1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68 struct sdma_engine *sde,
69 struct iowait *wait,
70 struct sdma_txreq *stx,
71 unsigned int seq,
72 bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79 .length = sizeof(struct ib_rdma_wr),
80 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82
83 [IB_WR_RDMA_READ] = {
84 .length = sizeof(struct ib_rdma_wr),
85 .qpt_support = BIT(IB_QPT_RC),
86 .flags = RVT_OPERATION_ATOMIC,
87 },
88
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90 .length = sizeof(struct ib_atomic_wr),
91 .qpt_support = BIT(IB_QPT_RC),
92 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96 .length = sizeof(struct ib_atomic_wr),
97 .qpt_support = BIT(IB_QPT_RC),
98 .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102 .length = sizeof(struct ib_rdma_wr),
103 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105
106 [IB_WR_SEND] = {
107 .length = sizeof(struct ib_send_wr),
108 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111
112 [IB_WR_SEND_WITH_IMM] = {
113 .length = sizeof(struct ib_send_wr),
114 .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115 BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117
118 [IB_WR_REG_MR] = {
119 .length = sizeof(struct ib_reg_wr),
120 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121 .flags = RVT_OPERATION_LOCAL,
122 },
123
124 [IB_WR_LOCAL_INV] = {
125 .length = sizeof(struct ib_send_wr),
126 .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127 .flags = RVT_OPERATION_LOCAL,
128 },
129
130 [IB_WR_SEND_WITH_INV] = {
131 .length = sizeof(struct ib_send_wr),
132 .qpt_support = BIT(IB_QPT_RC),
133 },
134
135 };
136
flush_tx_list(struct rvt_qp * qp)137 static void flush_tx_list(struct rvt_qp *qp)
138 {
139 struct hfi1_qp_priv *priv = qp->priv;
140
141 while (!list_empty(&priv->s_iowait.tx_head)) {
142 struct sdma_txreq *tx;
143
144 tx = list_first_entry(
145 &priv->s_iowait.tx_head,
146 struct sdma_txreq,
147 list);
148 list_del_init(&tx->list);
149 hfi1_put_txreq(
150 container_of(tx, struct verbs_txreq, txreq));
151 }
152 }
153
flush_iowait(struct rvt_qp * qp)154 static void flush_iowait(struct rvt_qp *qp)
155 {
156 struct hfi1_qp_priv *priv = qp->priv;
157 unsigned long flags;
158 seqlock_t *lock = priv->s_iowait.lock;
159
160 if (!lock)
161 return;
162 write_seqlock_irqsave(lock, flags);
163 if (!list_empty(&priv->s_iowait.list)) {
164 list_del_init(&priv->s_iowait.list);
165 priv->s_iowait.lock = NULL;
166 rvt_put_qp(qp);
167 }
168 write_sequnlock_irqrestore(lock, flags);
169 }
170
opa_mtu_enum_to_int(int mtu)171 static inline int opa_mtu_enum_to_int(int mtu)
172 {
173 switch (mtu) {
174 case OPA_MTU_8192: return 8192;
175 case OPA_MTU_10240: return 10240;
176 default: return -1;
177 }
178 }
179
180 /**
181 * This function is what we would push to the core layer if we wanted to be a
182 * "first class citizen". Instead we hide this here and rely on Verbs ULPs
183 * to blindly pass the MTU enum value from the PathRecord to us.
184 */
verbs_mtu_enum_to_int(struct ib_device * dev,enum ib_mtu mtu)185 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
186 {
187 int val;
188
189 /* Constraining 10KB packets to 8KB packets */
190 if (mtu == (enum ib_mtu)OPA_MTU_10240)
191 mtu = OPA_MTU_8192;
192 val = opa_mtu_enum_to_int((int)mtu);
193 if (val > 0)
194 return val;
195 return ib_mtu_enum_to_int(mtu);
196 }
197
hfi1_check_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)198 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
199 int attr_mask, struct ib_udata *udata)
200 {
201 struct ib_qp *ibqp = &qp->ibqp;
202 struct hfi1_ibdev *dev = to_idev(ibqp->device);
203 struct hfi1_devdata *dd = dd_from_dev(dev);
204 u8 sc;
205
206 if (attr_mask & IB_QP_AV) {
207 sc = ah_to_sc(ibqp->device, &attr->ah_attr);
208 if (sc == 0xf)
209 return -EINVAL;
210
211 if (!qp_to_sdma_engine(qp, sc) &&
212 dd->flags & HFI1_HAS_SEND_DMA)
213 return -EINVAL;
214
215 if (!qp_to_send_context(qp, sc))
216 return -EINVAL;
217 }
218
219 if (attr_mask & IB_QP_ALT_PATH) {
220 sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
221 if (sc == 0xf)
222 return -EINVAL;
223
224 if (!qp_to_sdma_engine(qp, sc) &&
225 dd->flags & HFI1_HAS_SEND_DMA)
226 return -EINVAL;
227
228 if (!qp_to_send_context(qp, sc))
229 return -EINVAL;
230 }
231
232 return 0;
233 }
234
235 /*
236 * qp_set_16b - Set the hdr_type based on whether the slid or the
237 * dlid in the connection is extended. Only applicable for RC and UC
238 * QPs. UD QPs determine this on the fly from the ah in the wqe
239 */
qp_set_16b(struct rvt_qp * qp)240 static inline void qp_set_16b(struct rvt_qp *qp)
241 {
242 struct hfi1_pportdata *ppd;
243 struct hfi1_ibport *ibp;
244 struct hfi1_qp_priv *priv = qp->priv;
245
246 /* Update ah_attr to account for extended LIDs */
247 hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
248
249 /* Create 32 bit LIDs */
250 hfi1_make_opa_lid(&qp->remote_ah_attr);
251
252 if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
253 return;
254
255 ibp = to_iport(qp->ibqp.device, qp->port_num);
256 ppd = ppd_from_ibp(ibp);
257 priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
258 }
259
hfi1_modify_qp(struct rvt_qp * qp,struct ib_qp_attr * attr,int attr_mask,struct ib_udata * udata)260 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
261 int attr_mask, struct ib_udata *udata)
262 {
263 struct ib_qp *ibqp = &qp->ibqp;
264 struct hfi1_qp_priv *priv = qp->priv;
265
266 if (attr_mask & IB_QP_AV) {
267 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
268 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
269 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
270 qp_set_16b(qp);
271 }
272
273 if (attr_mask & IB_QP_PATH_MIG_STATE &&
274 attr->path_mig_state == IB_MIG_MIGRATED &&
275 qp->s_mig_state == IB_MIG_ARMED) {
276 qp->s_flags |= HFI1_S_AHG_CLEAR;
277 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
278 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
279 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
280 qp_set_16b(qp);
281 }
282 }
283
284 /**
285 * hfi1_check_send_wqe - validate wqe
286 * @qp - The qp
287 * @wqe - The built wqe
288 *
289 * validate wqe. This is called
290 * prior to inserting the wqe into
291 * the ring but after the wqe has been
292 * setup.
293 *
294 * Returns 0 on success, -EINVAL on failure
295 *
296 */
hfi1_check_send_wqe(struct rvt_qp * qp,struct rvt_swqe * wqe)297 int hfi1_check_send_wqe(struct rvt_qp *qp,
298 struct rvt_swqe *wqe)
299 {
300 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
301 struct rvt_ah *ah;
302
303 switch (qp->ibqp.qp_type) {
304 case IB_QPT_RC:
305 case IB_QPT_UC:
306 if (wqe->length > 0x80000000U)
307 return -EINVAL;
308 break;
309 case IB_QPT_SMI:
310 ah = ibah_to_rvtah(wqe->ud_wr.ah);
311 if (wqe->length > (1 << ah->log_pmtu))
312 return -EINVAL;
313 break;
314 case IB_QPT_GSI:
315 case IB_QPT_UD:
316 ah = ibah_to_rvtah(wqe->ud_wr.ah);
317 if (wqe->length > (1 << ah->log_pmtu))
318 return -EINVAL;
319 if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
320 return -EINVAL;
321 default:
322 break;
323 }
324 return wqe->length <= piothreshold;
325 }
326
327 /**
328 * _hfi1_schedule_send - schedule progress
329 * @qp: the QP
330 *
331 * This schedules qp progress w/o regard to the s_flags.
332 *
333 * It is only used in the post send, which doesn't hold
334 * the s_lock.
335 */
_hfi1_schedule_send(struct rvt_qp * qp)336 void _hfi1_schedule_send(struct rvt_qp *qp)
337 {
338 struct hfi1_qp_priv *priv = qp->priv;
339 struct hfi1_ibport *ibp =
340 to_iport(qp->ibqp.device, qp->port_num);
341 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
342 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
343
344 iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
345 priv->s_sde ?
346 priv->s_sde->cpu :
347 cpumask_first(cpumask_of_node(dd->node)));
348 }
349
qp_pio_drain(struct rvt_qp * qp)350 static void qp_pio_drain(struct rvt_qp *qp)
351 {
352 struct hfi1_ibdev *dev;
353 struct hfi1_qp_priv *priv = qp->priv;
354
355 if (!priv->s_sendcontext)
356 return;
357 dev = to_idev(qp->ibqp.device);
358 while (iowait_pio_pending(&priv->s_iowait)) {
359 write_seqlock_irq(&dev->iowait_lock);
360 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
361 write_sequnlock_irq(&dev->iowait_lock);
362 iowait_pio_drain(&priv->s_iowait);
363 write_seqlock_irq(&dev->iowait_lock);
364 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
365 write_sequnlock_irq(&dev->iowait_lock);
366 }
367 }
368
369 /**
370 * hfi1_schedule_send - schedule progress
371 * @qp: the QP
372 *
373 * This schedules qp progress and caller should hold
374 * the s_lock.
375 */
hfi1_schedule_send(struct rvt_qp * qp)376 void hfi1_schedule_send(struct rvt_qp *qp)
377 {
378 lockdep_assert_held(&qp->s_lock);
379 if (hfi1_send_ok(qp))
380 _hfi1_schedule_send(qp);
381 }
382
hfi1_qp_wakeup(struct rvt_qp * qp,u32 flag)383 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
384 {
385 unsigned long flags;
386
387 spin_lock_irqsave(&qp->s_lock, flags);
388 if (qp->s_flags & flag) {
389 qp->s_flags &= ~flag;
390 trace_hfi1_qpwakeup(qp, flag);
391 hfi1_schedule_send(qp);
392 }
393 spin_unlock_irqrestore(&qp->s_lock, flags);
394 /* Notify hfi1_destroy_qp() if it is waiting. */
395 rvt_put_qp(qp);
396 }
397
iowait_sleep(struct sdma_engine * sde,struct iowait * wait,struct sdma_txreq * stx,uint seq,bool pkts_sent)398 static int iowait_sleep(
399 struct sdma_engine *sde,
400 struct iowait *wait,
401 struct sdma_txreq *stx,
402 uint seq,
403 bool pkts_sent)
404 {
405 struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
406 struct rvt_qp *qp;
407 struct hfi1_qp_priv *priv;
408 unsigned long flags;
409 int ret = 0;
410 struct hfi1_ibdev *dev;
411
412 qp = tx->qp;
413 priv = qp->priv;
414
415 spin_lock_irqsave(&qp->s_lock, flags);
416 if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
417 /*
418 * If we couldn't queue the DMA request, save the info
419 * and try again later rather than destroying the
420 * buffer and undoing the side effects of the copy.
421 */
422 /* Make a common routine? */
423 dev = &sde->dd->verbs_dev;
424 list_add_tail(&stx->list, &wait->tx_head);
425 write_seqlock(&dev->iowait_lock);
426 if (sdma_progress(sde, seq, stx))
427 goto eagain;
428 if (list_empty(&priv->s_iowait.list)) {
429 struct hfi1_ibport *ibp =
430 to_iport(qp->ibqp.device, qp->port_num);
431
432 ibp->rvp.n_dmawait++;
433 qp->s_flags |= RVT_S_WAIT_DMA_DESC;
434 iowait_queue(pkts_sent, &priv->s_iowait,
435 &sde->dmawait);
436 priv->s_iowait.lock = &dev->iowait_lock;
437 trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
438 rvt_get_qp(qp);
439 }
440 write_sequnlock(&dev->iowait_lock);
441 qp->s_flags &= ~RVT_S_BUSY;
442 spin_unlock_irqrestore(&qp->s_lock, flags);
443 ret = -EBUSY;
444 } else {
445 spin_unlock_irqrestore(&qp->s_lock, flags);
446 hfi1_put_txreq(tx);
447 }
448 return ret;
449 eagain:
450 write_sequnlock(&dev->iowait_lock);
451 spin_unlock_irqrestore(&qp->s_lock, flags);
452 list_del_init(&stx->list);
453 return -EAGAIN;
454 }
455
iowait_wakeup(struct iowait * wait,int reason)456 static void iowait_wakeup(struct iowait *wait, int reason)
457 {
458 struct rvt_qp *qp = iowait_to_qp(wait);
459
460 WARN_ON(reason != SDMA_AVAIL_REASON);
461 hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
462 }
463
iowait_sdma_drained(struct iowait * wait)464 static void iowait_sdma_drained(struct iowait *wait)
465 {
466 struct rvt_qp *qp = iowait_to_qp(wait);
467 unsigned long flags;
468
469 /*
470 * This happens when the send engine notes
471 * a QP in the error state and cannot
472 * do the flush work until that QP's
473 * sdma work has finished.
474 */
475 spin_lock_irqsave(&qp->s_lock, flags);
476 if (qp->s_flags & RVT_S_WAIT_DMA) {
477 qp->s_flags &= ~RVT_S_WAIT_DMA;
478 hfi1_schedule_send(qp);
479 }
480 spin_unlock_irqrestore(&qp->s_lock, flags);
481 }
482
483 /**
484 * qp_to_sdma_engine - map a qp to a send engine
485 * @qp: the QP
486 * @sc5: the 5 bit sc
487 *
488 * Return:
489 * A send engine for the qp or NULL for SMI type qp.
490 */
qp_to_sdma_engine(struct rvt_qp * qp,u8 sc5)491 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
492 {
493 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
494 struct sdma_engine *sde;
495
496 if (!(dd->flags & HFI1_HAS_SEND_DMA))
497 return NULL;
498 switch (qp->ibqp.qp_type) {
499 case IB_QPT_SMI:
500 return NULL;
501 default:
502 break;
503 }
504 sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
505 return sde;
506 }
507
508 /*
509 * qp_to_send_context - map a qp to a send context
510 * @qp: the QP
511 * @sc5: the 5 bit sc
512 *
513 * Return:
514 * A send context for the qp
515 */
qp_to_send_context(struct rvt_qp * qp,u8 sc5)516 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
517 {
518 struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
519
520 switch (qp->ibqp.qp_type) {
521 case IB_QPT_SMI:
522 /* SMA packets to VL15 */
523 return dd->vld[15].sc;
524 default:
525 break;
526 }
527
528 return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
529 sc5);
530 }
531
532 static const char * const qp_type_str[] = {
533 "SMI", "GSI", "RC", "UC", "UD",
534 };
535
qp_idle(struct rvt_qp * qp)536 static int qp_idle(struct rvt_qp *qp)
537 {
538 return
539 qp->s_last == qp->s_acked &&
540 qp->s_acked == qp->s_cur &&
541 qp->s_cur == qp->s_tail &&
542 qp->s_tail == qp->s_head;
543 }
544
545 /**
546 * qp_iter_print - print the qp information to seq_file
547 * @s: the seq_file to emit the qp information on
548 * @iter: the iterator for the qp hash list
549 */
qp_iter_print(struct seq_file * s,struct rvt_qp_iter * iter)550 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
551 {
552 struct rvt_swqe *wqe;
553 struct rvt_qp *qp = iter->qp;
554 struct hfi1_qp_priv *priv = qp->priv;
555 struct sdma_engine *sde;
556 struct send_context *send_context;
557 struct rvt_ack_entry *e = NULL;
558 struct rvt_srq *srq = qp->ibqp.srq ?
559 ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
560
561 sde = qp_to_sdma_engine(qp, priv->s_sc);
562 wqe = rvt_get_swqe_ptr(qp, qp->s_last);
563 send_context = qp_to_send_context(qp, priv->s_sc);
564 if (qp->s_ack_queue)
565 e = &qp->s_ack_queue[qp->s_tail_ack_queue];
566 seq_printf(s,
567 "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
568 iter->n,
569 qp_idle(qp) ? "I" : "B",
570 qp->ibqp.qp_num,
571 atomic_read(&qp->refcount),
572 qp_type_str[qp->ibqp.qp_type],
573 qp->state,
574 wqe ? wqe->wr.opcode : 0,
575 qp->s_flags,
576 iowait_sdma_pending(&priv->s_iowait),
577 iowait_pio_pending(&priv->s_iowait),
578 !list_empty(&priv->s_iowait.list),
579 qp->timeout,
580 wqe ? wqe->ssn : 0,
581 qp->s_lsn,
582 qp->s_last_psn,
583 qp->s_psn, qp->s_next_psn,
584 qp->s_sending_psn, qp->s_sending_hpsn,
585 qp->r_psn,
586 qp->s_last, qp->s_acked, qp->s_cur,
587 qp->s_tail, qp->s_head, qp->s_size,
588 qp->s_avail,
589 /* ack_queue ring pointers, size */
590 qp->s_tail_ack_queue, qp->r_head_ack_queue,
591 rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
592 /* remote QP info */
593 qp->remote_qpn,
594 rdma_ah_get_dlid(&qp->remote_ah_attr),
595 rdma_ah_get_sl(&qp->remote_ah_attr),
596 qp->pmtu,
597 qp->s_retry,
598 qp->s_retry_cnt,
599 qp->s_rnr_retry_cnt,
600 qp->s_rnr_retry,
601 sde,
602 sde ? sde->this_idx : 0,
603 send_context,
604 send_context ? send_context->sw_index : 0,
605 ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->head,
606 ibcq_to_rvtcq(qp->ibqp.send_cq)->queue->tail,
607 qp->pid,
608 qp->s_state,
609 qp->s_ack_state,
610 /* ack queue information */
611 e ? e->opcode : 0,
612 e ? e->psn : 0,
613 e ? e->lpsn : 0,
614 qp->r_min_rnr_timer,
615 srq ? "SRQ" : "RQ",
616 srq ? srq->rq.size : qp->r_rq.size
617 );
618 }
619
qp_priv_alloc(struct rvt_dev_info * rdi,struct rvt_qp * qp)620 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
621 {
622 struct hfi1_qp_priv *priv;
623
624 priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
625 if (!priv)
626 return ERR_PTR(-ENOMEM);
627
628 priv->owner = qp;
629
630 priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
631 rdi->dparms.node);
632 if (!priv->s_ahg) {
633 kfree(priv);
634 return ERR_PTR(-ENOMEM);
635 }
636 iowait_init(
637 &priv->s_iowait,
638 1,
639 _hfi1_do_send,
640 iowait_sleep,
641 iowait_wakeup,
642 iowait_sdma_drained);
643 return priv;
644 }
645
qp_priv_free(struct rvt_dev_info * rdi,struct rvt_qp * qp)646 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
647 {
648 struct hfi1_qp_priv *priv = qp->priv;
649
650 kfree(priv->s_ahg);
651 kfree(priv);
652 }
653
free_all_qps(struct rvt_dev_info * rdi)654 unsigned free_all_qps(struct rvt_dev_info *rdi)
655 {
656 struct hfi1_ibdev *verbs_dev = container_of(rdi,
657 struct hfi1_ibdev,
658 rdi);
659 struct hfi1_devdata *dd = container_of(verbs_dev,
660 struct hfi1_devdata,
661 verbs_dev);
662 int n;
663 unsigned qp_inuse = 0;
664
665 for (n = 0; n < dd->num_pports; n++) {
666 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
667
668 rcu_read_lock();
669 if (rcu_dereference(ibp->rvp.qp[0]))
670 qp_inuse++;
671 if (rcu_dereference(ibp->rvp.qp[1]))
672 qp_inuse++;
673 rcu_read_unlock();
674 }
675
676 return qp_inuse;
677 }
678
flush_qp_waiters(struct rvt_qp * qp)679 void flush_qp_waiters(struct rvt_qp *qp)
680 {
681 lockdep_assert_held(&qp->s_lock);
682 flush_iowait(qp);
683 }
684
stop_send_queue(struct rvt_qp * qp)685 void stop_send_queue(struct rvt_qp *qp)
686 {
687 struct hfi1_qp_priv *priv = qp->priv;
688
689 cancel_work_sync(&priv->s_iowait.iowork);
690 }
691
quiesce_qp(struct rvt_qp * qp)692 void quiesce_qp(struct rvt_qp *qp)
693 {
694 struct hfi1_qp_priv *priv = qp->priv;
695
696 iowait_sdma_drain(&priv->s_iowait);
697 qp_pio_drain(qp);
698 flush_tx_list(qp);
699 }
700
notify_qp_reset(struct rvt_qp * qp)701 void notify_qp_reset(struct rvt_qp *qp)
702 {
703 qp->r_adefered = 0;
704 clear_ahg(qp);
705 }
706
707 /*
708 * Switch to alternate path.
709 * The QP s_lock should be held and interrupts disabled.
710 */
hfi1_migrate_qp(struct rvt_qp * qp)711 void hfi1_migrate_qp(struct rvt_qp *qp)
712 {
713 struct hfi1_qp_priv *priv = qp->priv;
714 struct ib_event ev;
715
716 qp->s_mig_state = IB_MIG_MIGRATED;
717 qp->remote_ah_attr = qp->alt_ah_attr;
718 qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
719 qp->s_pkey_index = qp->s_alt_pkey_index;
720 qp->s_flags |= HFI1_S_AHG_CLEAR;
721 priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
722 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
723 qp_set_16b(qp);
724
725 ev.device = qp->ibqp.device;
726 ev.element.qp = &qp->ibqp;
727 ev.event = IB_EVENT_PATH_MIG;
728 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
729 }
730
mtu_to_path_mtu(u32 mtu)731 int mtu_to_path_mtu(u32 mtu)
732 {
733 return mtu_to_enum(mtu, OPA_MTU_8192);
734 }
735
mtu_from_qp(struct rvt_dev_info * rdi,struct rvt_qp * qp,u32 pmtu)736 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
737 {
738 u32 mtu;
739 struct hfi1_ibdev *verbs_dev = container_of(rdi,
740 struct hfi1_ibdev,
741 rdi);
742 struct hfi1_devdata *dd = container_of(verbs_dev,
743 struct hfi1_devdata,
744 verbs_dev);
745 struct hfi1_ibport *ibp;
746 u8 sc, vl;
747
748 ibp = &dd->pport[qp->port_num - 1].ibport_data;
749 sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
750 vl = sc_to_vlt(dd, sc);
751
752 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
753 if (vl < PER_VL_SEND_CONTEXTS)
754 mtu = min_t(u32, mtu, dd->vld[vl].mtu);
755 return mtu;
756 }
757
get_pmtu_from_attr(struct rvt_dev_info * rdi,struct rvt_qp * qp,struct ib_qp_attr * attr)758 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
759 struct ib_qp_attr *attr)
760 {
761 int mtu, pidx = qp->port_num - 1;
762 struct hfi1_ibdev *verbs_dev = container_of(rdi,
763 struct hfi1_ibdev,
764 rdi);
765 struct hfi1_devdata *dd = container_of(verbs_dev,
766 struct hfi1_devdata,
767 verbs_dev);
768 mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
769 if (mtu == -1)
770 return -1; /* values less than 0 are error */
771
772 if (mtu > dd->pport[pidx].ibmtu)
773 return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
774 else
775 return attr->path_mtu;
776 }
777
notify_error_qp(struct rvt_qp * qp)778 void notify_error_qp(struct rvt_qp *qp)
779 {
780 struct hfi1_qp_priv *priv = qp->priv;
781 seqlock_t *lock = priv->s_iowait.lock;
782
783 if (lock) {
784 write_seqlock(lock);
785 if (!list_empty(&priv->s_iowait.list) &&
786 !(qp->s_flags & RVT_S_BUSY)) {
787 qp->s_flags &= ~RVT_S_ANY_WAIT_IO;
788 list_del_init(&priv->s_iowait.list);
789 priv->s_iowait.lock = NULL;
790 rvt_put_qp(qp);
791 }
792 write_sequnlock(lock);
793 }
794
795 if (!(qp->s_flags & RVT_S_BUSY)) {
796 if (qp->s_rdma_mr) {
797 rvt_put_mr(qp->s_rdma_mr);
798 qp->s_rdma_mr = NULL;
799 }
800 flush_tx_list(qp);
801 }
802 }
803
804 /**
805 * hfi1_qp_iter_cb - callback for iterator
806 * @qp - the qp
807 * @v - the sl in low bits of v
808 *
809 * This is called from the iterator callback to work
810 * on an individual qp.
811 */
hfi1_qp_iter_cb(struct rvt_qp * qp,u64 v)812 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
813 {
814 int lastwqe;
815 struct ib_event ev;
816 struct hfi1_ibport *ibp =
817 to_iport(qp->ibqp.device, qp->port_num);
818 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
819 u8 sl = (u8)v;
820
821 if (qp->port_num != ppd->port ||
822 (qp->ibqp.qp_type != IB_QPT_UC &&
823 qp->ibqp.qp_type != IB_QPT_RC) ||
824 rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
825 !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
826 return;
827
828 spin_lock_irq(&qp->r_lock);
829 spin_lock(&qp->s_hlock);
830 spin_lock(&qp->s_lock);
831 lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
832 spin_unlock(&qp->s_lock);
833 spin_unlock(&qp->s_hlock);
834 spin_unlock_irq(&qp->r_lock);
835 if (lastwqe) {
836 ev.device = qp->ibqp.device;
837 ev.element.qp = &qp->ibqp;
838 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
839 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
840 }
841 }
842
843 /**
844 * hfi1_error_port_qps - put a port's RC/UC qps into error state
845 * @ibp: the ibport.
846 * @sl: the service level.
847 *
848 * This function places all RC/UC qps with a given service level into error
849 * state. It is generally called to force upper lay apps to abandon stale qps
850 * after an sl->sc mapping change.
851 */
hfi1_error_port_qps(struct hfi1_ibport * ibp,u8 sl)852 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
853 {
854 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
855 struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
856
857 rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
858 }
859