(	\
722 			&(pos)->member)), typeof(*(pos)), member))
723 
724 #endif	/* __KERNEL__ */
725 #endif
726