1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HID support for Linux
4 *
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
9 */
10
11 /*
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
30
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
35
36 #include "hid-ids.h"
37
38 /*
39 * Version Information
40 */
41
42 #define DRIVER_DESC "HID core driver"
43
44 static int hid_ignore_special_drivers = 0;
45 module_param_named(ignore_special_drivers, hid_ignore_special_drivers, int, 0600);
46 MODULE_PARM_DESC(ignore_special_drivers, "Ignore any special drivers and handle all devices by generic driver");
47
48 /*
49 * Register a new report for a device.
50 */
51
hid_register_report(struct hid_device * device,enum hid_report_type type,unsigned int id,unsigned int application)52 struct hid_report *hid_register_report(struct hid_device *device,
53 enum hid_report_type type, unsigned int id,
54 unsigned int application)
55 {
56 struct hid_report_enum *report_enum = device->report_enum + type;
57 struct hid_report *report;
58
59 if (id >= HID_MAX_IDS)
60 return NULL;
61 if (report_enum->report_id_hash[id])
62 return report_enum->report_id_hash[id];
63
64 report = kzalloc(sizeof(struct hid_report), GFP_KERNEL);
65 if (!report)
66 return NULL;
67
68 if (id != 0)
69 report_enum->numbered = 1;
70
71 report->id = id;
72 report->type = type;
73 report->size = 0;
74 report->device = device;
75 report->application = application;
76 report_enum->report_id_hash[id] = report;
77
78 list_add_tail(&report->list, &report_enum->report_list);
79 INIT_LIST_HEAD(&report->field_entry_list);
80
81 return report;
82 }
83 EXPORT_SYMBOL_GPL(hid_register_report);
84
85 /*
86 * Register a new field for this report.
87 */
88
hid_register_field(struct hid_report * report,unsigned usages)89 static struct hid_field *hid_register_field(struct hid_report *report, unsigned usages)
90 {
91 struct hid_field *field;
92
93 if (report->maxfield == HID_MAX_FIELDS) {
94 hid_err(report->device, "too many fields in report\n");
95 return NULL;
96 }
97
98 field = kzalloc((sizeof(struct hid_field) +
99 usages * sizeof(struct hid_usage) +
100 3 * usages * sizeof(unsigned int)), GFP_KERNEL);
101 if (!field)
102 return NULL;
103
104 field->index = report->maxfield++;
105 report->field[field->index] = field;
106 field->usage = (struct hid_usage *)(field + 1);
107 field->value = (s32 *)(field->usage + usages);
108 field->new_value = (s32 *)(field->value + usages);
109 field->usages_priorities = (s32 *)(field->new_value + usages);
110 field->report = report;
111
112 return field;
113 }
114
115 /*
116 * Open a collection. The type/usage is pushed on the stack.
117 */
118
open_collection(struct hid_parser * parser,unsigned type)119 static int open_collection(struct hid_parser *parser, unsigned type)
120 {
121 struct hid_collection *collection;
122 unsigned usage;
123 int collection_index;
124
125 usage = parser->local.usage[0];
126
127 if (parser->collection_stack_ptr == parser->collection_stack_size) {
128 unsigned int *collection_stack;
129 unsigned int new_size = parser->collection_stack_size +
130 HID_COLLECTION_STACK_SIZE;
131
132 collection_stack = krealloc(parser->collection_stack,
133 new_size * sizeof(unsigned int),
134 GFP_KERNEL);
135 if (!collection_stack)
136 return -ENOMEM;
137
138 parser->collection_stack = collection_stack;
139 parser->collection_stack_size = new_size;
140 }
141
142 if (parser->device->maxcollection == parser->device->collection_size) {
143 collection = kmalloc(
144 array3_size(sizeof(struct hid_collection),
145 parser->device->collection_size,
146 2),
147 GFP_KERNEL);
148 if (collection == NULL) {
149 hid_err(parser->device, "failed to reallocate collection array\n");
150 return -ENOMEM;
151 }
152 memcpy(collection, parser->device->collection,
153 sizeof(struct hid_collection) *
154 parser->device->collection_size);
155 memset(collection + parser->device->collection_size, 0,
156 sizeof(struct hid_collection) *
157 parser->device->collection_size);
158 kfree(parser->device->collection);
159 parser->device->collection = collection;
160 parser->device->collection_size *= 2;
161 }
162
163 parser->collection_stack[parser->collection_stack_ptr++] =
164 parser->device->maxcollection;
165
166 collection_index = parser->device->maxcollection++;
167 collection = parser->device->collection + collection_index;
168 collection->type = type;
169 collection->usage = usage;
170 collection->level = parser->collection_stack_ptr - 1;
171 collection->parent_idx = (collection->level == 0) ? -1 :
172 parser->collection_stack[collection->level - 1];
173
174 if (type == HID_COLLECTION_APPLICATION)
175 parser->device->maxapplication++;
176
177 return 0;
178 }
179
180 /*
181 * Close a collection.
182 */
183
close_collection(struct hid_parser * parser)184 static int close_collection(struct hid_parser *parser)
185 {
186 if (!parser->collection_stack_ptr) {
187 hid_err(parser->device, "collection stack underflow\n");
188 return -EINVAL;
189 }
190 parser->collection_stack_ptr--;
191 return 0;
192 }
193
194 /*
195 * Climb up the stack, search for the specified collection type
196 * and return the usage.
197 */
198
hid_lookup_collection(struct hid_parser * parser,unsigned type)199 static unsigned hid_lookup_collection(struct hid_parser *parser, unsigned type)
200 {
201 struct hid_collection *collection = parser->device->collection;
202 int n;
203
204 for (n = parser->collection_stack_ptr - 1; n >= 0; n--) {
205 unsigned index = parser->collection_stack[n];
206 if (collection[index].type == type)
207 return collection[index].usage;
208 }
209 return 0; /* we know nothing about this usage type */
210 }
211
212 /*
213 * Concatenate usage which defines 16 bits or less with the
214 * currently defined usage page to form a 32 bit usage
215 */
216
complete_usage(struct hid_parser * parser,unsigned int index)217 static void complete_usage(struct hid_parser *parser, unsigned int index)
218 {
219 parser->local.usage[index] &= 0xFFFF;
220 parser->local.usage[index] |=
221 (parser->global.usage_page & 0xFFFF) << 16;
222 }
223
224 /*
225 * Add a usage to the temporary parser table.
226 */
227
hid_add_usage(struct hid_parser * parser,unsigned usage,u8 size)228 static int hid_add_usage(struct hid_parser *parser, unsigned usage, u8 size)
229 {
230 if (parser->local.usage_index >= HID_MAX_USAGES) {
231 hid_err(parser->device, "usage index exceeded\n");
232 return -1;
233 }
234 parser->local.usage[parser->local.usage_index] = usage;
235
236 /*
237 * If Usage item only includes usage id, concatenate it with
238 * currently defined usage page
239 */
240 if (size <= 2)
241 complete_usage(parser, parser->local.usage_index);
242
243 parser->local.usage_size[parser->local.usage_index] = size;
244 parser->local.collection_index[parser->local.usage_index] =
245 parser->collection_stack_ptr ?
246 parser->collection_stack[parser->collection_stack_ptr - 1] : 0;
247 parser->local.usage_index++;
248 return 0;
249 }
250
251 /*
252 * Register a new field for this report.
253 */
254
hid_add_field(struct hid_parser * parser,unsigned report_type,unsigned flags)255 static int hid_add_field(struct hid_parser *parser, unsigned report_type, unsigned flags)
256 {
257 struct hid_report *report;
258 struct hid_field *field;
259 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
260 unsigned int usages;
261 unsigned int offset;
262 unsigned int i;
263 unsigned int application;
264
265 application = hid_lookup_collection(parser, HID_COLLECTION_APPLICATION);
266
267 report = hid_register_report(parser->device, report_type,
268 parser->global.report_id, application);
269 if (!report) {
270 hid_err(parser->device, "hid_register_report failed\n");
271 return -1;
272 }
273
274 /* Handle both signed and unsigned cases properly */
275 if ((parser->global.logical_minimum < 0 &&
276 parser->global.logical_maximum <
277 parser->global.logical_minimum) ||
278 (parser->global.logical_minimum >= 0 &&
279 (__u32)parser->global.logical_maximum <
280 (__u32)parser->global.logical_minimum)) {
281 dbg_hid("logical range invalid 0x%x 0x%x\n",
282 parser->global.logical_minimum,
283 parser->global.logical_maximum);
284 return -1;
285 }
286
287 offset = report->size;
288 report->size += parser->global.report_size * parser->global.report_count;
289
290 if (parser->device->ll_driver->max_buffer_size)
291 max_buffer_size = parser->device->ll_driver->max_buffer_size;
292
293 /* Total size check: Allow for possible report index byte */
294 if (report->size > (max_buffer_size - 1) << 3) {
295 hid_err(parser->device, "report is too long\n");
296 return -1;
297 }
298
299 if (!parser->local.usage_index) /* Ignore padding fields */
300 return 0;
301
302 usages = max_t(unsigned, parser->local.usage_index,
303 parser->global.report_count);
304
305 field = hid_register_field(report, usages);
306 if (!field)
307 return 0;
308
309 field->physical = hid_lookup_collection(parser, HID_COLLECTION_PHYSICAL);
310 field->logical = hid_lookup_collection(parser, HID_COLLECTION_LOGICAL);
311 field->application = application;
312
313 for (i = 0; i < usages; i++) {
314 unsigned j = i;
315 /* Duplicate the last usage we parsed if we have excess values */
316 if (i >= parser->local.usage_index)
317 j = parser->local.usage_index - 1;
318 field->usage[i].hid = parser->local.usage[j];
319 field->usage[i].collection_index =
320 parser->local.collection_index[j];
321 field->usage[i].usage_index = i;
322 field->usage[i].resolution_multiplier = 1;
323 }
324
325 field->maxusage = usages;
326 field->flags = flags;
327 field->report_offset = offset;
328 field->report_type = report_type;
329 field->report_size = parser->global.report_size;
330 field->report_count = parser->global.report_count;
331 field->logical_minimum = parser->global.logical_minimum;
332 field->logical_maximum = parser->global.logical_maximum;
333 field->physical_minimum = parser->global.physical_minimum;
334 field->physical_maximum = parser->global.physical_maximum;
335 field->unit_exponent = parser->global.unit_exponent;
336 field->unit = parser->global.unit;
337
338 return 0;
339 }
340
341 /*
342 * Read data value from item.
343 */
344
item_udata(struct hid_item * item)345 static u32 item_udata(struct hid_item *item)
346 {
347 switch (item->size) {
348 case 1: return item->data.u8;
349 case 2: return item->data.u16;
350 case 4: return item->data.u32;
351 }
352 return 0;
353 }
354
item_sdata(struct hid_item * item)355 static s32 item_sdata(struct hid_item *item)
356 {
357 switch (item->size) {
358 case 1: return item->data.s8;
359 case 2: return item->data.s16;
360 case 4: return item->data.s32;
361 }
362 return 0;
363 }
364
365 /*
366 * Process a global item.
367 */
368
hid_parser_global(struct hid_parser * parser,struct hid_item * item)369 static int hid_parser_global(struct hid_parser *parser, struct hid_item *item)
370 {
371 __s32 raw_value;
372 switch (item->tag) {
373 case HID_GLOBAL_ITEM_TAG_PUSH:
374
375 if (parser->global_stack_ptr == HID_GLOBAL_STACK_SIZE) {
376 hid_err(parser->device, "global environment stack overflow\n");
377 return -1;
378 }
379
380 memcpy(parser->global_stack + parser->global_stack_ptr++,
381 &parser->global, sizeof(struct hid_global));
382 return 0;
383
384 case HID_GLOBAL_ITEM_TAG_POP:
385
386 if (!parser->global_stack_ptr) {
387 hid_err(parser->device, "global environment stack underflow\n");
388 return -1;
389 }
390
391 memcpy(&parser->global, parser->global_stack +
392 --parser->global_stack_ptr, sizeof(struct hid_global));
393 return 0;
394
395 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE:
396 parser->global.usage_page = item_udata(item);
397 return 0;
398
399 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM:
400 parser->global.logical_minimum = item_sdata(item);
401 return 0;
402
403 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM:
404 if (parser->global.logical_minimum < 0)
405 parser->global.logical_maximum = item_sdata(item);
406 else
407 parser->global.logical_maximum = item_udata(item);
408 return 0;
409
410 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM:
411 parser->global.physical_minimum = item_sdata(item);
412 return 0;
413
414 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM:
415 if (parser->global.physical_minimum < 0)
416 parser->global.physical_maximum = item_sdata(item);
417 else
418 parser->global.physical_maximum = item_udata(item);
419 return 0;
420
421 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT:
422 /* Many devices provide unit exponent as a two's complement
423 * nibble due to the common misunderstanding of HID
424 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
425 * both this and the standard encoding. */
426 raw_value = item_sdata(item);
427 if (!(raw_value & 0xfffffff0))
428 parser->global.unit_exponent = hid_snto32(raw_value, 4);
429 else
430 parser->global.unit_exponent = raw_value;
431 return 0;
432
433 case HID_GLOBAL_ITEM_TAG_UNIT:
434 parser->global.unit = item_udata(item);
435 return 0;
436
437 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE:
438 parser->global.report_size = item_udata(item);
439 if (parser->global.report_size > 256) {
440 hid_err(parser->device, "invalid report_size %d\n",
441 parser->global.report_size);
442 return -1;
443 }
444 return 0;
445
446 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT:
447 parser->global.report_count = item_udata(item);
448 if (parser->global.report_count > HID_MAX_USAGES) {
449 hid_err(parser->device, "invalid report_count %d\n",
450 parser->global.report_count);
451 return -1;
452 }
453 return 0;
454
455 case HID_GLOBAL_ITEM_TAG_REPORT_ID:
456 parser->global.report_id = item_udata(item);
457 if (parser->global.report_id == 0 ||
458 parser->global.report_id >= HID_MAX_IDS) {
459 hid_err(parser->device, "report_id %u is invalid\n",
460 parser->global.report_id);
461 return -1;
462 }
463 return 0;
464
465 default:
466 hid_err(parser->device, "unknown global tag 0x%x\n", item->tag);
467 return -1;
468 }
469 }
470
471 /*
472 * Process a local item.
473 */
474
hid_parser_local(struct hid_parser * parser,struct hid_item * item)475 static int hid_parser_local(struct hid_parser *parser, struct hid_item *item)
476 {
477 __u32 data;
478 unsigned n;
479 __u32 count;
480
481 data = item_udata(item);
482
483 switch (item->tag) {
484 case HID_LOCAL_ITEM_TAG_DELIMITER:
485
486 if (data) {
487 /*
488 * We treat items before the first delimiter
489 * as global to all usage sets (branch 0).
490 * In the moment we process only these global
491 * items and the first delimiter set.
492 */
493 if (parser->local.delimiter_depth != 0) {
494 hid_err(parser->device, "nested delimiters\n");
495 return -1;
496 }
497 parser->local.delimiter_depth++;
498 parser->local.delimiter_branch++;
499 } else {
500 if (parser->local.delimiter_depth < 1) {
501 hid_err(parser->device, "bogus close delimiter\n");
502 return -1;
503 }
504 parser->local.delimiter_depth--;
505 }
506 return 0;
507
508 case HID_LOCAL_ITEM_TAG_USAGE:
509
510 if (parser->local.delimiter_branch > 1) {
511 dbg_hid("alternative usage ignored\n");
512 return 0;
513 }
514
515 return hid_add_usage(parser, data, item->size);
516
517 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM:
518
519 if (parser->local.delimiter_branch > 1) {
520 dbg_hid("alternative usage ignored\n");
521 return 0;
522 }
523
524 parser->local.usage_minimum = data;
525 return 0;
526
527 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM:
528
529 if (parser->local.delimiter_branch > 1) {
530 dbg_hid("alternative usage ignored\n");
531 return 0;
532 }
533
534 count = data - parser->local.usage_minimum;
535 if (count + parser->local.usage_index >= HID_MAX_USAGES) {
536 /*
537 * We do not warn if the name is not set, we are
538 * actually pre-scanning the device.
539 */
540 if (dev_name(&parser->device->dev))
541 hid_warn(parser->device,
542 "ignoring exceeding usage max\n");
543 data = HID_MAX_USAGES - parser->local.usage_index +
544 parser->local.usage_minimum - 1;
545 if (data <= 0) {
546 hid_err(parser->device,
547 "no more usage index available\n");
548 return -1;
549 }
550 }
551
552 for (n = parser->local.usage_minimum; n <= data; n++)
553 if (hid_add_usage(parser, n, item->size)) {
554 dbg_hid("hid_add_usage failed\n");
555 return -1;
556 }
557 return 0;
558
559 default:
560
561 dbg_hid("unknown local item tag 0x%x\n", item->tag);
562 return 0;
563 }
564 return 0;
565 }
566
567 /*
568 * Concatenate Usage Pages into Usages where relevant:
569 * As per specification, 6.2.2.8: "When the parser encounters a main item it
570 * concatenates the last declared Usage Page with a Usage to form a complete
571 * usage value."
572 */
573
hid_concatenate_last_usage_page(struct hid_parser * parser)574 static void hid_concatenate_last_usage_page(struct hid_parser *parser)
575 {
576 int i;
577 unsigned int usage_page;
578 unsigned int current_page;
579
580 if (!parser->local.usage_index)
581 return;
582
583 usage_page = parser->global.usage_page;
584
585 /*
586 * Concatenate usage page again only if last declared Usage Page
587 * has not been already used in previous usages concatenation
588 */
589 for (i = parser->local.usage_index - 1; i >= 0; i--) {
590 if (parser->local.usage_size[i] > 2)
591 /* Ignore extended usages */
592 continue;
593
594 current_page = parser->local.usage[i] >> 16;
595 if (current_page == usage_page)
596 break;
597
598 complete_usage(parser, i);
599 }
600 }
601
602 /*
603 * Process a main item.
604 */
605
hid_parser_main(struct hid_parser * parser,struct hid_item * item)606 static int hid_parser_main(struct hid_parser *parser, struct hid_item *item)
607 {
608 __u32 data;
609 int ret;
610
611 hid_concatenate_last_usage_page(parser);
612
613 data = item_udata(item);
614
615 switch (item->tag) {
616 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
617 ret = open_collection(parser, data & 0xff);
618 break;
619 case HID_MAIN_ITEM_TAG_END_COLLECTION:
620 ret = close_collection(parser);
621 break;
622 case HID_MAIN_ITEM_TAG_INPUT:
623 ret = hid_add_field(parser, HID_INPUT_REPORT, data);
624 break;
625 case HID_MAIN_ITEM_TAG_OUTPUT:
626 ret = hid_add_field(parser, HID_OUTPUT_REPORT, data);
627 break;
628 case HID_MAIN_ITEM_TAG_FEATURE:
629 ret = hid_add_field(parser, HID_FEATURE_REPORT, data);
630 break;
631 default:
632 hid_warn(parser->device, "unknown main item tag 0x%x\n", item->tag);
633 ret = 0;
634 }
635
636 memset(&parser->local, 0, sizeof(parser->local)); /* Reset the local parser environment */
637
638 return ret;
639 }
640
641 /*
642 * Process a reserved item.
643 */
644
hid_parser_reserved(struct hid_parser * parser,struct hid_item * item)645 static int hid_parser_reserved(struct hid_parser *parser, struct hid_item *item)
646 {
647 dbg_hid("reserved item type, tag 0x%x\n", item->tag);
648 return 0;
649 }
650
651 /*
652 * Free a report and all registered fields. The field->usage and
653 * field->value table's are allocated behind the field, so we need
654 * only to free(field) itself.
655 */
656
hid_free_report(struct hid_report * report)657 static void hid_free_report(struct hid_report *report)
658 {
659 unsigned n;
660
661 kfree(report->field_entries);
662
663 for (n = 0; n < report->maxfield; n++)
664 kfree(report->field[n]);
665 kfree(report);
666 }
667
668 /*
669 * Close report. This function returns the device
670 * state to the point prior to hid_open_report().
671 */
hid_close_report(struct hid_device * device)672 static void hid_close_report(struct hid_device *device)
673 {
674 unsigned i, j;
675
676 for (i = 0; i < HID_REPORT_TYPES; i++) {
677 struct hid_report_enum *report_enum = device->report_enum + i;
678
679 for (j = 0; j < HID_MAX_IDS; j++) {
680 struct hid_report *report = report_enum->report_id_hash[j];
681 if (report)
682 hid_free_report(report);
683 }
684 memset(report_enum, 0, sizeof(*report_enum));
685 INIT_LIST_HEAD(&report_enum->report_list);
686 }
687
688 kfree(device->rdesc);
689 device->rdesc = NULL;
690 device->rsize = 0;
691
692 kfree(device->collection);
693 device->collection = NULL;
694 device->collection_size = 0;
695 device->maxcollection = 0;
696 device->maxapplication = 0;
697
698 device->status &= ~HID_STAT_PARSED;
699 }
700
701 /*
702 * Free a device structure, all reports, and all fields.
703 */
704
hid_device_release(struct device * dev)705 static void hid_device_release(struct device *dev)
706 {
707 struct hid_device *hid = to_hid_device(dev);
708
709 hid_close_report(hid);
710 kfree(hid->dev_rdesc);
711 kfree(hid);
712 }
713
714 /*
715 * Fetch a report description item from the data stream. We support long
716 * items, though they are not used yet.
717 */
718
fetch_item(__u8 * start,__u8 * end,struct hid_item * item)719 static u8 *fetch_item(__u8 *start, __u8 *end, struct hid_item *item)
720 {
721 u8 b;
722
723 if ((end - start) <= 0)
724 return NULL;
725
726 b = *start++;
727
728 item->type = (b >> 2) & 3;
729 item->tag = (b >> 4) & 15;
730
731 if (item->tag == HID_ITEM_TAG_LONG) {
732
733 item->format = HID_ITEM_FORMAT_LONG;
734
735 if ((end - start) < 2)
736 return NULL;
737
738 item->size = *start++;
739 item->tag = *start++;
740
741 if ((end - start) < item->size)
742 return NULL;
743
744 item->data.longdata = start;
745 start += item->size;
746 return start;
747 }
748
749 item->format = HID_ITEM_FORMAT_SHORT;
750 item->size = b & 3;
751
752 switch (item->size) {
753 case 0:
754 return start;
755
756 case 1:
757 if ((end - start) < 1)
758 return NULL;
759 item->data.u8 = *start++;
760 return start;
761
762 case 2:
763 if ((end - start) < 2)
764 return NULL;
765 item->data.u16 = get_unaligned_le16(start);
766 start = (__u8 *)((__le16 *)start + 1);
767 return start;
768
769 case 3:
770 item->size++;
771 if ((end - start) < 4)
772 return NULL;
773 item->data.u32 = get_unaligned_le32(start);
774 start = (__u8 *)((__le32 *)start + 1);
775 return start;
776 }
777
778 return NULL;
779 }
780
hid_scan_input_usage(struct hid_parser * parser,u32 usage)781 static void hid_scan_input_usage(struct hid_parser *parser, u32 usage)
782 {
783 struct hid_device *hid = parser->device;
784
785 if (usage == HID_DG_CONTACTID)
786 hid->group = HID_GROUP_MULTITOUCH;
787 }
788
hid_scan_feature_usage(struct hid_parser * parser,u32 usage)789 static void hid_scan_feature_usage(struct hid_parser *parser, u32 usage)
790 {
791 if (usage == 0xff0000c5 && parser->global.report_count == 256 &&
792 parser->global.report_size == 8)
793 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
794
795 if (usage == 0xff0000c6 && parser->global.report_count == 1 &&
796 parser->global.report_size == 8)
797 parser->scan_flags |= HID_SCAN_FLAG_MT_WIN_8;
798 }
799
hid_scan_collection(struct hid_parser * parser,unsigned type)800 static void hid_scan_collection(struct hid_parser *parser, unsigned type)
801 {
802 struct hid_device *hid = parser->device;
803 int i;
804
805 if (((parser->global.usage_page << 16) == HID_UP_SENSOR) &&
806 (type == HID_COLLECTION_PHYSICAL ||
807 type == HID_COLLECTION_APPLICATION))
808 hid->group = HID_GROUP_SENSOR_HUB;
809
810 if (hid->vendor == USB_VENDOR_ID_MICROSOFT &&
811 hid->product == USB_DEVICE_ID_MS_POWER_COVER &&
812 hid->group == HID_GROUP_MULTITOUCH)
813 hid->group = HID_GROUP_GENERIC;
814
815 if ((parser->global.usage_page << 16) == HID_UP_GENDESK)
816 for (i = 0; i < parser->local.usage_index; i++)
817 if (parser->local.usage[i] == HID_GD_POINTER)
818 parser->scan_flags |= HID_SCAN_FLAG_GD_POINTER;
819
820 if ((parser->global.usage_page << 16) >= HID_UP_MSVENDOR)
821 parser->scan_flags |= HID_SCAN_FLAG_VENDOR_SPECIFIC;
822
823 if ((parser->global.usage_page << 16) == HID_UP_GOOGLEVENDOR)
824 for (i = 0; i < parser->local.usage_index; i++)
825 if (parser->local.usage[i] ==
826 (HID_UP_GOOGLEVENDOR | 0x0001))
827 parser->device->group =
828 HID_GROUP_VIVALDI;
829 }
830
hid_scan_main(struct hid_parser * parser,struct hid_item * item)831 static int hid_scan_main(struct hid_parser *parser, struct hid_item *item)
832 {
833 __u32 data;
834 int i;
835
836 hid_concatenate_last_usage_page(parser);
837
838 data = item_udata(item);
839
840 switch (item->tag) {
841 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION:
842 hid_scan_collection(parser, data & 0xff);
843 break;
844 case HID_MAIN_ITEM_TAG_END_COLLECTION:
845 break;
846 case HID_MAIN_ITEM_TAG_INPUT:
847 /* ignore constant inputs, they will be ignored by hid-input */
848 if (data & HID_MAIN_ITEM_CONSTANT)
849 break;
850 for (i = 0; i < parser->local.usage_index; i++)
851 hid_scan_input_usage(parser, parser->local.usage[i]);
852 break;
853 case HID_MAIN_ITEM_TAG_OUTPUT:
854 break;
855 case HID_MAIN_ITEM_TAG_FEATURE:
856 for (i = 0; i < parser->local.usage_index; i++)
857 hid_scan_feature_usage(parser, parser->local.usage[i]);
858 break;
859 }
860
861 /* Reset the local parser environment */
862 memset(&parser->local, 0, sizeof(parser->local));
863
864 return 0;
865 }
866
867 /*
868 * Scan a report descriptor before the device is added to the bus.
869 * Sets device groups and other properties that determine what driver
870 * to load.
871 */
hid_scan_report(struct hid_device * hid)872 static int hid_scan_report(struct hid_device *hid)
873 {
874 struct hid_parser *parser;
875 struct hid_item item;
876 __u8 *start = hid->dev_rdesc;
877 __u8 *end = start + hid->dev_rsize;
878 static int (*dispatch_type[])(struct hid_parser *parser,
879 struct hid_item *item) = {
880 hid_scan_main,
881 hid_parser_global,
882 hid_parser_local,
883 hid_parser_reserved
884 };
885
886 parser = vzalloc(sizeof(struct hid_parser));
887 if (!parser)
888 return -ENOMEM;
889
890 parser->device = hid;
891 hid->group = HID_GROUP_GENERIC;
892
893 /*
894 * The parsing is simpler than the one in hid_open_report() as we should
895 * be robust against hid errors. Those errors will be raised by
896 * hid_open_report() anyway.
897 */
898 while ((start = fetch_item(start, end, &item)) != NULL)
899 dispatch_type[item.type](parser, &item);
900
901 /*
902 * Handle special flags set during scanning.
903 */
904 if ((parser->scan_flags & HID_SCAN_FLAG_MT_WIN_8) &&
905 (hid->group == HID_GROUP_MULTITOUCH))
906 hid->group = HID_GROUP_MULTITOUCH_WIN_8;
907
908 /*
909 * Vendor specific handlings
910 */
911 switch (hid->vendor) {
912 case USB_VENDOR_ID_WACOM:
913 hid->group = HID_GROUP_WACOM;
914 break;
915 case USB_VENDOR_ID_SYNAPTICS:
916 if (hid->group == HID_GROUP_GENERIC)
917 if ((parser->scan_flags & HID_SCAN_FLAG_VENDOR_SPECIFIC)
918 && (parser->scan_flags & HID_SCAN_FLAG_GD_POINTER))
919 /*
920 * hid-rmi should take care of them,
921 * not hid-generic
922 */
923 hid->group = HID_GROUP_RMI;
924 break;
925 }
926
927 kfree(parser->collection_stack);
928 vfree(parser);
929 return 0;
930 }
931
932 /**
933 * hid_parse_report - parse device report
934 *
935 * @hid: hid device
936 * @start: report start
937 * @size: report size
938 *
939 * Allocate the device report as read by the bus driver. This function should
940 * only be called from parse() in ll drivers.
941 */
hid_parse_report(struct hid_device * hid,__u8 * start,unsigned size)942 int hid_parse_report(struct hid_device *hid, __u8 *start, unsigned size)
943 {
944 hid->dev_rdesc = kmemdup(start, size, GFP_KERNEL);
945 if (!hid->dev_rdesc)
946 return -ENOMEM;
947 hid->dev_rsize = size;
948 return 0;
949 }
950 EXPORT_SYMBOL_GPL(hid_parse_report);
951
952 static const char * const hid_report_names[] = {
953 "HID_INPUT_REPORT",
954 "HID_OUTPUT_REPORT",
955 "HID_FEATURE_REPORT",
956 };
957 /**
958 * hid_validate_values - validate existing device report's value indexes
959 *
960 * @hid: hid device
961 * @type: which report type to examine
962 * @id: which report ID to examine (0 for first)
963 * @field_index: which report field to examine
964 * @report_counts: expected number of values
965 *
966 * Validate the number of values in a given field of a given report, after
967 * parsing.
968 */
hid_validate_values(struct hid_device * hid,enum hid_report_type type,unsigned int id,unsigned int field_index,unsigned int report_counts)969 struct hid_report *hid_validate_values(struct hid_device *hid,
970 enum hid_report_type type, unsigned int id,
971 unsigned int field_index,
972 unsigned int report_counts)
973 {
974 struct hid_report *report;
975
976 if (type > HID_FEATURE_REPORT) {
977 hid_err(hid, "invalid HID report type %u\n", type);
978 return NULL;
979 }
980
981 if (id >= HID_MAX_IDS) {
982 hid_err(hid, "invalid HID report id %u\n", id);
983 return NULL;
984 }
985
986 /*
987 * Explicitly not using hid_get_report() here since it depends on
988 * ->numbered being checked, which may not always be the case when
989 * drivers go to access report values.
990 */
991 if (id == 0) {
992 /*
993 * Validating on id 0 means we should examine the first
994 * report in the list.
995 */
996 report = list_first_entry_or_null(
997 &hid->report_enum[type].report_list,
998 struct hid_report, list);
999 } else {
1000 report = hid->report_enum[type].report_id_hash[id];
1001 }
1002 if (!report) {
1003 hid_err(hid, "missing %s %u\n", hid_report_names[type], id);
1004 return NULL;
1005 }
1006 if (report->maxfield <= field_index) {
1007 hid_err(hid, "not enough fields in %s %u\n",
1008 hid_report_names[type], id);
1009 return NULL;
1010 }
1011 if (report->field[field_index]->report_count < report_counts) {
1012 hid_err(hid, "not enough values in %s %u field %u\n",
1013 hid_report_names[type], id, field_index);
1014 return NULL;
1015 }
1016 return report;
1017 }
1018 EXPORT_SYMBOL_GPL(hid_validate_values);
1019
hid_calculate_multiplier(struct hid_device * hid,struct hid_field * multiplier)1020 static int hid_calculate_multiplier(struct hid_device *hid,
1021 struct hid_field *multiplier)
1022 {
1023 int m;
1024 __s32 v = *multiplier->value;
1025 __s32 lmin = multiplier->logical_minimum;
1026 __s32 lmax = multiplier->logical_maximum;
1027 __s32 pmin = multiplier->physical_minimum;
1028 __s32 pmax = multiplier->physical_maximum;
1029
1030 /*
1031 * "Because OS implementations will generally divide the control's
1032 * reported count by the Effective Resolution Multiplier, designers
1033 * should take care not to establish a potential Effective
1034 * Resolution Multiplier of zero."
1035 * HID Usage Table, v1.12, Section 4.3.1, p31
1036 */
1037 if (lmax - lmin == 0)
1038 return 1;
1039 /*
1040 * Handling the unit exponent is left as an exercise to whoever
1041 * finds a device where that exponent is not 0.
1042 */
1043 m = ((v - lmin)/(lmax - lmin) * (pmax - pmin) + pmin);
1044 if (unlikely(multiplier->unit_exponent != 0)) {
1045 hid_warn(hid,
1046 "unsupported Resolution Multiplier unit exponent %d\n",
1047 multiplier->unit_exponent);
1048 }
1049
1050 /* There are no devices with an effective multiplier > 255 */
1051 if (unlikely(m == 0 || m > 255 || m < -255)) {
1052 hid_warn(hid, "unsupported Resolution Multiplier %d\n", m);
1053 m = 1;
1054 }
1055
1056 return m;
1057 }
1058
hid_apply_multiplier_to_field(struct hid_device * hid,struct hid_field * field,struct hid_collection * multiplier_collection,int effective_multiplier)1059 static void hid_apply_multiplier_to_field(struct hid_device *hid,
1060 struct hid_field *field,
1061 struct hid_collection *multiplier_collection,
1062 int effective_multiplier)
1063 {
1064 struct hid_collection *collection;
1065 struct hid_usage *usage;
1066 int i;
1067
1068 /*
1069 * If multiplier_collection is NULL, the multiplier applies
1070 * to all fields in the report.
1071 * Otherwise, it is the Logical Collection the multiplier applies to
1072 * but our field may be in a subcollection of that collection.
1073 */
1074 for (i = 0; i < field->maxusage; i++) {
1075 usage = &field->usage[i];
1076
1077 collection = &hid->collection[usage->collection_index];
1078 while (collection->parent_idx != -1 &&
1079 collection != multiplier_collection)
1080 collection = &hid->collection[collection->parent_idx];
1081
1082 if (collection->parent_idx != -1 ||
1083 multiplier_collection == NULL)
1084 usage->resolution_multiplier = effective_multiplier;
1085
1086 }
1087 }
1088
hid_apply_multiplier(struct hid_device * hid,struct hid_field * multiplier)1089 static void hid_apply_multiplier(struct hid_device *hid,
1090 struct hid_field *multiplier)
1091 {
1092 struct hid_report_enum *rep_enum;
1093 struct hid_report *rep;
1094 struct hid_field *field;
1095 struct hid_collection *multiplier_collection;
1096 int effective_multiplier;
1097 int i;
1098
1099 /*
1100 * "The Resolution Multiplier control must be contained in the same
1101 * Logical Collection as the control(s) to which it is to be applied.
1102 * If no Resolution Multiplier is defined, then the Resolution
1103 * Multiplier defaults to 1. If more than one control exists in a
1104 * Logical Collection, the Resolution Multiplier is associated with
1105 * all controls in the collection. If no Logical Collection is
1106 * defined, the Resolution Multiplier is associated with all
1107 * controls in the report."
1108 * HID Usage Table, v1.12, Section 4.3.1, p30
1109 *
1110 * Thus, search from the current collection upwards until we find a
1111 * logical collection. Then search all fields for that same parent
1112 * collection. Those are the fields the multiplier applies to.
1113 *
1114 * If we have more than one multiplier, it will overwrite the
1115 * applicable fields later.
1116 */
1117 multiplier_collection = &hid->collection[multiplier->usage->collection_index];
1118 while (multiplier_collection->parent_idx != -1 &&
1119 multiplier_collection->type != HID_COLLECTION_LOGICAL)
1120 multiplier_collection = &hid->collection[multiplier_collection->parent_idx];
1121
1122 effective_multiplier = hid_calculate_multiplier(hid, multiplier);
1123
1124 rep_enum = &hid->report_enum[HID_INPUT_REPORT];
1125 list_for_each_entry(rep, &rep_enum->report_list, list) {
1126 for (i = 0; i < rep->maxfield; i++) {
1127 field = rep->field[i];
1128 hid_apply_multiplier_to_field(hid, field,
1129 multiplier_collection,
1130 effective_multiplier);
1131 }
1132 }
1133 }
1134
1135 /*
1136 * hid_setup_resolution_multiplier - set up all resolution multipliers
1137 *
1138 * @device: hid device
1139 *
1140 * Search for all Resolution Multiplier Feature Reports and apply their
1141 * value to all matching Input items. This only updates the internal struct
1142 * fields.
1143 *
1144 * The Resolution Multiplier is applied by the hardware. If the multiplier
1145 * is anything other than 1, the hardware will send pre-multiplied events
1146 * so that the same physical interaction generates an accumulated
1147 * accumulated_value = value * * multiplier
1148 * This may be achieved by sending
1149 * - "value * multiplier" for each event, or
1150 * - "value" but "multiplier" times as frequently, or
1151 * - a combination of the above
1152 * The only guarantee is that the same physical interaction always generates
1153 * an accumulated 'value * multiplier'.
1154 *
1155 * This function must be called before any event processing and after
1156 * any SetRequest to the Resolution Multiplier.
1157 */
hid_setup_resolution_multiplier(struct hid_device * hid)1158 void hid_setup_resolution_multiplier(struct hid_device *hid)
1159 {
1160 struct hid_report_enum *rep_enum;
1161 struct hid_report *rep;
1162 struct hid_usage *usage;
1163 int i, j;
1164
1165 rep_enum = &hid->report_enum[HID_FEATURE_REPORT];
1166 list_for_each_entry(rep, &rep_enum->report_list, list) {
1167 for (i = 0; i < rep->maxfield; i++) {
1168 /* Ignore if report count is out of bounds. */
1169 if (rep->field[i]->report_count < 1)
1170 continue;
1171
1172 for (j = 0; j < rep->field[i]->maxusage; j++) {
1173 usage = &rep->field[i]->usage[j];
1174 if (usage->hid == HID_GD_RESOLUTION_MULTIPLIER)
1175 hid_apply_multiplier(hid,
1176 rep->field[i]);
1177 }
1178 }
1179 }
1180 }
1181 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier);
1182
1183 /**
1184 * hid_open_report - open a driver-specific device report
1185 *
1186 * @device: hid device
1187 *
1188 * Parse a report description into a hid_device structure. Reports are
1189 * enumerated, fields are attached to these reports.
1190 * 0 returned on success, otherwise nonzero error value.
1191 *
1192 * This function (or the equivalent hid_parse() macro) should only be
1193 * called from probe() in drivers, before starting the device.
1194 */
hid_open_report(struct hid_device * device)1195 int hid_open_report(struct hid_device *device)
1196 {
1197 struct hid_parser *parser;
1198 struct hid_item item;
1199 unsigned int size;
1200 __u8 *start;
1201 __u8 *buf;
1202 __u8 *end;
1203 __u8 *next;
1204 int ret;
1205 int i;
1206 static int (*dispatch_type[])(struct hid_parser *parser,
1207 struct hid_item *item) = {
1208 hid_parser_main,
1209 hid_parser_global,
1210 hid_parser_local,
1211 hid_parser_reserved
1212 };
1213
1214 if (WARN_ON(device->status & HID_STAT_PARSED))
1215 return -EBUSY;
1216
1217 start = device->dev_rdesc;
1218 if (WARN_ON(!start))
1219 return -ENODEV;
1220 size = device->dev_rsize;
1221
1222 /* call_hid_bpf_rdesc_fixup() ensures we work on a copy of rdesc */
1223 buf = call_hid_bpf_rdesc_fixup(device, start, &size);
1224 if (buf == NULL)
1225 return -ENOMEM;
1226
1227 if (device->driver->report_fixup)
1228 start = device->driver->report_fixup(device, buf, &size);
1229 else
1230 start = buf;
1231
1232 start = kmemdup(start, size, GFP_KERNEL);
1233 kfree(buf);
1234 if (start == NULL)
1235 return -ENOMEM;
1236
1237 device->rdesc = start;
1238 device->rsize = size;
1239
1240 parser = vzalloc(sizeof(struct hid_parser));
1241 if (!parser) {
1242 ret = -ENOMEM;
1243 goto alloc_err;
1244 }
1245
1246 parser->device = device;
1247
1248 end = start + size;
1249
1250 device->collection = kcalloc(HID_DEFAULT_NUM_COLLECTIONS,
1251 sizeof(struct hid_collection), GFP_KERNEL);
1252 if (!device->collection) {
1253 ret = -ENOMEM;
1254 goto err;
1255 }
1256 device->collection_size = HID_DEFAULT_NUM_COLLECTIONS;
1257 for (i = 0; i < HID_DEFAULT_NUM_COLLECTIONS; i++)
1258 device->collection[i].parent_idx = -1;
1259
1260 ret = -EINVAL;
1261 while ((next = fetch_item(start, end, &item)) != NULL) {
1262 start = next;
1263
1264 if (item.format != HID_ITEM_FORMAT_SHORT) {
1265 hid_err(device, "unexpected long global item\n");
1266 goto err;
1267 }
1268
1269 if (dispatch_type[item.type](parser, &item)) {
1270 hid_err(device, "item %u %u %u %u parsing failed\n",
1271 item.format, (unsigned)item.size,
1272 (unsigned)item.type, (unsigned)item.tag);
1273 goto err;
1274 }
1275
1276 if (start == end) {
1277 if (parser->collection_stack_ptr) {
1278 hid_err(device, "unbalanced collection at end of report description\n");
1279 goto err;
1280 }
1281 if (parser->local.delimiter_depth) {
1282 hid_err(device, "unbalanced delimiter at end of report description\n");
1283 goto err;
1284 }
1285
1286 /*
1287 * fetch initial values in case the device's
1288 * default multiplier isn't the recommended 1
1289 */
1290 hid_setup_resolution_multiplier(device);
1291
1292 kfree(parser->collection_stack);
1293 vfree(parser);
1294 device->status |= HID_STAT_PARSED;
1295
1296 return 0;
1297 }
1298 }
1299
1300 hid_err(device, "item fetching failed at offset %u/%u\n",
1301 size - (unsigned int)(end - start), size);
1302 err:
1303 kfree(parser->collection_stack);
1304 alloc_err:
1305 vfree(parser);
1306 hid_close_report(device);
1307 return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(hid_open_report);
1310
1311 /*
1312 * Convert a signed n-bit integer to signed 32-bit integer. Common
1313 * cases are done through the compiler, the screwed things has to be
1314 * done by hand.
1315 */
1316
snto32(__u32 value,unsigned n)1317 static s32 snto32(__u32 value, unsigned n)
1318 {
1319 if (!value || !n)
1320 return 0;
1321
1322 if (n > 32)
1323 n = 32;
1324
1325 switch (n) {
1326 case 8: return ((__s8)value);
1327 case 16: return ((__s16)value);
1328 case 32: return ((__s32)value);
1329 }
1330 return value & (1 << (n - 1)) ? value | (~0U << n) : value;
1331 }
1332
hid_snto32(__u32 value,unsigned n)1333 s32 hid_snto32(__u32 value, unsigned n)
1334 {
1335 return snto32(value, n);
1336 }
1337 EXPORT_SYMBOL_GPL(hid_snto32);
1338
1339 /*
1340 * Convert a signed 32-bit integer to a signed n-bit integer.
1341 */
1342
s32ton(__s32 value,unsigned n)1343 static u32 s32ton(__s32 value, unsigned n)
1344 {
1345 s32 a = value >> (n - 1);
1346 if (a && a != -1)
1347 return value < 0 ? 1 << (n - 1) : (1 << (n - 1)) - 1;
1348 return value & ((1 << n) - 1);
1349 }
1350
1351 /*
1352 * Extract/implement a data field from/to a little endian report (bit array).
1353 *
1354 * Code sort-of follows HID spec:
1355 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1356 *
1357 * While the USB HID spec allows unlimited length bit fields in "report
1358 * descriptors", most devices never use more than 16 bits.
1359 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1360 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1361 */
1362
__extract(u8 * report,unsigned offset,int n)1363 static u32 __extract(u8 *report, unsigned offset, int n)
1364 {
1365 unsigned int idx = offset / 8;
1366 unsigned int bit_nr = 0;
1367 unsigned int bit_shift = offset % 8;
1368 int bits_to_copy = 8 - bit_shift;
1369 u32 value = 0;
1370 u32 mask = n < 32 ? (1U << n) - 1 : ~0U;
1371
1372 while (n > 0) {
1373 value |= ((u32)report[idx] >> bit_shift) << bit_nr;
1374 n -= bits_to_copy;
1375 bit_nr += bits_to_copy;
1376 bits_to_copy = 8;
1377 bit_shift = 0;
1378 idx++;
1379 }
1380
1381 return value & mask;
1382 }
1383
hid_field_extract(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n)1384 u32 hid_field_extract(const struct hid_device *hid, u8 *report,
1385 unsigned offset, unsigned n)
1386 {
1387 if (n > 32) {
1388 hid_warn_once(hid, "%s() called with n (%d) > 32! (%s)\n",
1389 __func__, n, current->comm);
1390 n = 32;
1391 }
1392
1393 return __extract(report, offset, n);
1394 }
1395 EXPORT_SYMBOL_GPL(hid_field_extract);
1396
1397 /*
1398 * "implement" : set bits in a little endian bit stream.
1399 * Same concepts as "extract" (see comments above).
1400 * The data mangled in the bit stream remains in little endian
1401 * order the whole time. It make more sense to talk about
1402 * endianness of register values by considering a register
1403 * a "cached" copy of the little endian bit stream.
1404 */
1405
__implement(u8 * report,unsigned offset,int n,u32 value)1406 static void __implement(u8 *report, unsigned offset, int n, u32 value)
1407 {
1408 unsigned int idx = offset / 8;
1409 unsigned int bit_shift = offset % 8;
1410 int bits_to_set = 8 - bit_shift;
1411
1412 while (n - bits_to_set >= 0) {
1413 report[idx] &= ~(0xff << bit_shift);
1414 report[idx] |= value << bit_shift;
1415 value >>= bits_to_set;
1416 n -= bits_to_set;
1417 bits_to_set = 8;
1418 bit_shift = 0;
1419 idx++;
1420 }
1421
1422 /* last nibble */
1423 if (n) {
1424 u8 bit_mask = ((1U << n) - 1);
1425 report[idx] &= ~(bit_mask << bit_shift);
1426 report[idx] |= value << bit_shift;
1427 }
1428 }
1429
implement(const struct hid_device * hid,u8 * report,unsigned offset,unsigned n,u32 value)1430 static void implement(const struct hid_device *hid, u8 *report,
1431 unsigned offset, unsigned n, u32 value)
1432 {
1433 if (unlikely(n > 32)) {
1434 hid_warn(hid, "%s() called with n (%d) > 32! (%s)\n",
1435 __func__, n, current->comm);
1436 n = 32;
1437 } else if (n < 32) {
1438 u32 m = (1U << n) - 1;
1439
1440 if (unlikely(value > m)) {
1441 hid_warn(hid,
1442 "%s() called with too large value %d (n: %d)! (%s)\n",
1443 __func__, value, n, current->comm);
1444 WARN_ON(1);
1445 value &= m;
1446 }
1447 }
1448
1449 __implement(report, offset, n, value);
1450 }
1451
1452 /*
1453 * Search an array for a value.
1454 */
1455
search(__s32 * array,__s32 value,unsigned n)1456 static int search(__s32 *array, __s32 value, unsigned n)
1457 {
1458 while (n--) {
1459 if (*array++ == value)
1460 return 0;
1461 }
1462 return -1;
1463 }
1464
1465 /**
1466 * hid_match_report - check if driver's raw_event should be called
1467 *
1468 * @hid: hid device
1469 * @report: hid report to match against
1470 *
1471 * compare hid->driver->report_table->report_type to report->type
1472 */
hid_match_report(struct hid_device * hid,struct hid_report * report)1473 static int hid_match_report(struct hid_device *hid, struct hid_report *report)
1474 {
1475 const struct hid_report_id *id = hid->driver->report_table;
1476
1477 if (!id) /* NULL means all */
1478 return 1;
1479
1480 for (; id->report_type != HID_TERMINATOR; id++)
1481 if (id->report_type == HID_ANY_ID ||
1482 id->report_type == report->type)
1483 return 1;
1484 return 0;
1485 }
1486
1487 /**
1488 * hid_match_usage - check if driver's event should be called
1489 *
1490 * @hid: hid device
1491 * @usage: usage to match against
1492 *
1493 * compare hid->driver->usage_table->usage_{type,code} to
1494 * usage->usage_{type,code}
1495 */
hid_match_usage(struct hid_device * hid,struct hid_usage * usage)1496 static int hid_match_usage(struct hid_device *hid, struct hid_usage *usage)
1497 {
1498 const struct hid_usage_id *id = hid->driver->usage_table;
1499
1500 if (!id) /* NULL means all */
1501 return 1;
1502
1503 for (; id->usage_type != HID_ANY_ID - 1; id++)
1504 if ((id->usage_hid == HID_ANY_ID ||
1505 id->usage_hid == usage->hid) &&
1506 (id->usage_type == HID_ANY_ID ||
1507 id->usage_type == usage->type) &&
1508 (id->usage_code == HID_ANY_ID ||
1509 id->usage_code == usage->code))
1510 return 1;
1511 return 0;
1512 }
1513
hid_process_event(struct hid_device * hid,struct hid_field * field,struct hid_usage * usage,__s32 value,int interrupt)1514 static void hid_process_event(struct hid_device *hid, struct hid_field *field,
1515 struct hid_usage *usage, __s32 value, int interrupt)
1516 {
1517 struct hid_driver *hdrv = hid->driver;
1518 int ret;
1519
1520 if (!list_empty(&hid->debug_list))
1521 hid_dump_input(hid, usage, value);
1522
1523 if (hdrv && hdrv->event && hid_match_usage(hid, usage)) {
1524 ret = hdrv->event(hid, field, usage, value);
1525 if (ret != 0) {
1526 if (ret < 0)
1527 hid_err(hid, "%s's event failed with %d\n",
1528 hdrv->name, ret);
1529 return;
1530 }
1531 }
1532
1533 if (hid->claimed & HID_CLAIMED_INPUT)
1534 hidinput_hid_event(hid, field, usage, value);
1535 if (hid->claimed & HID_CLAIMED_HIDDEV && interrupt && hid->hiddev_hid_event)
1536 hid->hiddev_hid_event(hid, field, usage, value);
1537 }
1538
1539 /*
1540 * Checks if the given value is valid within this field
1541 */
hid_array_value_is_valid(struct hid_field * field,__s32 value)1542 static inline int hid_array_value_is_valid(struct hid_field *field,
1543 __s32 value)
1544 {
1545 __s32 min = field->logical_minimum;
1546
1547 /*
1548 * Value needs to be between logical min and max, and
1549 * (value - min) is used as an index in the usage array.
1550 * This array is of size field->maxusage
1551 */
1552 return value >= min &&
1553 value <= field->logical_maximum &&
1554 value - min < field->maxusage;
1555 }
1556
1557 /*
1558 * Fetch the field from the data. The field content is stored for next
1559 * report processing (we do differential reporting to the layer).
1560 */
hid_input_fetch_field(struct hid_device * hid,struct hid_field * field,__u8 * data)1561 static void hid_input_fetch_field(struct hid_device *hid,
1562 struct hid_field *field,
1563 __u8 *data)
1564 {
1565 unsigned n;
1566 unsigned count = field->report_count;
1567 unsigned offset = field->report_offset;
1568 unsigned size = field->report_size;
1569 __s32 min = field->logical_minimum;
1570 __s32 *value;
1571
1572 value = field->new_value;
1573 memset(value, 0, count * sizeof(__s32));
1574 field->ignored = false;
1575
1576 for (n = 0; n < count; n++) {
1577
1578 value[n] = min < 0 ?
1579 snto32(hid_field_extract(hid, data, offset + n * size,
1580 size), size) :
1581 hid_field_extract(hid, data, offset + n * size, size);
1582
1583 /* Ignore report if ErrorRollOver */
1584 if (!(field->flags & HID_MAIN_ITEM_VARIABLE) &&
1585 hid_array_value_is_valid(field, value[n]) &&
1586 field->usage[value[n] - min].hid == HID_UP_KEYBOARD + 1) {
1587 field->ignored = true;
1588 return;
1589 }
1590 }
1591 }
1592
1593 /*
1594 * Process a received variable field.
1595 */
1596
hid_input_var_field(struct hid_device * hid,struct hid_field * field,int interrupt)1597 static void hid_input_var_field(struct hid_device *hid,
1598 struct hid_field *field,
1599 int interrupt)
1600 {
1601 unsigned int count = field->report_count;
1602 __s32 *value = field->new_value;
1603 unsigned int n;
1604
1605 for (n = 0; n < count; n++)
1606 hid_process_event(hid,
1607 field,
1608 &field->usage[n],
1609 value[n],
1610 interrupt);
1611
1612 memcpy(field->value, value, count * sizeof(__s32));
1613 }
1614
1615 /*
1616 * Process a received array field. The field content is stored for
1617 * next report processing (we do differential reporting to the layer).
1618 */
1619
hid_input_array_field(struct hid_device * hid,struct hid_field * field,int interrupt)1620 static void hid_input_array_field(struct hid_device *hid,
1621 struct hid_field *field,
1622 int interrupt)
1623 {
1624 unsigned int n;
1625 unsigned int count = field->report_count;
1626 __s32 min = field->logical_minimum;
1627 __s32 *value;
1628
1629 value = field->new_value;
1630
1631 /* ErrorRollOver */
1632 if (field->ignored)
1633 return;
1634
1635 for (n = 0; n < count; n++) {
1636 if (hid_array_value_is_valid(field, field->value[n]) &&
1637 search(value, field->value[n], count))
1638 hid_process_event(hid,
1639 field,
1640 &field->usage[field->value[n] - min],
1641 0,
1642 interrupt);
1643
1644 if (hid_array_value_is_valid(field, value[n]) &&
1645 search(field->value, value[n], count))
1646 hid_process_event(hid,
1647 field,
1648 &field->usage[value[n] - min],
1649 1,
1650 interrupt);
1651 }
1652
1653 memcpy(field->value, value, count * sizeof(__s32));
1654 }
1655
1656 /*
1657 * Analyse a received report, and fetch the data from it. The field
1658 * content is stored for next report processing (we do differential
1659 * reporting to the layer).
1660 */
hid_process_report(struct hid_device * hid,struct hid_report * report,__u8 * data,int interrupt)1661 static void hid_process_report(struct hid_device *hid,
1662 struct hid_report *report,
1663 __u8 *data,
1664 int interrupt)
1665 {
1666 unsigned int a;
1667 struct hid_field_entry *entry;
1668 struct hid_field *field;
1669
1670 /* first retrieve all incoming values in data */
1671 for (a = 0; a < report->maxfield; a++)
1672 hid_input_fetch_field(hid, report->field[a], data);
1673
1674 if (!list_empty(&report->field_entry_list)) {
1675 /* INPUT_REPORT, we have a priority list of fields */
1676 list_for_each_entry(entry,
1677 &report->field_entry_list,
1678 list) {
1679 field = entry->field;
1680
1681 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1682 hid_process_event(hid,
1683 field,
1684 &field->usage[entry->index],
1685 field->new_value[entry->index],
1686 interrupt);
1687 else
1688 hid_input_array_field(hid, field, interrupt);
1689 }
1690
1691 /* we need to do the memcpy at the end for var items */
1692 for (a = 0; a < report->maxfield; a++) {
1693 field = report->field[a];
1694
1695 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1696 memcpy(field->value, field->new_value,
1697 field->report_count * sizeof(__s32));
1698 }
1699 } else {
1700 /* FEATURE_REPORT, regular processing */
1701 for (a = 0; a < report->maxfield; a++) {
1702 field = report->field[a];
1703
1704 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1705 hid_input_var_field(hid, field, interrupt);
1706 else
1707 hid_input_array_field(hid, field, interrupt);
1708 }
1709 }
1710 }
1711
1712 /*
1713 * Insert a given usage_index in a field in the list
1714 * of processed usages in the report.
1715 *
1716 * The elements of lower priority score are processed
1717 * first.
1718 */
__hid_insert_field_entry(struct hid_device * hid,struct hid_report * report,struct hid_field_entry * entry,struct hid_field * field,unsigned int usage_index)1719 static void __hid_insert_field_entry(struct hid_device *hid,
1720 struct hid_report *report,
1721 struct hid_field_entry *entry,
1722 struct hid_field *field,
1723 unsigned int usage_index)
1724 {
1725 struct hid_field_entry *next;
1726
1727 entry->field = field;
1728 entry->index = usage_index;
1729 entry->priority = field->usages_priorities[usage_index];
1730
1731 /* insert the element at the correct position */
1732 list_for_each_entry(next,
1733 &report->field_entry_list,
1734 list) {
1735 /*
1736 * the priority of our element is strictly higher
1737 * than the next one, insert it before
1738 */
1739 if (entry->priority > next->priority) {
1740 list_add_tail(&entry->list, &next->list);
1741 return;
1742 }
1743 }
1744
1745 /* lowest priority score: insert at the end */
1746 list_add_tail(&entry->list, &report->field_entry_list);
1747 }
1748
hid_report_process_ordering(struct hid_device * hid,struct hid_report * report)1749 static void hid_report_process_ordering(struct hid_device *hid,
1750 struct hid_report *report)
1751 {
1752 struct hid_field *field;
1753 struct hid_field_entry *entries;
1754 unsigned int a, u, usages;
1755 unsigned int count = 0;
1756
1757 /* count the number of individual fields in the report */
1758 for (a = 0; a < report->maxfield; a++) {
1759 field = report->field[a];
1760
1761 if (field->flags & HID_MAIN_ITEM_VARIABLE)
1762 count += field->report_count;
1763 else
1764 count++;
1765 }
1766
1767 /* allocate the memory to process the fields */
1768 entries = kcalloc(count, sizeof(*entries), GFP_KERNEL);
1769 if (!entries)
1770 return;
1771
1772 report->field_entries = entries;
1773
1774 /*
1775 * walk through all fields in the report and
1776 * store them by priority order in report->field_entry_list
1777 *
1778 * - Var elements are individualized (field + usage_index)
1779 * - Arrays are taken as one, we can not chose an order for them
1780 */
1781 usages = 0;
1782 for (a = 0; a < report->maxfield; a++) {
1783 field = report->field[a];
1784
1785 if (field->flags & HID_MAIN_ITEM_VARIABLE) {
1786 for (u = 0; u < field->report_count; u++) {
1787 __hid_insert_field_entry(hid, report,
1788 &entries[usages],
1789 field, u);
1790 usages++;
1791 }
1792 } else {
1793 __hid_insert_field_entry(hid, report, &entries[usages],
1794 field, 0);
1795 usages++;
1796 }
1797 }
1798 }
1799
hid_process_ordering(struct hid_device * hid)1800 static void hid_process_ordering(struct hid_device *hid)
1801 {
1802 struct hid_report *report;
1803 struct hid_report_enum *report_enum = &hid->report_enum[HID_INPUT_REPORT];
1804
1805 list_for_each_entry(report, &report_enum->report_list, list)
1806 hid_report_process_ordering(hid, report);
1807 }
1808
1809 /*
1810 * Output the field into the report.
1811 */
1812
hid_output_field(const struct hid_device * hid,struct hid_field * field,__u8 * data)1813 static void hid_output_field(const struct hid_device *hid,
1814 struct hid_field *field, __u8 *data)
1815 {
1816 unsigned count = field->report_count;
1817 unsigned offset = field->report_offset;
1818 unsigned size = field->report_size;
1819 unsigned n;
1820
1821 for (n = 0; n < count; n++) {
1822 if (field->logical_minimum < 0) /* signed values */
1823 implement(hid, data, offset + n * size, size,
1824 s32ton(field->value[n], size));
1825 else /* unsigned values */
1826 implement(hid, data, offset + n * size, size,
1827 field->value[n]);
1828 }
1829 }
1830
1831 /*
1832 * Compute the size of a report.
1833 */
hid_compute_report_size(struct hid_report * report)1834 static size_t hid_compute_report_size(struct hid_report *report)
1835 {
1836 if (report->size)
1837 return ((report->size - 1) >> 3) + 1;
1838
1839 return 0;
1840 }
1841
1842 /*
1843 * Create a report. 'data' has to be allocated using
1844 * hid_alloc_report_buf() so that it has proper size.
1845 */
1846
hid_output_report(struct hid_report * report,__u8 * data)1847 void hid_output_report(struct hid_report *report, __u8 *data)
1848 {
1849 unsigned n;
1850
1851 if (report->id > 0)
1852 *data++ = report->id;
1853
1854 memset(data, 0, hid_compute_report_size(report));
1855 for (n = 0; n < report->maxfield; n++)
1856 hid_output_field(report->device, report->field[n], data);
1857 }
1858 EXPORT_SYMBOL_GPL(hid_output_report);
1859
1860 /*
1861 * Allocator for buffer that is going to be passed to hid_output_report()
1862 */
hid_alloc_report_buf(struct hid_report * report,gfp_t flags)1863 u8 *hid_alloc_report_buf(struct hid_report *report, gfp_t flags)
1864 {
1865 /*
1866 * 7 extra bytes are necessary to achieve proper functionality
1867 * of implement() working on 8 byte chunks
1868 */
1869
1870 u32 len = hid_report_len(report) + 7;
1871
1872 return kmalloc(len, flags);
1873 }
1874 EXPORT_SYMBOL_GPL(hid_alloc_report_buf);
1875
1876 /*
1877 * Set a field value. The report this field belongs to has to be
1878 * created and transferred to the device, to set this value in the
1879 * device.
1880 */
1881
hid_set_field(struct hid_field * field,unsigned offset,__s32 value)1882 int hid_set_field(struct hid_field *field, unsigned offset, __s32 value)
1883 {
1884 unsigned size;
1885
1886 if (!field)
1887 return -1;
1888
1889 size = field->report_size;
1890
1891 hid_dump_input(field->report->device, field->usage + offset, value);
1892
1893 if (offset >= field->report_count) {
1894 hid_err(field->report->device, "offset (%d) exceeds report_count (%d)\n",
1895 offset, field->report_count);
1896 return -1;
1897 }
1898 if (field->logical_minimum < 0) {
1899 if (value != snto32(s32ton(value, size), size)) {
1900 hid_err(field->report->device, "value %d is out of range\n", value);
1901 return -1;
1902 }
1903 }
1904 field->value[offset] = value;
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(hid_set_field);
1908
hid_get_report(struct hid_report_enum * report_enum,const u8 * data)1909 static struct hid_report *hid_get_report(struct hid_report_enum *report_enum,
1910 const u8 *data)
1911 {
1912 struct hid_report *report;
1913 unsigned int n = 0; /* Normally report number is 0 */
1914
1915 /* Device uses numbered reports, data[0] is report number */
1916 if (report_enum->numbered)
1917 n = *data;
1918
1919 report = report_enum->report_id_hash[n];
1920 if (report == NULL)
1921 dbg_hid("undefined report_id %u received\n", n);
1922
1923 return report;
1924 }
1925
1926 /*
1927 * Implement a generic .request() callback, using .raw_request()
1928 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1929 */
__hid_request(struct hid_device * hid,struct hid_report * report,enum hid_class_request reqtype)1930 int __hid_request(struct hid_device *hid, struct hid_report *report,
1931 enum hid_class_request reqtype)
1932 {
1933 char *buf;
1934 int ret;
1935 u32 len;
1936
1937 buf = hid_alloc_report_buf(report, GFP_KERNEL);
1938 if (!buf)
1939 return -ENOMEM;
1940
1941 len = hid_report_len(report);
1942
1943 if (reqtype == HID_REQ_SET_REPORT)
1944 hid_output_report(report, buf);
1945
1946 ret = hid->ll_driver->raw_request(hid, report->id, buf, len,
1947 report->type, reqtype);
1948 if (ret < 0) {
1949 dbg_hid("unable to complete request: %d\n", ret);
1950 goto out;
1951 }
1952
1953 if (reqtype == HID_REQ_GET_REPORT)
1954 hid_input_report(hid, report->type, buf, ret, 0);
1955
1956 ret = 0;
1957
1958 out:
1959 kfree(buf);
1960 return ret;
1961 }
1962 EXPORT_SYMBOL_GPL(__hid_request);
1963
hid_report_raw_event(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)1964 int hid_report_raw_event(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
1965 int interrupt)
1966 {
1967 struct hid_report_enum *report_enum = hid->report_enum + type;
1968 struct hid_report *report;
1969 struct hid_driver *hdrv;
1970 int max_buffer_size = HID_MAX_BUFFER_SIZE;
1971 u32 rsize, csize = size;
1972 u8 *cdata = data;
1973 int ret = 0;
1974
1975 report = hid_get_report(report_enum, data);
1976 if (!report)
1977 goto out;
1978
1979 if (report_enum->numbered) {
1980 cdata++;
1981 csize--;
1982 }
1983
1984 rsize = hid_compute_report_size(report);
1985
1986 if (hid->ll_driver->max_buffer_size)
1987 max_buffer_size = hid->ll_driver->max_buffer_size;
1988
1989 if (report_enum->numbered && rsize >= max_buffer_size)
1990 rsize = max_buffer_size - 1;
1991 else if (rsize > max_buffer_size)
1992 rsize = max_buffer_size;
1993
1994 if (csize < rsize) {
1995 dbg_hid("report %d is too short, (%d < %d)\n", report->id,
1996 csize, rsize);
1997 memset(cdata + csize, 0, rsize - csize);
1998 }
1999
2000 if ((hid->claimed & HID_CLAIMED_HIDDEV) && hid->hiddev_report_event)
2001 hid->hiddev_report_event(hid, report);
2002 if (hid->claimed & HID_CLAIMED_HIDRAW) {
2003 ret = hidraw_report_event(hid, data, size);
2004 if (ret)
2005 goto out;
2006 }
2007
2008 if (hid->claimed != HID_CLAIMED_HIDRAW && report->maxfield) {
2009 hid_process_report(hid, report, cdata, interrupt);
2010 hdrv = hid->driver;
2011 if (hdrv && hdrv->report)
2012 hdrv->report(hid, report);
2013 }
2014
2015 if (hid->claimed & HID_CLAIMED_INPUT)
2016 hidinput_report_event(hid, report);
2017 out:
2018 return ret;
2019 }
2020 EXPORT_SYMBOL_GPL(hid_report_raw_event);
2021
2022 /**
2023 * hid_input_report - report data from lower layer (usb, bt...)
2024 *
2025 * @hid: hid device
2026 * @type: HID report type (HID_*_REPORT)
2027 * @data: report contents
2028 * @size: size of data parameter
2029 * @interrupt: distinguish between interrupt and control transfers
2030 *
2031 * This is data entry for lower layers.
2032 */
hid_input_report(struct hid_device * hid,enum hid_report_type type,u8 * data,u32 size,int interrupt)2033 int hid_input_report(struct hid_device *hid, enum hid_report_type type, u8 *data, u32 size,
2034 int interrupt)
2035 {
2036 struct hid_report_enum *report_enum;
2037 struct hid_driver *hdrv;
2038 struct hid_report *report;
2039 int ret = 0;
2040
2041 if (!hid)
2042 return -ENODEV;
2043
2044 if (down_trylock(&hid->driver_input_lock))
2045 return -EBUSY;
2046
2047 if (!hid->driver) {
2048 ret = -ENODEV;
2049 goto unlock;
2050 }
2051 report_enum = hid->report_enum + type;
2052 hdrv = hid->driver;
2053
2054 data = dispatch_hid_bpf_device_event(hid, type, data, &size, interrupt);
2055 if (IS_ERR(data)) {
2056 ret = PTR_ERR(data);
2057 goto unlock;
2058 }
2059
2060 if (!size) {
2061 dbg_hid("empty report\n");
2062 ret = -1;
2063 goto unlock;
2064 }
2065
2066 /* Avoid unnecessary overhead if debugfs is disabled */
2067 if (!list_empty(&hid->debug_list))
2068 hid_dump_report(hid, type, data, size);
2069
2070 report = hid_get_report(report_enum, data);
2071
2072 if (!report) {
2073 ret = -1;
2074 goto unlock;
2075 }
2076
2077 if (hdrv && hdrv->raw_event && hid_match_report(hid, report)) {
2078 ret = hdrv->raw_event(hid, report, data, size);
2079 if (ret < 0)
2080 goto unlock;
2081 }
2082
2083 ret = hid_report_raw_event(hid, type, data, size, interrupt);
2084
2085 unlock:
2086 up(&hid->driver_input_lock);
2087 return ret;
2088 }
2089 EXPORT_SYMBOL_GPL(hid_input_report);
2090
hid_match_one_id(const struct hid_device * hdev,const struct hid_device_id * id)2091 bool hid_match_one_id(const struct hid_device *hdev,
2092 const struct hid_device_id *id)
2093 {
2094 return (id->bus == HID_BUS_ANY || id->bus == hdev->bus) &&
2095 (id->group == HID_GROUP_ANY || id->group == hdev->group) &&
2096 (id->vendor == HID_ANY_ID || id->vendor == hdev->vendor) &&
2097 (id->product == HID_ANY_ID || id->product == hdev->product);
2098 }
2099
hid_match_id(const struct hid_device * hdev,const struct hid_device_id * id)2100 const struct hid_device_id *hid_match_id(const struct hid_device *hdev,
2101 const struct hid_device_id *id)
2102 {
2103 for (; id->bus; id++)
2104 if (hid_match_one_id(hdev, id))
2105 return id;
2106
2107 return NULL;
2108 }
2109 EXPORT_SYMBOL_GPL(hid_match_id);
2110
2111 static const struct hid_device_id hid_hiddev_list[] = {
2112 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS) },
2113 { HID_USB_DEVICE(USB_VENDOR_ID_MGE, USB_DEVICE_ID_MGE_UPS1) },
2114 { }
2115 };
2116
hid_hiddev(struct hid_device * hdev)2117 static bool hid_hiddev(struct hid_device *hdev)
2118 {
2119 return !!hid_match_id(hdev, hid_hiddev_list);
2120 }
2121
2122
2123 static ssize_t
read_report_descriptor(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)2124 read_report_descriptor(struct file *filp, struct kobject *kobj,
2125 struct bin_attribute *attr,
2126 char *buf, loff_t off, size_t count)
2127 {
2128 struct device *dev = kobj_to_dev(kobj);
2129 struct hid_device *hdev = to_hid_device(dev);
2130
2131 if (off >= hdev->rsize)
2132 return 0;
2133
2134 if (off + count > hdev->rsize)
2135 count = hdev->rsize - off;
2136
2137 memcpy(buf, hdev->rdesc + off, count);
2138
2139 return count;
2140 }
2141
2142 static ssize_t
show_country(struct device * dev,struct device_attribute * attr,char * buf)2143 show_country(struct device *dev, struct device_attribute *attr,
2144 char *buf)
2145 {
2146 struct hid_device *hdev = to_hid_device(dev);
2147
2148 return sprintf(buf, "%02x\n", hdev->country & 0xff);
2149 }
2150
2151 static struct bin_attribute dev_bin_attr_report_desc = {
2152 .attr = { .name = "report_descriptor", .mode = 0444 },
2153 .read = read_report_descriptor,
2154 .size = HID_MAX_DESCRIPTOR_SIZE,
2155 };
2156
2157 static const struct device_attribute dev_attr_country = {
2158 .attr = { .name = "country", .mode = 0444 },
2159 .show = show_country,
2160 };
2161
hid_connect(struct hid_device * hdev,unsigned int connect_mask)2162 int hid_connect(struct hid_device *hdev, unsigned int connect_mask)
2163 {
2164 static const char *types[] = { "Device", "Pointer", "Mouse", "Device",
2165 "Joystick", "Gamepad", "Keyboard", "Keypad",
2166 "Multi-Axis Controller"
2167 };
2168 const char *type, *bus;
2169 char buf[64] = "";
2170 unsigned int i;
2171 int len;
2172 int ret;
2173
2174 ret = hid_bpf_connect_device(hdev);
2175 if (ret)
2176 return ret;
2177
2178 if (hdev->quirks & HID_QUIRK_HIDDEV_FORCE)
2179 connect_mask |= (HID_CONNECT_HIDDEV_FORCE | HID_CONNECT_HIDDEV);
2180 if (hdev->quirks & HID_QUIRK_HIDINPUT_FORCE)
2181 connect_mask |= HID_CONNECT_HIDINPUT_FORCE;
2182 if (hdev->bus != BUS_USB)
2183 connect_mask &= ~HID_CONNECT_HIDDEV;
2184 if (hid_hiddev(hdev))
2185 connect_mask |= HID_CONNECT_HIDDEV_FORCE;
2186
2187 if ((connect_mask & HID_CONNECT_HIDINPUT) && !hidinput_connect(hdev,
2188 connect_mask & HID_CONNECT_HIDINPUT_FORCE))
2189 hdev->claimed |= HID_CLAIMED_INPUT;
2190
2191 if ((connect_mask & HID_CONNECT_HIDDEV) && hdev->hiddev_connect &&
2192 !hdev->hiddev_connect(hdev,
2193 connect_mask & HID_CONNECT_HIDDEV_FORCE))
2194 hdev->claimed |= HID_CLAIMED_HIDDEV;
2195 if ((connect_mask & HID_CONNECT_HIDRAW) && !hidraw_connect(hdev))
2196 hdev->claimed |= HID_CLAIMED_HIDRAW;
2197
2198 if (connect_mask & HID_CONNECT_DRIVER)
2199 hdev->claimed |= HID_CLAIMED_DRIVER;
2200
2201 /* Drivers with the ->raw_event callback set are not required to connect
2202 * to any other listener. */
2203 if (!hdev->claimed && !hdev->driver->raw_event) {
2204 hid_err(hdev, "device has no listeners, quitting\n");
2205 return -ENODEV;
2206 }
2207
2208 hid_process_ordering(hdev);
2209
2210 if ((hdev->claimed & HID_CLAIMED_INPUT) &&
2211 (connect_mask & HID_CONNECT_FF) && hdev->ff_init)
2212 hdev->ff_init(hdev);
2213
2214 len = 0;
2215 if (hdev->claimed & HID_CLAIMED_INPUT)
2216 len += sprintf(buf + len, "input");
2217 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2218 len += sprintf(buf + len, "%shiddev%d", len ? "," : "",
2219 ((struct hiddev *)hdev->hiddev)->minor);
2220 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2221 len += sprintf(buf + len, "%shidraw%d", len ? "," : "",
2222 ((struct hidraw *)hdev->hidraw)->minor);
2223
2224 type = "Device";
2225 for (i = 0; i < hdev->maxcollection; i++) {
2226 struct hid_collection *col = &hdev->collection[i];
2227 if (col->type == HID_COLLECTION_APPLICATION &&
2228 (col->usage & HID_USAGE_PAGE) == HID_UP_GENDESK &&
2229 (col->usage & 0xffff) < ARRAY_SIZE(types)) {
2230 type = types[col->usage & 0xffff];
2231 break;
2232 }
2233 }
2234
2235 switch (hdev->bus) {
2236 case BUS_USB:
2237 bus = "USB";
2238 break;
2239 case BUS_BLUETOOTH:
2240 bus = "BLUETOOTH";
2241 break;
2242 case BUS_I2C:
2243 bus = "I2C";
2244 break;
2245 case BUS_VIRTUAL:
2246 bus = "VIRTUAL";
2247 break;
2248 case BUS_INTEL_ISHTP:
2249 case BUS_AMD_SFH:
2250 bus = "SENSOR HUB";
2251 break;
2252 default:
2253 bus = "<UNKNOWN>";
2254 }
2255
2256 ret = device_create_file(&hdev->dev, &dev_attr_country);
2257 if (ret)
2258 hid_warn(hdev,
2259 "can't create sysfs country code attribute err: %d\n", ret);
2260
2261 hid_info(hdev, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2262 buf, bus, hdev->version >> 8, hdev->version & 0xff,
2263 type, hdev->name, hdev->phys);
2264
2265 return 0;
2266 }
2267 EXPORT_SYMBOL_GPL(hid_connect);
2268
hid_disconnect(struct hid_device * hdev)2269 void hid_disconnect(struct hid_device *hdev)
2270 {
2271 device_remove_file(&hdev->dev, &dev_attr_country);
2272 if (hdev->claimed & HID_CLAIMED_INPUT)
2273 hidinput_disconnect(hdev);
2274 if (hdev->claimed & HID_CLAIMED_HIDDEV)
2275 hdev->hiddev_disconnect(hdev);
2276 if (hdev->claimed & HID_CLAIMED_HIDRAW)
2277 hidraw_disconnect(hdev);
2278 hdev->claimed = 0;
2279
2280 hid_bpf_disconnect_device(hdev);
2281 }
2282 EXPORT_SYMBOL_GPL(hid_disconnect);
2283
2284 /**
2285 * hid_hw_start - start underlying HW
2286 * @hdev: hid device
2287 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2288 *
2289 * Call this in probe function *after* hid_parse. This will setup HW
2290 * buffers and start the device (if not defeirred to device open).
2291 * hid_hw_stop must be called if this was successful.
2292 */
hid_hw_start(struct hid_device * hdev,unsigned int connect_mask)2293 int hid_hw_start(struct hid_device *hdev, unsigned int connect_mask)
2294 {
2295 int error;
2296
2297 error = hdev->ll_driver->start(hdev);
2298 if (error)
2299 return error;
2300
2301 if (connect_mask) {
2302 error = hid_connect(hdev, connect_mask);
2303 if (error) {
2304 hdev->ll_driver->stop(hdev);
2305 return error;
2306 }
2307 }
2308
2309 return 0;
2310 }
2311 EXPORT_SYMBOL_GPL(hid_hw_start);
2312
2313 /**
2314 * hid_hw_stop - stop underlying HW
2315 * @hdev: hid device
2316 *
2317 * This is usually called from remove function or from probe when something
2318 * failed and hid_hw_start was called already.
2319 */
hid_hw_stop(struct hid_device * hdev)2320 void hid_hw_stop(struct hid_device *hdev)
2321 {
2322 hid_disconnect(hdev);
2323 hdev->ll_driver->stop(hdev);
2324 }
2325 EXPORT_SYMBOL_GPL(hid_hw_stop);
2326
2327 /**
2328 * hid_hw_open - signal underlying HW to start delivering events
2329 * @hdev: hid device
2330 *
2331 * Tell underlying HW to start delivering events from the device.
2332 * This function should be called sometime after successful call
2333 * to hid_hw_start().
2334 */
hid_hw_open(struct hid_device * hdev)2335 int hid_hw_open(struct hid_device *hdev)
2336 {
2337 int ret;
2338
2339 ret = mutex_lock_killable(&hdev->ll_open_lock);
2340 if (ret)
2341 return ret;
2342
2343 if (!hdev->ll_open_count++) {
2344 ret = hdev->ll_driver->open(hdev);
2345 if (ret)
2346 hdev->ll_open_count--;
2347 }
2348
2349 mutex_unlock(&hdev->ll_open_lock);
2350 return ret;
2351 }
2352 EXPORT_SYMBOL_GPL(hid_hw_open);
2353
2354 /**
2355 * hid_hw_close - signal underlaying HW to stop delivering events
2356 *
2357 * @hdev: hid device
2358 *
2359 * This function indicates that we are not interested in the events
2360 * from this device anymore. Delivery of events may or may not stop,
2361 * depending on the number of users still outstanding.
2362 */
hid_hw_close(struct hid_device * hdev)2363 void hid_hw_close(struct hid_device *hdev)
2364 {
2365 mutex_lock(&hdev->ll_open_lock);
2366 if (!--hdev->ll_open_count)
2367 hdev->ll_driver->close(hdev);
2368 mutex_unlock(&hdev->ll_open_lock);
2369 }
2370 EXPORT_SYMBOL_GPL(hid_hw_close);
2371
2372 /**
2373 * hid_hw_request - send report request to device
2374 *
2375 * @hdev: hid device
2376 * @report: report to send
2377 * @reqtype: hid request type
2378 */
hid_hw_request(struct hid_device * hdev,struct hid_report * report,enum hid_class_request reqtype)2379 void hid_hw_request(struct hid_device *hdev,
2380 struct hid_report *report, enum hid_class_request reqtype)
2381 {
2382 if (hdev->ll_driver->request)
2383 return hdev->ll_driver->request(hdev, report, reqtype);
2384
2385 __hid_request(hdev, report, reqtype);
2386 }
2387 EXPORT_SYMBOL_GPL(hid_hw_request);
2388
2389 /**
2390 * hid_hw_raw_request - send report request to device
2391 *
2392 * @hdev: hid device
2393 * @reportnum: report ID
2394 * @buf: in/out data to transfer
2395 * @len: length of buf
2396 * @rtype: HID report type
2397 * @reqtype: HID_REQ_GET_REPORT or HID_REQ_SET_REPORT
2398 *
2399 * Return: count of data transferred, negative if error
2400 *
2401 * Same behavior as hid_hw_request, but with raw buffers instead.
2402 */
hid_hw_raw_request(struct hid_device * hdev,unsigned char reportnum,__u8 * buf,size_t len,enum hid_report_type rtype,enum hid_class_request reqtype)2403 int hid_hw_raw_request(struct hid_device *hdev,
2404 unsigned char reportnum, __u8 *buf,
2405 size_t len, enum hid_report_type rtype, enum hid_class_request reqtype)
2406 {
2407 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2408
2409 if (hdev->ll_driver->max_buffer_size)
2410 max_buffer_size = hdev->ll_driver->max_buffer_size;
2411
2412 if (len < 1 || len > max_buffer_size || !buf)
2413 return -EINVAL;
2414
2415 return hdev->ll_driver->raw_request(hdev, reportnum, buf, len,
2416 rtype, reqtype);
2417 }
2418 EXPORT_SYMBOL_GPL(hid_hw_raw_request);
2419
2420 /**
2421 * hid_hw_output_report - send output report to device
2422 *
2423 * @hdev: hid device
2424 * @buf: raw data to transfer
2425 * @len: length of buf
2426 *
2427 * Return: count of data transferred, negative if error
2428 */
hid_hw_output_report(struct hid_device * hdev,__u8 * buf,size_t len)2429 int hid_hw_output_report(struct hid_device *hdev, __u8 *buf, size_t len)
2430 {
2431 unsigned int max_buffer_size = HID_MAX_BUFFER_SIZE;
2432
2433 if (hdev->ll_driver->max_buffer_size)
2434 max_buffer_size = hdev->ll_driver->max_buffer_size;
2435
2436 if (len < 1 || len > max_buffer_size || !buf)
2437 return -EINVAL;
2438
2439 if (hdev->ll_driver->output_report)
2440 return hdev->ll_driver->output_report(hdev, buf, len);
2441
2442 return -ENOSYS;
2443 }
2444 EXPORT_SYMBOL_GPL(hid_hw_output_report);
2445
2446 #ifdef CONFIG_PM
hid_driver_suspend(struct hid_device * hdev,pm_message_t state)2447 int hid_driver_suspend(struct hid_device *hdev, pm_message_t state)
2448 {
2449 if (hdev->driver && hdev->driver->suspend)
2450 return hdev->driver->suspend(hdev, state);
2451
2452 return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(hid_driver_suspend);
2455
hid_driver_reset_resume(struct hid_device * hdev)2456 int hid_driver_reset_resume(struct hid_device *hdev)
2457 {
2458 if (hdev->driver && hdev->driver->reset_resume)
2459 return hdev->driver->reset_resume(hdev);
2460
2461 return 0;
2462 }
2463 EXPORT_SYMBOL_GPL(hid_driver_reset_resume);
2464
hid_driver_resume(struct hid_device * hdev)2465 int hid_driver_resume(struct hid_device *hdev)
2466 {
2467 if (hdev->driver && hdev->driver->resume)
2468 return hdev->driver->resume(hdev);
2469
2470 return 0;
2471 }
2472 EXPORT_SYMBOL_GPL(hid_driver_resume);
2473 #endif /* CONFIG_PM */
2474
2475 struct hid_dynid {
2476 struct list_head list;
2477 struct hid_device_id id;
2478 };
2479
2480 /**
2481 * new_id_store - add a new HID device ID to this driver and re-probe devices
2482 * @drv: target device driver
2483 * @buf: buffer for scanning device ID data
2484 * @count: input size
2485 *
2486 * Adds a new dynamic hid device ID to this driver,
2487 * and causes the driver to probe for all devices again.
2488 */
new_id_store(struct device_driver * drv,const char * buf,size_t count)2489 static ssize_t new_id_store(struct device_driver *drv, const char *buf,
2490 size_t count)
2491 {
2492 struct hid_driver *hdrv = to_hid_driver(drv);
2493 struct hid_dynid *dynid;
2494 __u32 bus, vendor, product;
2495 unsigned long driver_data = 0;
2496 int ret;
2497
2498 ret = sscanf(buf, "%x %x %x %lx",
2499 &bus, &vendor, &product, &driver_data);
2500 if (ret < 3)
2501 return -EINVAL;
2502
2503 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
2504 if (!dynid)
2505 return -ENOMEM;
2506
2507 dynid->id.bus = bus;
2508 dynid->id.group = HID_GROUP_ANY;
2509 dynid->id.vendor = vendor;
2510 dynid->id.product = product;
2511 dynid->id.driver_data = driver_data;
2512
2513 spin_lock(&hdrv->dyn_lock);
2514 list_add_tail(&dynid->list, &hdrv->dyn_list);
2515 spin_unlock(&hdrv->dyn_lock);
2516
2517 ret = driver_attach(&hdrv->driver);
2518
2519 return ret ? : count;
2520 }
2521 static DRIVER_ATTR_WO(new_id);
2522
2523 static struct attribute *hid_drv_attrs[] = {
2524 &driver_attr_new_id.attr,
2525 NULL,
2526 };
2527 ATTRIBUTE_GROUPS(hid_drv);
2528
hid_free_dynids(struct hid_driver * hdrv)2529 static void hid_free_dynids(struct hid_driver *hdrv)
2530 {
2531 struct hid_dynid *dynid, *n;
2532
2533 spin_lock(&hdrv->dyn_lock);
2534 list_for_each_entry_safe(dynid, n, &hdrv->dyn_list, list) {
2535 list_del(&dynid->list);
2536 kfree(dynid);
2537 }
2538 spin_unlock(&hdrv->dyn_lock);
2539 }
2540
hid_match_device(struct hid_device * hdev,struct hid_driver * hdrv)2541 const struct hid_device_id *hid_match_device(struct hid_device *hdev,
2542 struct hid_driver *hdrv)
2543 {
2544 struct hid_dynid *dynid;
2545
2546 spin_lock(&hdrv->dyn_lock);
2547 list_for_each_entry(dynid, &hdrv->dyn_list, list) {
2548 if (hid_match_one_id(hdev, &dynid->id)) {
2549 spin_unlock(&hdrv->dyn_lock);
2550 return &dynid->id;
2551 }
2552 }
2553 spin_unlock(&hdrv->dyn_lock);
2554
2555 return hid_match_id(hdev, hdrv->id_table);
2556 }
2557 EXPORT_SYMBOL_GPL(hid_match_device);
2558
hid_bus_match(struct device * dev,struct device_driver * drv)2559 static int hid_bus_match(struct device *dev, struct device_driver *drv)
2560 {
2561 struct hid_driver *hdrv = to_hid_driver(drv);
2562 struct hid_device *hdev = to_hid_device(dev);
2563
2564 return hid_match_device(hdev, hdrv) != NULL;
2565 }
2566
2567 /**
2568 * hid_compare_device_paths - check if both devices share the same path
2569 * @hdev_a: hid device
2570 * @hdev_b: hid device
2571 * @separator: char to use as separator
2572 *
2573 * Check if two devices share the same path up to the last occurrence of
2574 * the separator char. Both paths must exist (i.e., zero-length paths
2575 * don't match).
2576 */
hid_compare_device_paths(struct hid_device * hdev_a,struct hid_device * hdev_b,char separator)2577 bool hid_compare_device_paths(struct hid_device *hdev_a,
2578 struct hid_device *hdev_b, char separator)
2579 {
2580 int n1 = strrchr(hdev_a->phys, separator) - hdev_a->phys;
2581 int n2 = strrchr(hdev_b->phys, separator) - hdev_b->phys;
2582
2583 if (n1 != n2 || n1 <= 0 || n2 <= 0)
2584 return false;
2585
2586 return !strncmp(hdev_a->phys, hdev_b->phys, n1);
2587 }
2588 EXPORT_SYMBOL_GPL(hid_compare_device_paths);
2589
hid_check_device_match(struct hid_device * hdev,struct hid_driver * hdrv,const struct hid_device_id ** id)2590 static bool hid_check_device_match(struct hid_device *hdev,
2591 struct hid_driver *hdrv,
2592 const struct hid_device_id **id)
2593 {
2594 *id = hid_match_device(hdev, hdrv);
2595 if (!*id)
2596 return false;
2597
2598 if (hdrv->match)
2599 return hdrv->match(hdev, hid_ignore_special_drivers);
2600
2601 /*
2602 * hid-generic implements .match(), so we must be dealing with a
2603 * different HID driver here, and can simply check if
2604 * hid_ignore_special_drivers is set or not.
2605 */
2606 return !hid_ignore_special_drivers;
2607 }
2608
__hid_device_probe(struct hid_device * hdev,struct hid_driver * hdrv)2609 static int __hid_device_probe(struct hid_device *hdev, struct hid_driver *hdrv)
2610 {
2611 const struct hid_device_id *id;
2612 int ret;
2613
2614 if (!hid_check_device_match(hdev, hdrv, &id))
2615 return -ENODEV;
2616
2617 hdev->devres_group_id = devres_open_group(&hdev->dev, NULL, GFP_KERNEL);
2618 if (!hdev->devres_group_id)
2619 return -ENOMEM;
2620
2621 /* reset the quirks that has been previously set */
2622 hdev->quirks = hid_lookup_quirk(hdev);
2623 hdev->driver = hdrv;
2624
2625 if (hdrv->probe) {
2626 ret = hdrv->probe(hdev, id);
2627 } else { /* default probe */
2628 ret = hid_open_report(hdev);
2629 if (!ret)
2630 ret = hid_hw_start(hdev, HID_CONNECT_DEFAULT);
2631 }
2632
2633 /*
2634 * Note that we are not closing the devres group opened above so
2635 * even resources that were attached to the device after probe is
2636 * run are released when hid_device_remove() is executed. This is
2637 * needed as some drivers would allocate additional resources,
2638 * for example when updating firmware.
2639 */
2640
2641 if (ret) {
2642 devres_release_group(&hdev->dev, hdev->devres_group_id);
2643 hid_close_report(hdev);
2644 hdev->driver = NULL;
2645 }
2646
2647 return ret;
2648 }
2649
hid_device_probe(struct device * dev)2650 static int hid_device_probe(struct device *dev)
2651 {
2652 struct hid_device *hdev = to_hid_device(dev);
2653 struct hid_driver *hdrv = to_hid_driver(dev->driver);
2654 int ret = 0;
2655
2656 if (down_interruptible(&hdev->driver_input_lock))
2657 return -EINTR;
2658
2659 hdev->io_started = false;
2660 clear_bit(ffs(HID_STAT_REPROBED), &hdev->status);
2661
2662 if (!hdev->driver)
2663 ret = __hid_device_probe(hdev, hdrv);
2664
2665 if (!hdev->io_started)
2666 up(&hdev->driver_input_lock);
2667
2668 return ret;
2669 }
2670
hid_device_remove(struct device * dev)2671 static void hid_device_remove(struct device *dev)
2672 {
2673 struct hid_device *hdev = to_hid_device(dev);
2674 struct hid_driver *hdrv;
2675
2676 down(&hdev->driver_input_lock);
2677 hdev->io_started = false;
2678
2679 hdrv = hdev->driver;
2680 if (hdrv) {
2681 if (hdrv->remove)
2682 hdrv->remove(hdev);
2683 else /* default remove */
2684 hid_hw_stop(hdev);
2685
2686 /* Release all devres resources allocated by the driver */
2687 devres_release_group(&hdev->dev, hdev->devres_group_id);
2688
2689 hid_close_report(hdev);
2690 hdev->driver = NULL;
2691 }
2692
2693 if (!hdev->io_started)
2694 up(&hdev->driver_input_lock);
2695 }
2696
modalias_show(struct device * dev,struct device_attribute * a,char * buf)2697 static ssize_t modalias_show(struct device *dev, struct device_attribute *a,
2698 char *buf)
2699 {
2700 struct hid_device *hdev = container_of(dev, struct hid_device, dev);
2701
2702 return scnprintf(buf, PAGE_SIZE, "hid:b%04Xg%04Xv%08Xp%08X\n",
2703 hdev->bus, hdev->group, hdev->vendor, hdev->product);
2704 }
2705 static DEVICE_ATTR_RO(modalias);
2706
2707 static struct attribute *hid_dev_attrs[] = {
2708 &dev_attr_modalias.attr,
2709 NULL,
2710 };
2711 static struct bin_attribute *hid_dev_bin_attrs[] = {
2712 &dev_bin_attr_report_desc,
2713 NULL
2714 };
2715 static const struct attribute_group hid_dev_group = {
2716 .attrs = hid_dev_attrs,
2717 .bin_attrs = hid_dev_bin_attrs,
2718 };
2719 __ATTRIBUTE_GROUPS(hid_dev);
2720
hid_uevent(const struct device * dev,struct kobj_uevent_env * env)2721 static int hid_uevent(const struct device *dev, struct kobj_uevent_env *env)
2722 {
2723 const struct hid_device *hdev = to_hid_device(dev);
2724
2725 if (add_uevent_var(env, "HID_ID=%04X:%08X:%08X",
2726 hdev->bus, hdev->vendor, hdev->product))
2727 return -ENOMEM;
2728
2729 if (add_uevent_var(env, "HID_NAME=%s", hdev->name))
2730 return -ENOMEM;
2731
2732 if (add_uevent_var(env, "HID_PHYS=%s", hdev->phys))
2733 return -ENOMEM;
2734
2735 if (add_uevent_var(env, "HID_UNIQ=%s", hdev->uniq))
2736 return -ENOMEM;
2737
2738 if (add_uevent_var(env, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2739 hdev->bus, hdev->group, hdev->vendor, hdev->product))
2740 return -ENOMEM;
2741
2742 return 0;
2743 }
2744
2745 struct bus_type hid_bus_type = {
2746 .name = "hid",
2747 .dev_groups = hid_dev_groups,
2748 .drv_groups = hid_drv_groups,
2749 .match = hid_bus_match,
2750 .probe = hid_device_probe,
2751 .remove = hid_device_remove,
2752 .uevent = hid_uevent,
2753 };
2754 EXPORT_SYMBOL(hid_bus_type);
2755
hid_add_device(struct hid_device * hdev)2756 int hid_add_device(struct hid_device *hdev)
2757 {
2758 static atomic_t id = ATOMIC_INIT(0);
2759 int ret;
2760
2761 if (WARN_ON(hdev->status & HID_STAT_ADDED))
2762 return -EBUSY;
2763
2764 hdev->quirks = hid_lookup_quirk(hdev);
2765
2766 /* we need to kill them here, otherwise they will stay allocated to
2767 * wait for coming driver */
2768 if (hid_ignore(hdev))
2769 return -ENODEV;
2770
2771 /*
2772 * Check for the mandatory transport channel.
2773 */
2774 if (!hdev->ll_driver->raw_request) {
2775 hid_err(hdev, "transport driver missing .raw_request()\n");
2776 return -EINVAL;
2777 }
2778
2779 /*
2780 * Read the device report descriptor once and use as template
2781 * for the driver-specific modifications.
2782 */
2783 ret = hdev->ll_driver->parse(hdev);
2784 if (ret)
2785 return ret;
2786 if (!hdev->dev_rdesc)
2787 return -ENODEV;
2788
2789 /*
2790 * Scan generic devices for group information
2791 */
2792 if (hid_ignore_special_drivers) {
2793 hdev->group = HID_GROUP_GENERIC;
2794 } else if (!hdev->group &&
2795 !(hdev->quirks & HID_QUIRK_HAVE_SPECIAL_DRIVER)) {
2796 ret = hid_scan_report(hdev);
2797 if (ret)
2798 hid_warn(hdev, "bad device descriptor (%d)\n", ret);
2799 }
2800
2801 hdev->id = atomic_inc_return(&id);
2802
2803 /* XXX hack, any other cleaner solution after the driver core
2804 * is converted to allow more than 20 bytes as the device name? */
2805 dev_set_name(&hdev->dev, "%04X:%04X:%04X.%04X", hdev->bus,
2806 hdev->vendor, hdev->product, hdev->id);
2807
2808 hid_debug_register(hdev, dev_name(&hdev->dev));
2809 ret = device_add(&hdev->dev);
2810 if (!ret)
2811 hdev->status |= HID_STAT_ADDED;
2812 else
2813 hid_debug_unregister(hdev);
2814
2815 return ret;
2816 }
2817 EXPORT_SYMBOL_GPL(hid_add_device);
2818
2819 /**
2820 * hid_allocate_device - allocate new hid device descriptor
2821 *
2822 * Allocate and initialize hid device, so that hid_destroy_device might be
2823 * used to free it.
2824 *
2825 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2826 * error value.
2827 */
hid_allocate_device(void)2828 struct hid_device *hid_allocate_device(void)
2829 {
2830 struct hid_device *hdev;
2831 int ret = -ENOMEM;
2832
2833 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
2834 if (hdev == NULL)
2835 return ERR_PTR(ret);
2836
2837 device_initialize(&hdev->dev);
2838 hdev->dev.release = hid_device_release;
2839 hdev->dev.bus = &hid_bus_type;
2840 device_enable_async_suspend(&hdev->dev);
2841
2842 hid_close_report(hdev);
2843
2844 init_waitqueue_head(&hdev->debug_wait);
2845 INIT_LIST_HEAD(&hdev->debug_list);
2846 spin_lock_init(&hdev->debug_list_lock);
2847 sema_init(&hdev->driver_input_lock, 1);
2848 mutex_init(&hdev->ll_open_lock);
2849
2850 hid_bpf_device_init(hdev);
2851
2852 return hdev;
2853 }
2854 EXPORT_SYMBOL_GPL(hid_allocate_device);
2855
hid_remove_device(struct hid_device * hdev)2856 static void hid_remove_device(struct hid_device *hdev)
2857 {
2858 if (hdev->status & HID_STAT_ADDED) {
2859 device_del(&hdev->dev);
2860 hid_debug_unregister(hdev);
2861 hdev->status &= ~HID_STAT_ADDED;
2862 }
2863 kfree(hdev->dev_rdesc);
2864 hdev->dev_rdesc = NULL;
2865 hdev->dev_rsize = 0;
2866 }
2867
2868 /**
2869 * hid_destroy_device - free previously allocated device
2870 *
2871 * @hdev: hid device
2872 *
2873 * If you allocate hid_device through hid_allocate_device, you should ever
2874 * free by this function.
2875 */
hid_destroy_device(struct hid_device * hdev)2876 void hid_destroy_device(struct hid_device *hdev)
2877 {
2878 hid_bpf_destroy_device(hdev);
2879 hid_remove_device(hdev);
2880 put_device(&hdev->dev);
2881 }
2882 EXPORT_SYMBOL_GPL(hid_destroy_device);
2883
2884
__hid_bus_reprobe_drivers(struct device * dev,void * data)2885 static int __hid_bus_reprobe_drivers(struct device *dev, void *data)
2886 {
2887 struct hid_driver *hdrv = data;
2888 struct hid_device *hdev = to_hid_device(dev);
2889
2890 if (hdev->driver == hdrv &&
2891 !hdrv->match(hdev, hid_ignore_special_drivers) &&
2892 !test_and_set_bit(ffs(HID_STAT_REPROBED), &hdev->status))
2893 return device_reprobe(dev);
2894
2895 return 0;
2896 }
2897
__hid_bus_driver_added(struct device_driver * drv,void * data)2898 static int __hid_bus_driver_added(struct device_driver *drv, void *data)
2899 {
2900 struct hid_driver *hdrv = to_hid_driver(drv);
2901
2902 if (hdrv->match) {
2903 bus_for_each_dev(&hid_bus_type, NULL, hdrv,
2904 __hid_bus_reprobe_drivers);
2905 }
2906
2907 return 0;
2908 }
2909
__bus_removed_driver(struct device_driver * drv,void * data)2910 static int __bus_removed_driver(struct device_driver *drv, void *data)
2911 {
2912 return bus_rescan_devices(&hid_bus_type);
2913 }
2914
__hid_register_driver(struct hid_driver * hdrv,struct module * owner,const char * mod_name)2915 int __hid_register_driver(struct hid_driver *hdrv, struct module *owner,
2916 const char *mod_name)
2917 {
2918 int ret;
2919
2920 hdrv->driver.name = hdrv->name;
2921 hdrv->driver.bus = &hid_bus_type;
2922 hdrv->driver.owner = owner;
2923 hdrv->driver.mod_name = mod_name;
2924
2925 INIT_LIST_HEAD(&hdrv->dyn_list);
2926 spin_lock_init(&hdrv->dyn_lock);
2927
2928 ret = driver_register(&hdrv->driver);
2929
2930 if (ret == 0)
2931 bus_for_each_drv(&hid_bus_type, NULL, NULL,
2932 __hid_bus_driver_added);
2933
2934 return ret;
2935 }
2936 EXPORT_SYMBOL_GPL(__hid_register_driver);
2937
hid_unregister_driver(struct hid_driver * hdrv)2938 void hid_unregister_driver(struct hid_driver *hdrv)
2939 {
2940 driver_unregister(&hdrv->driver);
2941 hid_free_dynids(hdrv);
2942
2943 bus_for_each_drv(&hid_bus_type, NULL, hdrv, __bus_removed_driver);
2944 }
2945 EXPORT_SYMBOL_GPL(hid_unregister_driver);
2946
hid_check_keys_pressed(struct hid_device * hid)2947 int hid_check_keys_pressed(struct hid_device *hid)
2948 {
2949 struct hid_input *hidinput;
2950 int i;
2951
2952 if (!(hid->claimed & HID_CLAIMED_INPUT))
2953 return 0;
2954
2955 list_for_each_entry(hidinput, &hid->inputs, list) {
2956 for (i = 0; i < BITS_TO_LONGS(KEY_MAX); i++)
2957 if (hidinput->input->key[i])
2958 return 1;
2959 }
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL_GPL(hid_check_keys_pressed);
2964
2965 #ifdef CONFIG_HID_BPF
2966 static struct hid_bpf_ops hid_ops = {
2967 .hid_get_report = hid_get_report,
2968 .hid_hw_raw_request = hid_hw_raw_request,
2969 .owner = THIS_MODULE,
2970 .bus_type = &hid_bus_type,
2971 };
2972 #endif
2973
hid_init(void)2974 static int __init hid_init(void)
2975 {
2976 int ret;
2977
2978 ret = bus_register(&hid_bus_type);
2979 if (ret) {
2980 pr_err("can't register hid bus\n");
2981 goto err;
2982 }
2983
2984 #ifdef CONFIG_HID_BPF
2985 hid_bpf_ops = &hid_ops;
2986 #endif
2987
2988 ret = hidraw_init();
2989 if (ret)
2990 goto err_bus;
2991
2992 hid_debug_init();
2993
2994 return 0;
2995 err_bus:
2996 bus_unregister(&hid_bus_type);
2997 err:
2998 return ret;
2999 }
3000
hid_exit(void)3001 static void __exit hid_exit(void)
3002 {
3003 #ifdef CONFIG_HID_BPF
3004 hid_bpf_ops = NULL;
3005 #endif
3006 hid_debug_exit();
3007 hidraw_exit();
3008 bus_unregister(&hid_bus_type);
3009 hid_quirks_exit(HID_BUS_ANY);
3010 }
3011
3012 module_init(hid_init);
3013 module_exit(hid_exit);
3014
3015 MODULE_AUTHOR("Andreas Gal");
3016 MODULE_AUTHOR("Vojtech Pavlik");
3017 MODULE_AUTHOR("Jiri Kosina");
3018 MODULE_LICENSE("GPL");
3019