1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3  * Hibernate support specific for ARM64
4  *
5  * Derived from work on ARM hibernation support by:
6  *
7  * Ubuntu project, hibernation support for mach-dove
8  * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9  * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
11  */
12 #define pr_fmt(x) "hibernate: " x
13 #include <linux/cpu.h>
14 #include <linux/kvm_host.h>
15 #include <linux/pm.h>
16 #include <linux/sched.h>
17 #include <linux/suspend.h>
18 #include <linux/utsname.h>
19 
20 #include <asm/barrier.h>
21 #include <asm/cacheflush.h>
22 #include <asm/cputype.h>
23 #include <asm/daifflags.h>
24 #include <asm/irqflags.h>
25 #include <asm/kexec.h>
26 #include <asm/memory.h>
27 #include <asm/mmu_context.h>
28 #include <asm/mte.h>
29 #include <asm/sections.h>
30 #include <asm/smp.h>
31 #include <asm/smp_plat.h>
32 #include <asm/suspend.h>
33 #include <asm/sysreg.h>
34 #include <asm/trans_pgd.h>
35 #include <asm/virt.h>
36 
37 /*
38  * Hibernate core relies on this value being 0 on resume, and marks it
39  * __nosavedata assuming it will keep the resume kernel's '0' value. This
40  * doesn't happen with either KASLR.
41  *
42  * defined as "__visible int in_suspend __nosavedata" in
43  * kernel/power/hibernate.c
44  */
45 extern int in_suspend;
46 
47 /* Do we need to reset el2? */
48 #define el2_reset_needed() (is_hyp_nvhe())
49 
50 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
51 extern char __hyp_stub_vectors[];
52 
53 /*
54  * The logical cpu number we should resume on, initialised to a non-cpu
55  * number.
56  */
57 static int sleep_cpu = -EINVAL;
58 
59 /*
60  * Values that may not change over hibernate/resume. We put the build number
61  * and date in here so that we guarantee not to resume with a different
62  * kernel.
63  */
64 struct arch_hibernate_hdr_invariants {
65 	char		uts_version[__NEW_UTS_LEN + 1];
66 };
67 
68 /* These values need to be know across a hibernate/restore. */
69 static struct arch_hibernate_hdr {
70 	struct arch_hibernate_hdr_invariants invariants;
71 
72 	/* These are needed to find the relocated kernel if built with kaslr */
73 	phys_addr_t	ttbr1_el1;
74 	void		(*reenter_kernel)(void);
75 
76 	/*
77 	 * We need to know where the __hyp_stub_vectors are after restore to
78 	 * re-configure el2.
79 	 */
80 	phys_addr_t	__hyp_stub_vectors;
81 
82 	u64		sleep_cpu_mpidr;
83 } resume_hdr;
84 
arch_hdr_invariants(struct arch_hibernate_hdr_invariants * i)85 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
86 {
87 	memset(i, 0, sizeof(*i));
88 	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
89 }
90 
pfn_is_nosave(unsigned long pfn)91 int pfn_is_nosave(unsigned long pfn)
92 {
93 	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
94 	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
95 
96 	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
97 		crash_is_nosave(pfn);
98 }
99 
save_processor_state(void)100 void notrace save_processor_state(void)
101 {
102 }
103 
restore_processor_state(void)104 void notrace restore_processor_state(void)
105 {
106 }
107 
arch_hibernation_header_save(void * addr,unsigned int max_size)108 int arch_hibernation_header_save(void *addr, unsigned int max_size)
109 {
110 	struct arch_hibernate_hdr *hdr = addr;
111 
112 	if (max_size < sizeof(*hdr))
113 		return -EOVERFLOW;
114 
115 	arch_hdr_invariants(&hdr->invariants);
116 	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
117 	hdr->reenter_kernel	= _cpu_resume;
118 
119 	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
120 	if (el2_reset_needed())
121 		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
122 	else
123 		hdr->__hyp_stub_vectors = 0;
124 
125 	/* Save the mpidr of the cpu we called cpu_suspend() on... */
126 	if (sleep_cpu < 0) {
127 		pr_err("Failing to hibernate on an unknown CPU.\n");
128 		return -ENODEV;
129 	}
130 	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
131 	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
132 		hdr->sleep_cpu_mpidr);
133 
134 	return 0;
135 }
136 EXPORT_SYMBOL(arch_hibernation_header_save);
137 
arch_hibernation_header_restore(void * addr)138 int arch_hibernation_header_restore(void *addr)
139 {
140 	int ret;
141 	struct arch_hibernate_hdr_invariants invariants;
142 	struct arch_hibernate_hdr *hdr = addr;
143 
144 	arch_hdr_invariants(&invariants);
145 	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
146 		pr_crit("Hibernate image not generated by this kernel!\n");
147 		return -EINVAL;
148 	}
149 
150 	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
151 	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
152 		hdr->sleep_cpu_mpidr);
153 	if (sleep_cpu < 0) {
154 		pr_crit("Hibernated on a CPU not known to this kernel!\n");
155 		sleep_cpu = -EINVAL;
156 		return -EINVAL;
157 	}
158 
159 	ret = bringup_hibernate_cpu(sleep_cpu);
160 	if (ret) {
161 		sleep_cpu = -EINVAL;
162 		return ret;
163 	}
164 
165 	resume_hdr = *hdr;
166 
167 	return 0;
168 }
169 EXPORT_SYMBOL(arch_hibernation_header_restore);
170 
hibernate_page_alloc(void * arg)171 static void *hibernate_page_alloc(void *arg)
172 {
173 	return (void *)get_safe_page((__force gfp_t)(unsigned long)arg);
174 }
175 
176 /*
177  * Copies length bytes, starting at src_start into an new page,
178  * perform cache maintenance, then maps it at the specified address low
179  * address as executable.
180  *
181  * This is used by hibernate to copy the code it needs to execute when
182  * overwriting the kernel text. This function generates a new set of page
183  * tables, which it loads into ttbr0.
184  *
185  * Length is provided as we probably only want 4K of data, even on a 64K
186  * page system.
187  */
create_safe_exec_page(void * src_start,size_t length,phys_addr_t * phys_dst_addr)188 static int create_safe_exec_page(void *src_start, size_t length,
189 				 phys_addr_t *phys_dst_addr)
190 {
191 	struct trans_pgd_info trans_info = {
192 		.trans_alloc_page	= hibernate_page_alloc,
193 		.trans_alloc_arg	= (__force void *)GFP_ATOMIC,
194 	};
195 
196 	void *page = (void *)get_safe_page(GFP_ATOMIC);
197 	phys_addr_t trans_ttbr0;
198 	unsigned long t0sz;
199 	int rc;
200 
201 	if (!page)
202 		return -ENOMEM;
203 
204 	memcpy(page, src_start, length);
205 	caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
206 	rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page);
207 	if (rc)
208 		return rc;
209 
210 	cpu_install_ttbr0(trans_ttbr0, t0sz);
211 	*phys_dst_addr = virt_to_phys(page);
212 
213 	return 0;
214 }
215 
216 #ifdef CONFIG_ARM64_MTE
217 
218 static DEFINE_XARRAY(mte_pages);
219 
save_tags(struct page * page,unsigned long pfn)220 static int save_tags(struct page *page, unsigned long pfn)
221 {
222 	void *tag_storage, *ret;
223 
224 	tag_storage = mte_allocate_tag_storage();
225 	if (!tag_storage)
226 		return -ENOMEM;
227 
228 	mte_save_page_tags(page_address(page), tag_storage);
229 
230 	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
231 	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
232 		mte_free_tag_storage(tag_storage);
233 		return xa_err(ret);
234 	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
235 		mte_free_tag_storage(ret);
236 	}
237 
238 	return 0;
239 }
240 
swsusp_mte_free_storage(void)241 static void swsusp_mte_free_storage(void)
242 {
243 	XA_STATE(xa_state, &mte_pages, 0);
244 	void *tags;
245 
246 	xa_lock(&mte_pages);
247 	xas_for_each(&xa_state, tags, ULONG_MAX) {
248 		mte_free_tag_storage(tags);
249 	}
250 	xa_unlock(&mte_pages);
251 
252 	xa_destroy(&mte_pages);
253 }
254 
swsusp_mte_save_tags(void)255 static int swsusp_mte_save_tags(void)
256 {
257 	struct zone *zone;
258 	unsigned long pfn, max_zone_pfn;
259 	int ret = 0;
260 	int n = 0;
261 
262 	if (!system_supports_mte())
263 		return 0;
264 
265 	for_each_populated_zone(zone) {
266 		max_zone_pfn = zone_end_pfn(zone);
267 		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
268 			struct page *page = pfn_to_online_page(pfn);
269 
270 			if (!page)
271 				continue;
272 
273 			if (!page_mte_tagged(page))
274 				continue;
275 
276 			ret = save_tags(page, pfn);
277 			if (ret) {
278 				swsusp_mte_free_storage();
279 				goto out;
280 			}
281 
282 			n++;
283 		}
284 	}
285 	pr_info("Saved %d MTE pages\n", n);
286 
287 out:
288 	return ret;
289 }
290 
swsusp_mte_restore_tags(void)291 static void swsusp_mte_restore_tags(void)
292 {
293 	XA_STATE(xa_state, &mte_pages, 0);
294 	int n = 0;
295 	void *tags;
296 
297 	xa_lock(&mte_pages);
298 	xas_for_each(&xa_state, tags, ULONG_MAX) {
299 		unsigned long pfn = xa_state.xa_index;
300 		struct page *page = pfn_to_online_page(pfn);
301 
302 		mte_restore_page_tags(page_address(page), tags);
303 
304 		mte_free_tag_storage(tags);
305 		n++;
306 	}
307 	xa_unlock(&mte_pages);
308 
309 	pr_info("Restored %d MTE pages\n", n);
310 
311 	xa_destroy(&mte_pages);
312 }
313 
314 #else	/* CONFIG_ARM64_MTE */
315 
swsusp_mte_save_tags(void)316 static int swsusp_mte_save_tags(void)
317 {
318 	return 0;
319 }
320 
swsusp_mte_restore_tags(void)321 static void swsusp_mte_restore_tags(void)
322 {
323 }
324 
325 #endif	/* CONFIG_ARM64_MTE */
326 
swsusp_arch_suspend(void)327 int swsusp_arch_suspend(void)
328 {
329 	int ret = 0;
330 	unsigned long flags;
331 	struct sleep_stack_data state;
332 
333 	if (cpus_are_stuck_in_kernel()) {
334 		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
335 		return -EBUSY;
336 	}
337 
338 	flags = local_daif_save();
339 
340 	if (__cpu_suspend_enter(&state)) {
341 		/* make the crash dump kernel image visible/saveable */
342 		crash_prepare_suspend();
343 
344 		ret = swsusp_mte_save_tags();
345 		if (ret)
346 			return ret;
347 
348 		sleep_cpu = smp_processor_id();
349 		ret = swsusp_save();
350 	} else {
351 		/* Clean kernel core startup/idle code to PoC*/
352 		dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
353 				    (unsigned long)__mmuoff_data_end);
354 		dcache_clean_inval_poc((unsigned long)__idmap_text_start,
355 				    (unsigned long)__idmap_text_end);
356 
357 		/* Clean kvm setup code to PoC? */
358 		if (el2_reset_needed()) {
359 			dcache_clean_inval_poc(
360 				(unsigned long)__hyp_idmap_text_start,
361 				(unsigned long)__hyp_idmap_text_end);
362 			dcache_clean_inval_poc((unsigned long)__hyp_text_start,
363 					    (unsigned long)__hyp_text_end);
364 		}
365 
366 		swsusp_mte_restore_tags();
367 
368 		/* make the crash dump kernel image protected again */
369 		crash_post_resume();
370 
371 		/*
372 		 * Tell the hibernation core that we've just restored
373 		 * the memory
374 		 */
375 		in_suspend = 0;
376 
377 		sleep_cpu = -EINVAL;
378 		__cpu_suspend_exit();
379 
380 		/*
381 		 * Just in case the boot kernel did turn the SSBD
382 		 * mitigation off behind our back, let's set the state
383 		 * to what we expect it to be.
384 		 */
385 		spectre_v4_enable_mitigation(NULL);
386 	}
387 
388 	local_daif_restore(flags);
389 
390 	return ret;
391 }
392 
393 /*
394  * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
395  *
396  * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
397  * we don't need to free it here.
398  */
swsusp_arch_resume(void)399 int swsusp_arch_resume(void)
400 {
401 	int rc;
402 	void *zero_page;
403 	size_t exit_size;
404 	pgd_t *tmp_pg_dir;
405 	phys_addr_t el2_vectors;
406 	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
407 					  void *, phys_addr_t, phys_addr_t);
408 	struct trans_pgd_info trans_info = {
409 		.trans_alloc_page	= hibernate_page_alloc,
410 		.trans_alloc_arg	= (void *)GFP_ATOMIC,
411 	};
412 
413 	/*
414 	 * Restoring the memory image will overwrite the ttbr1 page tables.
415 	 * Create a second copy of just the linear map, and use this when
416 	 * restoring.
417 	 */
418 	rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET,
419 				   PAGE_END);
420 	if (rc)
421 		return rc;
422 
423 	/*
424 	 * We need a zero page that is zero before & after resume in order
425 	 * to break before make on the ttbr1 page tables.
426 	 */
427 	zero_page = (void *)get_safe_page(GFP_ATOMIC);
428 	if (!zero_page) {
429 		pr_err("Failed to allocate zero page.\n");
430 		return -ENOMEM;
431 	}
432 
433 	if (el2_reset_needed()) {
434 		rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors);
435 		if (rc) {
436 			pr_err("Failed to setup el2 vectors\n");
437 			return rc;
438 		}
439 	}
440 
441 	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
442 	/*
443 	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
444 	 * a new set of ttbr0 page tables and load them.
445 	 */
446 	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
447 				   (phys_addr_t *)&hibernate_exit);
448 	if (rc) {
449 		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
450 		return rc;
451 	}
452 
453 	/*
454 	 * KASLR will cause the el2 vectors to be in a different location in
455 	 * the resumed kernel. Load hibernate's temporary copy into el2.
456 	 *
457 	 * We can skip this step if we booted at EL1, or are running with VHE.
458 	 */
459 	if (el2_reset_needed())
460 		__hyp_set_vectors(el2_vectors);
461 
462 	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
463 		       resume_hdr.reenter_kernel, restore_pblist,
464 		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
465 
466 	return 0;
467 }
468 
hibernate_resume_nonboot_cpu_disable(void)469 int hibernate_resume_nonboot_cpu_disable(void)
470 {
471 	if (sleep_cpu < 0) {
472 		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
473 		return -ENODEV;
474 	}
475 
476 	return freeze_secondary_cpus(sleep_cpu);
477 }
478