1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_RCULIST_H
3 #define _LINUX_RCULIST_H
4
5 #ifdef __KERNEL__
6
7 /*
8 * RCU-protected list version
9 */
10 #include <linux/list.h>
11 #include <linux/rcupdate.h>
12
13 /*
14 * Why is there no list_empty_rcu()? Because list_empty() serves this
15 * purpose. The list_empty() function fetches the RCU-protected pointer
16 * and compares it to the address of the list head, but neither dereferences
17 * this pointer itself nor provides this pointer to the caller. Therefore,
18 * it is not necessary to use rcu_dereference(), so that list_empty() can
19 * be used anywhere you would want to use a list_empty_rcu().
20 */
21
22 /*
23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
24 * @list: list to be initialized
25 *
26 * You should instead use INIT_LIST_HEAD() for normal initialization and
27 * cleanup tasks, when readers have no access to the list being initialized.
28 * However, if the list being initialized is visible to readers, you
29 * need to keep the compiler from being too mischievous.
30 */
INIT_LIST_HEAD_RCU(struct list_head * list)31 static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
32 {
33 WRITE_ONCE(list->next, list);
34 WRITE_ONCE(list->prev, list);
35 }
36
37 /*
38 * return the ->next pointer of a list_head in an rcu safe
39 * way, we must not access it directly
40 */
41 #define list_next_rcu(list) (*((struct list_head __rcu **)(&(list)->next)))
42
43 /*
44 * Check during list traversal that we are within an RCU reader
45 */
46
47 #define check_arg_count_one(dummy)
48
49 #ifdef CONFIG_PROVE_RCU_LIST
50 #define __list_check_rcu(dummy, cond, extra...) \
51 ({ \
52 check_arg_count_one(extra); \
53 RCU_LOCKDEP_WARN(!cond && !rcu_read_lock_any_held(), \
54 "RCU-list traversed in non-reader section!"); \
55 })
56 #else
57 #define __list_check_rcu(dummy, cond, extra...) \
58 ({ check_arg_count_one(extra); })
59 #endif
60
61 /*
62 * Insert a new entry between two known consecutive entries.
63 *
64 * This is only for internal list manipulation where we know
65 * the prev/next entries already!
66 */
__list_add_rcu(struct list_head * new,struct list_head * prev,struct list_head * next)67 static inline void __list_add_rcu(struct list_head *new,
68 struct list_head *prev, struct list_head *next)
69 {
70 if (!__list_add_valid(new, prev, next))
71 return;
72
73 new->next = next;
74 new->prev = prev;
75 rcu_assign_pointer(list_next_rcu(prev), new);
76 next->prev = new;
77 }
78
79 /**
80 * list_add_rcu - add a new entry to rcu-protected list
81 * @new: new entry to be added
82 * @head: list head to add it after
83 *
84 * Insert a new entry after the specified head.
85 * This is good for implementing stacks.
86 *
87 * The caller must take whatever precautions are necessary
88 * (such as holding appropriate locks) to avoid racing
89 * with another list-mutation primitive, such as list_add_rcu()
90 * or list_del_rcu(), running on this same list.
91 * However, it is perfectly legal to run concurrently with
92 * the _rcu list-traversal primitives, such as
93 * list_for_each_entry_rcu().
94 */
list_add_rcu(struct list_head * new,struct list_head * head)95 static inline void list_add_rcu(struct list_head *new, struct list_head *head)
96 {
97 __list_add_rcu(new, head, head->next);
98 }
99
100 /**
101 * list_add_tail_rcu - add a new entry to rcu-protected list
102 * @new: new entry to be added
103 * @head: list head to add it before
104 *
105 * Insert a new entry before the specified head.
106 * This is useful for implementing queues.
107 *
108 * The caller must take whatever precautions are necessary
109 * (such as holding appropriate locks) to avoid racing
110 * with another list-mutation primitive, such as list_add_tail_rcu()
111 * or list_del_rcu(), running on this same list.
112 * However, it is perfectly legal to run concurrently with
113 * the _rcu list-traversal primitives, such as
114 * list_for_each_entry_rcu().
115 */
list_add_tail_rcu(struct list_head * new,struct list_head * head)116 static inline void list_add_tail_rcu(struct list_head *new,
117 struct list_head *head)
118 {
119 __list_add_rcu(new, head->prev, head);
120 }
121
122 /**
123 * list_del_rcu - deletes entry from list without re-initialization
124 * @entry: the element to delete from the list.
125 *
126 * Note: list_empty() on entry does not return true after this,
127 * the entry is in an undefined state. It is useful for RCU based
128 * lockfree traversal.
129 *
130 * In particular, it means that we can not poison the forward
131 * pointers that may still be used for walking the list.
132 *
133 * The caller must take whatever precautions are necessary
134 * (such as holding appropriate locks) to avoid racing
135 * with another list-mutation primitive, such as list_del_rcu()
136 * or list_add_rcu(), running on this same list.
137 * However, it is perfectly legal to run concurrently with
138 * the _rcu list-traversal primitives, such as
139 * list_for_each_entry_rcu().
140 *
141 * Note that the caller is not permitted to immediately free
142 * the newly deleted entry. Instead, either synchronize_rcu()
143 * or call_rcu() must be used to defer freeing until an RCU
144 * grace period has elapsed.
145 */
list_del_rcu(struct list_head * entry)146 static inline void list_del_rcu(struct list_head *entry)
147 {
148 __list_del_entry(entry);
149 entry->prev = LIST_POISON2;
150 }
151
152 /**
153 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
154 * @n: the element to delete from the hash list.
155 *
156 * Note: list_unhashed() on the node return true after this. It is
157 * useful for RCU based read lockfree traversal if the writer side
158 * must know if the list entry is still hashed or already unhashed.
159 *
160 * In particular, it means that we can not poison the forward pointers
161 * that may still be used for walking the hash list and we can only
162 * zero the pprev pointer so list_unhashed() will return true after
163 * this.
164 *
165 * The caller must take whatever precautions are necessary (such as
166 * holding appropriate locks) to avoid racing with another
167 * list-mutation primitive, such as hlist_add_head_rcu() or
168 * hlist_del_rcu(), running on this same list. However, it is
169 * perfectly legal to run concurrently with the _rcu list-traversal
170 * primitives, such as hlist_for_each_entry_rcu().
171 */
hlist_del_init_rcu(struct hlist_node * n)172 static inline void hlist_del_init_rcu(struct hlist_node *n)
173 {
174 if (!hlist_unhashed(n)) {
175 __hlist_del(n);
176 n->pprev = NULL;
177 }
178 }
179
180 /**
181 * list_replace_rcu - replace old entry by new one
182 * @old : the element to be replaced
183 * @new : the new element to insert
184 *
185 * The @old entry will be replaced with the @new entry atomically.
186 * Note: @old should not be empty.
187 */
list_replace_rcu(struct list_head * old,struct list_head * new)188 static inline void list_replace_rcu(struct list_head *old,
189 struct list_head *new)
190 {
191 new->next = old->next;
192 new->prev = old->prev;
193 rcu_assign_pointer(list_next_rcu(new->prev), new);
194 new->next->prev = new;
195 old->prev = LIST_POISON2;
196 }
197
198 /**
199 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
200 * @list: the RCU-protected list to splice
201 * @prev: points to the last element of the existing list
202 * @next: points to the first element of the existing list
203 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
204 *
205 * The list pointed to by @prev and @next can be RCU-read traversed
206 * concurrently with this function.
207 *
208 * Note that this function blocks.
209 *
210 * Important note: the caller must take whatever action is necessary to prevent
211 * any other updates to the existing list. In principle, it is possible to
212 * modify the list as soon as sync() begins execution. If this sort of thing
213 * becomes necessary, an alternative version based on call_rcu() could be
214 * created. But only if -really- needed -- there is no shortage of RCU API
215 * members.
216 */
__list_splice_init_rcu(struct list_head * list,struct list_head * prev,struct list_head * next,void (* sync)(void))217 static inline void __list_splice_init_rcu(struct list_head *list,
218 struct list_head *prev,
219 struct list_head *next,
220 void (*sync)(void))
221 {
222 struct list_head *first = list->next;
223 struct list_head *last = list->prev;
224
225 /*
226 * "first" and "last" tracking list, so initialize it. RCU readers
227 * have access to this list, so we must use INIT_LIST_HEAD_RCU()
228 * instead of INIT_LIST_HEAD().
229 */
230
231 INIT_LIST_HEAD_RCU(list);
232
233 /*
234 * At this point, the list body still points to the source list.
235 * Wait for any readers to finish using the list before splicing
236 * the list body into the new list. Any new readers will see
237 * an empty list.
238 */
239
240 sync();
241
242 /*
243 * Readers are finished with the source list, so perform splice.
244 * The order is important if the new list is global and accessible
245 * to concurrent RCU readers. Note that RCU readers are not
246 * permitted to traverse the prev pointers without excluding
247 * this function.
248 */
249
250 last->next = next;
251 rcu_assign_pointer(list_next_rcu(prev), first);
252 first->prev = prev;
253 next->prev = last;
254 }
255
256 /**
257 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
258 * designed for stacks.
259 * @list: the RCU-protected list to splice
260 * @head: the place in the existing list to splice the first list into
261 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
262 */
list_splice_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))263 static inline void list_splice_init_rcu(struct list_head *list,
264 struct list_head *head,
265 void (*sync)(void))
266 {
267 if (!list_empty(list))
268 __list_splice_init_rcu(list, head, head->next, sync);
269 }
270
271 /**
272 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
273 * list, designed for queues.
274 * @list: the RCU-protected list to splice
275 * @head: the place in the existing list to splice the first list into
276 * @sync: synchronize_rcu, synchronize_rcu_expedited, ...
277 */
list_splice_tail_init_rcu(struct list_head * list,struct list_head * head,void (* sync)(void))278 static inline void list_splice_tail_init_rcu(struct list_head *list,
279 struct list_head *head,
280 void (*sync)(void))
281 {
282 if (!list_empty(list))
283 __list_splice_init_rcu(list, head->prev, head, sync);
284 }
285
286 /**
287 * list_entry_rcu - get the struct for this entry
288 * @ptr: the &struct list_head pointer.
289 * @type: the type of the struct this is embedded in.
290 * @member: the name of the list_head within the struct.
291 *
292 * This primitive may safely run concurrently with the _rcu list-mutation
293 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
294 */
295 #define list_entry_rcu(ptr, type, member) \
296 container_of(READ_ONCE(ptr), type, member)
297
298 /*
299 * Where are list_empty_rcu() and list_first_entry_rcu()?
300 *
301 * Implementing those functions following their counterparts list_empty() and
302 * list_first_entry() is not advisable because they lead to subtle race
303 * conditions as the following snippet shows:
304 *
305 * if (!list_empty_rcu(mylist)) {
306 * struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
307 * do_something(bar);
308 * }
309 *
310 * The list may not be empty when list_empty_rcu checks it, but it may be when
311 * list_first_entry_rcu rereads the ->next pointer.
312 *
313 * Rereading the ->next pointer is not a problem for list_empty() and
314 * list_first_entry() because they would be protected by a lock that blocks
315 * writers.
316 *
317 * See list_first_or_null_rcu for an alternative.
318 */
319
320 /**
321 * list_first_or_null_rcu - get the first element from a list
322 * @ptr: the list head to take the element from.
323 * @type: the type of the struct this is embedded in.
324 * @member: the name of the list_head within the struct.
325 *
326 * Note that if the list is empty, it returns NULL.
327 *
328 * This primitive may safely run concurrently with the _rcu list-mutation
329 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
330 */
331 #define list_first_or_null_rcu(ptr, type, member) \
332 ({ \
333 struct list_head *__ptr = (ptr); \
334 struct list_head *__next = READ_ONCE(__ptr->next); \
335 likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
336 })
337
338 /**
339 * list_next_or_null_rcu - get the first element from a list
340 * @head: the head for the list.
341 * @ptr: the list head to take the next element from.
342 * @type: the type of the struct this is embedded in.
343 * @member: the name of the list_head within the struct.
344 *
345 * Note that if the ptr is at the end of the list, NULL is returned.
346 *
347 * This primitive may safely run concurrently with the _rcu list-mutation
348 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
349 */
350 #define list_next_or_null_rcu(head, ptr, type, member) \
351 ({ \
352 struct list_head *__head = (head); \
353 struct list_head *__ptr = (ptr); \
354 struct list_head *__next = READ_ONCE(__ptr->next); \
355 likely(__next != __head) ? list_entry_rcu(__next, type, \
356 member) : NULL; \
357 })
358
359 /**
360 * list_for_each_entry_rcu - iterate over rcu list of given type
361 * @pos: the type * to use as a loop cursor.
362 * @head: the head for your list.
363 * @member: the name of the list_head within the struct.
364 * @cond: optional lockdep expression if called from non-RCU protection.
365 *
366 * This list-traversal primitive may safely run concurrently with
367 * the _rcu list-mutation primitives such as list_add_rcu()
368 * as long as the traversal is guarded by rcu_read_lock().
369 */
370 #define list_for_each_entry_rcu(pos, head, member, cond...) \
371 for (__list_check_rcu(dummy, ## cond, 0), \
372 pos = list_entry_rcu((head)->next, typeof(*pos), member); \
373 &pos->member != (head); \
374 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
375
376 /**
377 * list_entry_lockless - get the struct for this entry
378 * @ptr: the &struct list_head pointer.
379 * @type: the type of the struct this is embedded in.
380 * @member: the name of the list_head within the struct.
381 *
382 * This primitive may safely run concurrently with the _rcu
383 * list-mutation primitives such as list_add_rcu(), but requires some
384 * implicit RCU read-side guarding. One example is running within a special
385 * exception-time environment where preemption is disabled and where lockdep
386 * cannot be invoked. Another example is when items are added to the list,
387 * but never deleted.
388 */
389 #define list_entry_lockless(ptr, type, member) \
390 container_of((typeof(ptr))READ_ONCE(ptr), type, member)
391
392 /**
393 * list_for_each_entry_lockless - iterate over rcu list of given type
394 * @pos: the type * to use as a loop cursor.
395 * @head: the head for your list.
396 * @member: the name of the list_struct within the struct.
397 *
398 * This primitive may safely run concurrently with the _rcu
399 * list-mutation primitives such as list_add_rcu(), but requires some
400 * implicit RCU read-side guarding. One example is running within a special
401 * exception-time environment where preemption is disabled and where lockdep
402 * cannot be invoked. Another example is when items are added to the list,
403 * but never deleted.
404 */
405 #define list_for_each_entry_lockless(pos, head, member) \
406 for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
407 &pos->member != (head); \
408 pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
409
410 /**
411 * list_for_each_entry_continue_rcu - continue iteration over list of given type
412 * @pos: the type * to use as a loop cursor.
413 * @head: the head for your list.
414 * @member: the name of the list_head within the struct.
415 *
416 * Continue to iterate over list of given type, continuing after
417 * the current position which must have been in the list when the RCU read
418 * lock was taken.
419 * This would typically require either that you obtained the node from a
420 * previous walk of the list in the same RCU read-side critical section, or
421 * that you held some sort of non-RCU reference (such as a reference count)
422 * to keep the node alive *and* in the list.
423 *
424 * This iterator is similar to list_for_each_entry_from_rcu() except
425 * this starts after the given position and that one starts at the given
426 * position.
427 */
428 #define list_for_each_entry_continue_rcu(pos, head, member) \
429 for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
430 &pos->member != (head); \
431 pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
432
433 /**
434 * list_for_each_entry_from_rcu - iterate over a list from current point
435 * @pos: the type * to use as a loop cursor.
436 * @head: the head for your list.
437 * @member: the name of the list_node within the struct.
438 *
439 * Iterate over the tail of a list starting from a given position,
440 * which must have been in the list when the RCU read lock was taken.
441 * This would typically require either that you obtained the node from a
442 * previous walk of the list in the same RCU read-side critical section, or
443 * that you held some sort of non-RCU reference (such as a reference count)
444 * to keep the node alive *and* in the list.
445 *
446 * This iterator is similar to list_for_each_entry_continue_rcu() except
447 * this starts from the given position and that one starts from the position
448 * after the given position.
449 */
450 #define list_for_each_entry_from_rcu(pos, head, member) \
451 for (; &(pos)->member != (head); \
452 pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
453
454 /**
455 * hlist_del_rcu - deletes entry from hash list without re-initialization
456 * @n: the element to delete from the hash list.
457 *
458 * Note: list_unhashed() on entry does not return true after this,
459 * the entry is in an undefined state. It is useful for RCU based
460 * lockfree traversal.
461 *
462 * In particular, it means that we can not poison the forward
463 * pointers that may still be used for walking the hash list.
464 *
465 * The caller must take whatever precautions are necessary
466 * (such as holding appropriate locks) to avoid racing
467 * with another list-mutation primitive, such as hlist_add_head_rcu()
468 * or hlist_del_rcu(), running on this same list.
469 * However, it is perfectly legal to run concurrently with
470 * the _rcu list-traversal primitives, such as
471 * hlist_for_each_entry().
472 */
hlist_del_rcu(struct hlist_node * n)473 static inline void hlist_del_rcu(struct hlist_node *n)
474 {
475 __hlist_del(n);
476 n->pprev = LIST_POISON2;
477 }
478
479 /**
480 * hlist_replace_rcu - replace old entry by new one
481 * @old : the element to be replaced
482 * @new : the new element to insert
483 *
484 * The @old entry will be replaced with the @new entry atomically.
485 */
hlist_replace_rcu(struct hlist_node * old,struct hlist_node * new)486 static inline void hlist_replace_rcu(struct hlist_node *old,
487 struct hlist_node *new)
488 {
489 struct hlist_node *next = old->next;
490
491 new->next = next;
492 new->pprev = old->pprev;
493 rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
494 if (next)
495 new->next->pprev = &new->next;
496 old->pprev = LIST_POISON2;
497 }
498
499 /*
500 * return the first or the next element in an RCU protected hlist
501 */
502 #define hlist_first_rcu(head) (*((struct hlist_node __rcu **)(&(head)->first)))
503 #define hlist_next_rcu(node) (*((struct hlist_node __rcu **)(&(node)->next)))
504 #define hlist_pprev_rcu(node) (*((struct hlist_node __rcu **)((node)->pprev)))
505
506 /**
507 * hlist_add_head_rcu
508 * @n: the element to add to the hash list.
509 * @h: the list to add to.
510 *
511 * Description:
512 * Adds the specified element to the specified hlist,
513 * while permitting racing traversals.
514 *
515 * The caller must take whatever precautions are necessary
516 * (such as holding appropriate locks) to avoid racing
517 * with another list-mutation primitive, such as hlist_add_head_rcu()
518 * or hlist_del_rcu(), running on this same list.
519 * However, it is perfectly legal to run concurrently with
520 * the _rcu list-traversal primitives, such as
521 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
522 * problems on Alpha CPUs. Regardless of the type of CPU, the
523 * list-traversal primitive must be guarded by rcu_read_lock().
524 */
hlist_add_head_rcu(struct hlist_node * n,struct hlist_head * h)525 static inline void hlist_add_head_rcu(struct hlist_node *n,
526 struct hlist_head *h)
527 {
528 struct hlist_node *first = h->first;
529
530 n->next = first;
531 n->pprev = &h->first;
532 rcu_assign_pointer(hlist_first_rcu(h), n);
533 if (first)
534 first->pprev = &n->next;
535 }
536
537 /**
538 * hlist_add_tail_rcu
539 * @n: the element to add to the hash list.
540 * @h: the list to add to.
541 *
542 * Description:
543 * Adds the specified element to the specified hlist,
544 * while permitting racing traversals.
545 *
546 * The caller must take whatever precautions are necessary
547 * (such as holding appropriate locks) to avoid racing
548 * with another list-mutation primitive, such as hlist_add_head_rcu()
549 * or hlist_del_rcu(), running on this same list.
550 * However, it is perfectly legal to run concurrently with
551 * the _rcu list-traversal primitives, such as
552 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
553 * problems on Alpha CPUs. Regardless of the type of CPU, the
554 * list-traversal primitive must be guarded by rcu_read_lock().
555 */
hlist_add_tail_rcu(struct hlist_node * n,struct hlist_head * h)556 static inline void hlist_add_tail_rcu(struct hlist_node *n,
557 struct hlist_head *h)
558 {
559 struct hlist_node *i, *last = NULL;
560
561 /* Note: write side code, so rcu accessors are not needed. */
562 for (i = h->first; i; i = i->next)
563 last = i;
564
565 if (last) {
566 n->next = last->next;
567 n->pprev = &last->next;
568 rcu_assign_pointer(hlist_next_rcu(last), n);
569 } else {
570 hlist_add_head_rcu(n, h);
571 }
572 }
573
574 /**
575 * hlist_add_before_rcu
576 * @n: the new element to add to the hash list.
577 * @next: the existing element to add the new element before.
578 *
579 * Description:
580 * Adds the specified element to the specified hlist
581 * before the specified node while permitting racing traversals.
582 *
583 * The caller must take whatever precautions are necessary
584 * (such as holding appropriate locks) to avoid racing
585 * with another list-mutation primitive, such as hlist_add_head_rcu()
586 * or hlist_del_rcu(), running on this same list.
587 * However, it is perfectly legal to run concurrently with
588 * the _rcu list-traversal primitives, such as
589 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
590 * problems on Alpha CPUs.
591 */
hlist_add_before_rcu(struct hlist_node * n,struct hlist_node * next)592 static inline void hlist_add_before_rcu(struct hlist_node *n,
593 struct hlist_node *next)
594 {
595 n->pprev = next->pprev;
596 n->next = next;
597 rcu_assign_pointer(hlist_pprev_rcu(n), n);
598 next->pprev = &n->next;
599 }
600
601 /**
602 * hlist_add_behind_rcu
603 * @n: the new element to add to the hash list.
604 * @prev: the existing element to add the new element after.
605 *
606 * Description:
607 * Adds the specified element to the specified hlist
608 * after the specified node while permitting racing traversals.
609 *
610 * The caller must take whatever precautions are necessary
611 * (such as holding appropriate locks) to avoid racing
612 * with another list-mutation primitive, such as hlist_add_head_rcu()
613 * or hlist_del_rcu(), running on this same list.
614 * However, it is perfectly legal to run concurrently with
615 * the _rcu list-traversal primitives, such as
616 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
617 * problems on Alpha CPUs.
618 */
hlist_add_behind_rcu(struct hlist_node * n,struct hlist_node * prev)619 static inline void hlist_add_behind_rcu(struct hlist_node *n,
620 struct hlist_node *prev)
621 {
622 n->next = prev->next;
623 n->pprev = &prev->next;
624 rcu_assign_pointer(hlist_next_rcu(prev), n);
625 if (n->next)
626 n->next->pprev = &n->next;
627 }
628
629 #define __hlist_for_each_rcu(pos, head) \
630 for (pos = rcu_dereference(hlist_first_rcu(head)); \
631 pos; \
632 pos = rcu_dereference(hlist_next_rcu(pos)))
633
634 /**
635 * hlist_for_each_entry_rcu - iterate over rcu list of given type
636 * @pos: the type * to use as a loop cursor.
637 * @head: the head for your list.
638 * @member: the name of the hlist_node within the struct.
639 * @cond: optional lockdep expression if called from non-RCU protection.
640 *
641 * This list-traversal primitive may safely run concurrently with
642 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
643 * as long as the traversal is guarded by rcu_read_lock().
644 */
645 #define hlist_for_each_entry_rcu(pos, head, member, cond...) \
646 for (__list_check_rcu(dummy, ## cond, 0), \
647 pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
648 typeof(*(pos)), member); \
649 pos; \
650 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
651 &(pos)->member)), typeof(*(pos)), member))
652
653 /**
654 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
655 * @pos: the type * to use as a loop cursor.
656 * @head: the head for your list.
657 * @member: the name of the hlist_node within the struct.
658 *
659 * This list-traversal primitive may safely run concurrently with
660 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
661 * as long as the traversal is guarded by rcu_read_lock().
662 *
663 * This is the same as hlist_for_each_entry_rcu() except that it does
664 * not do any RCU debugging or tracing.
665 */
666 #define hlist_for_each_entry_rcu_notrace(pos, head, member) \
667 for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
668 typeof(*(pos)), member); \
669 pos; \
670 pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
671 &(pos)->member)), typeof(*(pos)), member))
672
673 /**
674 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
675 * @pos: the type * to use as a loop cursor.
676 * @head: the head for your list.
677 * @member: the name of the hlist_node within the struct.
678 *
679 * This list-traversal primitive may safely run concurrently with
680 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
681 * as long as the traversal is guarded by rcu_read_lock().
682 */
683 #define hlist_for_each_entry_rcu_bh(pos, head, member) \
684 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
685 typeof(*(pos)), member); \
686 pos; \
687 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
688 &(pos)->member)), typeof(*(pos)), member))
689
690 /**
691 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
692 * @pos: the type * to use as a loop cursor.
693 * @member: the name of the hlist_node within the struct.
694 */
695 #define hlist_for_each_entry_continue_rcu(pos, member) \
696 for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
697 &(pos)->member)), typeof(*(pos)), member); \
698 pos; \
699 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
700 &(pos)->member)), typeof(*(pos)), member))
701
702 /**
703 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
704 * @pos: the type * to use as a loop cursor.
705 * @member: the name of the hlist_node within the struct.
706 */
707 #define hlist_for_each_entry_continue_rcu_bh(pos, member) \
708 for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
709 &(pos)->member)), typeof(*(pos)), member); \
710 pos; \
711 pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu( \
712 &(pos)->member)), typeof(*(pos)), member))
713
714 /**
715 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
716 * @pos: the type * to use as a loop cursor.
717 * @member: the name of the hlist_node within the struct.
718 */
719 #define hlist_for_each_entry_from_rcu(pos, member) \
720 for (; pos; \
721 pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
722 &(pos)->member)), typeof(*(pos)), member))
723
724 #endif /* __KERNEL__ */
725 #endif
726