1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59 
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 
73 #undef pr_fmt
74 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
75 
76 /*
77  * min buffers we want to have per context, after driver
78  */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80 
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85 
86 #define NUM_IB_PORTS 1
87 
88 /*
89  * Number of user receive contexts we are configured to use (to allow for more
90  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
91  */
92 int num_user_contexts = -1;
93 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
94 MODULE_PARM_DESC(
95 	num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
96 
97 uint krcvqs[RXE_NUM_DATA_VL];
98 int krcvqsset;
99 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
100 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
101 
102 /* computed based on above array */
103 unsigned long n_krcvqs;
104 
105 static unsigned hfi1_rcvarr_split = 25;
106 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
107 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
108 
109 static uint eager_buffer_size = (8 << 20); /* 8MB */
110 module_param(eager_buffer_size, uint, S_IRUGO);
111 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
112 
113 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
114 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
115 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
116 
117 static uint hfi1_hdrq_entsize = 32;
118 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
119 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
120 
121 unsigned int user_credit_return_threshold = 33;	/* default is 33% */
122 module_param(user_credit_return_threshold, uint, S_IRUGO);
123 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
124 
125 static inline u64 encode_rcv_header_entry_size(u16 size);
126 
127 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
128 
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)129 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
130 			     struct hfi1_pportdata *ppd)
131 {
132 	struct hfi1_ctxtdata *rcd;
133 	int ret;
134 
135 	/* Control context has to be always 0 */
136 	BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
137 
138 	ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
139 	if (ret < 0) {
140 		dd_dev_err(dd, "Kernel receive context allocation failed\n");
141 		return ret;
142 	}
143 
144 	/*
145 	 * Set up the kernel context flags here and now because they use
146 	 * default values for all receive side memories.  User contexts will
147 	 * be handled as they are created.
148 	 */
149 	rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
150 		HFI1_CAP_KGET(NODROP_RHQ_FULL) |
151 		HFI1_CAP_KGET(NODROP_EGR_FULL) |
152 		HFI1_CAP_KGET(DMA_RTAIL);
153 
154 	/* Control context must use DMA_RTAIL */
155 	if (rcd->ctxt == HFI1_CTRL_CTXT)
156 		rcd->flags |= HFI1_CAP_DMA_RTAIL;
157 	rcd->seq_cnt = 1;
158 
159 	rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
160 	if (!rcd->sc) {
161 		dd_dev_err(dd, "Kernel send context allocation failed\n");
162 		return -ENOMEM;
163 	}
164 	hfi1_init_ctxt(rcd->sc);
165 
166 	return 0;
167 }
168 
169 /*
170  * Create the receive context array and one or more kernel contexts
171  */
hfi1_create_kctxts(struct hfi1_devdata * dd)172 int hfi1_create_kctxts(struct hfi1_devdata *dd)
173 {
174 	u16 i;
175 	int ret;
176 
177 	dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
178 			       GFP_KERNEL, dd->node);
179 	if (!dd->rcd)
180 		return -ENOMEM;
181 
182 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
183 		ret = hfi1_create_kctxt(dd, dd->pport);
184 		if (ret)
185 			goto bail;
186 	}
187 
188 	return 0;
189 bail:
190 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
191 		hfi1_free_ctxt(dd->rcd[i]);
192 
193 	/* All the contexts should be freed, free the array */
194 	kfree(dd->rcd);
195 	dd->rcd = NULL;
196 	return ret;
197 }
198 
199 /*
200  * Helper routines for the receive context reference count (rcd and uctxt).
201  */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)202 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
203 {
204 	kref_init(&rcd->kref);
205 }
206 
207 /**
208  * hfi1_rcd_free - When reference is zero clean up.
209  * @kref: pointer to an initialized rcd data structure
210  *
211  */
hfi1_rcd_free(struct kref * kref)212 static void hfi1_rcd_free(struct kref *kref)
213 {
214 	unsigned long flags;
215 	struct hfi1_ctxtdata *rcd =
216 		container_of(kref, struct hfi1_ctxtdata, kref);
217 
218 	spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 	rcd->dd->rcd[rcd->ctxt] = NULL;
220 	spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221 
222 	hfi1_free_ctxtdata(rcd->dd, rcd);
223 
224 	kfree(rcd);
225 }
226 
227 /**
228  * hfi1_rcd_put - decrement reference for rcd
229  * @rcd: pointer to an initialized rcd data structure
230  *
231  * Use this to put a reference after the init.
232  */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)233 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
234 {
235 	if (rcd)
236 		return kref_put(&rcd->kref, hfi1_rcd_free);
237 
238 	return 0;
239 }
240 
241 /**
242  * hfi1_rcd_get - increment reference for rcd
243  * @rcd: pointer to an initialized rcd data structure
244  *
245  * Use this to get a reference after the init.
246  *
247  * Return : reflect kref_get_unless_zero(), which returns non-zero on
248  * increment, otherwise 0.
249  */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)250 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
251 {
252 	return kref_get_unless_zero(&rcd->kref);
253 }
254 
255 /**
256  * allocate_rcd_index - allocate an rcd index from the rcd array
257  * @dd: pointer to a valid devdata structure
258  * @rcd: rcd data structure to assign
259  * @index: pointer to index that is allocated
260  *
261  * Find an empty index in the rcd array, and assign the given rcd to it.
262  * If the array is full, we are EBUSY.
263  *
264  */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)265 static int allocate_rcd_index(struct hfi1_devdata *dd,
266 			      struct hfi1_ctxtdata *rcd, u16 *index)
267 {
268 	unsigned long flags;
269 	u16 ctxt;
270 
271 	spin_lock_irqsave(&dd->uctxt_lock, flags);
272 	for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
273 		if (!dd->rcd[ctxt])
274 			break;
275 
276 	if (ctxt < dd->num_rcv_contexts) {
277 		rcd->ctxt = ctxt;
278 		dd->rcd[ctxt] = rcd;
279 		hfi1_rcd_init(rcd);
280 	}
281 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
282 
283 	if (ctxt >= dd->num_rcv_contexts)
284 		return -EBUSY;
285 
286 	*index = ctxt;
287 
288 	return 0;
289 }
290 
291 /**
292  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
293  * array
294  * @dd: pointer to a valid devdata structure
295  * @ctxt: the index of an possilbe rcd
296  *
297  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
298  * ctxt index is valid.
299  *
300  * The caller is responsible for making the _put().
301  *
302  */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)303 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
304 						 u16 ctxt)
305 {
306 	if (ctxt < dd->num_rcv_contexts)
307 		return hfi1_rcd_get_by_index(dd, ctxt);
308 
309 	return NULL;
310 }
311 
312 /**
313  * hfi1_rcd_get_by_index
314  * @dd: pointer to a valid devdata structure
315  * @ctxt: the index of an possilbe rcd
316  *
317  * We need to protect access to the rcd array.  If access is needed to
318  * one or more index, get the protecting spinlock and then increment the
319  * kref.
320  *
321  * The caller is responsible for making the _put().
322  *
323  */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)324 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
325 {
326 	unsigned long flags;
327 	struct hfi1_ctxtdata *rcd = NULL;
328 
329 	spin_lock_irqsave(&dd->uctxt_lock, flags);
330 	if (dd->rcd[ctxt]) {
331 		rcd = dd->rcd[ctxt];
332 		if (!hfi1_rcd_get(rcd))
333 			rcd = NULL;
334 	}
335 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
336 
337 	return rcd;
338 }
339 
340 /*
341  * Common code for user and kernel context create and setup.
342  * NOTE: the initial kref is done here (hf1_rcd_init()).
343  */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)344 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
345 			 struct hfi1_ctxtdata **context)
346 {
347 	struct hfi1_devdata *dd = ppd->dd;
348 	struct hfi1_ctxtdata *rcd;
349 	unsigned kctxt_ngroups = 0;
350 	u32 base;
351 
352 	if (dd->rcv_entries.nctxt_extra >
353 	    dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
354 		kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
355 			 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
356 	rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
357 	if (rcd) {
358 		u32 rcvtids, max_entries;
359 		u16 ctxt;
360 		int ret;
361 
362 		ret = allocate_rcd_index(dd, rcd, &ctxt);
363 		if (ret) {
364 			*context = NULL;
365 			kfree(rcd);
366 			return ret;
367 		}
368 
369 		INIT_LIST_HEAD(&rcd->qp_wait_list);
370 		hfi1_exp_tid_group_init(rcd);
371 		rcd->ppd = ppd;
372 		rcd->dd = dd;
373 		rcd->numa_id = numa;
374 		rcd->rcv_array_groups = dd->rcv_entries.ngroups;
375 		rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
376 
377 		mutex_init(&rcd->exp_mutex);
378 		spin_lock_init(&rcd->exp_lock);
379 		INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
380 		INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
381 
382 		hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
383 
384 		/*
385 		 * Calculate the context's RcvArray entry starting point.
386 		 * We do this here because we have to take into account all
387 		 * the RcvArray entries that previous context would have
388 		 * taken and we have to account for any extra groups assigned
389 		 * to the static (kernel) or dynamic (vnic/user) contexts.
390 		 */
391 		if (ctxt < dd->first_dyn_alloc_ctxt) {
392 			if (ctxt < kctxt_ngroups) {
393 				base = ctxt * (dd->rcv_entries.ngroups + 1);
394 				rcd->rcv_array_groups++;
395 			} else {
396 				base = kctxt_ngroups +
397 					(ctxt * dd->rcv_entries.ngroups);
398 			}
399 		} else {
400 			u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
401 
402 			base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
403 				kctxt_ngroups);
404 			if (ct < dd->rcv_entries.nctxt_extra) {
405 				base += ct * (dd->rcv_entries.ngroups + 1);
406 				rcd->rcv_array_groups++;
407 			} else {
408 				base += dd->rcv_entries.nctxt_extra +
409 					(ct * dd->rcv_entries.ngroups);
410 			}
411 		}
412 		rcd->eager_base = base * dd->rcv_entries.group_size;
413 
414 		rcd->rcvhdrq_cnt = rcvhdrcnt;
415 		rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
416 		rcd->rhf_offset =
417 			rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
418 		/*
419 		 * Simple Eager buffer allocation: we have already pre-allocated
420 		 * the number of RcvArray entry groups. Each ctxtdata structure
421 		 * holds the number of groups for that context.
422 		 *
423 		 * To follow CSR requirements and maintain cacheline alignment,
424 		 * make sure all sizes and bases are multiples of group_size.
425 		 *
426 		 * The expected entry count is what is left after assigning
427 		 * eager.
428 		 */
429 		max_entries = rcd->rcv_array_groups *
430 			dd->rcv_entries.group_size;
431 		rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
432 		rcd->egrbufs.count = round_down(rcvtids,
433 						dd->rcv_entries.group_size);
434 		if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
435 			dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
436 				   rcd->ctxt);
437 			rcd->egrbufs.count = MAX_EAGER_ENTRIES;
438 		}
439 		hfi1_cdbg(PROC,
440 			  "ctxt%u: max Eager buffer RcvArray entries: %u\n",
441 			  rcd->ctxt, rcd->egrbufs.count);
442 
443 		/*
444 		 * Allocate array that will hold the eager buffer accounting
445 		 * data.
446 		 * This will allocate the maximum possible buffer count based
447 		 * on the value of the RcvArray split parameter.
448 		 * The resulting value will be rounded down to the closest
449 		 * multiple of dd->rcv_entries.group_size.
450 		 */
451 		rcd->egrbufs.buffers =
452 			kcalloc_node(rcd->egrbufs.count,
453 				     sizeof(*rcd->egrbufs.buffers),
454 				     GFP_KERNEL, numa);
455 		if (!rcd->egrbufs.buffers)
456 			goto bail;
457 		rcd->egrbufs.rcvtids =
458 			kcalloc_node(rcd->egrbufs.count,
459 				     sizeof(*rcd->egrbufs.rcvtids),
460 				     GFP_KERNEL, numa);
461 		if (!rcd->egrbufs.rcvtids)
462 			goto bail;
463 		rcd->egrbufs.size = eager_buffer_size;
464 		/*
465 		 * The size of the buffers programmed into the RcvArray
466 		 * entries needs to be big enough to handle the highest
467 		 * MTU supported.
468 		 */
469 		if (rcd->egrbufs.size < hfi1_max_mtu) {
470 			rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
471 			hfi1_cdbg(PROC,
472 				  "ctxt%u: eager bufs size too small. Adjusting to %u\n",
473 				    rcd->ctxt, rcd->egrbufs.size);
474 		}
475 		rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
476 
477 		/* Applicable only for statically created kernel contexts */
478 		if (ctxt < dd->first_dyn_alloc_ctxt) {
479 			rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
480 						    GFP_KERNEL, numa);
481 			if (!rcd->opstats)
482 				goto bail;
483 
484 			/* Initialize TID flow generations for the context */
485 			hfi1_kern_init_ctxt_generations(rcd);
486 		}
487 
488 		*context = rcd;
489 		return 0;
490 	}
491 
492 bail:
493 	*context = NULL;
494 	hfi1_free_ctxt(rcd);
495 	return -ENOMEM;
496 }
497 
498 /**
499  * hfi1_free_ctxt
500  * @rcd: pointer to an initialized rcd data structure
501  *
502  * This wrapper is the free function that matches hfi1_create_ctxtdata().
503  * When a context is done being used (kernel or user), this function is called
504  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
505  * Other users of the context do a get/put sequence to make sure that the
506  * structure isn't removed while in use.
507  */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)508 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
509 {
510 	hfi1_rcd_put(rcd);
511 }
512 
513 /*
514  * Convert a receive header entry size that to the encoding used in the CSR.
515  *
516  * Return a zero if the given size is invalid.
517  */
encode_rcv_header_entry_size(u16 size)518 static inline u64 encode_rcv_header_entry_size(u16 size)
519 {
520 	/* there are only 3 valid receive header entry sizes */
521 	if (size == 2)
522 		return 1;
523 	if (size == 16)
524 		return 2;
525 	else if (size == 32)
526 		return 4;
527 	return 0; /* invalid */
528 }
529 
530 /*
531  * Select the largest ccti value over all SLs to determine the intra-
532  * packet gap for the link.
533  *
534  * called with cca_timer_lock held (to protect access to cca_timer
535  * array), and rcu_read_lock() (to protect access to cc_state).
536  */
set_link_ipg(struct hfi1_pportdata * ppd)537 void set_link_ipg(struct hfi1_pportdata *ppd)
538 {
539 	struct hfi1_devdata *dd = ppd->dd;
540 	struct cc_state *cc_state;
541 	int i;
542 	u16 cce, ccti_limit, max_ccti = 0;
543 	u16 shift, mult;
544 	u64 src;
545 	u32 current_egress_rate; /* Mbits /sec */
546 	u32 max_pkt_time;
547 	/*
548 	 * max_pkt_time is the maximum packet egress time in units
549 	 * of the fabric clock period 1/(805 MHz).
550 	 */
551 
552 	cc_state = get_cc_state(ppd);
553 
554 	if (!cc_state)
555 		/*
556 		 * This should _never_ happen - rcu_read_lock() is held,
557 		 * and set_link_ipg() should not be called if cc_state
558 		 * is NULL.
559 		 */
560 		return;
561 
562 	for (i = 0; i < OPA_MAX_SLS; i++) {
563 		u16 ccti = ppd->cca_timer[i].ccti;
564 
565 		if (ccti > max_ccti)
566 			max_ccti = ccti;
567 	}
568 
569 	ccti_limit = cc_state->cct.ccti_limit;
570 	if (max_ccti > ccti_limit)
571 		max_ccti = ccti_limit;
572 
573 	cce = cc_state->cct.entries[max_ccti].entry;
574 	shift = (cce & 0xc000) >> 14;
575 	mult = (cce & 0x3fff);
576 
577 	current_egress_rate = active_egress_rate(ppd);
578 
579 	max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
580 
581 	src = (max_pkt_time >> shift) * mult;
582 
583 	src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
584 	src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
585 
586 	write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
587 }
588 
cca_timer_fn(struct hrtimer * t)589 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
590 {
591 	struct cca_timer *cca_timer;
592 	struct hfi1_pportdata *ppd;
593 	int sl;
594 	u16 ccti_timer, ccti_min;
595 	struct cc_state *cc_state;
596 	unsigned long flags;
597 	enum hrtimer_restart ret = HRTIMER_NORESTART;
598 
599 	cca_timer = container_of(t, struct cca_timer, hrtimer);
600 	ppd = cca_timer->ppd;
601 	sl = cca_timer->sl;
602 
603 	rcu_read_lock();
604 
605 	cc_state = get_cc_state(ppd);
606 
607 	if (!cc_state) {
608 		rcu_read_unlock();
609 		return HRTIMER_NORESTART;
610 	}
611 
612 	/*
613 	 * 1) decrement ccti for SL
614 	 * 2) calculate IPG for link (set_link_ipg())
615 	 * 3) restart timer, unless ccti is at min value
616 	 */
617 
618 	ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
619 	ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
620 
621 	spin_lock_irqsave(&ppd->cca_timer_lock, flags);
622 
623 	if (cca_timer->ccti > ccti_min) {
624 		cca_timer->ccti--;
625 		set_link_ipg(ppd);
626 	}
627 
628 	if (cca_timer->ccti > ccti_min) {
629 		unsigned long nsec = 1024 * ccti_timer;
630 		/* ccti_timer is in units of 1.024 usec */
631 		hrtimer_forward_now(t, ns_to_ktime(nsec));
632 		ret = HRTIMER_RESTART;
633 	}
634 
635 	spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
636 	rcu_read_unlock();
637 	return ret;
638 }
639 
640 /*
641  * Common code for initializing the physical port structure.
642  */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u8 port)643 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
644 			 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
645 {
646 	int i;
647 	uint default_pkey_idx;
648 	struct cc_state *cc_state;
649 
650 	ppd->dd = dd;
651 	ppd->hw_pidx = hw_pidx;
652 	ppd->port = port; /* IB port number, not index */
653 	ppd->prev_link_width = LINK_WIDTH_DEFAULT;
654 	/*
655 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
656 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
657 	 */
658 	for (i = 0; i < C_VL_COUNT + 1; i++) {
659 		ppd->port_vl_xmit_wait_last[i] = 0;
660 		ppd->vl_xmit_flit_cnt[i] = 0;
661 	}
662 
663 	default_pkey_idx = 1;
664 
665 	ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
666 	ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
667 
668 	if (loopback) {
669 		dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
670 			   !default_pkey_idx);
671 		ppd->pkeys[!default_pkey_idx] = 0x8001;
672 	}
673 
674 	INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
675 	INIT_WORK(&ppd->link_up_work, handle_link_up);
676 	INIT_WORK(&ppd->link_down_work, handle_link_down);
677 	INIT_WORK(&ppd->freeze_work, handle_freeze);
678 	INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
679 	INIT_WORK(&ppd->sma_message_work, handle_sma_message);
680 	INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
681 	INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
682 	INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
683 	INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
684 
685 	mutex_init(&ppd->hls_lock);
686 	spin_lock_init(&ppd->qsfp_info.qsfp_lock);
687 
688 	ppd->qsfp_info.ppd = ppd;
689 	ppd->sm_trap_qp = 0x0;
690 	ppd->sa_qp = 0x1;
691 
692 	ppd->hfi1_wq = NULL;
693 
694 	spin_lock_init(&ppd->cca_timer_lock);
695 
696 	for (i = 0; i < OPA_MAX_SLS; i++) {
697 		hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
698 			     HRTIMER_MODE_REL);
699 		ppd->cca_timer[i].ppd = ppd;
700 		ppd->cca_timer[i].sl = i;
701 		ppd->cca_timer[i].ccti = 0;
702 		ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
703 	}
704 
705 	ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
706 
707 	spin_lock_init(&ppd->cc_state_lock);
708 	spin_lock_init(&ppd->cc_log_lock);
709 	cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
710 	RCU_INIT_POINTER(ppd->cc_state, cc_state);
711 	if (!cc_state)
712 		goto bail;
713 	return;
714 
715 bail:
716 	dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
717 }
718 
719 /*
720  * Do initialization for device that is only needed on
721  * first detect, not on resets.
722  */
loadtime_init(struct hfi1_devdata * dd)723 static int loadtime_init(struct hfi1_devdata *dd)
724 {
725 	return 0;
726 }
727 
728 /**
729  * init_after_reset - re-initialize after a reset
730  * @dd: the hfi1_ib device
731  *
732  * sanity check at least some of the values after reset, and
733  * ensure no receive or transmit (explicitly, in case reset
734  * failed
735  */
init_after_reset(struct hfi1_devdata * dd)736 static int init_after_reset(struct hfi1_devdata *dd)
737 {
738 	int i;
739 	struct hfi1_ctxtdata *rcd;
740 	/*
741 	 * Ensure chip does no sends or receives, tail updates, or
742 	 * pioavail updates while we re-initialize.  This is mostly
743 	 * for the driver data structures, not chip registers.
744 	 */
745 	for (i = 0; i < dd->num_rcv_contexts; i++) {
746 		rcd = hfi1_rcd_get_by_index(dd, i);
747 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
748 			     HFI1_RCVCTRL_INTRAVAIL_DIS |
749 			     HFI1_RCVCTRL_TAILUPD_DIS, rcd);
750 		hfi1_rcd_put(rcd);
751 	}
752 	pio_send_control(dd, PSC_GLOBAL_DISABLE);
753 	for (i = 0; i < dd->num_send_contexts; i++)
754 		sc_disable(dd->send_contexts[i].sc);
755 
756 	return 0;
757 }
758 
enable_chip(struct hfi1_devdata * dd)759 static void enable_chip(struct hfi1_devdata *dd)
760 {
761 	struct hfi1_ctxtdata *rcd;
762 	u32 rcvmask;
763 	u16 i;
764 
765 	/* enable PIO send */
766 	pio_send_control(dd, PSC_GLOBAL_ENABLE);
767 
768 	/*
769 	 * Enable kernel ctxts' receive and receive interrupt.
770 	 * Other ctxts done as user opens and initializes them.
771 	 */
772 	for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
773 		rcd = hfi1_rcd_get_by_index(dd, i);
774 		if (!rcd)
775 			continue;
776 		rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
777 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
778 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
779 		if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
780 			rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
781 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
782 			rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
783 		if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
784 			rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
785 		if (HFI1_CAP_IS_KSET(TID_RDMA))
786 			rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
787 		hfi1_rcvctrl(dd, rcvmask, rcd);
788 		sc_enable(rcd->sc);
789 		hfi1_rcd_put(rcd);
790 	}
791 }
792 
793 /**
794  * create_workqueues - create per port workqueues
795  * @dd: the hfi1_ib device
796  */
create_workqueues(struct hfi1_devdata * dd)797 static int create_workqueues(struct hfi1_devdata *dd)
798 {
799 	int pidx;
800 	struct hfi1_pportdata *ppd;
801 
802 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
803 		ppd = dd->pport + pidx;
804 		if (!ppd->hfi1_wq) {
805 			ppd->hfi1_wq =
806 				alloc_workqueue(
807 				    "hfi%d_%d",
808 				    WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
809 				    WQ_MEM_RECLAIM,
810 				    HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
811 				    dd->unit, pidx);
812 			if (!ppd->hfi1_wq)
813 				goto wq_error;
814 		}
815 		if (!ppd->link_wq) {
816 			/*
817 			 * Make the link workqueue single-threaded to enforce
818 			 * serialization.
819 			 */
820 			ppd->link_wq =
821 				alloc_workqueue(
822 				    "hfi_link_%d_%d",
823 				    WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
824 				    1, /* max_active */
825 				    dd->unit, pidx);
826 			if (!ppd->link_wq)
827 				goto wq_error;
828 		}
829 	}
830 	return 0;
831 wq_error:
832 	pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
833 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
834 		ppd = dd->pport + pidx;
835 		if (ppd->hfi1_wq) {
836 			destroy_workqueue(ppd->hfi1_wq);
837 			ppd->hfi1_wq = NULL;
838 		}
839 		if (ppd->link_wq) {
840 			destroy_workqueue(ppd->link_wq);
841 			ppd->link_wq = NULL;
842 		}
843 	}
844 	return -ENOMEM;
845 }
846 
847 /**
848  * enable_general_intr() - Enable the IRQs that will be handled by the
849  * general interrupt handler.
850  * @dd: valid devdata
851  *
852  */
enable_general_intr(struct hfi1_devdata * dd)853 static void enable_general_intr(struct hfi1_devdata *dd)
854 {
855 	set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
856 	set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
857 	set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
858 	set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
859 	set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
860 	set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
861 	set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
862 }
863 
864 /**
865  * hfi1_init - do the actual initialization sequence on the chip
866  * @dd: the hfi1_ib device
867  * @reinit: re-initializing, so don't allocate new memory
868  *
869  * Do the actual initialization sequence on the chip.  This is done
870  * both from the init routine called from the PCI infrastructure, and
871  * when we reset the chip, or detect that it was reset internally,
872  * or it's administratively re-enabled.
873  *
874  * Memory allocation here and in called routines is only done in
875  * the first case (reinit == 0).  We have to be careful, because even
876  * without memory allocation, we need to re-write all the chip registers
877  * TIDs, etc. after the reset or enable has completed.
878  */
hfi1_init(struct hfi1_devdata * dd,int reinit)879 int hfi1_init(struct hfi1_devdata *dd, int reinit)
880 {
881 	int ret = 0, pidx, lastfail = 0;
882 	unsigned long len;
883 	u16 i;
884 	struct hfi1_ctxtdata *rcd;
885 	struct hfi1_pportdata *ppd;
886 
887 	/* Set up send low level handlers */
888 	dd->process_pio_send = hfi1_verbs_send_pio;
889 	dd->process_dma_send = hfi1_verbs_send_dma;
890 	dd->pio_inline_send = pio_copy;
891 	dd->process_vnic_dma_send = hfi1_vnic_send_dma;
892 
893 	if (is_ax(dd)) {
894 		atomic_set(&dd->drop_packet, DROP_PACKET_ON);
895 		dd->do_drop = 1;
896 	} else {
897 		atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
898 		dd->do_drop = 0;
899 	}
900 
901 	/* make sure the link is not "up" */
902 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
903 		ppd = dd->pport + pidx;
904 		ppd->linkup = 0;
905 	}
906 
907 	if (reinit)
908 		ret = init_after_reset(dd);
909 	else
910 		ret = loadtime_init(dd);
911 	if (ret)
912 		goto done;
913 
914 	/* allocate dummy tail memory for all receive contexts */
915 	dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
916 							 sizeof(u64),
917 							 &dd->rcvhdrtail_dummy_dma,
918 							 GFP_KERNEL);
919 
920 	if (!dd->rcvhdrtail_dummy_kvaddr) {
921 		dd_dev_err(dd, "cannot allocate dummy tail memory\n");
922 		ret = -ENOMEM;
923 		goto done;
924 	}
925 
926 	/* dd->rcd can be NULL if early initialization failed */
927 	for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
928 		/*
929 		 * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
930 		 * re-init, the simplest way to handle this is to free
931 		 * existing, and re-allocate.
932 		 * Need to re-create rest of ctxt 0 ctxtdata as well.
933 		 */
934 		rcd = hfi1_rcd_get_by_index(dd, i);
935 		if (!rcd)
936 			continue;
937 
938 		rcd->do_interrupt = &handle_receive_interrupt;
939 
940 		lastfail = hfi1_create_rcvhdrq(dd, rcd);
941 		if (!lastfail)
942 			lastfail = hfi1_setup_eagerbufs(rcd);
943 		if (!lastfail)
944 			lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
945 		if (lastfail) {
946 			dd_dev_err(dd,
947 				   "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
948 			ret = lastfail;
949 		}
950 		/* enable IRQ */
951 		hfi1_rcd_put(rcd);
952 	}
953 
954 	/* Allocate enough memory for user event notification. */
955 	len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
956 			 sizeof(*dd->events));
957 	dd->events = vmalloc_user(len);
958 	if (!dd->events)
959 		dd_dev_err(dd, "Failed to allocate user events page\n");
960 	/*
961 	 * Allocate a page for device and port status.
962 	 * Page will be shared amongst all user processes.
963 	 */
964 	dd->status = vmalloc_user(PAGE_SIZE);
965 	if (!dd->status)
966 		dd_dev_err(dd, "Failed to allocate dev status page\n");
967 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
968 		ppd = dd->pport + pidx;
969 		if (dd->status)
970 			/* Currently, we only have one port */
971 			ppd->statusp = &dd->status->port;
972 
973 		set_mtu(ppd);
974 	}
975 
976 	/* enable chip even if we have an error, so we can debug cause */
977 	enable_chip(dd);
978 
979 done:
980 	/*
981 	 * Set status even if port serdes is not initialized
982 	 * so that diags will work.
983 	 */
984 	if (dd->status)
985 		dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
986 			HFI1_STATUS_INITTED;
987 	if (!ret) {
988 		/* enable all interrupts from the chip */
989 		enable_general_intr(dd);
990 		init_qsfp_int(dd);
991 
992 		/* chip is OK for user apps; mark it as initialized */
993 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
994 			ppd = dd->pport + pidx;
995 
996 			/*
997 			 * start the serdes - must be after interrupts are
998 			 * enabled so we are notified when the link goes up
999 			 */
1000 			lastfail = bringup_serdes(ppd);
1001 			if (lastfail)
1002 				dd_dev_info(dd,
1003 					    "Failed to bring up port %u\n",
1004 					    ppd->port);
1005 
1006 			/*
1007 			 * Set status even if port serdes is not initialized
1008 			 * so that diags will work.
1009 			 */
1010 			if (ppd->statusp)
1011 				*ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1012 							HFI1_STATUS_INITTED;
1013 			if (!ppd->link_speed_enabled)
1014 				continue;
1015 		}
1016 	}
1017 
1018 	/* if ret is non-zero, we probably should do some cleanup here... */
1019 	return ret;
1020 }
1021 
hfi1_lookup(int unit)1022 struct hfi1_devdata *hfi1_lookup(int unit)
1023 {
1024 	return xa_load(&hfi1_dev_table, unit);
1025 }
1026 
1027 /*
1028  * Stop the timers during unit shutdown, or after an error late
1029  * in initialization.
1030  */
stop_timers(struct hfi1_devdata * dd)1031 static void stop_timers(struct hfi1_devdata *dd)
1032 {
1033 	struct hfi1_pportdata *ppd;
1034 	int pidx;
1035 
1036 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1037 		ppd = dd->pport + pidx;
1038 		if (ppd->led_override_timer.function) {
1039 			del_timer_sync(&ppd->led_override_timer);
1040 			atomic_set(&ppd->led_override_timer_active, 0);
1041 		}
1042 	}
1043 }
1044 
1045 /**
1046  * shutdown_device - shut down a device
1047  * @dd: the hfi1_ib device
1048  *
1049  * This is called to make the device quiet when we are about to
1050  * unload the driver, and also when the device is administratively
1051  * disabled.   It does not free any data structures.
1052  * Everything it does has to be setup again by hfi1_init(dd, 1)
1053  */
shutdown_device(struct hfi1_devdata * dd)1054 static void shutdown_device(struct hfi1_devdata *dd)
1055 {
1056 	struct hfi1_pportdata *ppd;
1057 	struct hfi1_ctxtdata *rcd;
1058 	unsigned pidx;
1059 	int i;
1060 
1061 	if (dd->flags & HFI1_SHUTDOWN)
1062 		return;
1063 	dd->flags |= HFI1_SHUTDOWN;
1064 
1065 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1066 		ppd = dd->pport + pidx;
1067 
1068 		ppd->linkup = 0;
1069 		if (ppd->statusp)
1070 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1071 					   HFI1_STATUS_IB_READY);
1072 	}
1073 	dd->flags &= ~HFI1_INITTED;
1074 
1075 	/* mask and clean up interrupts */
1076 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1077 	msix_clean_up_interrupts(dd);
1078 
1079 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1080 		ppd = dd->pport + pidx;
1081 		for (i = 0; i < dd->num_rcv_contexts; i++) {
1082 			rcd = hfi1_rcd_get_by_index(dd, i);
1083 			hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1084 				     HFI1_RCVCTRL_CTXT_DIS |
1085 				     HFI1_RCVCTRL_INTRAVAIL_DIS |
1086 				     HFI1_RCVCTRL_PKEY_DIS |
1087 				     HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1088 			hfi1_rcd_put(rcd);
1089 		}
1090 		/*
1091 		 * Gracefully stop all sends allowing any in progress to
1092 		 * trickle out first.
1093 		 */
1094 		for (i = 0; i < dd->num_send_contexts; i++)
1095 			sc_flush(dd->send_contexts[i].sc);
1096 	}
1097 
1098 	/*
1099 	 * Enough for anything that's going to trickle out to have actually
1100 	 * done so.
1101 	 */
1102 	udelay(20);
1103 
1104 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1105 		ppd = dd->pport + pidx;
1106 
1107 		/* disable all contexts */
1108 		for (i = 0; i < dd->num_send_contexts; i++)
1109 			sc_disable(dd->send_contexts[i].sc);
1110 		/* disable the send device */
1111 		pio_send_control(dd, PSC_GLOBAL_DISABLE);
1112 
1113 		shutdown_led_override(ppd);
1114 
1115 		/*
1116 		 * Clear SerdesEnable.
1117 		 * We can't count on interrupts since we are stopping.
1118 		 */
1119 		hfi1_quiet_serdes(ppd);
1120 
1121 		if (ppd->hfi1_wq) {
1122 			destroy_workqueue(ppd->hfi1_wq);
1123 			ppd->hfi1_wq = NULL;
1124 		}
1125 		if (ppd->link_wq) {
1126 			destroy_workqueue(ppd->link_wq);
1127 			ppd->link_wq = NULL;
1128 		}
1129 	}
1130 	sdma_exit(dd);
1131 }
1132 
1133 /**
1134  * hfi1_free_ctxtdata - free a context's allocated data
1135  * @dd: the hfi1_ib device
1136  * @rcd: the ctxtdata structure
1137  *
1138  * free up any allocated data for a context
1139  * It should never change any chip state, or global driver state.
1140  */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1141 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1142 {
1143 	u32 e;
1144 
1145 	if (!rcd)
1146 		return;
1147 
1148 	if (rcd->rcvhdrq) {
1149 		dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1150 				  rcd->rcvhdrq, rcd->rcvhdrq_dma);
1151 		rcd->rcvhdrq = NULL;
1152 		if (rcd->rcvhdrtail_kvaddr) {
1153 			dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1154 					  (void *)rcd->rcvhdrtail_kvaddr,
1155 					  rcd->rcvhdrqtailaddr_dma);
1156 			rcd->rcvhdrtail_kvaddr = NULL;
1157 		}
1158 	}
1159 
1160 	/* all the RcvArray entries should have been cleared by now */
1161 	kfree(rcd->egrbufs.rcvtids);
1162 	rcd->egrbufs.rcvtids = NULL;
1163 
1164 	for (e = 0; e < rcd->egrbufs.alloced; e++) {
1165 		if (rcd->egrbufs.buffers[e].dma)
1166 			dma_free_coherent(&dd->pcidev->dev,
1167 					  rcd->egrbufs.buffers[e].len,
1168 					  rcd->egrbufs.buffers[e].addr,
1169 					  rcd->egrbufs.buffers[e].dma);
1170 	}
1171 	kfree(rcd->egrbufs.buffers);
1172 	rcd->egrbufs.alloced = 0;
1173 	rcd->egrbufs.buffers = NULL;
1174 
1175 	sc_free(rcd->sc);
1176 	rcd->sc = NULL;
1177 
1178 	vfree(rcd->subctxt_uregbase);
1179 	vfree(rcd->subctxt_rcvegrbuf);
1180 	vfree(rcd->subctxt_rcvhdr_base);
1181 	kfree(rcd->opstats);
1182 
1183 	rcd->subctxt_uregbase = NULL;
1184 	rcd->subctxt_rcvegrbuf = NULL;
1185 	rcd->subctxt_rcvhdr_base = NULL;
1186 	rcd->opstats = NULL;
1187 }
1188 
1189 /*
1190  * Release our hold on the shared asic data.  If we are the last one,
1191  * return the structure to be finalized outside the lock.  Must be
1192  * holding hfi1_dev_table lock.
1193  */
release_asic_data(struct hfi1_devdata * dd)1194 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1195 {
1196 	struct hfi1_asic_data *ad;
1197 	int other;
1198 
1199 	if (!dd->asic_data)
1200 		return NULL;
1201 	dd->asic_data->dds[dd->hfi1_id] = NULL;
1202 	other = dd->hfi1_id ? 0 : 1;
1203 	ad = dd->asic_data;
1204 	dd->asic_data = NULL;
1205 	/* return NULL if the other dd still has a link */
1206 	return ad->dds[other] ? NULL : ad;
1207 }
1208 
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1209 static void finalize_asic_data(struct hfi1_devdata *dd,
1210 			       struct hfi1_asic_data *ad)
1211 {
1212 	clean_up_i2c(dd, ad);
1213 	kfree(ad);
1214 }
1215 
1216 /**
1217  * hfi1_clean_devdata - cleans up per-unit data structure
1218  * @dd: pointer to a valid devdata structure
1219  *
1220  * It cleans up all data structures set up by
1221  * by hfi1_alloc_devdata().
1222  */
hfi1_clean_devdata(struct hfi1_devdata * dd)1223 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1224 {
1225 	struct hfi1_asic_data *ad;
1226 	unsigned long flags;
1227 
1228 	xa_lock_irqsave(&hfi1_dev_table, flags);
1229 	__xa_erase(&hfi1_dev_table, dd->unit);
1230 	ad = release_asic_data(dd);
1231 	xa_unlock_irqrestore(&hfi1_dev_table, flags);
1232 
1233 	finalize_asic_data(dd, ad);
1234 	free_platform_config(dd);
1235 	rcu_barrier(); /* wait for rcu callbacks to complete */
1236 	free_percpu(dd->int_counter);
1237 	free_percpu(dd->rcv_limit);
1238 	free_percpu(dd->send_schedule);
1239 	free_percpu(dd->tx_opstats);
1240 	dd->int_counter   = NULL;
1241 	dd->rcv_limit     = NULL;
1242 	dd->send_schedule = NULL;
1243 	dd->tx_opstats    = NULL;
1244 	kfree(dd->comp_vect);
1245 	dd->comp_vect = NULL;
1246 	sdma_clean(dd, dd->num_sdma);
1247 	rvt_dealloc_device(&dd->verbs_dev.rdi);
1248 }
1249 
__hfi1_free_devdata(struct kobject * kobj)1250 static void __hfi1_free_devdata(struct kobject *kobj)
1251 {
1252 	struct hfi1_devdata *dd =
1253 		container_of(kobj, struct hfi1_devdata, kobj);
1254 
1255 	hfi1_clean_devdata(dd);
1256 }
1257 
1258 static struct kobj_type hfi1_devdata_type = {
1259 	.release = __hfi1_free_devdata,
1260 };
1261 
hfi1_free_devdata(struct hfi1_devdata * dd)1262 void hfi1_free_devdata(struct hfi1_devdata *dd)
1263 {
1264 	kobject_put(&dd->kobj);
1265 }
1266 
1267 /**
1268  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1269  * @pdev: Valid PCI device
1270  * @extra: How many bytes to alloc past the default
1271  *
1272  * Must be done via verbs allocator, because the verbs cleanup process
1273  * both does cleanup and free of the data structure.
1274  * "extra" is for chip-specific data.
1275  */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1276 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1277 					       size_t extra)
1278 {
1279 	struct hfi1_devdata *dd;
1280 	int ret, nports;
1281 
1282 	/* extra is * number of ports */
1283 	nports = extra / sizeof(struct hfi1_pportdata);
1284 
1285 	dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1286 						     nports);
1287 	if (!dd)
1288 		return ERR_PTR(-ENOMEM);
1289 	dd->num_pports = nports;
1290 	dd->pport = (struct hfi1_pportdata *)(dd + 1);
1291 	dd->pcidev = pdev;
1292 	pci_set_drvdata(pdev, dd);
1293 	dd->node = NUMA_NO_NODE;
1294 
1295 	ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1296 			GFP_KERNEL);
1297 	if (ret < 0) {
1298 		dev_err(&pdev->dev,
1299 			"Could not allocate unit ID: error %d\n", -ret);
1300 		goto bail;
1301 	}
1302 	rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1303 
1304 	/*
1305 	 * Initialize all locks for the device. This needs to be as early as
1306 	 * possible so locks are usable.
1307 	 */
1308 	spin_lock_init(&dd->sc_lock);
1309 	spin_lock_init(&dd->sendctrl_lock);
1310 	spin_lock_init(&dd->rcvctrl_lock);
1311 	spin_lock_init(&dd->uctxt_lock);
1312 	spin_lock_init(&dd->hfi1_diag_trans_lock);
1313 	spin_lock_init(&dd->sc_init_lock);
1314 	spin_lock_init(&dd->dc8051_memlock);
1315 	seqlock_init(&dd->sc2vl_lock);
1316 	spin_lock_init(&dd->sde_map_lock);
1317 	spin_lock_init(&dd->pio_map_lock);
1318 	mutex_init(&dd->dc8051_lock);
1319 	init_waitqueue_head(&dd->event_queue);
1320 	spin_lock_init(&dd->irq_src_lock);
1321 
1322 	dd->int_counter = alloc_percpu(u64);
1323 	if (!dd->int_counter) {
1324 		ret = -ENOMEM;
1325 		goto bail;
1326 	}
1327 
1328 	dd->rcv_limit = alloc_percpu(u64);
1329 	if (!dd->rcv_limit) {
1330 		ret = -ENOMEM;
1331 		goto bail;
1332 	}
1333 
1334 	dd->send_schedule = alloc_percpu(u64);
1335 	if (!dd->send_schedule) {
1336 		ret = -ENOMEM;
1337 		goto bail;
1338 	}
1339 
1340 	dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1341 	if (!dd->tx_opstats) {
1342 		ret = -ENOMEM;
1343 		goto bail;
1344 	}
1345 
1346 	dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1347 	if (!dd->comp_vect) {
1348 		ret = -ENOMEM;
1349 		goto bail;
1350 	}
1351 
1352 	kobject_init(&dd->kobj, &hfi1_devdata_type);
1353 	return dd;
1354 
1355 bail:
1356 	hfi1_clean_devdata(dd);
1357 	return ERR_PTR(ret);
1358 }
1359 
1360 /*
1361  * Called from freeze mode handlers, and from PCI error
1362  * reporting code.  Should be paranoid about state of
1363  * system and data structures.
1364  */
hfi1_disable_after_error(struct hfi1_devdata * dd)1365 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1366 {
1367 	if (dd->flags & HFI1_INITTED) {
1368 		u32 pidx;
1369 
1370 		dd->flags &= ~HFI1_INITTED;
1371 		if (dd->pport)
1372 			for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1373 				struct hfi1_pportdata *ppd;
1374 
1375 				ppd = dd->pport + pidx;
1376 				if (dd->flags & HFI1_PRESENT)
1377 					set_link_state(ppd, HLS_DN_DISABLE);
1378 
1379 				if (ppd->statusp)
1380 					*ppd->statusp &= ~HFI1_STATUS_IB_READY;
1381 			}
1382 	}
1383 
1384 	/*
1385 	 * Mark as having had an error for driver, and also
1386 	 * for /sys and status word mapped to user programs.
1387 	 * This marks unit as not usable, until reset.
1388 	 */
1389 	if (dd->status)
1390 		dd->status->dev |= HFI1_STATUS_HWERROR;
1391 }
1392 
1393 static void remove_one(struct pci_dev *);
1394 static int init_one(struct pci_dev *, const struct pci_device_id *);
1395 static void shutdown_one(struct pci_dev *);
1396 
1397 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1398 #define PFX DRIVER_NAME ": "
1399 
1400 const struct pci_device_id hfi1_pci_tbl[] = {
1401 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1402 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1403 	{ 0, }
1404 };
1405 
1406 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1407 
1408 static struct pci_driver hfi1_pci_driver = {
1409 	.name = DRIVER_NAME,
1410 	.probe = init_one,
1411 	.remove = remove_one,
1412 	.shutdown = shutdown_one,
1413 	.id_table = hfi1_pci_tbl,
1414 	.err_handler = &hfi1_pci_err_handler,
1415 };
1416 
compute_krcvqs(void)1417 static void __init compute_krcvqs(void)
1418 {
1419 	int i;
1420 
1421 	for (i = 0; i < krcvqsset; i++)
1422 		n_krcvqs += krcvqs[i];
1423 }
1424 
1425 /*
1426  * Do all the generic driver unit- and chip-independent memory
1427  * allocation and initialization.
1428  */
hfi1_mod_init(void)1429 static int __init hfi1_mod_init(void)
1430 {
1431 	int ret;
1432 
1433 	ret = dev_init();
1434 	if (ret)
1435 		goto bail;
1436 
1437 	ret = node_affinity_init();
1438 	if (ret)
1439 		goto bail;
1440 
1441 	/* validate max MTU before any devices start */
1442 	if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1443 		pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1444 		       hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1445 		hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1446 	}
1447 	/* valid CUs run from 1-128 in powers of 2 */
1448 	if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1449 		hfi1_cu = 1;
1450 	/* valid credit return threshold is 0-100, variable is unsigned */
1451 	if (user_credit_return_threshold > 100)
1452 		user_credit_return_threshold = 100;
1453 
1454 	compute_krcvqs();
1455 	/*
1456 	 * sanitize receive interrupt count, time must wait until after
1457 	 * the hardware type is known
1458 	 */
1459 	if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1460 		rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1461 	/* reject invalid combinations */
1462 	if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1463 		pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1464 		rcv_intr_count = 1;
1465 	}
1466 	if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1467 		/*
1468 		 * Avoid indefinite packet delivery by requiring a timeout
1469 		 * if count is > 1.
1470 		 */
1471 		pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1472 		rcv_intr_timeout = 1;
1473 	}
1474 	if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1475 		/*
1476 		 * The dynamic algorithm expects a non-zero timeout
1477 		 * and a count > 1.
1478 		 */
1479 		pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1480 		rcv_intr_dynamic = 0;
1481 	}
1482 
1483 	/* sanitize link CRC options */
1484 	link_crc_mask &= SUPPORTED_CRCS;
1485 
1486 	ret = opfn_init();
1487 	if (ret < 0) {
1488 		pr_err("Failed to allocate opfn_wq");
1489 		goto bail_dev;
1490 	}
1491 
1492 	/*
1493 	 * These must be called before the driver is registered with
1494 	 * the PCI subsystem.
1495 	 */
1496 	hfi1_dbg_init();
1497 	ret = pci_register_driver(&hfi1_pci_driver);
1498 	if (ret < 0) {
1499 		pr_err("Unable to register driver: error %d\n", -ret);
1500 		goto bail_dev;
1501 	}
1502 	goto bail; /* all OK */
1503 
1504 bail_dev:
1505 	hfi1_dbg_exit();
1506 	dev_cleanup();
1507 bail:
1508 	return ret;
1509 }
1510 
1511 module_init(hfi1_mod_init);
1512 
1513 /*
1514  * Do the non-unit driver cleanup, memory free, etc. at unload.
1515  */
hfi1_mod_cleanup(void)1516 static void __exit hfi1_mod_cleanup(void)
1517 {
1518 	pci_unregister_driver(&hfi1_pci_driver);
1519 	opfn_exit();
1520 	node_affinity_destroy_all();
1521 	hfi1_dbg_exit();
1522 
1523 	WARN_ON(!xa_empty(&hfi1_dev_table));
1524 	dispose_firmware();	/* asymmetric with obtain_firmware() */
1525 	dev_cleanup();
1526 }
1527 
1528 module_exit(hfi1_mod_cleanup);
1529 
1530 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1531 static void cleanup_device_data(struct hfi1_devdata *dd)
1532 {
1533 	int ctxt;
1534 	int pidx;
1535 
1536 	/* users can't do anything more with chip */
1537 	for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1538 		struct hfi1_pportdata *ppd = &dd->pport[pidx];
1539 		struct cc_state *cc_state;
1540 		int i;
1541 
1542 		if (ppd->statusp)
1543 			*ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1544 
1545 		for (i = 0; i < OPA_MAX_SLS; i++)
1546 			hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1547 
1548 		spin_lock(&ppd->cc_state_lock);
1549 		cc_state = get_cc_state_protected(ppd);
1550 		RCU_INIT_POINTER(ppd->cc_state, NULL);
1551 		spin_unlock(&ppd->cc_state_lock);
1552 
1553 		if (cc_state)
1554 			kfree_rcu(cc_state, rcu);
1555 	}
1556 
1557 	free_credit_return(dd);
1558 
1559 	if (dd->rcvhdrtail_dummy_kvaddr) {
1560 		dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1561 				  (void *)dd->rcvhdrtail_dummy_kvaddr,
1562 				  dd->rcvhdrtail_dummy_dma);
1563 		dd->rcvhdrtail_dummy_kvaddr = NULL;
1564 	}
1565 
1566 	/*
1567 	 * Free any resources still in use (usually just kernel contexts)
1568 	 * at unload; we do for ctxtcnt, because that's what we allocate.
1569 	 */
1570 	for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1571 		struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1572 
1573 		if (rcd) {
1574 			hfi1_free_ctxt_rcv_groups(rcd);
1575 			hfi1_free_ctxt(rcd);
1576 		}
1577 	}
1578 
1579 	kfree(dd->rcd);
1580 	dd->rcd = NULL;
1581 
1582 	free_pio_map(dd);
1583 	/* must follow rcv context free - need to remove rcv's hooks */
1584 	for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1585 		sc_free(dd->send_contexts[ctxt].sc);
1586 	dd->num_send_contexts = 0;
1587 	kfree(dd->send_contexts);
1588 	dd->send_contexts = NULL;
1589 	kfree(dd->hw_to_sw);
1590 	dd->hw_to_sw = NULL;
1591 	kfree(dd->boardname);
1592 	vfree(dd->events);
1593 	vfree(dd->status);
1594 }
1595 
1596 /*
1597  * Clean up on unit shutdown, or error during unit load after
1598  * successful initialization.
1599  */
postinit_cleanup(struct hfi1_devdata * dd)1600 static void postinit_cleanup(struct hfi1_devdata *dd)
1601 {
1602 	hfi1_start_cleanup(dd);
1603 	hfi1_comp_vectors_clean_up(dd);
1604 	hfi1_dev_affinity_clean_up(dd);
1605 
1606 	hfi1_pcie_ddcleanup(dd);
1607 	hfi1_pcie_cleanup(dd->pcidev);
1608 
1609 	cleanup_device_data(dd);
1610 
1611 	hfi1_free_devdata(dd);
1612 }
1613 
init_validate_rcvhdrcnt(struct hfi1_devdata * dd,uint thecnt)1614 static int init_validate_rcvhdrcnt(struct hfi1_devdata *dd, uint thecnt)
1615 {
1616 	if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1617 		dd_dev_err(dd, "Receive header queue count too small\n");
1618 		return -EINVAL;
1619 	}
1620 
1621 	if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1622 		dd_dev_err(dd,
1623 			   "Receive header queue count cannot be greater than %u\n",
1624 			   HFI1_MAX_HDRQ_EGRBUF_CNT);
1625 		return -EINVAL;
1626 	}
1627 
1628 	if (thecnt % HDRQ_INCREMENT) {
1629 		dd_dev_err(dd, "Receive header queue count %d must be divisible by %lu\n",
1630 			   thecnt, HDRQ_INCREMENT);
1631 		return -EINVAL;
1632 	}
1633 
1634 	return 0;
1635 }
1636 
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1637 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1638 {
1639 	int ret = 0, j, pidx, initfail;
1640 	struct hfi1_devdata *dd;
1641 	struct hfi1_pportdata *ppd;
1642 
1643 	/* First, lock the non-writable module parameters */
1644 	HFI1_CAP_LOCK();
1645 
1646 	/* Validate dev ids */
1647 	if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1648 	      ent->device == PCI_DEVICE_ID_INTEL1)) {
1649 		dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1650 			ent->device);
1651 		ret = -ENODEV;
1652 		goto bail;
1653 	}
1654 
1655 	/* Allocate the dd so we can get to work */
1656 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1657 				sizeof(struct hfi1_pportdata));
1658 	if (IS_ERR(dd)) {
1659 		ret = PTR_ERR(dd);
1660 		goto bail;
1661 	}
1662 
1663 	/* Validate some global module parameters */
1664 	ret = init_validate_rcvhdrcnt(dd, rcvhdrcnt);
1665 	if (ret)
1666 		goto bail;
1667 
1668 	/* use the encoding function as a sanitization check */
1669 	if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1670 		dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1671 			   hfi1_hdrq_entsize);
1672 		ret = -EINVAL;
1673 		goto bail;
1674 	}
1675 
1676 	/* The receive eager buffer size must be set before the receive
1677 	 * contexts are created.
1678 	 *
1679 	 * Set the eager buffer size.  Validate that it falls in a range
1680 	 * allowed by the hardware - all powers of 2 between the min and
1681 	 * max.  The maximum valid MTU is within the eager buffer range
1682 	 * so we do not need to cap the max_mtu by an eager buffer size
1683 	 * setting.
1684 	 */
1685 	if (eager_buffer_size) {
1686 		if (!is_power_of_2(eager_buffer_size))
1687 			eager_buffer_size =
1688 				roundup_pow_of_two(eager_buffer_size);
1689 		eager_buffer_size =
1690 			clamp_val(eager_buffer_size,
1691 				  MIN_EAGER_BUFFER * 8,
1692 				  MAX_EAGER_BUFFER_TOTAL);
1693 		dd_dev_info(dd, "Eager buffer size %u\n",
1694 			    eager_buffer_size);
1695 	} else {
1696 		dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1697 		ret = -EINVAL;
1698 		goto bail;
1699 	}
1700 
1701 	/* restrict value of hfi1_rcvarr_split */
1702 	hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1703 
1704 	ret = hfi1_pcie_init(dd);
1705 	if (ret)
1706 		goto bail;
1707 
1708 	/*
1709 	 * Do device-specific initialization, function table setup, dd
1710 	 * allocation, etc.
1711 	 */
1712 	ret = hfi1_init_dd(dd);
1713 	if (ret)
1714 		goto clean_bail; /* error already printed */
1715 
1716 	ret = create_workqueues(dd);
1717 	if (ret)
1718 		goto clean_bail;
1719 
1720 	/* do the generic initialization */
1721 	initfail = hfi1_init(dd, 0);
1722 
1723 	/* setup vnic */
1724 	hfi1_vnic_setup(dd);
1725 
1726 	ret = hfi1_register_ib_device(dd);
1727 
1728 	/*
1729 	 * Now ready for use.  this should be cleared whenever we
1730 	 * detect a reset, or initiate one.  If earlier failure,
1731 	 * we still create devices, so diags, etc. can be used
1732 	 * to determine cause of problem.
1733 	 */
1734 	if (!initfail && !ret) {
1735 		dd->flags |= HFI1_INITTED;
1736 		/* create debufs files after init and ib register */
1737 		hfi1_dbg_ibdev_init(&dd->verbs_dev);
1738 	}
1739 
1740 	j = hfi1_device_create(dd);
1741 	if (j)
1742 		dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1743 
1744 	if (initfail || ret) {
1745 		msix_clean_up_interrupts(dd);
1746 		stop_timers(dd);
1747 		flush_workqueue(ib_wq);
1748 		for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1749 			hfi1_quiet_serdes(dd->pport + pidx);
1750 			ppd = dd->pport + pidx;
1751 			if (ppd->hfi1_wq) {
1752 				destroy_workqueue(ppd->hfi1_wq);
1753 				ppd->hfi1_wq = NULL;
1754 			}
1755 			if (ppd->link_wq) {
1756 				destroy_workqueue(ppd->link_wq);
1757 				ppd->link_wq = NULL;
1758 			}
1759 		}
1760 		if (!j)
1761 			hfi1_device_remove(dd);
1762 		if (!ret)
1763 			hfi1_unregister_ib_device(dd);
1764 		hfi1_vnic_cleanup(dd);
1765 		postinit_cleanup(dd);
1766 		if (initfail)
1767 			ret = initfail;
1768 		goto bail;	/* everything already cleaned */
1769 	}
1770 
1771 	sdma_start(dd);
1772 
1773 	return 0;
1774 
1775 clean_bail:
1776 	hfi1_pcie_cleanup(pdev);
1777 bail:
1778 	return ret;
1779 }
1780 
wait_for_clients(struct hfi1_devdata * dd)1781 static void wait_for_clients(struct hfi1_devdata *dd)
1782 {
1783 	/*
1784 	 * Remove the device init value and complete the device if there is
1785 	 * no clients or wait for active clients to finish.
1786 	 */
1787 	if (atomic_dec_and_test(&dd->user_refcount))
1788 		complete(&dd->user_comp);
1789 
1790 	wait_for_completion(&dd->user_comp);
1791 }
1792 
remove_one(struct pci_dev * pdev)1793 static void remove_one(struct pci_dev *pdev)
1794 {
1795 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1796 
1797 	/* close debugfs files before ib unregister */
1798 	hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1799 
1800 	/* remove the /dev hfi1 interface */
1801 	hfi1_device_remove(dd);
1802 
1803 	/* wait for existing user space clients to finish */
1804 	wait_for_clients(dd);
1805 
1806 	/* unregister from IB core */
1807 	hfi1_unregister_ib_device(dd);
1808 
1809 	/* cleanup vnic */
1810 	hfi1_vnic_cleanup(dd);
1811 
1812 	/*
1813 	 * Disable the IB link, disable interrupts on the device,
1814 	 * clear dma engines, etc.
1815 	 */
1816 	shutdown_device(dd);
1817 
1818 	stop_timers(dd);
1819 
1820 	/* wait until all of our (qsfp) queue_work() calls complete */
1821 	flush_workqueue(ib_wq);
1822 
1823 	postinit_cleanup(dd);
1824 }
1825 
shutdown_one(struct pci_dev * pdev)1826 static void shutdown_one(struct pci_dev *pdev)
1827 {
1828 	struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1829 
1830 	shutdown_device(dd);
1831 }
1832 
1833 /**
1834  * hfi1_create_rcvhdrq - create a receive header queue
1835  * @dd: the hfi1_ib device
1836  * @rcd: the context data
1837  *
1838  * This must be contiguous memory (from an i/o perspective), and must be
1839  * DMA'able (which means for some systems, it will go through an IOMMU,
1840  * or be forced into a low address range).
1841  */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1842 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1843 {
1844 	unsigned amt;
1845 	u64 reg;
1846 
1847 	if (!rcd->rcvhdrq) {
1848 		gfp_t gfp_flags;
1849 
1850 		amt = rcvhdrq_size(rcd);
1851 
1852 		if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1853 			gfp_flags = GFP_KERNEL;
1854 		else
1855 			gfp_flags = GFP_USER;
1856 		rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1857 						  &rcd->rcvhdrq_dma,
1858 						  gfp_flags | __GFP_COMP);
1859 
1860 		if (!rcd->rcvhdrq) {
1861 			dd_dev_err(dd,
1862 				   "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1863 				   amt, rcd->ctxt);
1864 			goto bail;
1865 		}
1866 
1867 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1868 		    HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1869 			rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1870 								    PAGE_SIZE,
1871 								    &rcd->rcvhdrqtailaddr_dma,
1872 								    gfp_flags);
1873 			if (!rcd->rcvhdrtail_kvaddr)
1874 				goto bail_free;
1875 		}
1876 	}
1877 	/*
1878 	 * These values are per-context:
1879 	 *	RcvHdrCnt
1880 	 *	RcvHdrEntSize
1881 	 *	RcvHdrSize
1882 	 */
1883 	reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1884 			& RCV_HDR_CNT_CNT_MASK)
1885 		<< RCV_HDR_CNT_CNT_SHIFT;
1886 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1887 	reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1888 			& RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1889 		<< RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1890 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1891 	reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1892 		<< RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1893 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1894 
1895 	/*
1896 	 * Program dummy tail address for every receive context
1897 	 * before enabling any receive context
1898 	 */
1899 	write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1900 			dd->rcvhdrtail_dummy_dma);
1901 
1902 	return 0;
1903 
1904 bail_free:
1905 	dd_dev_err(dd,
1906 		   "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1907 		   rcd->ctxt);
1908 	dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1909 			  rcd->rcvhdrq_dma);
1910 	rcd->rcvhdrq = NULL;
1911 bail:
1912 	return -ENOMEM;
1913 }
1914 
1915 /**
1916  * allocate eager buffers, both kernel and user contexts.
1917  * @rcd: the context we are setting up.
1918  *
1919  * Allocate the eager TID buffers and program them into hip.
1920  * They are no longer completely contiguous, we do multiple allocation
1921  * calls.  Otherwise we get the OOM code involved, by asking for too
1922  * much per call, with disastrous results on some kernels.
1923  */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1924 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1925 {
1926 	struct hfi1_devdata *dd = rcd->dd;
1927 	u32 max_entries, egrtop, alloced_bytes = 0;
1928 	gfp_t gfp_flags;
1929 	u16 order, idx = 0;
1930 	int ret = 0;
1931 	u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1932 
1933 	/*
1934 	 * GFP_USER, but without GFP_FS, so buffer cache can be
1935 	 * coalesced (we hope); otherwise, even at order 4,
1936 	 * heavy filesystem activity makes these fail, and we can
1937 	 * use compound pages.
1938 	 */
1939 	gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1940 
1941 	/*
1942 	 * The minimum size of the eager buffers is a groups of MTU-sized
1943 	 * buffers.
1944 	 * The global eager_buffer_size parameter is checked against the
1945 	 * theoretical lower limit of the value. Here, we check against the
1946 	 * MTU.
1947 	 */
1948 	if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1949 		rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1950 	/*
1951 	 * If using one-pkt-per-egr-buffer, lower the eager buffer
1952 	 * size to the max MTU (page-aligned).
1953 	 */
1954 	if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1955 		rcd->egrbufs.rcvtid_size = round_mtu;
1956 
1957 	/*
1958 	 * Eager buffers sizes of 1MB or less require smaller TID sizes
1959 	 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1960 	 */
1961 	if (rcd->egrbufs.size <= (1 << 20))
1962 		rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1963 			rounddown_pow_of_two(rcd->egrbufs.size / 8));
1964 
1965 	while (alloced_bytes < rcd->egrbufs.size &&
1966 	       rcd->egrbufs.alloced < rcd->egrbufs.count) {
1967 		rcd->egrbufs.buffers[idx].addr =
1968 			dma_alloc_coherent(&dd->pcidev->dev,
1969 					   rcd->egrbufs.rcvtid_size,
1970 					   &rcd->egrbufs.buffers[idx].dma,
1971 					   gfp_flags);
1972 		if (rcd->egrbufs.buffers[idx].addr) {
1973 			rcd->egrbufs.buffers[idx].len =
1974 				rcd->egrbufs.rcvtid_size;
1975 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1976 				rcd->egrbufs.buffers[idx].addr;
1977 			rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1978 				rcd->egrbufs.buffers[idx].dma;
1979 			rcd->egrbufs.alloced++;
1980 			alloced_bytes += rcd->egrbufs.rcvtid_size;
1981 			idx++;
1982 		} else {
1983 			u32 new_size, i, j;
1984 			u64 offset = 0;
1985 
1986 			/*
1987 			 * Fail the eager buffer allocation if:
1988 			 *   - we are already using the lowest acceptable size
1989 			 *   - we are using one-pkt-per-egr-buffer (this implies
1990 			 *     that we are accepting only one size)
1991 			 */
1992 			if (rcd->egrbufs.rcvtid_size == round_mtu ||
1993 			    !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1994 				dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1995 					   rcd->ctxt);
1996 				ret = -ENOMEM;
1997 				goto bail_rcvegrbuf_phys;
1998 			}
1999 
2000 			new_size = rcd->egrbufs.rcvtid_size / 2;
2001 
2002 			/*
2003 			 * If the first attempt to allocate memory failed, don't
2004 			 * fail everything but continue with the next lower
2005 			 * size.
2006 			 */
2007 			if (idx == 0) {
2008 				rcd->egrbufs.rcvtid_size = new_size;
2009 				continue;
2010 			}
2011 
2012 			/*
2013 			 * Re-partition already allocated buffers to a smaller
2014 			 * size.
2015 			 */
2016 			rcd->egrbufs.alloced = 0;
2017 			for (i = 0, j = 0, offset = 0; j < idx; i++) {
2018 				if (i >= rcd->egrbufs.count)
2019 					break;
2020 				rcd->egrbufs.rcvtids[i].dma =
2021 					rcd->egrbufs.buffers[j].dma + offset;
2022 				rcd->egrbufs.rcvtids[i].addr =
2023 					rcd->egrbufs.buffers[j].addr + offset;
2024 				rcd->egrbufs.alloced++;
2025 				if ((rcd->egrbufs.buffers[j].dma + offset +
2026 				     new_size) ==
2027 				    (rcd->egrbufs.buffers[j].dma +
2028 				     rcd->egrbufs.buffers[j].len)) {
2029 					j++;
2030 					offset = 0;
2031 				} else {
2032 					offset += new_size;
2033 				}
2034 			}
2035 			rcd->egrbufs.rcvtid_size = new_size;
2036 		}
2037 	}
2038 	rcd->egrbufs.numbufs = idx;
2039 	rcd->egrbufs.size = alloced_bytes;
2040 
2041 	hfi1_cdbg(PROC,
2042 		  "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
2043 		  rcd->ctxt, rcd->egrbufs.alloced,
2044 		  rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2045 
2046 	/*
2047 	 * Set the contexts rcv array head update threshold to the closest
2048 	 * power of 2 (so we can use a mask instead of modulo) below half
2049 	 * the allocated entries.
2050 	 */
2051 	rcd->egrbufs.threshold =
2052 		rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2053 	/*
2054 	 * Compute the expected RcvArray entry base. This is done after
2055 	 * allocating the eager buffers in order to maximize the
2056 	 * expected RcvArray entries for the context.
2057 	 */
2058 	max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2059 	egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2060 	rcd->expected_count = max_entries - egrtop;
2061 	if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2062 		rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2063 
2064 	rcd->expected_base = rcd->eager_base + egrtop;
2065 	hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2066 		  rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2067 		  rcd->eager_base, rcd->expected_base);
2068 
2069 	if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2070 		hfi1_cdbg(PROC,
2071 			  "ctxt%u: current Eager buffer size is invalid %u\n",
2072 			  rcd->ctxt, rcd->egrbufs.rcvtid_size);
2073 		ret = -EINVAL;
2074 		goto bail_rcvegrbuf_phys;
2075 	}
2076 
2077 	for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2078 		hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2079 			     rcd->egrbufs.rcvtids[idx].dma, order);
2080 		cond_resched();
2081 	}
2082 
2083 	return 0;
2084 
2085 bail_rcvegrbuf_phys:
2086 	for (idx = 0; idx < rcd->egrbufs.alloced &&
2087 	     rcd->egrbufs.buffers[idx].addr;
2088 	     idx++) {
2089 		dma_free_coherent(&dd->pcidev->dev,
2090 				  rcd->egrbufs.buffers[idx].len,
2091 				  rcd->egrbufs.buffers[idx].addr,
2092 				  rcd->egrbufs.buffers[idx].dma);
2093 		rcd->egrbufs.buffers[idx].addr = NULL;
2094 		rcd->egrbufs.buffers[idx].dma = 0;
2095 		rcd->egrbufs.buffers[idx].len = 0;
2096 	}
2097 
2098 	return ret;
2099 }
2100