1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include <uapi/misc/habanalabs.h>
9 #include "habanalabs.h"
10 #include "include/hw_ip/mmu/mmu_general.h"
11 
12 #include <linux/uaccess.h>
13 #include <linux/slab.h>
14 #include <linux/genalloc.h>
15 
16 #define PGS_IN_2MB_PAGE	(PAGE_SIZE_2MB >> PAGE_SHIFT)
17 #define HL_MMU_DEBUG	0
18 
19 /*
20  * The va ranges in context object contain a list with the available chunks of
21  * device virtual memory.
22  * There is one range for host allocations and one for DRAM allocations.
23  *
24  * On initialization each range contains one chunk of all of its available
25  * virtual range which is a half of the total device virtual range.
26  *
27  * On each mapping of physical pages, a suitable virtual range chunk (with a
28  * minimum size) is selected from the list. If the chunk size equals the
29  * requested size, the chunk is returned. Otherwise, the chunk is split into
30  * two chunks - one to return as result and a remainder to stay in the list.
31  *
32  * On each Unmapping of a virtual address, the relevant virtual chunk is
33  * returned to the list. The chunk is added to the list and if its edges match
34  * the edges of the adjacent chunks (means a contiguous chunk can be created),
35  * the chunks are merged.
36  *
37  * On finish, the list is checked to have only one chunk of all the relevant
38  * virtual range (which is a half of the device total virtual range).
39  * If not (means not all mappings were unmapped), a warning is printed.
40  */
41 
42 /*
43  * alloc_device_memory - allocate device memory
44  *
45  * @ctx                 : current context
46  * @args                : host parameters containing the requested size
47  * @ret_handle          : result handle
48  *
49  * This function does the following:
50  * - Allocate the requested size rounded up to 2MB pages
51  * - Return unique handle
52  */
alloc_device_memory(struct hl_ctx * ctx,struct hl_mem_in * args,u32 * ret_handle)53 static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
54 				u32 *ret_handle)
55 {
56 	struct hl_device *hdev = ctx->hdev;
57 	struct hl_vm *vm = &hdev->vm;
58 	struct hl_vm_phys_pg_pack *phys_pg_pack;
59 	u64 paddr = 0, total_size, num_pgs, i;
60 	u32 num_curr_pgs, page_size, page_shift;
61 	int handle, rc;
62 	bool contiguous;
63 
64 	num_curr_pgs = 0;
65 	page_size = hdev->asic_prop.dram_page_size;
66 	page_shift = __ffs(page_size);
67 	num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
68 	total_size = num_pgs << page_shift;
69 
70 	contiguous = args->flags & HL_MEM_CONTIGUOUS;
71 
72 	if (contiguous) {
73 		paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
74 		if (!paddr) {
75 			dev_err(hdev->dev,
76 				"failed to allocate %llu huge contiguous pages\n",
77 				num_pgs);
78 			return -ENOMEM;
79 		}
80 	}
81 
82 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
83 	if (!phys_pg_pack) {
84 		rc = -ENOMEM;
85 		goto pages_pack_err;
86 	}
87 
88 	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
89 	phys_pg_pack->asid = ctx->asid;
90 	phys_pg_pack->npages = num_pgs;
91 	phys_pg_pack->page_size = page_size;
92 	phys_pg_pack->total_size = total_size;
93 	phys_pg_pack->flags = args->flags;
94 	phys_pg_pack->contiguous = contiguous;
95 
96 	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
97 	if (!phys_pg_pack->pages) {
98 		rc = -ENOMEM;
99 		goto pages_arr_err;
100 	}
101 
102 	if (phys_pg_pack->contiguous) {
103 		for (i = 0 ; i < num_pgs ; i++)
104 			phys_pg_pack->pages[i] = paddr + i * page_size;
105 	} else {
106 		for (i = 0 ; i < num_pgs ; i++) {
107 			phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
108 							vm->dram_pg_pool,
109 							page_size);
110 			if (!phys_pg_pack->pages[i]) {
111 				dev_err(hdev->dev,
112 					"Failed to allocate device memory (out of memory)\n");
113 				rc = -ENOMEM;
114 				goto page_err;
115 			}
116 
117 			num_curr_pgs++;
118 		}
119 	}
120 
121 	spin_lock(&vm->idr_lock);
122 	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
123 				GFP_ATOMIC);
124 	spin_unlock(&vm->idr_lock);
125 
126 	if (handle < 0) {
127 		dev_err(hdev->dev, "Failed to get handle for page\n");
128 		rc = -EFAULT;
129 		goto idr_err;
130 	}
131 
132 	for (i = 0 ; i < num_pgs ; i++)
133 		kref_get(&vm->dram_pg_pool_refcount);
134 
135 	phys_pg_pack->handle = handle;
136 
137 	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
138 	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
139 
140 	*ret_handle = handle;
141 
142 	return 0;
143 
144 idr_err:
145 page_err:
146 	if (!phys_pg_pack->contiguous)
147 		for (i = 0 ; i < num_curr_pgs ; i++)
148 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
149 					page_size);
150 
151 	kvfree(phys_pg_pack->pages);
152 pages_arr_err:
153 	kfree(phys_pg_pack);
154 pages_pack_err:
155 	if (contiguous)
156 		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
157 
158 	return rc;
159 }
160 
161 /*
162  * get_userptr_from_host_va - initialize userptr structure from given host
163  *                            virtual address
164  *
165  * @hdev                : habanalabs device structure
166  * @args                : parameters containing the virtual address and size
167  * @p_userptr           : pointer to result userptr structure
168  *
169  * This function does the following:
170  * - Allocate userptr structure
171  * - Pin the given host memory using the userptr structure
172  * - Perform DMA mapping to have the DMA addresses of the pages
173  */
get_userptr_from_host_va(struct hl_device * hdev,struct hl_mem_in * args,struct hl_userptr ** p_userptr)174 static int get_userptr_from_host_va(struct hl_device *hdev,
175 		struct hl_mem_in *args, struct hl_userptr **p_userptr)
176 {
177 	struct hl_userptr *userptr;
178 	int rc;
179 
180 	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
181 	if (!userptr) {
182 		rc = -ENOMEM;
183 		goto userptr_err;
184 	}
185 
186 	rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr,
187 			args->map_host.mem_size, userptr);
188 	if (rc) {
189 		dev_err(hdev->dev, "Failed to pin host memory\n");
190 		goto pin_err;
191 	}
192 
193 	rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
194 					userptr->sgt->nents, DMA_BIDIRECTIONAL);
195 	if (rc) {
196 		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
197 		goto dma_map_err;
198 	}
199 
200 	userptr->dma_mapped = true;
201 	userptr->dir = DMA_BIDIRECTIONAL;
202 	userptr->vm_type = VM_TYPE_USERPTR;
203 
204 	*p_userptr = userptr;
205 
206 	return 0;
207 
208 dma_map_err:
209 	hl_unpin_host_memory(hdev, userptr);
210 pin_err:
211 	kfree(userptr);
212 userptr_err:
213 
214 	return rc;
215 }
216 
217 /*
218  * free_userptr - free userptr structure
219  *
220  * @hdev                : habanalabs device structure
221  * @userptr             : userptr to free
222  *
223  * This function does the following:
224  * - Unpins the physical pages
225  * - Frees the userptr structure
226  */
free_userptr(struct hl_device * hdev,struct hl_userptr * userptr)227 static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
228 {
229 	hl_unpin_host_memory(hdev, userptr);
230 	kfree(userptr);
231 }
232 
233 /*
234  * dram_pg_pool_do_release - free DRAM pages pool
235  *
236  * @ref                 : pointer to reference object
237  *
238  * This function does the following:
239  * - Frees the idr structure of physical pages handles
240  * - Frees the generic pool of DRAM physical pages
241  */
dram_pg_pool_do_release(struct kref * ref)242 static void dram_pg_pool_do_release(struct kref *ref)
243 {
244 	struct hl_vm *vm = container_of(ref, struct hl_vm,
245 			dram_pg_pool_refcount);
246 
247 	/*
248 	 * free the idr here as only here we know for sure that there are no
249 	 * allocated physical pages and hence there are no handles in use
250 	 */
251 	idr_destroy(&vm->phys_pg_pack_handles);
252 	gen_pool_destroy(vm->dram_pg_pool);
253 }
254 
255 /*
256  * free_phys_pg_pack   - free physical page pack
257  *
258  * @hdev               : habanalabs device structure
259  * @phys_pg_pack       : physical page pack to free
260  *
261  * This function does the following:
262  * - For DRAM memory only, iterate over the pack and free each physical block
263  *   structure by returning it to the general pool
264  * - Free the hl_vm_phys_pg_pack structure
265  */
free_phys_pg_pack(struct hl_device * hdev,struct hl_vm_phys_pg_pack * phys_pg_pack)266 static void free_phys_pg_pack(struct hl_device *hdev,
267 		struct hl_vm_phys_pg_pack *phys_pg_pack)
268 {
269 	struct hl_vm *vm = &hdev->vm;
270 	u64 i;
271 
272 	if (!phys_pg_pack->created_from_userptr) {
273 		if (phys_pg_pack->contiguous) {
274 			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
275 					phys_pg_pack->total_size);
276 
277 			for (i = 0; i < phys_pg_pack->npages ; i++)
278 				kref_put(&vm->dram_pg_pool_refcount,
279 					dram_pg_pool_do_release);
280 		} else {
281 			for (i = 0 ; i < phys_pg_pack->npages ; i++) {
282 				gen_pool_free(vm->dram_pg_pool,
283 						phys_pg_pack->pages[i],
284 						phys_pg_pack->page_size);
285 				kref_put(&vm->dram_pg_pool_refcount,
286 					dram_pg_pool_do_release);
287 			}
288 		}
289 	}
290 
291 	kvfree(phys_pg_pack->pages);
292 	kfree(phys_pg_pack);
293 }
294 
295 /*
296  * free_device_memory - free device memory
297  *
298  * @ctx                  : current context
299  * @handle              : handle of the memory chunk to free
300  *
301  * This function does the following:
302  * - Free the device memory related to the given handle
303  */
free_device_memory(struct hl_ctx * ctx,u32 handle)304 static int free_device_memory(struct hl_ctx *ctx, u32 handle)
305 {
306 	struct hl_device *hdev = ctx->hdev;
307 	struct hl_vm *vm = &hdev->vm;
308 	struct hl_vm_phys_pg_pack *phys_pg_pack;
309 
310 	spin_lock(&vm->idr_lock);
311 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
312 	if (phys_pg_pack) {
313 		if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
314 			dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
315 				handle);
316 			spin_unlock(&vm->idr_lock);
317 			return -EINVAL;
318 		}
319 
320 		/*
321 		 * must remove from idr before the freeing of the physical
322 		 * pages as the refcount of the pool is also the trigger of the
323 		 * idr destroy
324 		 */
325 		idr_remove(&vm->phys_pg_pack_handles, handle);
326 		spin_unlock(&vm->idr_lock);
327 
328 		atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
329 		atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
330 
331 		free_phys_pg_pack(hdev, phys_pg_pack);
332 	} else {
333 		spin_unlock(&vm->idr_lock);
334 		dev_err(hdev->dev,
335 			"free device memory failed, no match for handle %u\n",
336 			handle);
337 		return -EINVAL;
338 	}
339 
340 	return 0;
341 }
342 
343 /*
344  * clear_va_list_locked - free virtual addresses list
345  *
346  * @hdev                : habanalabs device structure
347  * @va_list             : list of virtual addresses to free
348  *
349  * This function does the following:
350  * - Iterate over the list and free each virtual addresses block
351  *
352  * This function should be called only when va_list lock is taken
353  */
clear_va_list_locked(struct hl_device * hdev,struct list_head * va_list)354 static void clear_va_list_locked(struct hl_device *hdev,
355 		struct list_head *va_list)
356 {
357 	struct hl_vm_va_block *va_block, *tmp;
358 
359 	list_for_each_entry_safe(va_block, tmp, va_list, node) {
360 		list_del(&va_block->node);
361 		kfree(va_block);
362 	}
363 }
364 
365 /*
366  * print_va_list_locked    - print virtual addresses list
367  *
368  * @hdev                : habanalabs device structure
369  * @va_list             : list of virtual addresses to print
370  *
371  * This function does the following:
372  * - Iterate over the list and print each virtual addresses block
373  *
374  * This function should be called only when va_list lock is taken
375  */
print_va_list_locked(struct hl_device * hdev,struct list_head * va_list)376 static void print_va_list_locked(struct hl_device *hdev,
377 		struct list_head *va_list)
378 {
379 #if HL_MMU_DEBUG
380 	struct hl_vm_va_block *va_block;
381 
382 	dev_dbg(hdev->dev, "print va list:\n");
383 
384 	list_for_each_entry(va_block, va_list, node)
385 		dev_dbg(hdev->dev,
386 			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
387 			va_block->start, va_block->end, va_block->size);
388 #endif
389 }
390 
391 /*
392  * merge_va_blocks_locked - merge a virtual block if possible
393  *
394  * @hdev                : pointer to the habanalabs device structure
395  * @va_list             : pointer to the virtual addresses block list
396  * @va_block            : virtual block to merge with adjacent blocks
397  *
398  * This function does the following:
399  * - Merge the given blocks with the adjacent blocks if their virtual ranges
400  *   create a contiguous virtual range
401  *
402  * This Function should be called only when va_list lock is taken
403  */
merge_va_blocks_locked(struct hl_device * hdev,struct list_head * va_list,struct hl_vm_va_block * va_block)404 static void merge_va_blocks_locked(struct hl_device *hdev,
405 		struct list_head *va_list, struct hl_vm_va_block *va_block)
406 {
407 	struct hl_vm_va_block *prev, *next;
408 
409 	prev = list_prev_entry(va_block, node);
410 	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
411 		prev->end = va_block->end;
412 		prev->size = prev->end - prev->start;
413 		list_del(&va_block->node);
414 		kfree(va_block);
415 		va_block = prev;
416 	}
417 
418 	next = list_next_entry(va_block, node);
419 	if (&next->node != va_list && va_block->end + 1 == next->start) {
420 		next->start = va_block->start;
421 		next->size = next->end - next->start;
422 		list_del(&va_block->node);
423 		kfree(va_block);
424 	}
425 }
426 
427 /*
428  * add_va_block_locked - add a virtual block to the virtual addresses list
429  *
430  * @hdev                : pointer to the habanalabs device structure
431  * @va_list             : pointer to the virtual addresses block list
432  * @start               : start virtual address
433  * @end                 : end virtual address
434  *
435  * This function does the following:
436  * - Add the given block to the virtual blocks list and merge with other
437  * blocks if a contiguous virtual block can be created
438  *
439  * This Function should be called only when va_list lock is taken
440  */
add_va_block_locked(struct hl_device * hdev,struct list_head * va_list,u64 start,u64 end)441 static int add_va_block_locked(struct hl_device *hdev,
442 		struct list_head *va_list, u64 start, u64 end)
443 {
444 	struct hl_vm_va_block *va_block, *res = NULL;
445 	u64 size = end - start;
446 
447 	print_va_list_locked(hdev, va_list);
448 
449 	list_for_each_entry(va_block, va_list, node) {
450 		/* TODO: remove upon matureness */
451 		if (hl_mem_area_crosses_range(start, size, va_block->start,
452 				va_block->end)) {
453 			dev_err(hdev->dev,
454 				"block crossing ranges at start 0x%llx, end 0x%llx\n",
455 				va_block->start, va_block->end);
456 			return -EINVAL;
457 		}
458 
459 		if (va_block->end < start)
460 			res = va_block;
461 	}
462 
463 	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
464 	if (!va_block)
465 		return -ENOMEM;
466 
467 	va_block->start = start;
468 	va_block->end = end;
469 	va_block->size = size;
470 
471 	if (!res)
472 		list_add(&va_block->node, va_list);
473 	else
474 		list_add(&va_block->node, &res->node);
475 
476 	merge_va_blocks_locked(hdev, va_list, va_block);
477 
478 	print_va_list_locked(hdev, va_list);
479 
480 	return 0;
481 }
482 
483 /*
484  * add_va_block - wrapper for add_va_block_locked
485  *
486  * @hdev                : pointer to the habanalabs device structure
487  * @va_list             : pointer to the virtual addresses block list
488  * @start               : start virtual address
489  * @end                 : end virtual address
490  *
491  * This function does the following:
492  * - Takes the list lock and calls add_va_block_locked
493  */
add_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)494 static inline int add_va_block(struct hl_device *hdev,
495 		struct hl_va_range *va_range, u64 start, u64 end)
496 {
497 	int rc;
498 
499 	mutex_lock(&va_range->lock);
500 	rc = add_va_block_locked(hdev, &va_range->list, start, end);
501 	mutex_unlock(&va_range->lock);
502 
503 	return rc;
504 }
505 
506 /*
507  * get_va_block - get a virtual block with the requested size
508  *
509  * @hdev            : pointer to the habanalabs device structure
510  * @va_range        : pointer to the virtual addresses range
511  * @size            : requested block size
512  * @hint_addr       : hint for request address by the user
513  * @is_userptr      : is host or DRAM memory
514  *
515  * This function does the following:
516  * - Iterate on the virtual block list to find a suitable virtual block for the
517  *   requested size
518  * - Reserve the requested block and update the list
519  * - Return the start address of the virtual block
520  */
get_va_block(struct hl_device * hdev,struct hl_va_range * va_range,u64 size,u64 hint_addr,bool is_userptr)521 static u64 get_va_block(struct hl_device *hdev,
522 		struct hl_va_range *va_range, u64 size, u64 hint_addr,
523 		bool is_userptr)
524 {
525 	struct hl_vm_va_block *va_block, *new_va_block = NULL;
526 	u64 valid_start, valid_size, prev_start, prev_end, page_mask,
527 		res_valid_start = 0, res_valid_size = 0;
528 	u32 page_size;
529 	bool add_prev = false;
530 
531 	if (is_userptr) {
532 		/*
533 		 * We cannot know if the user allocated memory with huge pages
534 		 * or not, hence we continue with the biggest possible
535 		 * granularity.
536 		 */
537 		page_size = PAGE_SIZE_2MB;
538 		page_mask = PAGE_MASK_2MB;
539 	} else {
540 		page_size = hdev->asic_prop.dram_page_size;
541 		page_mask = ~((u64)page_size - 1);
542 	}
543 
544 	mutex_lock(&va_range->lock);
545 
546 	print_va_list_locked(hdev, &va_range->list);
547 
548 	list_for_each_entry(va_block, &va_range->list, node) {
549 		/* calc the first possible aligned addr */
550 		valid_start = va_block->start;
551 
552 
553 		if (valid_start & (page_size - 1)) {
554 			valid_start &= page_mask;
555 			valid_start += page_size;
556 			if (valid_start > va_block->end)
557 				continue;
558 		}
559 
560 		valid_size = va_block->end - valid_start;
561 
562 		if (valid_size >= size &&
563 			(!new_va_block || valid_size < res_valid_size)) {
564 
565 			new_va_block = va_block;
566 			res_valid_start = valid_start;
567 			res_valid_size = valid_size;
568 		}
569 
570 		if (hint_addr && hint_addr >= valid_start &&
571 				((hint_addr + size) <= va_block->end)) {
572 			new_va_block = va_block;
573 			res_valid_start = hint_addr;
574 			res_valid_size = valid_size;
575 			break;
576 		}
577 	}
578 
579 	if (!new_va_block) {
580 		dev_err(hdev->dev, "no available va block for size %llu\n",
581 				size);
582 		goto out;
583 	}
584 
585 	if (res_valid_start > new_va_block->start) {
586 		prev_start = new_va_block->start;
587 		prev_end = res_valid_start - 1;
588 
589 		new_va_block->start = res_valid_start;
590 		new_va_block->size = res_valid_size;
591 
592 		add_prev = true;
593 	}
594 
595 	if (new_va_block->size > size) {
596 		new_va_block->start += size;
597 		new_va_block->size = new_va_block->end - new_va_block->start;
598 	} else {
599 		list_del(&new_va_block->node);
600 		kfree(new_va_block);
601 	}
602 
603 	if (add_prev)
604 		add_va_block_locked(hdev, &va_range->list, prev_start,
605 				prev_end);
606 
607 	print_va_list_locked(hdev, &va_range->list);
608 out:
609 	mutex_unlock(&va_range->lock);
610 
611 	return res_valid_start;
612 }
613 
614 /*
615  * get_sg_info - get number of pages and the DMA address from SG list
616  *
617  * @sg                 : the SG list
618  * @dma_addr           : pointer to DMA address to return
619  *
620  * Calculate the number of consecutive pages described by the SG list. Take the
621  * offset of the address in the first page, add to it the length and round it up
622  * to the number of needed pages.
623  */
get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)624 static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
625 {
626 	*dma_addr = sg_dma_address(sg);
627 
628 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
629 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
630 }
631 
632 /*
633  * init_phys_pg_pack_from_userptr - initialize physical page pack from host
634  *                                   memory
635  *
636  * @ctx                : current context
637  * @userptr            : userptr to initialize from
638  * @pphys_pg_pack      : res pointer
639  *
640  * This function does the following:
641  * - Pin the physical pages related to the given virtual block
642  * - Create a physical page pack from the physical pages related to the given
643  *   virtual block
644  */
init_phys_pg_pack_from_userptr(struct hl_ctx * ctx,struct hl_userptr * userptr,struct hl_vm_phys_pg_pack ** pphys_pg_pack)645 static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
646 		struct hl_userptr *userptr,
647 		struct hl_vm_phys_pg_pack **pphys_pg_pack)
648 {
649 	struct hl_vm_phys_pg_pack *phys_pg_pack;
650 	struct scatterlist *sg;
651 	dma_addr_t dma_addr;
652 	u64 page_mask, total_npages;
653 	u32 npages, page_size = PAGE_SIZE;
654 	bool first = true, is_huge_page_opt = true;
655 	int rc, i, j;
656 
657 	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
658 	if (!phys_pg_pack)
659 		return -ENOMEM;
660 
661 	phys_pg_pack->vm_type = userptr->vm_type;
662 	phys_pg_pack->created_from_userptr = true;
663 	phys_pg_pack->asid = ctx->asid;
664 	atomic_set(&phys_pg_pack->mapping_cnt, 1);
665 
666 	/* Only if all dma_addrs are aligned to 2MB and their
667 	 * sizes is at least 2MB, we can use huge page mapping.
668 	 * We limit the 2MB optimization to this condition,
669 	 * since later on we acquire the related VA range as one
670 	 * consecutive block.
671 	 */
672 	total_npages = 0;
673 	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
674 		npages = get_sg_info(sg, &dma_addr);
675 
676 		total_npages += npages;
677 
678 		if ((npages % PGS_IN_2MB_PAGE) ||
679 					(dma_addr & (PAGE_SIZE_2MB - 1)))
680 			is_huge_page_opt = false;
681 	}
682 
683 	if (is_huge_page_opt) {
684 		page_size = PAGE_SIZE_2MB;
685 		total_npages /= PGS_IN_2MB_PAGE;
686 	}
687 
688 	page_mask = ~(((u64) page_size) - 1);
689 
690 	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
691 						GFP_KERNEL);
692 	if (!phys_pg_pack->pages) {
693 		rc = -ENOMEM;
694 		goto page_pack_arr_mem_err;
695 	}
696 
697 	phys_pg_pack->npages = total_npages;
698 	phys_pg_pack->page_size = page_size;
699 	phys_pg_pack->total_size = total_npages * page_size;
700 
701 	j = 0;
702 	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
703 		npages = get_sg_info(sg, &dma_addr);
704 
705 		/* align down to physical page size and save the offset */
706 		if (first) {
707 			first = false;
708 			phys_pg_pack->offset = dma_addr & (page_size - 1);
709 			dma_addr &= page_mask;
710 		}
711 
712 		while (npages) {
713 			phys_pg_pack->pages[j++] = dma_addr;
714 			dma_addr += page_size;
715 
716 			if (is_huge_page_opt)
717 				npages -= PGS_IN_2MB_PAGE;
718 			else
719 				npages--;
720 		}
721 	}
722 
723 	*pphys_pg_pack = phys_pg_pack;
724 
725 	return 0;
726 
727 page_pack_arr_mem_err:
728 	kfree(phys_pg_pack);
729 
730 	return rc;
731 }
732 
733 /*
734  * map_phys_page_pack - maps the physical page pack
735  *
736  * @ctx                : current context
737  * @vaddr              : start address of the virtual area to map from
738  * @phys_pg_pack       : the pack of physical pages to map to
739  *
740  * This function does the following:
741  * - Maps each chunk of virtual memory to matching physical chunk
742  * - Stores number of successful mappings in the given argument
743  * - Returns 0 on success, error code otherwise.
744  */
map_phys_page_pack(struct hl_ctx * ctx,u64 vaddr,struct hl_vm_phys_pg_pack * phys_pg_pack)745 static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr,
746 		struct hl_vm_phys_pg_pack *phys_pg_pack)
747 {
748 	struct hl_device *hdev = ctx->hdev;
749 	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
750 	u32 page_size = phys_pg_pack->page_size;
751 	int rc = 0;
752 
753 	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
754 		paddr = phys_pg_pack->pages[i];
755 
756 		rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size);
757 		if (rc) {
758 			dev_err(hdev->dev,
759 				"map failed for handle %u, npages: %llu, mapped: %llu",
760 				phys_pg_pack->handle, phys_pg_pack->npages,
761 				mapped_pg_cnt);
762 			goto err;
763 		}
764 
765 		mapped_pg_cnt++;
766 		next_vaddr += page_size;
767 	}
768 
769 	return 0;
770 
771 err:
772 	next_vaddr = vaddr;
773 	for (i = 0 ; i < mapped_pg_cnt ; i++) {
774 		if (hl_mmu_unmap(ctx, next_vaddr, page_size))
775 			dev_warn_ratelimited(hdev->dev,
776 				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
777 					phys_pg_pack->handle, next_vaddr,
778 					phys_pg_pack->pages[i], page_size);
779 
780 		next_vaddr += page_size;
781 	}
782 
783 	return rc;
784 }
785 
get_paddr_from_handle(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * paddr)786 static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
787 				u64 *paddr)
788 {
789 	struct hl_device *hdev = ctx->hdev;
790 	struct hl_vm *vm = &hdev->vm;
791 	struct hl_vm_phys_pg_pack *phys_pg_pack;
792 	u32 handle;
793 
794 	handle = lower_32_bits(args->map_device.handle);
795 	spin_lock(&vm->idr_lock);
796 	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
797 	if (!phys_pg_pack) {
798 		spin_unlock(&vm->idr_lock);
799 		dev_err(hdev->dev, "no match for handle %u\n", handle);
800 		return -EINVAL;
801 	}
802 
803 	*paddr = phys_pg_pack->pages[0];
804 
805 	spin_unlock(&vm->idr_lock);
806 
807 	return 0;
808 }
809 
810 /*
811  * map_device_va - map the given memory
812  *
813  * @ctx	         : current context
814  * @args         : host parameters with handle/host virtual address
815  * @device_addr	 : pointer to result device virtual address
816  *
817  * This function does the following:
818  * - If given a physical device memory handle, map to a device virtual block
819  *   and return the start address of this block
820  * - If given a host virtual address and size, find the related physical pages,
821  *   map a device virtual block to this pages and return the start address of
822  *   this block
823  */
map_device_va(struct hl_ctx * ctx,struct hl_mem_in * args,u64 * device_addr)824 static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
825 		u64 *device_addr)
826 {
827 	struct hl_device *hdev = ctx->hdev;
828 	struct hl_vm *vm = &hdev->vm;
829 	struct hl_vm_phys_pg_pack *phys_pg_pack;
830 	struct hl_userptr *userptr = NULL;
831 	struct hl_vm_hash_node *hnode;
832 	enum vm_type_t *vm_type;
833 	u64 ret_vaddr, hint_addr;
834 	u32 handle = 0;
835 	int rc;
836 	bool is_userptr = args->flags & HL_MEM_USERPTR;
837 
838 	/* Assume failure */
839 	*device_addr = 0;
840 
841 	if (is_userptr) {
842 		rc = get_userptr_from_host_va(hdev, args, &userptr);
843 		if (rc) {
844 			dev_err(hdev->dev, "failed to get userptr from va\n");
845 			return rc;
846 		}
847 
848 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
849 				&phys_pg_pack);
850 		if (rc) {
851 			dev_err(hdev->dev,
852 				"unable to init page pack for vaddr 0x%llx\n",
853 				args->map_host.host_virt_addr);
854 			goto init_page_pack_err;
855 		}
856 
857 		vm_type = (enum vm_type_t *) userptr;
858 		hint_addr = args->map_host.hint_addr;
859 	} else {
860 		handle = lower_32_bits(args->map_device.handle);
861 
862 		spin_lock(&vm->idr_lock);
863 		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
864 		if (!phys_pg_pack) {
865 			spin_unlock(&vm->idr_lock);
866 			dev_err(hdev->dev,
867 				"no match for handle %u\n", handle);
868 			return -EINVAL;
869 		}
870 
871 		/* increment now to avoid freeing device memory while mapping */
872 		atomic_inc(&phys_pg_pack->mapping_cnt);
873 
874 		spin_unlock(&vm->idr_lock);
875 
876 		vm_type = (enum vm_type_t *) phys_pg_pack;
877 
878 		hint_addr = args->map_device.hint_addr;
879 	}
880 
881 	/*
882 	 * relevant for mapping device physical memory only, as host memory is
883 	 * implicitly shared
884 	 */
885 	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
886 			phys_pg_pack->asid != ctx->asid) {
887 		dev_err(hdev->dev,
888 			"Failed to map memory, handle %u is not shared\n",
889 			handle);
890 		rc = -EPERM;
891 		goto shared_err;
892 	}
893 
894 	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
895 	if (!hnode) {
896 		rc = -ENOMEM;
897 		goto hnode_err;
898 	}
899 
900 	ret_vaddr = get_va_block(hdev,
901 			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
902 			phys_pg_pack->total_size, hint_addr, is_userptr);
903 	if (!ret_vaddr) {
904 		dev_err(hdev->dev, "no available va block for handle %u\n",
905 				handle);
906 		rc = -ENOMEM;
907 		goto va_block_err;
908 	}
909 
910 	mutex_lock(&ctx->mmu_lock);
911 
912 	rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack);
913 	if (rc) {
914 		mutex_unlock(&ctx->mmu_lock);
915 		dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
916 				handle);
917 		goto map_err;
918 	}
919 
920 	hdev->asic_funcs->mmu_invalidate_cache(hdev, false);
921 
922 	mutex_unlock(&ctx->mmu_lock);
923 
924 	ret_vaddr += phys_pg_pack->offset;
925 
926 	hnode->ptr = vm_type;
927 	hnode->vaddr = ret_vaddr;
928 
929 	mutex_lock(&ctx->mem_hash_lock);
930 	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
931 	mutex_unlock(&ctx->mem_hash_lock);
932 
933 	*device_addr = ret_vaddr;
934 
935 	if (is_userptr)
936 		free_phys_pg_pack(hdev, phys_pg_pack);
937 
938 	return 0;
939 
940 map_err:
941 	if (add_va_block(hdev,
942 			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
943 			ret_vaddr,
944 			ret_vaddr + phys_pg_pack->total_size - 1))
945 		dev_warn(hdev->dev,
946 			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
947 				handle, ret_vaddr);
948 
949 va_block_err:
950 	kfree(hnode);
951 hnode_err:
952 shared_err:
953 	atomic_dec(&phys_pg_pack->mapping_cnt);
954 	if (is_userptr)
955 		free_phys_pg_pack(hdev, phys_pg_pack);
956 init_page_pack_err:
957 	if (is_userptr)
958 		free_userptr(hdev, userptr);
959 
960 	return rc;
961 }
962 
963 /*
964  * unmap_device_va      - unmap the given device virtual address
965  *
966  * @ctx                 : current context
967  * @vaddr               : device virtual address to unmap
968  *
969  * This function does the following:
970  * - Unmap the physical pages related to the given virtual address
971  * - return the device virtual block to the virtual block list
972  */
unmap_device_va(struct hl_ctx * ctx,u64 vaddr)973 static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr)
974 {
975 	struct hl_device *hdev = ctx->hdev;
976 	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
977 	struct hl_vm_hash_node *hnode = NULL;
978 	struct hl_userptr *userptr = NULL;
979 	enum vm_type_t *vm_type;
980 	u64 next_vaddr, i;
981 	u32 page_size;
982 	bool is_userptr;
983 	int rc;
984 
985 	/* protect from double entrance */
986 	mutex_lock(&ctx->mem_hash_lock);
987 	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
988 		if (vaddr == hnode->vaddr)
989 			break;
990 
991 	if (!hnode) {
992 		mutex_unlock(&ctx->mem_hash_lock);
993 		dev_err(hdev->dev,
994 			"unmap failed, no mem hnode for vaddr 0x%llx\n",
995 			vaddr);
996 		return -EINVAL;
997 	}
998 
999 	hash_del(&hnode->node);
1000 	mutex_unlock(&ctx->mem_hash_lock);
1001 
1002 	vm_type = hnode->ptr;
1003 
1004 	if (*vm_type == VM_TYPE_USERPTR) {
1005 		is_userptr = true;
1006 		userptr = hnode->ptr;
1007 		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1008 				&phys_pg_pack);
1009 		if (rc) {
1010 			dev_err(hdev->dev,
1011 				"unable to init page pack for vaddr 0x%llx\n",
1012 				vaddr);
1013 			goto vm_type_err;
1014 		}
1015 	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1016 		is_userptr = false;
1017 		phys_pg_pack = hnode->ptr;
1018 	} else {
1019 		dev_warn(hdev->dev,
1020 			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1021 				vaddr);
1022 		rc = -EFAULT;
1023 		goto vm_type_err;
1024 	}
1025 
1026 	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1027 		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1028 		rc = -EINVAL;
1029 		goto mapping_cnt_err;
1030 	}
1031 
1032 	page_size = phys_pg_pack->page_size;
1033 	vaddr &= ~(((u64) page_size) - 1);
1034 
1035 	next_vaddr = vaddr;
1036 
1037 	mutex_lock(&ctx->mmu_lock);
1038 
1039 	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1040 		if (hl_mmu_unmap(ctx, next_vaddr, page_size))
1041 			dev_warn_ratelimited(hdev->dev,
1042 			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1043 
1044 		/* unmapping on Palladium can be really long, so avoid a CPU
1045 		 * soft lockup bug by sleeping a little between unmapping pages
1046 		 */
1047 		if (hdev->pldm)
1048 			usleep_range(500, 1000);
1049 	}
1050 
1051 	hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
1052 
1053 	mutex_unlock(&ctx->mmu_lock);
1054 
1055 	if (add_va_block(hdev,
1056 			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
1057 			vaddr,
1058 			vaddr + phys_pg_pack->total_size - 1))
1059 		dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n",
1060 				vaddr);
1061 
1062 	atomic_dec(&phys_pg_pack->mapping_cnt);
1063 	kfree(hnode);
1064 
1065 	if (is_userptr) {
1066 		free_phys_pg_pack(hdev, phys_pg_pack);
1067 		free_userptr(hdev, userptr);
1068 	}
1069 
1070 	return 0;
1071 
1072 mapping_cnt_err:
1073 	if (is_userptr)
1074 		free_phys_pg_pack(hdev, phys_pg_pack);
1075 vm_type_err:
1076 	mutex_lock(&ctx->mem_hash_lock);
1077 	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1078 	mutex_unlock(&ctx->mem_hash_lock);
1079 
1080 	return rc;
1081 }
1082 
mem_ioctl_no_mmu(struct hl_fpriv * hpriv,union hl_mem_args * args)1083 static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
1084 {
1085 	struct hl_device *hdev = hpriv->hdev;
1086 	struct hl_ctx *ctx = hpriv->ctx;
1087 	u64 device_addr = 0;
1088 	u32 handle = 0;
1089 	int rc;
1090 
1091 	switch (args->in.op) {
1092 	case HL_MEM_OP_ALLOC:
1093 		if (args->in.alloc.mem_size == 0) {
1094 			dev_err(hdev->dev,
1095 				"alloc size must be larger than 0\n");
1096 			rc = -EINVAL;
1097 			goto out;
1098 		}
1099 
1100 		/* Force contiguous as there are no real MMU
1101 		 * translations to overcome physical memory gaps
1102 		 */
1103 		args->in.flags |= HL_MEM_CONTIGUOUS;
1104 		rc = alloc_device_memory(ctx, &args->in, &handle);
1105 
1106 		memset(args, 0, sizeof(*args));
1107 		args->out.handle = (__u64) handle;
1108 		break;
1109 
1110 	case HL_MEM_OP_FREE:
1111 		rc = free_device_memory(ctx, args->in.free.handle);
1112 		break;
1113 
1114 	case HL_MEM_OP_MAP:
1115 		if (args->in.flags & HL_MEM_USERPTR) {
1116 			device_addr = args->in.map_host.host_virt_addr;
1117 			rc = 0;
1118 		} else {
1119 			rc = get_paddr_from_handle(ctx, &args->in,
1120 					&device_addr);
1121 		}
1122 
1123 		memset(args, 0, sizeof(*args));
1124 		args->out.device_virt_addr = device_addr;
1125 		break;
1126 
1127 	case HL_MEM_OP_UNMAP:
1128 		rc = 0;
1129 		break;
1130 
1131 	default:
1132 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1133 		rc = -ENOTTY;
1134 		break;
1135 	}
1136 
1137 out:
1138 	return rc;
1139 }
1140 
hl_mem_ioctl(struct hl_fpriv * hpriv,void * data)1141 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
1142 {
1143 	union hl_mem_args *args = data;
1144 	struct hl_device *hdev = hpriv->hdev;
1145 	struct hl_ctx *ctx = hpriv->ctx;
1146 	u64 device_addr = 0;
1147 	u32 handle = 0;
1148 	int rc;
1149 
1150 	if (hl_device_disabled_or_in_reset(hdev)) {
1151 		dev_warn_ratelimited(hdev->dev,
1152 			"Device is %s. Can't execute MEMORY IOCTL\n",
1153 			atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1154 		return -EBUSY;
1155 	}
1156 
1157 	if (!hdev->mmu_enable)
1158 		return mem_ioctl_no_mmu(hpriv, args);
1159 
1160 	switch (args->in.op) {
1161 	case HL_MEM_OP_ALLOC:
1162 		if (!hdev->dram_supports_virtual_memory) {
1163 			dev_err(hdev->dev, "DRAM alloc is not supported\n");
1164 			rc = -EINVAL;
1165 			goto out;
1166 		}
1167 
1168 		if (args->in.alloc.mem_size == 0) {
1169 			dev_err(hdev->dev,
1170 				"alloc size must be larger than 0\n");
1171 			rc = -EINVAL;
1172 			goto out;
1173 		}
1174 		rc = alloc_device_memory(ctx, &args->in, &handle);
1175 
1176 		memset(args, 0, sizeof(*args));
1177 		args->out.handle = (__u64) handle;
1178 		break;
1179 
1180 	case HL_MEM_OP_FREE:
1181 		rc = free_device_memory(ctx, args->in.free.handle);
1182 		break;
1183 
1184 	case HL_MEM_OP_MAP:
1185 		rc = map_device_va(ctx, &args->in, &device_addr);
1186 
1187 		memset(args, 0, sizeof(*args));
1188 		args->out.device_virt_addr = device_addr;
1189 		break;
1190 
1191 	case HL_MEM_OP_UNMAP:
1192 		rc = unmap_device_va(ctx,
1193 				args->in.unmap.device_virt_addr);
1194 		break;
1195 
1196 	default:
1197 		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
1198 		rc = -ENOTTY;
1199 		break;
1200 	}
1201 
1202 out:
1203 	return rc;
1204 }
1205 
1206 /*
1207  * hl_pin_host_memory - pins a chunk of host memory
1208  *
1209  * @hdev                : pointer to the habanalabs device structure
1210  * @addr                : the user-space virtual address of the memory area
1211  * @size                : the size of the memory area
1212  * @userptr	        : pointer to hl_userptr structure
1213  *
1214  * This function does the following:
1215  * - Pins the physical pages
1216  * - Create a SG list from those pages
1217  */
hl_pin_host_memory(struct hl_device * hdev,u64 addr,u64 size,struct hl_userptr * userptr)1218 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1219 			struct hl_userptr *userptr)
1220 {
1221 	u64 start, end;
1222 	u32 npages, offset;
1223 	int rc;
1224 
1225 	if (!size) {
1226 		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1227 		return -EINVAL;
1228 	}
1229 
1230 	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1231 		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1232 		return -EFAULT;
1233 	}
1234 
1235 	/*
1236 	 * If the combination of the address and size requested for this memory
1237 	 * region causes an integer overflow, return error.
1238 	 */
1239 	if (((addr + size) < addr) ||
1240 			PAGE_ALIGN(addr + size) < (addr + size)) {
1241 		dev_err(hdev->dev,
1242 			"user pointer 0x%llx + %llu causes integer overflow\n",
1243 			addr, size);
1244 		return -EINVAL;
1245 	}
1246 
1247 	start = addr & PAGE_MASK;
1248 	offset = addr & ~PAGE_MASK;
1249 	end = PAGE_ALIGN(addr + size);
1250 	npages = (end - start) >> PAGE_SHIFT;
1251 
1252 	userptr->size = size;
1253 	userptr->addr = addr;
1254 	userptr->dma_mapped = false;
1255 	INIT_LIST_HEAD(&userptr->job_node);
1256 
1257 	userptr->vec = frame_vector_create(npages);
1258 	if (!userptr->vec) {
1259 		dev_err(hdev->dev, "Failed to create frame vector\n");
1260 		return -ENOMEM;
1261 	}
1262 
1263 	rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
1264 				userptr->vec);
1265 
1266 	if (rc != npages) {
1267 		dev_err(hdev->dev,
1268 			"Failed to map host memory, user ptr probably wrong\n");
1269 		if (rc < 0)
1270 			goto destroy_framevec;
1271 		rc = -EFAULT;
1272 		goto put_framevec;
1273 	}
1274 
1275 	if (frame_vector_to_pages(userptr->vec) < 0) {
1276 		dev_err(hdev->dev,
1277 			"Failed to translate frame vector to pages\n");
1278 		rc = -EFAULT;
1279 		goto put_framevec;
1280 	}
1281 
1282 	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
1283 	if (!userptr->sgt) {
1284 		rc = -ENOMEM;
1285 		goto put_framevec;
1286 	}
1287 
1288 	rc = sg_alloc_table_from_pages(userptr->sgt,
1289 					frame_vector_pages(userptr->vec),
1290 					npages, offset, size, GFP_ATOMIC);
1291 	if (rc < 0) {
1292 		dev_err(hdev->dev, "failed to create SG table from pages\n");
1293 		goto free_sgt;
1294 	}
1295 
1296 	hl_debugfs_add_userptr(hdev, userptr);
1297 
1298 	return 0;
1299 
1300 free_sgt:
1301 	kfree(userptr->sgt);
1302 put_framevec:
1303 	put_vaddr_frames(userptr->vec);
1304 destroy_framevec:
1305 	frame_vector_destroy(userptr->vec);
1306 	return rc;
1307 }
1308 
1309 /*
1310  * hl_unpin_host_memory - unpins a chunk of host memory
1311  *
1312  * @hdev                : pointer to the habanalabs device structure
1313  * @userptr             : pointer to hl_userptr structure
1314  *
1315  * This function does the following:
1316  * - Unpins the physical pages related to the host memory
1317  * - Free the SG list
1318  */
hl_unpin_host_memory(struct hl_device * hdev,struct hl_userptr * userptr)1319 int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
1320 {
1321 	struct page **pages;
1322 
1323 	hl_debugfs_remove_userptr(hdev, userptr);
1324 
1325 	if (userptr->dma_mapped)
1326 		hdev->asic_funcs->hl_dma_unmap_sg(hdev,
1327 				userptr->sgt->sgl,
1328 				userptr->sgt->nents,
1329 				userptr->dir);
1330 
1331 	pages = frame_vector_pages(userptr->vec);
1332 	if (!IS_ERR(pages)) {
1333 		int i;
1334 
1335 		for (i = 0; i < frame_vector_count(userptr->vec); i++)
1336 			set_page_dirty_lock(pages[i]);
1337 	}
1338 	put_vaddr_frames(userptr->vec);
1339 	frame_vector_destroy(userptr->vec);
1340 
1341 	list_del(&userptr->job_node);
1342 
1343 	sg_free_table(userptr->sgt);
1344 	kfree(userptr->sgt);
1345 
1346 	return 0;
1347 }
1348 
1349 /*
1350  * hl_userptr_delete_list - clear userptr list
1351  *
1352  * @hdev                : pointer to the habanalabs device structure
1353  * @userptr_list        : pointer to the list to clear
1354  *
1355  * This function does the following:
1356  * - Iterates over the list and unpins the host memory and frees the userptr
1357  *   structure.
1358  */
hl_userptr_delete_list(struct hl_device * hdev,struct list_head * userptr_list)1359 void hl_userptr_delete_list(struct hl_device *hdev,
1360 				struct list_head *userptr_list)
1361 {
1362 	struct hl_userptr *userptr, *tmp;
1363 
1364 	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
1365 		hl_unpin_host_memory(hdev, userptr);
1366 		kfree(userptr);
1367 	}
1368 
1369 	INIT_LIST_HEAD(userptr_list);
1370 }
1371 
1372 /*
1373  * hl_userptr_is_pinned - returns whether the given userptr is pinned
1374  *
1375  * @hdev                : pointer to the habanalabs device structure
1376  * @userptr_list        : pointer to the list to clear
1377  * @userptr             : pointer to userptr to check
1378  *
1379  * This function does the following:
1380  * - Iterates over the list and checks if the given userptr is in it, means is
1381  *   pinned. If so, returns true, otherwise returns false.
1382  */
hl_userptr_is_pinned(struct hl_device * hdev,u64 addr,u32 size,struct list_head * userptr_list,struct hl_userptr ** userptr)1383 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
1384 				u32 size, struct list_head *userptr_list,
1385 				struct hl_userptr **userptr)
1386 {
1387 	list_for_each_entry((*userptr), userptr_list, job_node) {
1388 		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
1389 			return true;
1390 	}
1391 
1392 	return false;
1393 }
1394 
1395 /*
1396  * hl_va_range_init - initialize virtual addresses range
1397  *
1398  * @hdev                : pointer to the habanalabs device structure
1399  * @va_range            : pointer to the range to initialize
1400  * @start               : range start address
1401  * @end                 : range end address
1402  *
1403  * This function does the following:
1404  * - Initializes the virtual addresses list of the given range with the given
1405  *   addresses.
1406  */
hl_va_range_init(struct hl_device * hdev,struct hl_va_range * va_range,u64 start,u64 end)1407 static int hl_va_range_init(struct hl_device *hdev,
1408 		struct hl_va_range *va_range, u64 start, u64 end)
1409 {
1410 	int rc;
1411 
1412 	INIT_LIST_HEAD(&va_range->list);
1413 
1414 	/* PAGE_SIZE alignment */
1415 
1416 	if (start & (PAGE_SIZE - 1)) {
1417 		start &= PAGE_MASK;
1418 		start += PAGE_SIZE;
1419 	}
1420 
1421 	if (end & (PAGE_SIZE - 1))
1422 		end &= PAGE_MASK;
1423 
1424 	if (start >= end) {
1425 		dev_err(hdev->dev, "too small vm range for va list\n");
1426 		return -EFAULT;
1427 	}
1428 
1429 	rc = add_va_block(hdev, va_range, start, end);
1430 
1431 	if (rc) {
1432 		dev_err(hdev->dev, "Failed to init host va list\n");
1433 		return rc;
1434 	}
1435 
1436 	va_range->start_addr = start;
1437 	va_range->end_addr = end;
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * hl_vm_ctx_init_with_ranges - initialize virtual memory for context
1444  *
1445  * @ctx                 : pointer to the habanalabs context structure
1446  * @host_range_start    : host virtual addresses range start
1447  * @host_range_end      : host virtual addresses range end
1448  * @dram_range_start    : dram virtual addresses range start
1449  * @dram_range_end      : dram virtual addresses range end
1450  *
1451  * This function initializes the following:
1452  * - MMU for context
1453  * - Virtual address to area descriptor hashtable
1454  * - Virtual block list of available virtual memory
1455  */
hl_vm_ctx_init_with_ranges(struct hl_ctx * ctx,u64 host_range_start,u64 host_range_end,u64 dram_range_start,u64 dram_range_end)1456 static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
1457 				u64 host_range_end, u64 dram_range_start,
1458 				u64 dram_range_end)
1459 {
1460 	struct hl_device *hdev = ctx->hdev;
1461 	int rc;
1462 
1463 	rc = hl_mmu_ctx_init(ctx);
1464 	if (rc) {
1465 		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
1466 		return rc;
1467 	}
1468 
1469 	mutex_init(&ctx->mem_hash_lock);
1470 	hash_init(ctx->mem_hash);
1471 
1472 	mutex_init(&ctx->host_va_range.lock);
1473 
1474 	rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
1475 			host_range_end);
1476 	if (rc) {
1477 		dev_err(hdev->dev, "failed to init host vm range\n");
1478 		goto host_vm_err;
1479 	}
1480 
1481 	mutex_init(&ctx->dram_va_range.lock);
1482 
1483 	rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
1484 			dram_range_end);
1485 	if (rc) {
1486 		dev_err(hdev->dev, "failed to init dram vm range\n");
1487 		goto dram_vm_err;
1488 	}
1489 
1490 	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
1491 
1492 	return 0;
1493 
1494 dram_vm_err:
1495 	mutex_destroy(&ctx->dram_va_range.lock);
1496 
1497 	mutex_lock(&ctx->host_va_range.lock);
1498 	clear_va_list_locked(hdev, &ctx->host_va_range.list);
1499 	mutex_unlock(&ctx->host_va_range.lock);
1500 host_vm_err:
1501 	mutex_destroy(&ctx->host_va_range.lock);
1502 	mutex_destroy(&ctx->mem_hash_lock);
1503 	hl_mmu_ctx_fini(ctx);
1504 
1505 	return rc;
1506 }
1507 
hl_vm_ctx_init(struct hl_ctx * ctx)1508 int hl_vm_ctx_init(struct hl_ctx *ctx)
1509 {
1510 	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
1511 	u64 host_range_start, host_range_end, dram_range_start,
1512 		dram_range_end;
1513 
1514 	atomic64_set(&ctx->dram_phys_mem, 0);
1515 
1516 	/*
1517 	 * - If MMU is enabled, init the ranges as usual.
1518 	 * - If MMU is disabled, in case of host mapping, the returned address
1519 	 *   is the given one.
1520 	 *   In case of DRAM mapping, the returned address is the physical
1521 	 *   address of the memory related to the given handle.
1522 	 */
1523 	if (ctx->hdev->mmu_enable) {
1524 		dram_range_start = prop->va_space_dram_start_address;
1525 		dram_range_end = prop->va_space_dram_end_address;
1526 		host_range_start = prop->va_space_host_start_address;
1527 		host_range_end = prop->va_space_host_end_address;
1528 	} else {
1529 		dram_range_start = prop->dram_user_base_address;
1530 		dram_range_end = prop->dram_end_address;
1531 		host_range_start = prop->dram_user_base_address;
1532 		host_range_end = prop->dram_end_address;
1533 	}
1534 
1535 	return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
1536 			dram_range_start, dram_range_end);
1537 }
1538 
1539 /*
1540  * hl_va_range_fini     - clear a virtual addresses range
1541  *
1542  * @hdev                : pointer to the habanalabs structure
1543  * va_range             : pointer to virtual addresses range
1544  *
1545  * This function initializes the following:
1546  * - Checks that the given range contains the whole initial range
1547  * - Frees the virtual addresses block list and its lock
1548  */
hl_va_range_fini(struct hl_device * hdev,struct hl_va_range * va_range)1549 static void hl_va_range_fini(struct hl_device *hdev,
1550 		struct hl_va_range *va_range)
1551 {
1552 	struct hl_vm_va_block *va_block;
1553 
1554 	if (list_empty(&va_range->list)) {
1555 		dev_warn(hdev->dev,
1556 				"va list should not be empty on cleanup!\n");
1557 		goto out;
1558 	}
1559 
1560 	if (!list_is_singular(&va_range->list)) {
1561 		dev_warn(hdev->dev,
1562 			"va list should not contain multiple blocks on cleanup!\n");
1563 		goto free_va_list;
1564 	}
1565 
1566 	va_block = list_first_entry(&va_range->list, typeof(*va_block), node);
1567 
1568 	if (va_block->start != va_range->start_addr ||
1569 		va_block->end != va_range->end_addr) {
1570 		dev_warn(hdev->dev,
1571 			"wrong va block on cleanup, from 0x%llx to 0x%llx\n",
1572 				va_block->start, va_block->end);
1573 		goto free_va_list;
1574 	}
1575 
1576 free_va_list:
1577 	mutex_lock(&va_range->lock);
1578 	clear_va_list_locked(hdev, &va_range->list);
1579 	mutex_unlock(&va_range->lock);
1580 
1581 out:
1582 	mutex_destroy(&va_range->lock);
1583 }
1584 
1585 /*
1586  * hl_vm_ctx_fini       - virtual memory teardown of context
1587  *
1588  * @ctx                 : pointer to the habanalabs context structure
1589  *
1590  * This function perform teardown the following:
1591  * - Virtual block list of available virtual memory
1592  * - Virtual address to area descriptor hashtable
1593  * - MMU for context
1594  *
1595  * In addition this function does the following:
1596  * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
1597  *   hashtable should be empty as no valid mappings should exist at this
1598  *   point.
1599  * - Frees any existing physical page list from the idr which relates to the
1600  *   current context asid.
1601  * - This function checks the virtual block list for correctness. At this point
1602  *   the list should contain one element which describes the whole virtual
1603  *   memory range of the context. Otherwise, a warning is printed.
1604  */
hl_vm_ctx_fini(struct hl_ctx * ctx)1605 void hl_vm_ctx_fini(struct hl_ctx *ctx)
1606 {
1607 	struct hl_device *hdev = ctx->hdev;
1608 	struct hl_vm *vm = &hdev->vm;
1609 	struct hl_vm_phys_pg_pack *phys_pg_list;
1610 	struct hl_vm_hash_node *hnode;
1611 	struct hlist_node *tmp_node;
1612 	int i;
1613 
1614 	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
1615 
1616 	if (!hash_empty(ctx->mem_hash))
1617 		dev_notice(hdev->dev, "ctx is freed while it has va in use\n");
1618 
1619 	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
1620 		dev_dbg(hdev->dev,
1621 			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
1622 			hnode->vaddr, ctx->asid);
1623 		unmap_device_va(ctx, hnode->vaddr);
1624 	}
1625 
1626 	spin_lock(&vm->idr_lock);
1627 	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
1628 		if (phys_pg_list->asid == ctx->asid) {
1629 			dev_dbg(hdev->dev,
1630 				"page list 0x%p of asid %d is still alive\n",
1631 				phys_pg_list, ctx->asid);
1632 			atomic64_sub(phys_pg_list->total_size,
1633 					&hdev->dram_used_mem);
1634 			free_phys_pg_pack(hdev, phys_pg_list);
1635 			idr_remove(&vm->phys_pg_pack_handles, i);
1636 		}
1637 	spin_unlock(&vm->idr_lock);
1638 
1639 	hl_va_range_fini(hdev, &ctx->dram_va_range);
1640 	hl_va_range_fini(hdev, &ctx->host_va_range);
1641 
1642 	mutex_destroy(&ctx->mem_hash_lock);
1643 	hl_mmu_ctx_fini(ctx);
1644 }
1645 
1646 /*
1647  * hl_vm_init           - initialize virtual memory module
1648  *
1649  * @hdev                : pointer to the habanalabs device structure
1650  *
1651  * This function initializes the following:
1652  * - MMU module
1653  * - DRAM physical pages pool of 2MB
1654  * - Idr for device memory allocation handles
1655  */
hl_vm_init(struct hl_device * hdev)1656 int hl_vm_init(struct hl_device *hdev)
1657 {
1658 	struct asic_fixed_properties *prop = &hdev->asic_prop;
1659 	struct hl_vm *vm = &hdev->vm;
1660 	int rc;
1661 
1662 	vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
1663 	if (!vm->dram_pg_pool) {
1664 		dev_err(hdev->dev, "Failed to create dram page pool\n");
1665 		return -ENOMEM;
1666 	}
1667 
1668 	kref_init(&vm->dram_pg_pool_refcount);
1669 
1670 	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
1671 			prop->dram_end_address - prop->dram_user_base_address,
1672 			-1);
1673 
1674 	if (rc) {
1675 		dev_err(hdev->dev,
1676 			"Failed to add memory to dram page pool %d\n", rc);
1677 		goto pool_add_err;
1678 	}
1679 
1680 	spin_lock_init(&vm->idr_lock);
1681 	idr_init(&vm->phys_pg_pack_handles);
1682 
1683 	atomic64_set(&hdev->dram_used_mem, 0);
1684 
1685 	vm->init_done = true;
1686 
1687 	return 0;
1688 
1689 pool_add_err:
1690 	gen_pool_destroy(vm->dram_pg_pool);
1691 
1692 	return rc;
1693 }
1694 
1695 /*
1696  * hl_vm_fini           - virtual memory module teardown
1697  *
1698  * @hdev                : pointer to the habanalabs device structure
1699  *
1700  * This function perform teardown to the following:
1701  * - Idr for device memory allocation handles
1702  * - DRAM physical pages pool of 2MB
1703  * - MMU module
1704  */
hl_vm_fini(struct hl_device * hdev)1705 void hl_vm_fini(struct hl_device *hdev)
1706 {
1707 	struct hl_vm *vm = &hdev->vm;
1708 
1709 	if (!vm->init_done)
1710 		return;
1711 
1712 	/*
1713 	 * At this point all the contexts should be freed and hence no DRAM
1714 	 * memory should be in use. Hence the DRAM pool should be freed here.
1715 	 */
1716 	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
1717 		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
1718 				__func__);
1719 
1720 	vm->init_done = false;
1721 }
1722