1 // SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause
2 /*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 */
5
6 #include <linux/pci.h>
7 #include <linux/netdevice.h>
8 #include <linux/vmalloc.h>
9 #include <linux/delay.h>
10 #include <linux/xarray.h>
11 #include <linux/module.h>
12 #include <linux/printk.h>
13 #include <linux/hrtimer.h>
14 #include <linux/bitmap.h>
15 #include <linux/numa.h>
16 #include <rdma/rdma_vt.h>
17
18 #include "hfi.h"
19 #include "device.h"
20 #include "common.h"
21 #include "trace.h"
22 #include "mad.h"
23 #include "sdma.h"
24 #include "debugfs.h"
25 #include "verbs.h"
26 #include "aspm.h"
27 #include "affinity.h"
28 #include "vnic.h"
29 #include "exp_rcv.h"
30 #include "netdev.h"
31
32 #undef pr_fmt
33 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
34
35 /*
36 * min buffers we want to have per context, after driver
37 */
38 #define HFI1_MIN_USER_CTXT_BUFCNT 7
39
40 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
41 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
42
43 #define NUM_IB_PORTS 1
44
45 /*
46 * Number of user receive contexts we are configured to use (to allow for more
47 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
48 */
49 int num_user_contexts = -1;
50 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
51 MODULE_PARM_DESC(
52 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
53
54 uint krcvqs[RXE_NUM_DATA_VL];
55 int krcvqsset;
56 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
57 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
58
59 /* computed based on above array */
60 unsigned long n_krcvqs;
61
62 static unsigned hfi1_rcvarr_split = 25;
63 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
64 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
65
66 static uint eager_buffer_size = (8 << 20); /* 8MB */
67 module_param(eager_buffer_size, uint, S_IRUGO);
68 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
69
70 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
71 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
72 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
73
74 static uint hfi1_hdrq_entsize = 32;
75 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
76 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
77
78 unsigned int user_credit_return_threshold = 33; /* default is 33% */
79 module_param(user_credit_return_threshold, uint, S_IRUGO);
80 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
81
82 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
83
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)84 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
85 struct hfi1_pportdata *ppd)
86 {
87 struct hfi1_ctxtdata *rcd;
88 int ret;
89
90 /* Control context has to be always 0 */
91 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
92
93 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
94 if (ret < 0) {
95 dd_dev_err(dd, "Kernel receive context allocation failed\n");
96 return ret;
97 }
98
99 /*
100 * Set up the kernel context flags here and now because they use
101 * default values for all receive side memories. User contexts will
102 * be handled as they are created.
103 */
104 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
105 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
106 HFI1_CAP_KGET(NODROP_EGR_FULL) |
107 HFI1_CAP_KGET(DMA_RTAIL);
108
109 /* Control context must use DMA_RTAIL */
110 if (rcd->ctxt == HFI1_CTRL_CTXT)
111 rcd->flags |= HFI1_CAP_DMA_RTAIL;
112 rcd->fast_handler = get_dma_rtail_setting(rcd) ?
113 handle_receive_interrupt_dma_rtail :
114 handle_receive_interrupt_nodma_rtail;
115 rcd->slow_handler = handle_receive_interrupt;
116
117 hfi1_set_seq_cnt(rcd, 1);
118
119 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
120 if (!rcd->sc) {
121 dd_dev_err(dd, "Kernel send context allocation failed\n");
122 return -ENOMEM;
123 }
124 hfi1_init_ctxt(rcd->sc);
125
126 return 0;
127 }
128
129 /*
130 * Create the receive context array and one or more kernel contexts
131 */
hfi1_create_kctxts(struct hfi1_devdata * dd)132 int hfi1_create_kctxts(struct hfi1_devdata *dd)
133 {
134 u16 i;
135 int ret;
136
137 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
138 GFP_KERNEL, dd->node);
139 if (!dd->rcd)
140 return -ENOMEM;
141
142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143 ret = hfi1_create_kctxt(dd, dd->pport);
144 if (ret)
145 goto bail;
146 }
147
148 return 0;
149 bail:
150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151 hfi1_free_ctxt(dd->rcd[i]);
152
153 /* All the contexts should be freed, free the array */
154 kfree(dd->rcd);
155 dd->rcd = NULL;
156 return ret;
157 }
158
159 /*
160 * Helper routines for the receive context reference count (rcd and uctxt).
161 */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)162 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163 {
164 kref_init(&rcd->kref);
165 }
166
167 /**
168 * hfi1_rcd_free - When reference is zero clean up.
169 * @kref: pointer to an initialized rcd data structure
170 *
171 */
hfi1_rcd_free(struct kref * kref)172 static void hfi1_rcd_free(struct kref *kref)
173 {
174 unsigned long flags;
175 struct hfi1_ctxtdata *rcd =
176 container_of(kref, struct hfi1_ctxtdata, kref);
177
178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179 rcd->dd->rcd[rcd->ctxt] = NULL;
180 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
181
182 hfi1_free_ctxtdata(rcd->dd, rcd);
183
184 kfree(rcd);
185 }
186
187 /**
188 * hfi1_rcd_put - decrement reference for rcd
189 * @rcd: pointer to an initialized rcd data structure
190 *
191 * Use this to put a reference after the init.
192 */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)193 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194 {
195 if (rcd)
196 return kref_put(&rcd->kref, hfi1_rcd_free);
197
198 return 0;
199 }
200
201 /**
202 * hfi1_rcd_get - increment reference for rcd
203 * @rcd: pointer to an initialized rcd data structure
204 *
205 * Use this to get a reference after the init.
206 *
207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
208 * increment, otherwise 0.
209 */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)210 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211 {
212 return kref_get_unless_zero(&rcd->kref);
213 }
214
215 /**
216 * allocate_rcd_index - allocate an rcd index from the rcd array
217 * @dd: pointer to a valid devdata structure
218 * @rcd: rcd data structure to assign
219 * @index: pointer to index that is allocated
220 *
221 * Find an empty index in the rcd array, and assign the given rcd to it.
222 * If the array is full, we are EBUSY.
223 *
224 */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)225 static int allocate_rcd_index(struct hfi1_devdata *dd,
226 struct hfi1_ctxtdata *rcd, u16 *index)
227 {
228 unsigned long flags;
229 u16 ctxt;
230
231 spin_lock_irqsave(&dd->uctxt_lock, flags);
232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233 if (!dd->rcd[ctxt])
234 break;
235
236 if (ctxt < dd->num_rcv_contexts) {
237 rcd->ctxt = ctxt;
238 dd->rcd[ctxt] = rcd;
239 hfi1_rcd_init(rcd);
240 }
241 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
242
243 if (ctxt >= dd->num_rcv_contexts)
244 return -EBUSY;
245
246 *index = ctxt;
247
248 return 0;
249 }
250
251 /**
252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253 * array
254 * @dd: pointer to a valid devdata structure
255 * @ctxt: the index of an possilbe rcd
256 *
257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258 * ctxt index is valid.
259 *
260 * The caller is responsible for making the _put().
261 *
262 */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)263 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264 u16 ctxt)
265 {
266 if (ctxt < dd->num_rcv_contexts)
267 return hfi1_rcd_get_by_index(dd, ctxt);
268
269 return NULL;
270 }
271
272 /**
273 * hfi1_rcd_get_by_index - get by index
274 * @dd: pointer to a valid devdata structure
275 * @ctxt: the index of an possilbe rcd
276 *
277 * We need to protect access to the rcd array. If access is needed to
278 * one or more index, get the protecting spinlock and then increment the
279 * kref.
280 *
281 * The caller is responsible for making the _put().
282 *
283 */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)284 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285 {
286 unsigned long flags;
287 struct hfi1_ctxtdata *rcd = NULL;
288
289 spin_lock_irqsave(&dd->uctxt_lock, flags);
290 if (dd->rcd[ctxt]) {
291 rcd = dd->rcd[ctxt];
292 if (!hfi1_rcd_get(rcd))
293 rcd = NULL;
294 }
295 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
296
297 return rcd;
298 }
299
300 /*
301 * Common code for user and kernel context create and setup.
302 * NOTE: the initial kref is done here (hf1_rcd_init()).
303 */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)304 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305 struct hfi1_ctxtdata **context)
306 {
307 struct hfi1_devdata *dd = ppd->dd;
308 struct hfi1_ctxtdata *rcd;
309 unsigned kctxt_ngroups = 0;
310 u32 base;
311
312 if (dd->rcv_entries.nctxt_extra >
313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
317 if (rcd) {
318 u32 rcvtids, max_entries;
319 u16 ctxt;
320 int ret;
321
322 ret = allocate_rcd_index(dd, rcd, &ctxt);
323 if (ret) {
324 *context = NULL;
325 kfree(rcd);
326 return ret;
327 }
328
329 INIT_LIST_HEAD(&rcd->qp_wait_list);
330 hfi1_exp_tid_group_init(rcd);
331 rcd->ppd = ppd;
332 rcd->dd = dd;
333 rcd->numa_id = numa;
334 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
337
338 mutex_init(&rcd->exp_mutex);
339 spin_lock_init(&rcd->exp_lock);
340 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
341 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
342
343 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
344
345 /*
346 * Calculate the context's RcvArray entry starting point.
347 * We do this here because we have to take into account all
348 * the RcvArray entries that previous context would have
349 * taken and we have to account for any extra groups assigned
350 * to the static (kernel) or dynamic (vnic/user) contexts.
351 */
352 if (ctxt < dd->first_dyn_alloc_ctxt) {
353 if (ctxt < kctxt_ngroups) {
354 base = ctxt * (dd->rcv_entries.ngroups + 1);
355 rcd->rcv_array_groups++;
356 } else {
357 base = kctxt_ngroups +
358 (ctxt * dd->rcv_entries.ngroups);
359 }
360 } else {
361 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
362
363 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
364 kctxt_ngroups);
365 if (ct < dd->rcv_entries.nctxt_extra) {
366 base += ct * (dd->rcv_entries.ngroups + 1);
367 rcd->rcv_array_groups++;
368 } else {
369 base += dd->rcv_entries.nctxt_extra +
370 (ct * dd->rcv_entries.ngroups);
371 }
372 }
373 rcd->eager_base = base * dd->rcv_entries.group_size;
374
375 rcd->rcvhdrq_cnt = rcvhdrcnt;
376 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
377 rcd->rhf_offset =
378 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
379 /*
380 * Simple Eager buffer allocation: we have already pre-allocated
381 * the number of RcvArray entry groups. Each ctxtdata structure
382 * holds the number of groups for that context.
383 *
384 * To follow CSR requirements and maintain cacheline alignment,
385 * make sure all sizes and bases are multiples of group_size.
386 *
387 * The expected entry count is what is left after assigning
388 * eager.
389 */
390 max_entries = rcd->rcv_array_groups *
391 dd->rcv_entries.group_size;
392 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
393 rcd->egrbufs.count = round_down(rcvtids,
394 dd->rcv_entries.group_size);
395 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
396 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
397 rcd->ctxt);
398 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
399 }
400 hfi1_cdbg(PROC,
401 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
402 rcd->ctxt, rcd->egrbufs.count);
403
404 /*
405 * Allocate array that will hold the eager buffer accounting
406 * data.
407 * This will allocate the maximum possible buffer count based
408 * on the value of the RcvArray split parameter.
409 * The resulting value will be rounded down to the closest
410 * multiple of dd->rcv_entries.group_size.
411 */
412 rcd->egrbufs.buffers =
413 kcalloc_node(rcd->egrbufs.count,
414 sizeof(*rcd->egrbufs.buffers),
415 GFP_KERNEL, numa);
416 if (!rcd->egrbufs.buffers)
417 goto bail;
418 rcd->egrbufs.rcvtids =
419 kcalloc_node(rcd->egrbufs.count,
420 sizeof(*rcd->egrbufs.rcvtids),
421 GFP_KERNEL, numa);
422 if (!rcd->egrbufs.rcvtids)
423 goto bail;
424 rcd->egrbufs.size = eager_buffer_size;
425 /*
426 * The size of the buffers programmed into the RcvArray
427 * entries needs to be big enough to handle the highest
428 * MTU supported.
429 */
430 if (rcd->egrbufs.size < hfi1_max_mtu) {
431 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
432 hfi1_cdbg(PROC,
433 "ctxt%u: eager bufs size too small. Adjusting to %u\n",
434 rcd->ctxt, rcd->egrbufs.size);
435 }
436 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
437
438 /* Applicable only for statically created kernel contexts */
439 if (ctxt < dd->first_dyn_alloc_ctxt) {
440 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
441 GFP_KERNEL, numa);
442 if (!rcd->opstats)
443 goto bail;
444
445 /* Initialize TID flow generations for the context */
446 hfi1_kern_init_ctxt_generations(rcd);
447 }
448
449 *context = rcd;
450 return 0;
451 }
452
453 bail:
454 *context = NULL;
455 hfi1_free_ctxt(rcd);
456 return -ENOMEM;
457 }
458
459 /**
460 * hfi1_free_ctxt - free context
461 * @rcd: pointer to an initialized rcd data structure
462 *
463 * This wrapper is the free function that matches hfi1_create_ctxtdata().
464 * When a context is done being used (kernel or user), this function is called
465 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
466 * Other users of the context do a get/put sequence to make sure that the
467 * structure isn't removed while in use.
468 */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)469 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
470 {
471 hfi1_rcd_put(rcd);
472 }
473
474 /*
475 * Select the largest ccti value over all SLs to determine the intra-
476 * packet gap for the link.
477 *
478 * called with cca_timer_lock held (to protect access to cca_timer
479 * array), and rcu_read_lock() (to protect access to cc_state).
480 */
set_link_ipg(struct hfi1_pportdata * ppd)481 void set_link_ipg(struct hfi1_pportdata *ppd)
482 {
483 struct hfi1_devdata *dd = ppd->dd;
484 struct cc_state *cc_state;
485 int i;
486 u16 cce, ccti_limit, max_ccti = 0;
487 u16 shift, mult;
488 u64 src;
489 u32 current_egress_rate; /* Mbits /sec */
490 u32 max_pkt_time;
491 /*
492 * max_pkt_time is the maximum packet egress time in units
493 * of the fabric clock period 1/(805 MHz).
494 */
495
496 cc_state = get_cc_state(ppd);
497
498 if (!cc_state)
499 /*
500 * This should _never_ happen - rcu_read_lock() is held,
501 * and set_link_ipg() should not be called if cc_state
502 * is NULL.
503 */
504 return;
505
506 for (i = 0; i < OPA_MAX_SLS; i++) {
507 u16 ccti = ppd->cca_timer[i].ccti;
508
509 if (ccti > max_ccti)
510 max_ccti = ccti;
511 }
512
513 ccti_limit = cc_state->cct.ccti_limit;
514 if (max_ccti > ccti_limit)
515 max_ccti = ccti_limit;
516
517 cce = cc_state->cct.entries[max_ccti].entry;
518 shift = (cce & 0xc000) >> 14;
519 mult = (cce & 0x3fff);
520
521 current_egress_rate = active_egress_rate(ppd);
522
523 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
524
525 src = (max_pkt_time >> shift) * mult;
526
527 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
528 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
529
530 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
531 }
532
cca_timer_fn(struct hrtimer * t)533 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
534 {
535 struct cca_timer *cca_timer;
536 struct hfi1_pportdata *ppd;
537 int sl;
538 u16 ccti_timer, ccti_min;
539 struct cc_state *cc_state;
540 unsigned long flags;
541 enum hrtimer_restart ret = HRTIMER_NORESTART;
542
543 cca_timer = container_of(t, struct cca_timer, hrtimer);
544 ppd = cca_timer->ppd;
545 sl = cca_timer->sl;
546
547 rcu_read_lock();
548
549 cc_state = get_cc_state(ppd);
550
551 if (!cc_state) {
552 rcu_read_unlock();
553 return HRTIMER_NORESTART;
554 }
555
556 /*
557 * 1) decrement ccti for SL
558 * 2) calculate IPG for link (set_link_ipg())
559 * 3) restart timer, unless ccti is at min value
560 */
561
562 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
563 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
564
565 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
566
567 if (cca_timer->ccti > ccti_min) {
568 cca_timer->ccti--;
569 set_link_ipg(ppd);
570 }
571
572 if (cca_timer->ccti > ccti_min) {
573 unsigned long nsec = 1024 * ccti_timer;
574 /* ccti_timer is in units of 1.024 usec */
575 hrtimer_forward_now(t, ns_to_ktime(nsec));
576 ret = HRTIMER_RESTART;
577 }
578
579 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
580 rcu_read_unlock();
581 return ret;
582 }
583
584 /*
585 * Common code for initializing the physical port structure.
586 */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u32 port)587 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
588 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
589 {
590 int i;
591 uint default_pkey_idx;
592 struct cc_state *cc_state;
593
594 ppd->dd = dd;
595 ppd->hw_pidx = hw_pidx;
596 ppd->port = port; /* IB port number, not index */
597 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
598 /*
599 * There are C_VL_COUNT number of PortVLXmitWait counters.
600 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
601 */
602 for (i = 0; i < C_VL_COUNT + 1; i++) {
603 ppd->port_vl_xmit_wait_last[i] = 0;
604 ppd->vl_xmit_flit_cnt[i] = 0;
605 }
606
607 default_pkey_idx = 1;
608
609 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
610 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
611 ppd->pkeys[0] = 0x8001;
612
613 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
614 INIT_WORK(&ppd->link_up_work, handle_link_up);
615 INIT_WORK(&ppd->link_down_work, handle_link_down);
616 INIT_WORK(&ppd->freeze_work, handle_freeze);
617 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
618 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
619 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
620 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
621 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
622 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
623
624 mutex_init(&ppd->hls_lock);
625 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
626
627 ppd->qsfp_info.ppd = ppd;
628 ppd->sm_trap_qp = 0x0;
629 ppd->sa_qp = 0x1;
630
631 ppd->hfi1_wq = NULL;
632
633 spin_lock_init(&ppd->cca_timer_lock);
634
635 for (i = 0; i < OPA_MAX_SLS; i++) {
636 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
637 HRTIMER_MODE_REL);
638 ppd->cca_timer[i].ppd = ppd;
639 ppd->cca_timer[i].sl = i;
640 ppd->cca_timer[i].ccti = 0;
641 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
642 }
643
644 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
645
646 spin_lock_init(&ppd->cc_state_lock);
647 spin_lock_init(&ppd->cc_log_lock);
648 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
649 RCU_INIT_POINTER(ppd->cc_state, cc_state);
650 if (!cc_state)
651 goto bail;
652 return;
653
654 bail:
655 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
656 }
657
658 /*
659 * Do initialization for device that is only needed on
660 * first detect, not on resets.
661 */
loadtime_init(struct hfi1_devdata * dd)662 static int loadtime_init(struct hfi1_devdata *dd)
663 {
664 return 0;
665 }
666
667 /**
668 * init_after_reset - re-initialize after a reset
669 * @dd: the hfi1_ib device
670 *
671 * sanity check at least some of the values after reset, and
672 * ensure no receive or transmit (explicitly, in case reset
673 * failed
674 */
init_after_reset(struct hfi1_devdata * dd)675 static int init_after_reset(struct hfi1_devdata *dd)
676 {
677 int i;
678 struct hfi1_ctxtdata *rcd;
679 /*
680 * Ensure chip does no sends or receives, tail updates, or
681 * pioavail updates while we re-initialize. This is mostly
682 * for the driver data structures, not chip registers.
683 */
684 for (i = 0; i < dd->num_rcv_contexts; i++) {
685 rcd = hfi1_rcd_get_by_index(dd, i);
686 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
687 HFI1_RCVCTRL_INTRAVAIL_DIS |
688 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
689 hfi1_rcd_put(rcd);
690 }
691 pio_send_control(dd, PSC_GLOBAL_DISABLE);
692 for (i = 0; i < dd->num_send_contexts; i++)
693 sc_disable(dd->send_contexts[i].sc);
694
695 return 0;
696 }
697
enable_chip(struct hfi1_devdata * dd)698 static void enable_chip(struct hfi1_devdata *dd)
699 {
700 struct hfi1_ctxtdata *rcd;
701 u32 rcvmask;
702 u16 i;
703
704 /* enable PIO send */
705 pio_send_control(dd, PSC_GLOBAL_ENABLE);
706
707 /*
708 * Enable kernel ctxts' receive and receive interrupt.
709 * Other ctxts done as user opens and initializes them.
710 */
711 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
712 rcd = hfi1_rcd_get_by_index(dd, i);
713 if (!rcd)
714 continue;
715 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
716 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
717 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
718 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
719 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
720 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
721 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
723 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
724 if (HFI1_CAP_IS_KSET(TID_RDMA))
725 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
726 hfi1_rcvctrl(dd, rcvmask, rcd);
727 sc_enable(rcd->sc);
728 hfi1_rcd_put(rcd);
729 }
730 }
731
732 /**
733 * create_workqueues - create per port workqueues
734 * @dd: the hfi1_ib device
735 */
create_workqueues(struct hfi1_devdata * dd)736 static int create_workqueues(struct hfi1_devdata *dd)
737 {
738 int pidx;
739 struct hfi1_pportdata *ppd;
740
741 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
742 ppd = dd->pport + pidx;
743 if (!ppd->hfi1_wq) {
744 ppd->hfi1_wq =
745 alloc_workqueue(
746 "hfi%d_%d",
747 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
748 WQ_MEM_RECLAIM,
749 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
750 dd->unit, pidx);
751 if (!ppd->hfi1_wq)
752 goto wq_error;
753 }
754 if (!ppd->link_wq) {
755 /*
756 * Make the link workqueue single-threaded to enforce
757 * serialization.
758 */
759 ppd->link_wq =
760 alloc_workqueue(
761 "hfi_link_%d_%d",
762 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
763 1, /* max_active */
764 dd->unit, pidx);
765 if (!ppd->link_wq)
766 goto wq_error;
767 }
768 }
769 return 0;
770 wq_error:
771 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
772 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
773 ppd = dd->pport + pidx;
774 if (ppd->hfi1_wq) {
775 destroy_workqueue(ppd->hfi1_wq);
776 ppd->hfi1_wq = NULL;
777 }
778 if (ppd->link_wq) {
779 destroy_workqueue(ppd->link_wq);
780 ppd->link_wq = NULL;
781 }
782 }
783 return -ENOMEM;
784 }
785
786 /**
787 * destroy_workqueues - destroy per port workqueues
788 * @dd: the hfi1_ib device
789 */
destroy_workqueues(struct hfi1_devdata * dd)790 static void destroy_workqueues(struct hfi1_devdata *dd)
791 {
792 int pidx;
793 struct hfi1_pportdata *ppd;
794
795 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
796 ppd = dd->pport + pidx;
797
798 if (ppd->hfi1_wq) {
799 destroy_workqueue(ppd->hfi1_wq);
800 ppd->hfi1_wq = NULL;
801 }
802 if (ppd->link_wq) {
803 destroy_workqueue(ppd->link_wq);
804 ppd->link_wq = NULL;
805 }
806 }
807 }
808
809 /**
810 * enable_general_intr() - Enable the IRQs that will be handled by the
811 * general interrupt handler.
812 * @dd: valid devdata
813 *
814 */
enable_general_intr(struct hfi1_devdata * dd)815 static void enable_general_intr(struct hfi1_devdata *dd)
816 {
817 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
818 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
819 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
820 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
821 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
822 set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
823 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
824 }
825
826 /**
827 * hfi1_init - do the actual initialization sequence on the chip
828 * @dd: the hfi1_ib device
829 * @reinit: re-initializing, so don't allocate new memory
830 *
831 * Do the actual initialization sequence on the chip. This is done
832 * both from the init routine called from the PCI infrastructure, and
833 * when we reset the chip, or detect that it was reset internally,
834 * or it's administratively re-enabled.
835 *
836 * Memory allocation here and in called routines is only done in
837 * the first case (reinit == 0). We have to be careful, because even
838 * without memory allocation, we need to re-write all the chip registers
839 * TIDs, etc. after the reset or enable has completed.
840 */
hfi1_init(struct hfi1_devdata * dd,int reinit)841 int hfi1_init(struct hfi1_devdata *dd, int reinit)
842 {
843 int ret = 0, pidx, lastfail = 0;
844 unsigned long len;
845 u16 i;
846 struct hfi1_ctxtdata *rcd;
847 struct hfi1_pportdata *ppd;
848
849 /* Set up send low level handlers */
850 dd->process_pio_send = hfi1_verbs_send_pio;
851 dd->process_dma_send = hfi1_verbs_send_dma;
852 dd->pio_inline_send = pio_copy;
853 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
854
855 if (is_ax(dd)) {
856 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
857 dd->do_drop = true;
858 } else {
859 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
860 dd->do_drop = false;
861 }
862
863 /* make sure the link is not "up" */
864 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
865 ppd = dd->pport + pidx;
866 ppd->linkup = 0;
867 }
868
869 if (reinit)
870 ret = init_after_reset(dd);
871 else
872 ret = loadtime_init(dd);
873 if (ret)
874 goto done;
875
876 /* allocate dummy tail memory for all receive contexts */
877 dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
878 sizeof(u64),
879 &dd->rcvhdrtail_dummy_dma,
880 GFP_KERNEL);
881
882 if (!dd->rcvhdrtail_dummy_kvaddr) {
883 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
884 ret = -ENOMEM;
885 goto done;
886 }
887
888 /* dd->rcd can be NULL if early initialization failed */
889 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
890 /*
891 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
892 * re-init, the simplest way to handle this is to free
893 * existing, and re-allocate.
894 * Need to re-create rest of ctxt 0 ctxtdata as well.
895 */
896 rcd = hfi1_rcd_get_by_index(dd, i);
897 if (!rcd)
898 continue;
899
900 rcd->do_interrupt = &handle_receive_interrupt;
901
902 lastfail = hfi1_create_rcvhdrq(dd, rcd);
903 if (!lastfail)
904 lastfail = hfi1_setup_eagerbufs(rcd);
905 if (!lastfail)
906 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
907 if (lastfail) {
908 dd_dev_err(dd,
909 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
910 ret = lastfail;
911 }
912 /* enable IRQ */
913 hfi1_rcd_put(rcd);
914 }
915
916 /* Allocate enough memory for user event notification. */
917 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
918 sizeof(*dd->events));
919 dd->events = vmalloc_user(len);
920 if (!dd->events)
921 dd_dev_err(dd, "Failed to allocate user events page\n");
922 /*
923 * Allocate a page for device and port status.
924 * Page will be shared amongst all user processes.
925 */
926 dd->status = vmalloc_user(PAGE_SIZE);
927 if (!dd->status)
928 dd_dev_err(dd, "Failed to allocate dev status page\n");
929 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
930 ppd = dd->pport + pidx;
931 if (dd->status)
932 /* Currently, we only have one port */
933 ppd->statusp = &dd->status->port;
934
935 set_mtu(ppd);
936 }
937
938 /* enable chip even if we have an error, so we can debug cause */
939 enable_chip(dd);
940
941 done:
942 /*
943 * Set status even if port serdes is not initialized
944 * so that diags will work.
945 */
946 if (dd->status)
947 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
948 HFI1_STATUS_INITTED;
949 if (!ret) {
950 /* enable all interrupts from the chip */
951 enable_general_intr(dd);
952 init_qsfp_int(dd);
953
954 /* chip is OK for user apps; mark it as initialized */
955 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
956 ppd = dd->pport + pidx;
957
958 /*
959 * start the serdes - must be after interrupts are
960 * enabled so we are notified when the link goes up
961 */
962 lastfail = bringup_serdes(ppd);
963 if (lastfail)
964 dd_dev_info(dd,
965 "Failed to bring up port %u\n",
966 ppd->port);
967
968 /*
969 * Set status even if port serdes is not initialized
970 * so that diags will work.
971 */
972 if (ppd->statusp)
973 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
974 HFI1_STATUS_INITTED;
975 if (!ppd->link_speed_enabled)
976 continue;
977 }
978 }
979
980 /* if ret is non-zero, we probably should do some cleanup here... */
981 return ret;
982 }
983
hfi1_lookup(int unit)984 struct hfi1_devdata *hfi1_lookup(int unit)
985 {
986 return xa_load(&hfi1_dev_table, unit);
987 }
988
989 /*
990 * Stop the timers during unit shutdown, or after an error late
991 * in initialization.
992 */
stop_timers(struct hfi1_devdata * dd)993 static void stop_timers(struct hfi1_devdata *dd)
994 {
995 struct hfi1_pportdata *ppd;
996 int pidx;
997
998 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
999 ppd = dd->pport + pidx;
1000 if (ppd->led_override_timer.function) {
1001 del_timer_sync(&ppd->led_override_timer);
1002 atomic_set(&ppd->led_override_timer_active, 0);
1003 }
1004 }
1005 }
1006
1007 /**
1008 * shutdown_device - shut down a device
1009 * @dd: the hfi1_ib device
1010 *
1011 * This is called to make the device quiet when we are about to
1012 * unload the driver, and also when the device is administratively
1013 * disabled. It does not free any data structures.
1014 * Everything it does has to be setup again by hfi1_init(dd, 1)
1015 */
shutdown_device(struct hfi1_devdata * dd)1016 static void shutdown_device(struct hfi1_devdata *dd)
1017 {
1018 struct hfi1_pportdata *ppd;
1019 struct hfi1_ctxtdata *rcd;
1020 unsigned pidx;
1021 int i;
1022
1023 if (dd->flags & HFI1_SHUTDOWN)
1024 return;
1025 dd->flags |= HFI1_SHUTDOWN;
1026
1027 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1028 ppd = dd->pport + pidx;
1029
1030 ppd->linkup = 0;
1031 if (ppd->statusp)
1032 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1033 HFI1_STATUS_IB_READY);
1034 }
1035 dd->flags &= ~HFI1_INITTED;
1036
1037 /* mask and clean up interrupts */
1038 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1039 msix_clean_up_interrupts(dd);
1040
1041 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1042 ppd = dd->pport + pidx;
1043 for (i = 0; i < dd->num_rcv_contexts; i++) {
1044 rcd = hfi1_rcd_get_by_index(dd, i);
1045 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1046 HFI1_RCVCTRL_CTXT_DIS |
1047 HFI1_RCVCTRL_INTRAVAIL_DIS |
1048 HFI1_RCVCTRL_PKEY_DIS |
1049 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1050 hfi1_rcd_put(rcd);
1051 }
1052 /*
1053 * Gracefully stop all sends allowing any in progress to
1054 * trickle out first.
1055 */
1056 for (i = 0; i < dd->num_send_contexts; i++)
1057 sc_flush(dd->send_contexts[i].sc);
1058 }
1059
1060 /*
1061 * Enough for anything that's going to trickle out to have actually
1062 * done so.
1063 */
1064 udelay(20);
1065
1066 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1067 ppd = dd->pport + pidx;
1068
1069 /* disable all contexts */
1070 for (i = 0; i < dd->num_send_contexts; i++)
1071 sc_disable(dd->send_contexts[i].sc);
1072 /* disable the send device */
1073 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1074
1075 shutdown_led_override(ppd);
1076
1077 /*
1078 * Clear SerdesEnable.
1079 * We can't count on interrupts since we are stopping.
1080 */
1081 hfi1_quiet_serdes(ppd);
1082 if (ppd->hfi1_wq)
1083 flush_workqueue(ppd->hfi1_wq);
1084 if (ppd->link_wq)
1085 flush_workqueue(ppd->link_wq);
1086 }
1087 sdma_exit(dd);
1088 }
1089
1090 /**
1091 * hfi1_free_ctxtdata - free a context's allocated data
1092 * @dd: the hfi1_ib device
1093 * @rcd: the ctxtdata structure
1094 *
1095 * free up any allocated data for a context
1096 * It should never change any chip state, or global driver state.
1097 */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1098 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1099 {
1100 u32 e;
1101
1102 if (!rcd)
1103 return;
1104
1105 if (rcd->rcvhdrq) {
1106 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1107 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1108 rcd->rcvhdrq = NULL;
1109 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1110 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1111 (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1112 rcd->rcvhdrqtailaddr_dma);
1113 rcd->rcvhdrtail_kvaddr = NULL;
1114 }
1115 }
1116
1117 /* all the RcvArray entries should have been cleared by now */
1118 kfree(rcd->egrbufs.rcvtids);
1119 rcd->egrbufs.rcvtids = NULL;
1120
1121 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1122 if (rcd->egrbufs.buffers[e].dma)
1123 dma_free_coherent(&dd->pcidev->dev,
1124 rcd->egrbufs.buffers[e].len,
1125 rcd->egrbufs.buffers[e].addr,
1126 rcd->egrbufs.buffers[e].dma);
1127 }
1128 kfree(rcd->egrbufs.buffers);
1129 rcd->egrbufs.alloced = 0;
1130 rcd->egrbufs.buffers = NULL;
1131
1132 sc_free(rcd->sc);
1133 rcd->sc = NULL;
1134
1135 vfree(rcd->subctxt_uregbase);
1136 vfree(rcd->subctxt_rcvegrbuf);
1137 vfree(rcd->subctxt_rcvhdr_base);
1138 kfree(rcd->opstats);
1139
1140 rcd->subctxt_uregbase = NULL;
1141 rcd->subctxt_rcvegrbuf = NULL;
1142 rcd->subctxt_rcvhdr_base = NULL;
1143 rcd->opstats = NULL;
1144 }
1145
1146 /*
1147 * Release our hold on the shared asic data. If we are the last one,
1148 * return the structure to be finalized outside the lock. Must be
1149 * holding hfi1_dev_table lock.
1150 */
release_asic_data(struct hfi1_devdata * dd)1151 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1152 {
1153 struct hfi1_asic_data *ad;
1154 int other;
1155
1156 if (!dd->asic_data)
1157 return NULL;
1158 dd->asic_data->dds[dd->hfi1_id] = NULL;
1159 other = dd->hfi1_id ? 0 : 1;
1160 ad = dd->asic_data;
1161 dd->asic_data = NULL;
1162 /* return NULL if the other dd still has a link */
1163 return ad->dds[other] ? NULL : ad;
1164 }
1165
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1166 static void finalize_asic_data(struct hfi1_devdata *dd,
1167 struct hfi1_asic_data *ad)
1168 {
1169 clean_up_i2c(dd, ad);
1170 kfree(ad);
1171 }
1172
1173 /**
1174 * hfi1_free_devdata - cleans up and frees per-unit data structure
1175 * @dd: pointer to a valid devdata structure
1176 *
1177 * It cleans up and frees all data structures set up by
1178 * by hfi1_alloc_devdata().
1179 */
hfi1_free_devdata(struct hfi1_devdata * dd)1180 void hfi1_free_devdata(struct hfi1_devdata *dd)
1181 {
1182 struct hfi1_asic_data *ad;
1183 unsigned long flags;
1184
1185 xa_lock_irqsave(&hfi1_dev_table, flags);
1186 __xa_erase(&hfi1_dev_table, dd->unit);
1187 ad = release_asic_data(dd);
1188 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1189
1190 finalize_asic_data(dd, ad);
1191 free_platform_config(dd);
1192 rcu_barrier(); /* wait for rcu callbacks to complete */
1193 free_percpu(dd->int_counter);
1194 free_percpu(dd->rcv_limit);
1195 free_percpu(dd->send_schedule);
1196 free_percpu(dd->tx_opstats);
1197 dd->int_counter = NULL;
1198 dd->rcv_limit = NULL;
1199 dd->send_schedule = NULL;
1200 dd->tx_opstats = NULL;
1201 kfree(dd->comp_vect);
1202 dd->comp_vect = NULL;
1203 sdma_clean(dd, dd->num_sdma);
1204 rvt_dealloc_device(&dd->verbs_dev.rdi);
1205 }
1206
1207 /**
1208 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1209 * @pdev: Valid PCI device
1210 * @extra: How many bytes to alloc past the default
1211 *
1212 * Must be done via verbs allocator, because the verbs cleanup process
1213 * both does cleanup and free of the data structure.
1214 * "extra" is for chip-specific data.
1215 */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1216 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1217 size_t extra)
1218 {
1219 struct hfi1_devdata *dd;
1220 int ret, nports;
1221
1222 /* extra is * number of ports */
1223 nports = extra / sizeof(struct hfi1_pportdata);
1224
1225 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1226 nports);
1227 if (!dd)
1228 return ERR_PTR(-ENOMEM);
1229 dd->num_pports = nports;
1230 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1231 dd->pcidev = pdev;
1232 pci_set_drvdata(pdev, dd);
1233
1234 ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1235 GFP_KERNEL);
1236 if (ret < 0) {
1237 dev_err(&pdev->dev,
1238 "Could not allocate unit ID: error %d\n", -ret);
1239 goto bail;
1240 }
1241 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1242 /*
1243 * If the BIOS does not have the NUMA node information set, select
1244 * NUMA 0 so we get consistent performance.
1245 */
1246 dd->node = pcibus_to_node(pdev->bus);
1247 if (dd->node == NUMA_NO_NODE) {
1248 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1249 dd->node = 0;
1250 }
1251
1252 /*
1253 * Initialize all locks for the device. This needs to be as early as
1254 * possible so locks are usable.
1255 */
1256 spin_lock_init(&dd->sc_lock);
1257 spin_lock_init(&dd->sendctrl_lock);
1258 spin_lock_init(&dd->rcvctrl_lock);
1259 spin_lock_init(&dd->uctxt_lock);
1260 spin_lock_init(&dd->hfi1_diag_trans_lock);
1261 spin_lock_init(&dd->sc_init_lock);
1262 spin_lock_init(&dd->dc8051_memlock);
1263 seqlock_init(&dd->sc2vl_lock);
1264 spin_lock_init(&dd->sde_map_lock);
1265 spin_lock_init(&dd->pio_map_lock);
1266 mutex_init(&dd->dc8051_lock);
1267 init_waitqueue_head(&dd->event_queue);
1268 spin_lock_init(&dd->irq_src_lock);
1269
1270 dd->int_counter = alloc_percpu(u64);
1271 if (!dd->int_counter) {
1272 ret = -ENOMEM;
1273 goto bail;
1274 }
1275
1276 dd->rcv_limit = alloc_percpu(u64);
1277 if (!dd->rcv_limit) {
1278 ret = -ENOMEM;
1279 goto bail;
1280 }
1281
1282 dd->send_schedule = alloc_percpu(u64);
1283 if (!dd->send_schedule) {
1284 ret = -ENOMEM;
1285 goto bail;
1286 }
1287
1288 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1289 if (!dd->tx_opstats) {
1290 ret = -ENOMEM;
1291 goto bail;
1292 }
1293
1294 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1295 if (!dd->comp_vect) {
1296 ret = -ENOMEM;
1297 goto bail;
1298 }
1299
1300 atomic_set(&dd->ipoib_rsm_usr_num, 0);
1301 return dd;
1302
1303 bail:
1304 hfi1_free_devdata(dd);
1305 return ERR_PTR(ret);
1306 }
1307
1308 /*
1309 * Called from freeze mode handlers, and from PCI error
1310 * reporting code. Should be paranoid about state of
1311 * system and data structures.
1312 */
hfi1_disable_after_error(struct hfi1_devdata * dd)1313 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1314 {
1315 if (dd->flags & HFI1_INITTED) {
1316 u32 pidx;
1317
1318 dd->flags &= ~HFI1_INITTED;
1319 if (dd->pport)
1320 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1321 struct hfi1_pportdata *ppd;
1322
1323 ppd = dd->pport + pidx;
1324 if (dd->flags & HFI1_PRESENT)
1325 set_link_state(ppd, HLS_DN_DISABLE);
1326
1327 if (ppd->statusp)
1328 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1329 }
1330 }
1331
1332 /*
1333 * Mark as having had an error for driver, and also
1334 * for /sys and status word mapped to user programs.
1335 * This marks unit as not usable, until reset.
1336 */
1337 if (dd->status)
1338 dd->status->dev |= HFI1_STATUS_HWERROR;
1339 }
1340
1341 static void remove_one(struct pci_dev *);
1342 static int init_one(struct pci_dev *, const struct pci_device_id *);
1343 static void shutdown_one(struct pci_dev *);
1344
1345 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1346 #define PFX DRIVER_NAME ": "
1347
1348 const struct pci_device_id hfi1_pci_tbl[] = {
1349 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1350 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1351 { 0, }
1352 };
1353
1354 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1355
1356 static struct pci_driver hfi1_pci_driver = {
1357 .name = DRIVER_NAME,
1358 .probe = init_one,
1359 .remove = remove_one,
1360 .shutdown = shutdown_one,
1361 .id_table = hfi1_pci_tbl,
1362 .err_handler = &hfi1_pci_err_handler,
1363 };
1364
compute_krcvqs(void)1365 static void __init compute_krcvqs(void)
1366 {
1367 int i;
1368
1369 for (i = 0; i < krcvqsset; i++)
1370 n_krcvqs += krcvqs[i];
1371 }
1372
1373 /*
1374 * Do all the generic driver unit- and chip-independent memory
1375 * allocation and initialization.
1376 */
hfi1_mod_init(void)1377 static int __init hfi1_mod_init(void)
1378 {
1379 int ret;
1380
1381 ret = dev_init();
1382 if (ret)
1383 goto bail;
1384
1385 ret = node_affinity_init();
1386 if (ret)
1387 goto bail;
1388
1389 /* validate max MTU before any devices start */
1390 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1391 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1392 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1393 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1394 }
1395 /* valid CUs run from 1-128 in powers of 2 */
1396 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1397 hfi1_cu = 1;
1398 /* valid credit return threshold is 0-100, variable is unsigned */
1399 if (user_credit_return_threshold > 100)
1400 user_credit_return_threshold = 100;
1401
1402 compute_krcvqs();
1403 /*
1404 * sanitize receive interrupt count, time must wait until after
1405 * the hardware type is known
1406 */
1407 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1408 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1409 /* reject invalid combinations */
1410 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1411 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1412 rcv_intr_count = 1;
1413 }
1414 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1415 /*
1416 * Avoid indefinite packet delivery by requiring a timeout
1417 * if count is > 1.
1418 */
1419 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1420 rcv_intr_timeout = 1;
1421 }
1422 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1423 /*
1424 * The dynamic algorithm expects a non-zero timeout
1425 * and a count > 1.
1426 */
1427 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1428 rcv_intr_dynamic = 0;
1429 }
1430
1431 /* sanitize link CRC options */
1432 link_crc_mask &= SUPPORTED_CRCS;
1433
1434 ret = opfn_init();
1435 if (ret < 0) {
1436 pr_err("Failed to allocate opfn_wq");
1437 goto bail_dev;
1438 }
1439
1440 /*
1441 * These must be called before the driver is registered with
1442 * the PCI subsystem.
1443 */
1444 hfi1_dbg_init();
1445 ret = pci_register_driver(&hfi1_pci_driver);
1446 if (ret < 0) {
1447 pr_err("Unable to register driver: error %d\n", -ret);
1448 goto bail_dev;
1449 }
1450 goto bail; /* all OK */
1451
1452 bail_dev:
1453 hfi1_dbg_exit();
1454 dev_cleanup();
1455 bail:
1456 return ret;
1457 }
1458
1459 module_init(hfi1_mod_init);
1460
1461 /*
1462 * Do the non-unit driver cleanup, memory free, etc. at unload.
1463 */
hfi1_mod_cleanup(void)1464 static void __exit hfi1_mod_cleanup(void)
1465 {
1466 pci_unregister_driver(&hfi1_pci_driver);
1467 opfn_exit();
1468 node_affinity_destroy_all();
1469 hfi1_dbg_exit();
1470
1471 WARN_ON(!xa_empty(&hfi1_dev_table));
1472 dispose_firmware(); /* asymmetric with obtain_firmware() */
1473 dev_cleanup();
1474 }
1475
1476 module_exit(hfi1_mod_cleanup);
1477
1478 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1479 static void cleanup_device_data(struct hfi1_devdata *dd)
1480 {
1481 int ctxt;
1482 int pidx;
1483
1484 /* users can't do anything more with chip */
1485 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1486 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1487 struct cc_state *cc_state;
1488 int i;
1489
1490 if (ppd->statusp)
1491 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1492
1493 for (i = 0; i < OPA_MAX_SLS; i++)
1494 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1495
1496 spin_lock(&ppd->cc_state_lock);
1497 cc_state = get_cc_state_protected(ppd);
1498 RCU_INIT_POINTER(ppd->cc_state, NULL);
1499 spin_unlock(&ppd->cc_state_lock);
1500
1501 if (cc_state)
1502 kfree_rcu(cc_state, rcu);
1503 }
1504
1505 free_credit_return(dd);
1506
1507 if (dd->rcvhdrtail_dummy_kvaddr) {
1508 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1509 (void *)dd->rcvhdrtail_dummy_kvaddr,
1510 dd->rcvhdrtail_dummy_dma);
1511 dd->rcvhdrtail_dummy_kvaddr = NULL;
1512 }
1513
1514 /*
1515 * Free any resources still in use (usually just kernel contexts)
1516 * at unload; we do for ctxtcnt, because that's what we allocate.
1517 */
1518 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1519 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1520
1521 if (rcd) {
1522 hfi1_free_ctxt_rcv_groups(rcd);
1523 hfi1_free_ctxt(rcd);
1524 }
1525 }
1526
1527 kfree(dd->rcd);
1528 dd->rcd = NULL;
1529
1530 free_pio_map(dd);
1531 /* must follow rcv context free - need to remove rcv's hooks */
1532 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1533 sc_free(dd->send_contexts[ctxt].sc);
1534 dd->num_send_contexts = 0;
1535 kfree(dd->send_contexts);
1536 dd->send_contexts = NULL;
1537 kfree(dd->hw_to_sw);
1538 dd->hw_to_sw = NULL;
1539 kfree(dd->boardname);
1540 vfree(dd->events);
1541 vfree(dd->status);
1542 }
1543
1544 /*
1545 * Clean up on unit shutdown, or error during unit load after
1546 * successful initialization.
1547 */
postinit_cleanup(struct hfi1_devdata * dd)1548 static void postinit_cleanup(struct hfi1_devdata *dd)
1549 {
1550 hfi1_start_cleanup(dd);
1551 hfi1_comp_vectors_clean_up(dd);
1552 hfi1_dev_affinity_clean_up(dd);
1553
1554 hfi1_pcie_ddcleanup(dd);
1555 hfi1_pcie_cleanup(dd->pcidev);
1556
1557 cleanup_device_data(dd);
1558
1559 hfi1_free_devdata(dd);
1560 }
1561
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1562 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1563 {
1564 int ret = 0, j, pidx, initfail;
1565 struct hfi1_devdata *dd;
1566 struct hfi1_pportdata *ppd;
1567
1568 /* First, lock the non-writable module parameters */
1569 HFI1_CAP_LOCK();
1570
1571 /* Validate dev ids */
1572 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1573 ent->device == PCI_DEVICE_ID_INTEL1)) {
1574 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1575 ent->device);
1576 ret = -ENODEV;
1577 goto bail;
1578 }
1579
1580 /* Allocate the dd so we can get to work */
1581 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1582 sizeof(struct hfi1_pportdata));
1583 if (IS_ERR(dd)) {
1584 ret = PTR_ERR(dd);
1585 goto bail;
1586 }
1587
1588 /* Validate some global module parameters */
1589 ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1590 if (ret)
1591 goto bail;
1592
1593 /* use the encoding function as a sanitization check */
1594 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1595 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1596 hfi1_hdrq_entsize);
1597 ret = -EINVAL;
1598 goto bail;
1599 }
1600
1601 /* The receive eager buffer size must be set before the receive
1602 * contexts are created.
1603 *
1604 * Set the eager buffer size. Validate that it falls in a range
1605 * allowed by the hardware - all powers of 2 between the min and
1606 * max. The maximum valid MTU is within the eager buffer range
1607 * so we do not need to cap the max_mtu by an eager buffer size
1608 * setting.
1609 */
1610 if (eager_buffer_size) {
1611 if (!is_power_of_2(eager_buffer_size))
1612 eager_buffer_size =
1613 roundup_pow_of_two(eager_buffer_size);
1614 eager_buffer_size =
1615 clamp_val(eager_buffer_size,
1616 MIN_EAGER_BUFFER * 8,
1617 MAX_EAGER_BUFFER_TOTAL);
1618 dd_dev_info(dd, "Eager buffer size %u\n",
1619 eager_buffer_size);
1620 } else {
1621 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1622 ret = -EINVAL;
1623 goto bail;
1624 }
1625
1626 /* restrict value of hfi1_rcvarr_split */
1627 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1628
1629 ret = hfi1_pcie_init(dd);
1630 if (ret)
1631 goto bail;
1632
1633 /*
1634 * Do device-specific initialization, function table setup, dd
1635 * allocation, etc.
1636 */
1637 ret = hfi1_init_dd(dd);
1638 if (ret)
1639 goto clean_bail; /* error already printed */
1640
1641 ret = create_workqueues(dd);
1642 if (ret)
1643 goto clean_bail;
1644
1645 /* do the generic initialization */
1646 initfail = hfi1_init(dd, 0);
1647
1648 ret = hfi1_register_ib_device(dd);
1649
1650 /*
1651 * Now ready for use. this should be cleared whenever we
1652 * detect a reset, or initiate one. If earlier failure,
1653 * we still create devices, so diags, etc. can be used
1654 * to determine cause of problem.
1655 */
1656 if (!initfail && !ret) {
1657 dd->flags |= HFI1_INITTED;
1658 /* create debufs files after init and ib register */
1659 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1660 }
1661
1662 j = hfi1_device_create(dd);
1663 if (j)
1664 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1665
1666 if (initfail || ret) {
1667 msix_clean_up_interrupts(dd);
1668 stop_timers(dd);
1669 flush_workqueue(ib_wq);
1670 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1671 hfi1_quiet_serdes(dd->pport + pidx);
1672 ppd = dd->pport + pidx;
1673 if (ppd->hfi1_wq) {
1674 destroy_workqueue(ppd->hfi1_wq);
1675 ppd->hfi1_wq = NULL;
1676 }
1677 if (ppd->link_wq) {
1678 destroy_workqueue(ppd->link_wq);
1679 ppd->link_wq = NULL;
1680 }
1681 }
1682 if (!j)
1683 hfi1_device_remove(dd);
1684 if (!ret)
1685 hfi1_unregister_ib_device(dd);
1686 postinit_cleanup(dd);
1687 if (initfail)
1688 ret = initfail;
1689 goto bail; /* everything already cleaned */
1690 }
1691
1692 sdma_start(dd);
1693
1694 return 0;
1695
1696 clean_bail:
1697 hfi1_pcie_cleanup(pdev);
1698 bail:
1699 return ret;
1700 }
1701
wait_for_clients(struct hfi1_devdata * dd)1702 static void wait_for_clients(struct hfi1_devdata *dd)
1703 {
1704 /*
1705 * Remove the device init value and complete the device if there is
1706 * no clients or wait for active clients to finish.
1707 */
1708 if (refcount_dec_and_test(&dd->user_refcount))
1709 complete(&dd->user_comp);
1710
1711 wait_for_completion(&dd->user_comp);
1712 }
1713
remove_one(struct pci_dev * pdev)1714 static void remove_one(struct pci_dev *pdev)
1715 {
1716 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1717
1718 /* close debugfs files before ib unregister */
1719 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1720
1721 /* remove the /dev hfi1 interface */
1722 hfi1_device_remove(dd);
1723
1724 /* wait for existing user space clients to finish */
1725 wait_for_clients(dd);
1726
1727 /* unregister from IB core */
1728 hfi1_unregister_ib_device(dd);
1729
1730 /* free netdev data */
1731 hfi1_free_rx(dd);
1732
1733 /*
1734 * Disable the IB link, disable interrupts on the device,
1735 * clear dma engines, etc.
1736 */
1737 shutdown_device(dd);
1738 destroy_workqueues(dd);
1739
1740 stop_timers(dd);
1741
1742 /* wait until all of our (qsfp) queue_work() calls complete */
1743 flush_workqueue(ib_wq);
1744
1745 postinit_cleanup(dd);
1746 }
1747
shutdown_one(struct pci_dev * pdev)1748 static void shutdown_one(struct pci_dev *pdev)
1749 {
1750 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1751
1752 shutdown_device(dd);
1753 }
1754
1755 /**
1756 * hfi1_create_rcvhdrq - create a receive header queue
1757 * @dd: the hfi1_ib device
1758 * @rcd: the context data
1759 *
1760 * This must be contiguous memory (from an i/o perspective), and must be
1761 * DMA'able (which means for some systems, it will go through an IOMMU,
1762 * or be forced into a low address range).
1763 */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1764 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1765 {
1766 unsigned amt;
1767
1768 if (!rcd->rcvhdrq) {
1769 gfp_t gfp_flags;
1770
1771 amt = rcvhdrq_size(rcd);
1772
1773 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1774 gfp_flags = GFP_KERNEL;
1775 else
1776 gfp_flags = GFP_USER;
1777 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1778 &rcd->rcvhdrq_dma,
1779 gfp_flags | __GFP_COMP);
1780
1781 if (!rcd->rcvhdrq) {
1782 dd_dev_err(dd,
1783 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1784 amt, rcd->ctxt);
1785 goto bail;
1786 }
1787
1788 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1789 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1790 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1791 PAGE_SIZE,
1792 &rcd->rcvhdrqtailaddr_dma,
1793 gfp_flags);
1794 if (!rcd->rcvhdrtail_kvaddr)
1795 goto bail_free;
1796 }
1797 }
1798
1799 set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1800 rcd->rcvhdrq_cnt);
1801
1802 return 0;
1803
1804 bail_free:
1805 dd_dev_err(dd,
1806 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1807 rcd->ctxt);
1808 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1809 rcd->rcvhdrq_dma);
1810 rcd->rcvhdrq = NULL;
1811 bail:
1812 return -ENOMEM;
1813 }
1814
1815 /**
1816 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1817 * contexts.
1818 * @rcd: the context we are setting up.
1819 *
1820 * Allocate the eager TID buffers and program them into hip.
1821 * They are no longer completely contiguous, we do multiple allocation
1822 * calls. Otherwise we get the OOM code involved, by asking for too
1823 * much per call, with disastrous results on some kernels.
1824 */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1825 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1826 {
1827 struct hfi1_devdata *dd = rcd->dd;
1828 u32 max_entries, egrtop, alloced_bytes = 0;
1829 gfp_t gfp_flags;
1830 u16 order, idx = 0;
1831 int ret = 0;
1832 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1833
1834 /*
1835 * GFP_USER, but without GFP_FS, so buffer cache can be
1836 * coalesced (we hope); otherwise, even at order 4,
1837 * heavy filesystem activity makes these fail, and we can
1838 * use compound pages.
1839 */
1840 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1841
1842 /*
1843 * The minimum size of the eager buffers is a groups of MTU-sized
1844 * buffers.
1845 * The global eager_buffer_size parameter is checked against the
1846 * theoretical lower limit of the value. Here, we check against the
1847 * MTU.
1848 */
1849 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1850 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1851 /*
1852 * If using one-pkt-per-egr-buffer, lower the eager buffer
1853 * size to the max MTU (page-aligned).
1854 */
1855 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1856 rcd->egrbufs.rcvtid_size = round_mtu;
1857
1858 /*
1859 * Eager buffers sizes of 1MB or less require smaller TID sizes
1860 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1861 */
1862 if (rcd->egrbufs.size <= (1 << 20))
1863 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1864 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1865
1866 while (alloced_bytes < rcd->egrbufs.size &&
1867 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1868 rcd->egrbufs.buffers[idx].addr =
1869 dma_alloc_coherent(&dd->pcidev->dev,
1870 rcd->egrbufs.rcvtid_size,
1871 &rcd->egrbufs.buffers[idx].dma,
1872 gfp_flags);
1873 if (rcd->egrbufs.buffers[idx].addr) {
1874 rcd->egrbufs.buffers[idx].len =
1875 rcd->egrbufs.rcvtid_size;
1876 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1877 rcd->egrbufs.buffers[idx].addr;
1878 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1879 rcd->egrbufs.buffers[idx].dma;
1880 rcd->egrbufs.alloced++;
1881 alloced_bytes += rcd->egrbufs.rcvtid_size;
1882 idx++;
1883 } else {
1884 u32 new_size, i, j;
1885 u64 offset = 0;
1886
1887 /*
1888 * Fail the eager buffer allocation if:
1889 * - we are already using the lowest acceptable size
1890 * - we are using one-pkt-per-egr-buffer (this implies
1891 * that we are accepting only one size)
1892 */
1893 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1894 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1895 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1896 rcd->ctxt);
1897 ret = -ENOMEM;
1898 goto bail_rcvegrbuf_phys;
1899 }
1900
1901 new_size = rcd->egrbufs.rcvtid_size / 2;
1902
1903 /*
1904 * If the first attempt to allocate memory failed, don't
1905 * fail everything but continue with the next lower
1906 * size.
1907 */
1908 if (idx == 0) {
1909 rcd->egrbufs.rcvtid_size = new_size;
1910 continue;
1911 }
1912
1913 /*
1914 * Re-partition already allocated buffers to a smaller
1915 * size.
1916 */
1917 rcd->egrbufs.alloced = 0;
1918 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1919 if (i >= rcd->egrbufs.count)
1920 break;
1921 rcd->egrbufs.rcvtids[i].dma =
1922 rcd->egrbufs.buffers[j].dma + offset;
1923 rcd->egrbufs.rcvtids[i].addr =
1924 rcd->egrbufs.buffers[j].addr + offset;
1925 rcd->egrbufs.alloced++;
1926 if ((rcd->egrbufs.buffers[j].dma + offset +
1927 new_size) ==
1928 (rcd->egrbufs.buffers[j].dma +
1929 rcd->egrbufs.buffers[j].len)) {
1930 j++;
1931 offset = 0;
1932 } else {
1933 offset += new_size;
1934 }
1935 }
1936 rcd->egrbufs.rcvtid_size = new_size;
1937 }
1938 }
1939 rcd->egrbufs.numbufs = idx;
1940 rcd->egrbufs.size = alloced_bytes;
1941
1942 hfi1_cdbg(PROC,
1943 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1944 rcd->ctxt, rcd->egrbufs.alloced,
1945 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1946
1947 /*
1948 * Set the contexts rcv array head update threshold to the closest
1949 * power of 2 (so we can use a mask instead of modulo) below half
1950 * the allocated entries.
1951 */
1952 rcd->egrbufs.threshold =
1953 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1954 /*
1955 * Compute the expected RcvArray entry base. This is done after
1956 * allocating the eager buffers in order to maximize the
1957 * expected RcvArray entries for the context.
1958 */
1959 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1960 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1961 rcd->expected_count = max_entries - egrtop;
1962 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1963 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1964
1965 rcd->expected_base = rcd->eager_base + egrtop;
1966 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
1967 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1968 rcd->eager_base, rcd->expected_base);
1969
1970 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
1971 hfi1_cdbg(PROC,
1972 "ctxt%u: current Eager buffer size is invalid %u\n",
1973 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1974 ret = -EINVAL;
1975 goto bail_rcvegrbuf_phys;
1976 }
1977
1978 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1979 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
1980 rcd->egrbufs.rcvtids[idx].dma, order);
1981 cond_resched();
1982 }
1983
1984 return 0;
1985
1986 bail_rcvegrbuf_phys:
1987 for (idx = 0; idx < rcd->egrbufs.alloced &&
1988 rcd->egrbufs.buffers[idx].addr;
1989 idx++) {
1990 dma_free_coherent(&dd->pcidev->dev,
1991 rcd->egrbufs.buffers[idx].len,
1992 rcd->egrbufs.buffers[idx].addr,
1993 rcd->egrbufs.buffers[idx].dma);
1994 rcd->egrbufs.buffers[idx].addr = NULL;
1995 rcd->egrbufs.buffers[idx].dma = 0;
1996 rcd->egrbufs.buffers[idx].len = 0;
1997 }
1998
1999 return ret;
2000 }
2001