1 /*
2 * Copyright(c) 2015-2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/spinlock.h>
49 #include <linux/pci.h>
50 #include <linux/io.h>
51 #include <linux/delay.h>
52 #include <linux/netdevice.h>
53 #include <linux/vmalloc.h>
54 #include <linux/module.h>
55 #include <linux/prefetch.h>
56 #include <rdma/ib_verbs.h>
57
58 #include "hfi.h"
59 #include "trace.h"
60 #include "qp.h"
61 #include "sdma.h"
62 #include "debugfs.h"
63 #include "vnic.h"
64 #include "fault.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 /*
70 * The size has to be longer than this string, so we can append
71 * board/chip information to it in the initialization code.
72 */
73 const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n";
74
75 DEFINE_SPINLOCK(hfi1_devs_lock);
76 LIST_HEAD(hfi1_dev_list);
77 DEFINE_MUTEX(hfi1_mutex); /* general driver use */
78
79 unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
80 module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO);
81 MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify(
82 HFI1_DEFAULT_MAX_MTU));
83
84 unsigned int hfi1_cu = 1;
85 module_param_named(cu, hfi1_cu, uint, S_IRUGO);
86 MODULE_PARM_DESC(cu, "Credit return units");
87
88 unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT;
89 static int hfi1_caps_set(const char *val, const struct kernel_param *kp);
90 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp);
91 static const struct kernel_param_ops cap_ops = {
92 .set = hfi1_caps_set,
93 .get = hfi1_caps_get
94 };
95 module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO);
96 MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features");
97
98 MODULE_LICENSE("Dual BSD/GPL");
99 MODULE_DESCRIPTION("Intel Omni-Path Architecture driver");
100
101 /*
102 * MAX_PKT_RCV is the max # if packets processed per receive interrupt.
103 */
104 #define MAX_PKT_RECV 64
105 /*
106 * MAX_PKT_THREAD_RCV is the max # of packets processed before
107 * the qp_wait_list queue is flushed.
108 */
109 #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4)
110 #define EGR_HEAD_UPDATE_THRESHOLD 16
111
112 struct hfi1_ib_stats hfi1_stats;
113
hfi1_caps_set(const char * val,const struct kernel_param * kp)114 static int hfi1_caps_set(const char *val, const struct kernel_param *kp)
115 {
116 int ret = 0;
117 unsigned long *cap_mask_ptr = (unsigned long *)kp->arg,
118 cap_mask = *cap_mask_ptr, value, diff,
119 write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) |
120 HFI1_CAP_WRITABLE_MASK);
121
122 ret = kstrtoul(val, 0, &value);
123 if (ret) {
124 pr_warn("Invalid module parameter value for 'cap_mask'\n");
125 goto done;
126 }
127 /* Get the changed bits (except the locked bit) */
128 diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK);
129
130 /* Remove any bits that are not allowed to change after driver load */
131 if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) {
132 pr_warn("Ignoring non-writable capability bits %#lx\n",
133 diff & ~write_mask);
134 diff &= write_mask;
135 }
136
137 /* Mask off any reserved bits */
138 diff &= ~HFI1_CAP_RESERVED_MASK;
139 /* Clear any previously set and changing bits */
140 cap_mask &= ~diff;
141 /* Update the bits with the new capability */
142 cap_mask |= (value & diff);
143 /* Check for any kernel/user restrictions */
144 diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^
145 ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT);
146 cap_mask &= ~diff;
147 /* Set the bitmask to the final set */
148 *cap_mask_ptr = cap_mask;
149 done:
150 return ret;
151 }
152
hfi1_caps_get(char * buffer,const struct kernel_param * kp)153 static int hfi1_caps_get(char *buffer, const struct kernel_param *kp)
154 {
155 unsigned long cap_mask = *(unsigned long *)kp->arg;
156
157 cap_mask &= ~HFI1_CAP_LOCKED_SMASK;
158 cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT);
159
160 return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask);
161 }
162
get_pci_dev(struct rvt_dev_info * rdi)163 struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi)
164 {
165 struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi);
166 struct hfi1_devdata *dd = container_of(ibdev,
167 struct hfi1_devdata, verbs_dev);
168 return dd->pcidev;
169 }
170
171 /*
172 * Return count of units with at least one port ACTIVE.
173 */
hfi1_count_active_units(void)174 int hfi1_count_active_units(void)
175 {
176 struct hfi1_devdata *dd;
177 struct hfi1_pportdata *ppd;
178 unsigned long flags;
179 int pidx, nunits_active = 0;
180
181 spin_lock_irqsave(&hfi1_devs_lock, flags);
182 list_for_each_entry(dd, &hfi1_dev_list, list) {
183 if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1)
184 continue;
185 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
186 ppd = dd->pport + pidx;
187 if (ppd->lid && ppd->linkup) {
188 nunits_active++;
189 break;
190 }
191 }
192 }
193 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
194 return nunits_active;
195 }
196
197 /*
198 * Get address of eager buffer from it's index (allocated in chunks, not
199 * contiguous).
200 */
get_egrbuf(const struct hfi1_ctxtdata * rcd,u64 rhf,u8 * update)201 static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf,
202 u8 *update)
203 {
204 u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf);
205
206 *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset;
207 return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) +
208 (offset * RCV_BUF_BLOCK_SIZE));
209 }
210
hfi1_get_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)211 static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd,
212 __le32 *rhf_addr)
213 {
214 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
215
216 return (void *)(rhf_addr - rcd->rhf_offset + offset);
217 }
218
hfi1_get_msgheader(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)219 static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd,
220 __le32 *rhf_addr)
221 {
222 return (struct ib_header *)hfi1_get_header(rcd, rhf_addr);
223 }
224
225 static inline struct hfi1_16b_header
hfi1_get_16B_header(struct hfi1_ctxtdata * rcd,__le32 * rhf_addr)226 *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd,
227 __le32 *rhf_addr)
228 {
229 return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr);
230 }
231
232 /*
233 * Validate and encode the a given RcvArray Buffer size.
234 * The function will check whether the given size falls within
235 * allowed size ranges for the respective type and, optionally,
236 * return the proper encoding.
237 */
hfi1_rcvbuf_validate(u32 size,u8 type,u16 * encoded)238 int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded)
239 {
240 if (unlikely(!PAGE_ALIGNED(size)))
241 return 0;
242 if (unlikely(size < MIN_EAGER_BUFFER))
243 return 0;
244 if (size >
245 (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER))
246 return 0;
247 if (encoded)
248 *encoded = ilog2(size / PAGE_SIZE) + 1;
249 return 1;
250 }
251
rcv_hdrerr(struct hfi1_ctxtdata * rcd,struct hfi1_pportdata * ppd,struct hfi1_packet * packet)252 static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd,
253 struct hfi1_packet *packet)
254 {
255 struct ib_header *rhdr = packet->hdr;
256 u32 rte = rhf_rcv_type_err(packet->rhf);
257 u32 mlid_base;
258 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
259 struct hfi1_devdata *dd = ppd->dd;
260 struct hfi1_ibdev *verbs_dev = &dd->verbs_dev;
261 struct rvt_dev_info *rdi = &verbs_dev->rdi;
262
263 if ((packet->rhf & RHF_DC_ERR) &&
264 hfi1_dbg_fault_suppress_err(verbs_dev))
265 return;
266
267 if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
268 return;
269
270 if (packet->etype == RHF_RCV_TYPE_BYPASS) {
271 goto drop;
272 } else {
273 u8 lnh = ib_get_lnh(rhdr);
274
275 mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE);
276 if (lnh == HFI1_LRH_BTH) {
277 packet->ohdr = &rhdr->u.oth;
278 } else if (lnh == HFI1_LRH_GRH) {
279 packet->ohdr = &rhdr->u.l.oth;
280 packet->grh = &rhdr->u.l.grh;
281 } else {
282 goto drop;
283 }
284 }
285
286 if (packet->rhf & RHF_TID_ERR) {
287 /* For TIDERR and RC QPs preemptively schedule a NAK */
288 u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
289 u32 dlid = ib_get_dlid(rhdr);
290 u32 qp_num;
291
292 /* Sanity check packet */
293 if (tlen < 24)
294 goto drop;
295
296 /* Check for GRH */
297 if (packet->grh) {
298 u32 vtf;
299 struct ib_grh *grh = packet->grh;
300
301 if (grh->next_hdr != IB_GRH_NEXT_HDR)
302 goto drop;
303 vtf = be32_to_cpu(grh->version_tclass_flow);
304 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
305 goto drop;
306 }
307
308 /* Get the destination QP number. */
309 qp_num = ib_bth_get_qpn(packet->ohdr);
310 if (dlid < mlid_base) {
311 struct rvt_qp *qp;
312 unsigned long flags;
313
314 rcu_read_lock();
315 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
316 if (!qp) {
317 rcu_read_unlock();
318 goto drop;
319 }
320
321 /*
322 * Handle only RC QPs - for other QP types drop error
323 * packet.
324 */
325 spin_lock_irqsave(&qp->r_lock, flags);
326
327 /* Check for valid receive state. */
328 if (!(ib_rvt_state_ops[qp->state] &
329 RVT_PROCESS_RECV_OK)) {
330 ibp->rvp.n_pkt_drops++;
331 }
332
333 switch (qp->ibqp.qp_type) {
334 case IB_QPT_RC:
335 hfi1_rc_hdrerr(rcd, packet, qp);
336 break;
337 default:
338 /* For now don't handle any other QP types */
339 break;
340 }
341
342 spin_unlock_irqrestore(&qp->r_lock, flags);
343 rcu_read_unlock();
344 } /* Unicast QP */
345 } /* Valid packet with TIDErr */
346
347 /* handle "RcvTypeErr" flags */
348 switch (rte) {
349 case RHF_RTE_ERROR_OP_CODE_ERR:
350 {
351 void *ebuf = NULL;
352 u8 opcode;
353
354 if (rhf_use_egr_bfr(packet->rhf))
355 ebuf = packet->ebuf;
356
357 if (!ebuf)
358 goto drop; /* this should never happen */
359
360 opcode = ib_bth_get_opcode(packet->ohdr);
361 if (opcode == IB_OPCODE_CNP) {
362 /*
363 * Only in pre-B0 h/w is the CNP_OPCODE handled
364 * via this code path.
365 */
366 struct rvt_qp *qp = NULL;
367 u32 lqpn, rqpn;
368 u16 rlid;
369 u8 svc_type, sl, sc5;
370
371 sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf);
372 sl = ibp->sc_to_sl[sc5];
373
374 lqpn = ib_bth_get_qpn(packet->ohdr);
375 rcu_read_lock();
376 qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn);
377 if (!qp) {
378 rcu_read_unlock();
379 goto drop;
380 }
381
382 switch (qp->ibqp.qp_type) {
383 case IB_QPT_UD:
384 rlid = 0;
385 rqpn = 0;
386 svc_type = IB_CC_SVCTYPE_UD;
387 break;
388 case IB_QPT_UC:
389 rlid = ib_get_slid(rhdr);
390 rqpn = qp->remote_qpn;
391 svc_type = IB_CC_SVCTYPE_UC;
392 break;
393 default:
394 rcu_read_unlock();
395 goto drop;
396 }
397
398 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
399 rcu_read_unlock();
400 }
401
402 packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK;
403 break;
404 }
405 default:
406 break;
407 }
408
409 drop:
410 return;
411 }
412
init_packet(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet)413 static inline void init_packet(struct hfi1_ctxtdata *rcd,
414 struct hfi1_packet *packet)
415 {
416 packet->rsize = rcd->rcvhdrqentsize; /* words */
417 packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */
418 packet->rcd = rcd;
419 packet->updegr = 0;
420 packet->etail = -1;
421 packet->rhf_addr = get_rhf_addr(rcd);
422 packet->rhf = rhf_to_cpu(packet->rhf_addr);
423 packet->rhqoff = rcd->head;
424 packet->numpkt = 0;
425 }
426
427 /* We support only two types - 9B and 16B for now */
428 static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = {
429 [HFI1_PKT_TYPE_9B] = &return_cnp,
430 [HFI1_PKT_TYPE_16B] = &return_cnp_16B
431 };
432
hfi1_process_ecn_slowpath(struct rvt_qp * qp,struct hfi1_packet * pkt,bool do_cnp)433 void hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
434 bool do_cnp)
435 {
436 struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
437 struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
438 struct ib_other_headers *ohdr = pkt->ohdr;
439 struct ib_grh *grh = pkt->grh;
440 u32 rqpn = 0, bth1;
441 u16 pkey;
442 u32 rlid, slid, dlid = 0;
443 u8 hdr_type, sc, svc_type;
444 bool is_mcast = false;
445
446 /* can be called from prescan */
447 if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
448 is_mcast = hfi1_is_16B_mcast(dlid);
449 pkey = hfi1_16B_get_pkey(pkt->hdr);
450 sc = hfi1_16B_get_sc(pkt->hdr);
451 dlid = hfi1_16B_get_dlid(pkt->hdr);
452 slid = hfi1_16B_get_slid(pkt->hdr);
453 hdr_type = HFI1_PKT_TYPE_16B;
454 } else {
455 is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
456 (dlid != be16_to_cpu(IB_LID_PERMISSIVE));
457 pkey = ib_bth_get_pkey(ohdr);
458 sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf);
459 dlid = ib_get_dlid(pkt->hdr);
460 slid = ib_get_slid(pkt->hdr);
461 hdr_type = HFI1_PKT_TYPE_9B;
462 }
463
464 switch (qp->ibqp.qp_type) {
465 case IB_QPT_UD:
466 dlid = ppd->lid;
467 rlid = slid;
468 rqpn = ib_get_sqpn(pkt->ohdr);
469 svc_type = IB_CC_SVCTYPE_UD;
470 break;
471 case IB_QPT_SMI:
472 case IB_QPT_GSI:
473 rlid = slid;
474 rqpn = ib_get_sqpn(pkt->ohdr);
475 svc_type = IB_CC_SVCTYPE_UD;
476 break;
477 case IB_QPT_UC:
478 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
479 rqpn = qp->remote_qpn;
480 svc_type = IB_CC_SVCTYPE_UC;
481 break;
482 case IB_QPT_RC:
483 rlid = rdma_ah_get_dlid(&qp->remote_ah_attr);
484 rqpn = qp->remote_qpn;
485 svc_type = IB_CC_SVCTYPE_RC;
486 break;
487 default:
488 return;
489 }
490
491 bth1 = be32_to_cpu(ohdr->bth[1]);
492 /* Call appropriate CNP handler */
493 if (do_cnp && (bth1 & IB_FECN_SMASK))
494 hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey,
495 dlid, rlid, sc, grh);
496
497 if (!is_mcast && (bth1 & IB_BECN_SMASK)) {
498 u32 lqpn = bth1 & RVT_QPN_MASK;
499 u8 sl = ibp->sc_to_sl[sc];
500
501 process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type);
502 }
503
504 }
505
506 struct ps_mdata {
507 struct hfi1_ctxtdata *rcd;
508 u32 rsize;
509 u32 maxcnt;
510 u32 ps_head;
511 u32 ps_tail;
512 u32 ps_seq;
513 };
514
init_ps_mdata(struct ps_mdata * mdata,struct hfi1_packet * packet)515 static inline void init_ps_mdata(struct ps_mdata *mdata,
516 struct hfi1_packet *packet)
517 {
518 struct hfi1_ctxtdata *rcd = packet->rcd;
519
520 mdata->rcd = rcd;
521 mdata->rsize = packet->rsize;
522 mdata->maxcnt = packet->maxcnt;
523 mdata->ps_head = packet->rhqoff;
524
525 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
526 mdata->ps_tail = get_rcvhdrtail(rcd);
527 if (rcd->ctxt == HFI1_CTRL_CTXT)
528 mdata->ps_seq = rcd->seq_cnt;
529 else
530 mdata->ps_seq = 0; /* not used with DMA_RTAIL */
531 } else {
532 mdata->ps_tail = 0; /* used only with DMA_RTAIL*/
533 mdata->ps_seq = rcd->seq_cnt;
534 }
535 }
536
ps_done(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)537 static inline int ps_done(struct ps_mdata *mdata, u64 rhf,
538 struct hfi1_ctxtdata *rcd)
539 {
540 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
541 return mdata->ps_head == mdata->ps_tail;
542 return mdata->ps_seq != rhf_rcv_seq(rhf);
543 }
544
ps_skip(struct ps_mdata * mdata,u64 rhf,struct hfi1_ctxtdata * rcd)545 static inline int ps_skip(struct ps_mdata *mdata, u64 rhf,
546 struct hfi1_ctxtdata *rcd)
547 {
548 /*
549 * Control context can potentially receive an invalid rhf.
550 * Drop such packets.
551 */
552 if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail))
553 return mdata->ps_seq != rhf_rcv_seq(rhf);
554
555 return 0;
556 }
557
update_ps_mdata(struct ps_mdata * mdata,struct hfi1_ctxtdata * rcd)558 static inline void update_ps_mdata(struct ps_mdata *mdata,
559 struct hfi1_ctxtdata *rcd)
560 {
561 mdata->ps_head += mdata->rsize;
562 if (mdata->ps_head >= mdata->maxcnt)
563 mdata->ps_head = 0;
564
565 /* Control context must do seq counting */
566 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
567 (rcd->ctxt == HFI1_CTRL_CTXT)) {
568 if (++mdata->ps_seq > 13)
569 mdata->ps_seq = 1;
570 }
571 }
572
573 /*
574 * prescan_rxq - search through the receive queue looking for packets
575 * containing Excplicit Congestion Notifications (FECNs, or BECNs).
576 * When an ECN is found, process the Congestion Notification, and toggle
577 * it off.
578 * This is declared as a macro to allow quick checking of the port to avoid
579 * the overhead of a function call if not enabled.
580 */
581 #define prescan_rxq(rcd, packet) \
582 do { \
583 if (rcd->ppd->cc_prescan) \
584 __prescan_rxq(packet); \
585 } while (0)
__prescan_rxq(struct hfi1_packet * packet)586 static void __prescan_rxq(struct hfi1_packet *packet)
587 {
588 struct hfi1_ctxtdata *rcd = packet->rcd;
589 struct ps_mdata mdata;
590
591 init_ps_mdata(&mdata, packet);
592
593 while (1) {
594 struct hfi1_ibport *ibp = rcd_to_iport(rcd);
595 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
596 packet->rcd->rhf_offset;
597 struct rvt_qp *qp;
598 struct ib_header *hdr;
599 struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi;
600 u64 rhf = rhf_to_cpu(rhf_addr);
601 u32 etype = rhf_rcv_type(rhf), qpn, bth1;
602 int is_ecn = 0;
603 u8 lnh;
604
605 if (ps_done(&mdata, rhf, rcd))
606 break;
607
608 if (ps_skip(&mdata, rhf, rcd))
609 goto next;
610
611 if (etype != RHF_RCV_TYPE_IB)
612 goto next;
613
614 packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr);
615 hdr = packet->hdr;
616 lnh = ib_get_lnh(hdr);
617
618 if (lnh == HFI1_LRH_BTH) {
619 packet->ohdr = &hdr->u.oth;
620 packet->grh = NULL;
621 } else if (lnh == HFI1_LRH_GRH) {
622 packet->ohdr = &hdr->u.l.oth;
623 packet->grh = &hdr->u.l.grh;
624 } else {
625 goto next; /* just in case */
626 }
627
628 bth1 = be32_to_cpu(packet->ohdr->bth[1]);
629 is_ecn = !!(bth1 & (IB_FECN_SMASK | IB_BECN_SMASK));
630
631 if (!is_ecn)
632 goto next;
633
634 qpn = bth1 & RVT_QPN_MASK;
635 rcu_read_lock();
636 qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn);
637
638 if (!qp) {
639 rcu_read_unlock();
640 goto next;
641 }
642
643 process_ecn(qp, packet, true);
644 rcu_read_unlock();
645
646 /* turn off BECN, FECN */
647 bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK);
648 packet->ohdr->bth[1] = cpu_to_be32(bth1);
649 next:
650 update_ps_mdata(&mdata, rcd);
651 }
652 }
653
process_rcv_qp_work(struct hfi1_packet * packet)654 static void process_rcv_qp_work(struct hfi1_packet *packet)
655 {
656 struct rvt_qp *qp, *nqp;
657 struct hfi1_ctxtdata *rcd = packet->rcd;
658
659 /*
660 * Iterate over all QPs waiting to respond.
661 * The list won't change since the IRQ is only run on one CPU.
662 */
663 list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) {
664 list_del_init(&qp->rspwait);
665 if (qp->r_flags & RVT_R_RSP_NAK) {
666 qp->r_flags &= ~RVT_R_RSP_NAK;
667 packet->qp = qp;
668 hfi1_send_rc_ack(packet, 0);
669 }
670 if (qp->r_flags & RVT_R_RSP_SEND) {
671 unsigned long flags;
672
673 qp->r_flags &= ~RVT_R_RSP_SEND;
674 spin_lock_irqsave(&qp->s_lock, flags);
675 if (ib_rvt_state_ops[qp->state] &
676 RVT_PROCESS_OR_FLUSH_SEND)
677 hfi1_schedule_send(qp);
678 spin_unlock_irqrestore(&qp->s_lock, flags);
679 }
680 rvt_put_qp(qp);
681 }
682 }
683
max_packet_exceeded(struct hfi1_packet * packet,int thread)684 static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread)
685 {
686 if (thread) {
687 if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0)
688 /* allow defered processing */
689 process_rcv_qp_work(packet);
690 cond_resched();
691 return RCV_PKT_OK;
692 } else {
693 this_cpu_inc(*packet->rcd->dd->rcv_limit);
694 return RCV_PKT_LIMIT;
695 }
696 }
697
check_max_packet(struct hfi1_packet * packet,int thread)698 static inline int check_max_packet(struct hfi1_packet *packet, int thread)
699 {
700 int ret = RCV_PKT_OK;
701
702 if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0))
703 ret = max_packet_exceeded(packet, thread);
704 return ret;
705 }
706
skip_rcv_packet(struct hfi1_packet * packet,int thread)707 static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread)
708 {
709 int ret;
710
711 /* Set up for the next packet */
712 packet->rhqoff += packet->rsize;
713 if (packet->rhqoff >= packet->maxcnt)
714 packet->rhqoff = 0;
715
716 packet->numpkt++;
717 ret = check_max_packet(packet, thread);
718
719 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
720 packet->rcd->rhf_offset;
721 packet->rhf = rhf_to_cpu(packet->rhf_addr);
722
723 return ret;
724 }
725
process_rcv_packet(struct hfi1_packet * packet,int thread)726 static inline int process_rcv_packet(struct hfi1_packet *packet, int thread)
727 {
728 int ret;
729
730 packet->etype = rhf_rcv_type(packet->rhf);
731
732 /* total length */
733 packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */
734 /* retrieve eager buffer details */
735 packet->ebuf = NULL;
736 if (rhf_use_egr_bfr(packet->rhf)) {
737 packet->etail = rhf_egr_index(packet->rhf);
738 packet->ebuf = get_egrbuf(packet->rcd, packet->rhf,
739 &packet->updegr);
740 /*
741 * Prefetch the contents of the eager buffer. It is
742 * OK to send a negative length to prefetch_range().
743 * The +2 is the size of the RHF.
744 */
745 prefetch_range(packet->ebuf,
746 packet->tlen - ((packet->rcd->rcvhdrqentsize -
747 (rhf_hdrq_offset(packet->rhf)
748 + 2)) * 4));
749 }
750
751 /*
752 * Call a type specific handler for the packet. We
753 * should be able to trust that etype won't be beyond
754 * the range of valid indexes. If so something is really
755 * wrong and we can probably just let things come
756 * crashing down. There is no need to eat another
757 * comparison in this performance critical code.
758 */
759 packet->rcd->rhf_rcv_function_map[packet->etype](packet);
760 packet->numpkt++;
761
762 /* Set up for the next packet */
763 packet->rhqoff += packet->rsize;
764 if (packet->rhqoff >= packet->maxcnt)
765 packet->rhqoff = 0;
766
767 ret = check_max_packet(packet, thread);
768
769 packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff +
770 packet->rcd->rhf_offset;
771 packet->rhf = rhf_to_cpu(packet->rhf_addr);
772
773 return ret;
774 }
775
process_rcv_update(int last,struct hfi1_packet * packet)776 static inline void process_rcv_update(int last, struct hfi1_packet *packet)
777 {
778 /*
779 * Update head regs etc., every 16 packets, if not last pkt,
780 * to help prevent rcvhdrq overflows, when many packets
781 * are processed and queue is nearly full.
782 * Don't request an interrupt for intermediate updates.
783 */
784 if (!last && !(packet->numpkt & 0xf)) {
785 update_usrhead(packet->rcd, packet->rhqoff, packet->updegr,
786 packet->etail, 0, 0);
787 packet->updegr = 0;
788 }
789 packet->grh = NULL;
790 }
791
finish_packet(struct hfi1_packet * packet)792 static inline void finish_packet(struct hfi1_packet *packet)
793 {
794 /*
795 * Nothing we need to free for the packet.
796 *
797 * The only thing we need to do is a final update and call for an
798 * interrupt
799 */
800 update_usrhead(packet->rcd, packet->rcd->head, packet->updegr,
801 packet->etail, rcv_intr_dynamic, packet->numpkt);
802 }
803
804 /*
805 * Handle receive interrupts when using the no dma rtail option.
806 */
handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata * rcd,int thread)807 int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread)
808 {
809 u32 seq;
810 int last = RCV_PKT_OK;
811 struct hfi1_packet packet;
812
813 init_packet(rcd, &packet);
814 seq = rhf_rcv_seq(packet.rhf);
815 if (seq != rcd->seq_cnt) {
816 last = RCV_PKT_DONE;
817 goto bail;
818 }
819
820 prescan_rxq(rcd, &packet);
821
822 while (last == RCV_PKT_OK) {
823 last = process_rcv_packet(&packet, thread);
824 seq = rhf_rcv_seq(packet.rhf);
825 if (++rcd->seq_cnt > 13)
826 rcd->seq_cnt = 1;
827 if (seq != rcd->seq_cnt)
828 last = RCV_PKT_DONE;
829 process_rcv_update(last, &packet);
830 }
831 process_rcv_qp_work(&packet);
832 rcd->head = packet.rhqoff;
833 bail:
834 finish_packet(&packet);
835 return last;
836 }
837
handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata * rcd,int thread)838 int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread)
839 {
840 u32 hdrqtail;
841 int last = RCV_PKT_OK;
842 struct hfi1_packet packet;
843
844 init_packet(rcd, &packet);
845 hdrqtail = get_rcvhdrtail(rcd);
846 if (packet.rhqoff == hdrqtail) {
847 last = RCV_PKT_DONE;
848 goto bail;
849 }
850 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
851
852 prescan_rxq(rcd, &packet);
853
854 while (last == RCV_PKT_OK) {
855 last = process_rcv_packet(&packet, thread);
856 if (packet.rhqoff == hdrqtail)
857 last = RCV_PKT_DONE;
858 process_rcv_update(last, &packet);
859 }
860 process_rcv_qp_work(&packet);
861 rcd->head = packet.rhqoff;
862 bail:
863 finish_packet(&packet);
864 return last;
865 }
866
set_nodma_rtail(struct hfi1_devdata * dd,u16 ctxt)867 static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt)
868 {
869 struct hfi1_ctxtdata *rcd;
870 u16 i;
871
872 /*
873 * For dynamically allocated kernel contexts (like vnic) switch
874 * interrupt handler only for that context. Otherwise, switch
875 * interrupt handler for all statically allocated kernel contexts.
876 */
877 if (ctxt >= dd->first_dyn_alloc_ctxt) {
878 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
879 if (rcd) {
880 rcd->do_interrupt =
881 &handle_receive_interrupt_nodma_rtail;
882 hfi1_rcd_put(rcd);
883 }
884 return;
885 }
886
887 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
888 rcd = hfi1_rcd_get_by_index(dd, i);
889 if (rcd)
890 rcd->do_interrupt =
891 &handle_receive_interrupt_nodma_rtail;
892 hfi1_rcd_put(rcd);
893 }
894 }
895
set_dma_rtail(struct hfi1_devdata * dd,u16 ctxt)896 static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt)
897 {
898 struct hfi1_ctxtdata *rcd;
899 u16 i;
900
901 /*
902 * For dynamically allocated kernel contexts (like vnic) switch
903 * interrupt handler only for that context. Otherwise, switch
904 * interrupt handler for all statically allocated kernel contexts.
905 */
906 if (ctxt >= dd->first_dyn_alloc_ctxt) {
907 rcd = hfi1_rcd_get_by_index_safe(dd, ctxt);
908 if (rcd) {
909 rcd->do_interrupt =
910 &handle_receive_interrupt_dma_rtail;
911 hfi1_rcd_put(rcd);
912 }
913 return;
914 }
915
916 for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) {
917 rcd = hfi1_rcd_get_by_index(dd, i);
918 if (rcd)
919 rcd->do_interrupt =
920 &handle_receive_interrupt_dma_rtail;
921 hfi1_rcd_put(rcd);
922 }
923 }
924
set_all_slowpath(struct hfi1_devdata * dd)925 void set_all_slowpath(struct hfi1_devdata *dd)
926 {
927 struct hfi1_ctxtdata *rcd;
928 u16 i;
929
930 /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */
931 for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) {
932 rcd = hfi1_rcd_get_by_index(dd, i);
933 if (!rcd)
934 continue;
935 if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
936 rcd->do_interrupt = &handle_receive_interrupt;
937
938 hfi1_rcd_put(rcd);
939 }
940 }
941
set_armed_to_active(struct hfi1_ctxtdata * rcd,struct hfi1_packet * packet,struct hfi1_devdata * dd)942 static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd,
943 struct hfi1_packet *packet,
944 struct hfi1_devdata *dd)
945 {
946 struct work_struct *lsaw = &rcd->ppd->linkstate_active_work;
947 u8 etype = rhf_rcv_type(packet->rhf);
948 u8 sc = SC15_PACKET;
949
950 if (etype == RHF_RCV_TYPE_IB) {
951 struct ib_header *hdr = hfi1_get_msgheader(packet->rcd,
952 packet->rhf_addr);
953 sc = hfi1_9B_get_sc5(hdr, packet->rhf);
954 } else if (etype == RHF_RCV_TYPE_BYPASS) {
955 struct hfi1_16b_header *hdr = hfi1_get_16B_header(
956 packet->rcd,
957 packet->rhf_addr);
958 sc = hfi1_16B_get_sc(hdr);
959 }
960 if (sc != SC15_PACKET) {
961 int hwstate = driver_lstate(rcd->ppd);
962
963 if (hwstate != IB_PORT_ACTIVE) {
964 dd_dev_info(dd,
965 "Unexpected link state %s\n",
966 opa_lstate_name(hwstate));
967 return 0;
968 }
969
970 queue_work(rcd->ppd->link_wq, lsaw);
971 return 1;
972 }
973 return 0;
974 }
975
976 /*
977 * handle_receive_interrupt - receive a packet
978 * @rcd: the context
979 *
980 * Called from interrupt handler for errors or receive interrupt.
981 * This is the slow path interrupt handler.
982 */
handle_receive_interrupt(struct hfi1_ctxtdata * rcd,int thread)983 int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread)
984 {
985 struct hfi1_devdata *dd = rcd->dd;
986 u32 hdrqtail;
987 int needset, last = RCV_PKT_OK;
988 struct hfi1_packet packet;
989 int skip_pkt = 0;
990
991 /* Control context will always use the slow path interrupt handler */
992 needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1;
993
994 init_packet(rcd, &packet);
995
996 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
997 u32 seq = rhf_rcv_seq(packet.rhf);
998
999 if (seq != rcd->seq_cnt) {
1000 last = RCV_PKT_DONE;
1001 goto bail;
1002 }
1003 hdrqtail = 0;
1004 } else {
1005 hdrqtail = get_rcvhdrtail(rcd);
1006 if (packet.rhqoff == hdrqtail) {
1007 last = RCV_PKT_DONE;
1008 goto bail;
1009 }
1010 smp_rmb(); /* prevent speculative reads of dma'ed hdrq */
1011
1012 /*
1013 * Control context can potentially receive an invalid
1014 * rhf. Drop such packets.
1015 */
1016 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1017 u32 seq = rhf_rcv_seq(packet.rhf);
1018
1019 if (seq != rcd->seq_cnt)
1020 skip_pkt = 1;
1021 }
1022 }
1023
1024 prescan_rxq(rcd, &packet);
1025
1026 while (last == RCV_PKT_OK) {
1027 if (unlikely(dd->do_drop &&
1028 atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
1029 DROP_PACKET_ON)) {
1030 dd->do_drop = 0;
1031
1032 /* On to the next packet */
1033 packet.rhqoff += packet.rsize;
1034 packet.rhf_addr = (__le32 *)rcd->rcvhdrq +
1035 packet.rhqoff +
1036 rcd->rhf_offset;
1037 packet.rhf = rhf_to_cpu(packet.rhf_addr);
1038
1039 } else if (skip_pkt) {
1040 last = skip_rcv_packet(&packet, thread);
1041 skip_pkt = 0;
1042 } else {
1043 /* Auto activate link on non-SC15 packet receive */
1044 if (unlikely(rcd->ppd->host_link_state ==
1045 HLS_UP_ARMED) &&
1046 set_armed_to_active(rcd, &packet, dd))
1047 goto bail;
1048 last = process_rcv_packet(&packet, thread);
1049 }
1050
1051 if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) {
1052 u32 seq = rhf_rcv_seq(packet.rhf);
1053
1054 if (++rcd->seq_cnt > 13)
1055 rcd->seq_cnt = 1;
1056 if (seq != rcd->seq_cnt)
1057 last = RCV_PKT_DONE;
1058 if (needset) {
1059 dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n");
1060 set_nodma_rtail(dd, rcd->ctxt);
1061 needset = 0;
1062 }
1063 } else {
1064 if (packet.rhqoff == hdrqtail)
1065 last = RCV_PKT_DONE;
1066 /*
1067 * Control context can potentially receive an invalid
1068 * rhf. Drop such packets.
1069 */
1070 if (rcd->ctxt == HFI1_CTRL_CTXT) {
1071 u32 seq = rhf_rcv_seq(packet.rhf);
1072
1073 if (++rcd->seq_cnt > 13)
1074 rcd->seq_cnt = 1;
1075 if (!last && (seq != rcd->seq_cnt))
1076 skip_pkt = 1;
1077 }
1078
1079 if (needset) {
1080 dd_dev_info(dd,
1081 "Switching to DMA_RTAIL\n");
1082 set_dma_rtail(dd, rcd->ctxt);
1083 needset = 0;
1084 }
1085 }
1086
1087 process_rcv_update(last, &packet);
1088 }
1089
1090 process_rcv_qp_work(&packet);
1091 rcd->head = packet.rhqoff;
1092
1093 bail:
1094 /*
1095 * Always write head at end, and setup rcv interrupt, even
1096 * if no packets were processed.
1097 */
1098 finish_packet(&packet);
1099 return last;
1100 }
1101
1102 /*
1103 * We may discover in the interrupt that the hardware link state has
1104 * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet),
1105 * and we need to update the driver's notion of the link state. We cannot
1106 * run set_link_state from interrupt context, so we queue this function on
1107 * a workqueue.
1108 *
1109 * We delay the regular interrupt processing until after the state changes
1110 * so that the link will be in the correct state by the time any application
1111 * we wake up attempts to send a reply to any message it received.
1112 * (Subsequent receive interrupts may possibly force the wakeup before we
1113 * update the link state.)
1114 *
1115 * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes
1116 * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues,
1117 * so we're safe from use-after-free of the rcd.
1118 */
receive_interrupt_work(struct work_struct * work)1119 void receive_interrupt_work(struct work_struct *work)
1120 {
1121 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
1122 linkstate_active_work);
1123 struct hfi1_devdata *dd = ppd->dd;
1124 struct hfi1_ctxtdata *rcd;
1125 u16 i;
1126
1127 /* Received non-SC15 packet implies neighbor_normal */
1128 ppd->neighbor_normal = 1;
1129 set_link_state(ppd, HLS_UP_ACTIVE);
1130
1131 /*
1132 * Interrupt all statically allocated kernel contexts that could
1133 * have had an interrupt during auto activation.
1134 */
1135 for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) {
1136 rcd = hfi1_rcd_get_by_index(dd, i);
1137 if (rcd)
1138 force_recv_intr(rcd);
1139 hfi1_rcd_put(rcd);
1140 }
1141 }
1142
1143 /*
1144 * Convert a given MTU size to the on-wire MAD packet enumeration.
1145 * Return -1 if the size is invalid.
1146 */
mtu_to_enum(u32 mtu,int default_if_bad)1147 int mtu_to_enum(u32 mtu, int default_if_bad)
1148 {
1149 switch (mtu) {
1150 case 0: return OPA_MTU_0;
1151 case 256: return OPA_MTU_256;
1152 case 512: return OPA_MTU_512;
1153 case 1024: return OPA_MTU_1024;
1154 case 2048: return OPA_MTU_2048;
1155 case 4096: return OPA_MTU_4096;
1156 case 8192: return OPA_MTU_8192;
1157 case 10240: return OPA_MTU_10240;
1158 }
1159 return default_if_bad;
1160 }
1161
enum_to_mtu(int mtu)1162 u16 enum_to_mtu(int mtu)
1163 {
1164 switch (mtu) {
1165 case OPA_MTU_0: return 0;
1166 case OPA_MTU_256: return 256;
1167 case OPA_MTU_512: return 512;
1168 case OPA_MTU_1024: return 1024;
1169 case OPA_MTU_2048: return 2048;
1170 case OPA_MTU_4096: return 4096;
1171 case OPA_MTU_8192: return 8192;
1172 case OPA_MTU_10240: return 10240;
1173 default: return 0xffff;
1174 }
1175 }
1176
1177 /*
1178 * set_mtu - set the MTU
1179 * @ppd: the per port data
1180 *
1181 * We can handle "any" incoming size, the issue here is whether we
1182 * need to restrict our outgoing size. We do not deal with what happens
1183 * to programs that are already running when the size changes.
1184 */
set_mtu(struct hfi1_pportdata * ppd)1185 int set_mtu(struct hfi1_pportdata *ppd)
1186 {
1187 struct hfi1_devdata *dd = ppd->dd;
1188 int i, drain, ret = 0, is_up = 0;
1189
1190 ppd->ibmtu = 0;
1191 for (i = 0; i < ppd->vls_supported; i++)
1192 if (ppd->ibmtu < dd->vld[i].mtu)
1193 ppd->ibmtu = dd->vld[i].mtu;
1194 ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd);
1195
1196 mutex_lock(&ppd->hls_lock);
1197 if (ppd->host_link_state == HLS_UP_INIT ||
1198 ppd->host_link_state == HLS_UP_ARMED ||
1199 ppd->host_link_state == HLS_UP_ACTIVE)
1200 is_up = 1;
1201
1202 drain = !is_ax(dd) && is_up;
1203
1204 if (drain)
1205 /*
1206 * MTU is specified per-VL. To ensure that no packet gets
1207 * stuck (due, e.g., to the MTU for the packet's VL being
1208 * reduced), empty the per-VL FIFOs before adjusting MTU.
1209 */
1210 ret = stop_drain_data_vls(dd);
1211
1212 if (ret) {
1213 dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n",
1214 __func__);
1215 goto err;
1216 }
1217
1218 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0);
1219
1220 if (drain)
1221 open_fill_data_vls(dd); /* reopen all VLs */
1222
1223 err:
1224 mutex_unlock(&ppd->hls_lock);
1225
1226 return ret;
1227 }
1228
hfi1_set_lid(struct hfi1_pportdata * ppd,u32 lid,u8 lmc)1229 int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc)
1230 {
1231 struct hfi1_devdata *dd = ppd->dd;
1232
1233 ppd->lid = lid;
1234 ppd->lmc = lmc;
1235 hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0);
1236
1237 dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid);
1238
1239 return 0;
1240 }
1241
shutdown_led_override(struct hfi1_pportdata * ppd)1242 void shutdown_led_override(struct hfi1_pportdata *ppd)
1243 {
1244 struct hfi1_devdata *dd = ppd->dd;
1245
1246 /*
1247 * This pairs with the memory barrier in hfi1_start_led_override to
1248 * ensure that we read the correct state of LED beaconing represented
1249 * by led_override_timer_active
1250 */
1251 smp_rmb();
1252 if (atomic_read(&ppd->led_override_timer_active)) {
1253 del_timer_sync(&ppd->led_override_timer);
1254 atomic_set(&ppd->led_override_timer_active, 0);
1255 /* Ensure the atomic_set is visible to all CPUs */
1256 smp_wmb();
1257 }
1258
1259 /* Hand control of the LED to the DC for normal operation */
1260 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
1261 }
1262
run_led_override(struct timer_list * t)1263 static void run_led_override(struct timer_list *t)
1264 {
1265 struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer);
1266 struct hfi1_devdata *dd = ppd->dd;
1267 unsigned long timeout;
1268 int phase_idx;
1269
1270 if (!(dd->flags & HFI1_INITTED))
1271 return;
1272
1273 phase_idx = ppd->led_override_phase & 1;
1274
1275 setextled(dd, phase_idx);
1276
1277 timeout = ppd->led_override_vals[phase_idx];
1278
1279 /* Set up for next phase */
1280 ppd->led_override_phase = !ppd->led_override_phase;
1281
1282 mod_timer(&ppd->led_override_timer, jiffies + timeout);
1283 }
1284
1285 /*
1286 * To have the LED blink in a particular pattern, provide timeon and timeoff
1287 * in milliseconds.
1288 * To turn off custom blinking and return to normal operation, use
1289 * shutdown_led_override()
1290 */
hfi1_start_led_override(struct hfi1_pportdata * ppd,unsigned int timeon,unsigned int timeoff)1291 void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
1292 unsigned int timeoff)
1293 {
1294 if (!(ppd->dd->flags & HFI1_INITTED))
1295 return;
1296
1297 /* Convert to jiffies for direct use in timer */
1298 ppd->led_override_vals[0] = msecs_to_jiffies(timeoff);
1299 ppd->led_override_vals[1] = msecs_to_jiffies(timeon);
1300
1301 /* Arbitrarily start from LED on phase */
1302 ppd->led_override_phase = 1;
1303
1304 /*
1305 * If the timer has not already been started, do so. Use a "quick"
1306 * timeout so the handler will be called soon to look at our request.
1307 */
1308 if (!timer_pending(&ppd->led_override_timer)) {
1309 timer_setup(&ppd->led_override_timer, run_led_override, 0);
1310 ppd->led_override_timer.expires = jiffies + 1;
1311 add_timer(&ppd->led_override_timer);
1312 atomic_set(&ppd->led_override_timer_active, 1);
1313 /* Ensure the atomic_set is visible to all CPUs */
1314 smp_wmb();
1315 }
1316 }
1317
1318 /**
1319 * hfi1_reset_device - reset the chip if possible
1320 * @unit: the device to reset
1321 *
1322 * Whether or not reset is successful, we attempt to re-initialize the chip
1323 * (that is, much like a driver unload/reload). We clear the INITTED flag
1324 * so that the various entry points will fail until we reinitialize. For
1325 * now, we only allow this if no user contexts are open that use chip resources
1326 */
hfi1_reset_device(int unit)1327 int hfi1_reset_device(int unit)
1328 {
1329 int ret;
1330 struct hfi1_devdata *dd = hfi1_lookup(unit);
1331 struct hfi1_pportdata *ppd;
1332 int pidx;
1333
1334 if (!dd) {
1335 ret = -ENODEV;
1336 goto bail;
1337 }
1338
1339 dd_dev_info(dd, "Reset on unit %u requested\n", unit);
1340
1341 if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) {
1342 dd_dev_info(dd,
1343 "Invalid unit number %u or not initialized or not present\n",
1344 unit);
1345 ret = -ENXIO;
1346 goto bail;
1347 }
1348
1349 /* If there are any user/vnic contexts, we cannot reset */
1350 mutex_lock(&hfi1_mutex);
1351 if (dd->rcd)
1352 if (hfi1_stats.sps_ctxts) {
1353 mutex_unlock(&hfi1_mutex);
1354 ret = -EBUSY;
1355 goto bail;
1356 }
1357 mutex_unlock(&hfi1_mutex);
1358
1359 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1360 ppd = dd->pport + pidx;
1361
1362 shutdown_led_override(ppd);
1363 }
1364 if (dd->flags & HFI1_HAS_SEND_DMA)
1365 sdma_exit(dd);
1366
1367 hfi1_reset_cpu_counters(dd);
1368
1369 ret = hfi1_init(dd, 1);
1370
1371 if (ret)
1372 dd_dev_err(dd,
1373 "Reinitialize unit %u after reset failed with %d\n",
1374 unit, ret);
1375 else
1376 dd_dev_info(dd, "Reinitialized unit %u after resetting\n",
1377 unit);
1378
1379 bail:
1380 return ret;
1381 }
1382
hfi1_setup_ib_header(struct hfi1_packet * packet)1383 static inline void hfi1_setup_ib_header(struct hfi1_packet *packet)
1384 {
1385 packet->hdr = (struct hfi1_ib_message_header *)
1386 hfi1_get_msgheader(packet->rcd,
1387 packet->rhf_addr);
1388 packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr;
1389 }
1390
hfi1_bypass_ingress_pkt_check(struct hfi1_packet * packet)1391 static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet)
1392 {
1393 struct hfi1_pportdata *ppd = packet->rcd->ppd;
1394
1395 /* slid and dlid cannot be 0 */
1396 if ((!packet->slid) || (!packet->dlid))
1397 return -EINVAL;
1398
1399 /* Compare port lid with incoming packet dlid */
1400 if ((!(hfi1_is_16B_mcast(packet->dlid))) &&
1401 (packet->dlid !=
1402 opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) {
1403 if (packet->dlid != ppd->lid)
1404 return -EINVAL;
1405 }
1406
1407 /* No multicast packets with SC15 */
1408 if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF))
1409 return -EINVAL;
1410
1411 /* Packets with permissive DLID always on SC15 */
1412 if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE),
1413 16B)) &&
1414 (packet->sc != 0xF))
1415 return -EINVAL;
1416
1417 return 0;
1418 }
1419
hfi1_setup_9B_packet(struct hfi1_packet * packet)1420 static int hfi1_setup_9B_packet(struct hfi1_packet *packet)
1421 {
1422 struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd);
1423 struct ib_header *hdr;
1424 u8 lnh;
1425
1426 hfi1_setup_ib_header(packet);
1427 hdr = packet->hdr;
1428
1429 lnh = ib_get_lnh(hdr);
1430 if (lnh == HFI1_LRH_BTH) {
1431 packet->ohdr = &hdr->u.oth;
1432 packet->grh = NULL;
1433 } else if (lnh == HFI1_LRH_GRH) {
1434 u32 vtf;
1435
1436 packet->ohdr = &hdr->u.l.oth;
1437 packet->grh = &hdr->u.l.grh;
1438 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1439 goto drop;
1440 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1441 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1442 goto drop;
1443 } else {
1444 goto drop;
1445 }
1446
1447 /* Query commonly used fields from packet header */
1448 packet->payload = packet->ebuf;
1449 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1450 packet->slid = ib_get_slid(hdr);
1451 packet->dlid = ib_get_dlid(hdr);
1452 if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
1453 (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE))))
1454 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1455 be16_to_cpu(IB_MULTICAST_LID_BASE);
1456 packet->sl = ib_get_sl(hdr);
1457 packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf);
1458 packet->pad = ib_bth_get_pad(packet->ohdr);
1459 packet->extra_byte = 0;
1460 packet->pkey = ib_bth_get_pkey(packet->ohdr);
1461 packet->migrated = ib_bth_is_migration(packet->ohdr);
1462
1463 return 0;
1464 drop:
1465 ibp->rvp.n_pkt_drops++;
1466 return -EINVAL;
1467 }
1468
hfi1_setup_bypass_packet(struct hfi1_packet * packet)1469 static int hfi1_setup_bypass_packet(struct hfi1_packet *packet)
1470 {
1471 /*
1472 * Bypass packets have a different header/payload split
1473 * compared to an IB packet.
1474 * Current split is set such that 16 bytes of the actual
1475 * header is in the header buffer and the remining is in
1476 * the eager buffer. We chose 16 since hfi1 driver only
1477 * supports 16B bypass packets and we will be able to
1478 * receive the entire LRH with such a split.
1479 */
1480
1481 struct hfi1_ctxtdata *rcd = packet->rcd;
1482 struct hfi1_pportdata *ppd = rcd->ppd;
1483 struct hfi1_ibport *ibp = &ppd->ibport_data;
1484 u8 l4;
1485
1486 packet->hdr = (struct hfi1_16b_header *)
1487 hfi1_get_16B_header(packet->rcd,
1488 packet->rhf_addr);
1489 l4 = hfi1_16B_get_l4(packet->hdr);
1490 if (l4 == OPA_16B_L4_IB_LOCAL) {
1491 packet->ohdr = packet->ebuf;
1492 packet->grh = NULL;
1493 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1494 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1495 /* hdr_len_by_opcode already has an IB LRH factored in */
1496 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1497 (LRH_16B_BYTES - LRH_9B_BYTES);
1498 packet->migrated = opa_bth_is_migration(packet->ohdr);
1499 } else if (l4 == OPA_16B_L4_IB_GLOBAL) {
1500 u32 vtf;
1501 u8 grh_len = sizeof(struct ib_grh);
1502
1503 packet->ohdr = packet->ebuf + grh_len;
1504 packet->grh = packet->ebuf;
1505 packet->opcode = ib_bth_get_opcode(packet->ohdr);
1506 packet->pad = hfi1_16B_bth_get_pad(packet->ohdr);
1507 /* hdr_len_by_opcode already has an IB LRH factored in */
1508 packet->hlen = hdr_len_by_opcode[packet->opcode] +
1509 (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len;
1510 packet->migrated = opa_bth_is_migration(packet->ohdr);
1511
1512 if (packet->grh->next_hdr != IB_GRH_NEXT_HDR)
1513 goto drop;
1514 vtf = be32_to_cpu(packet->grh->version_tclass_flow);
1515 if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION)
1516 goto drop;
1517 } else if (l4 == OPA_16B_L4_FM) {
1518 packet->mgmt = packet->ebuf;
1519 packet->ohdr = NULL;
1520 packet->grh = NULL;
1521 packet->opcode = IB_OPCODE_UD_SEND_ONLY;
1522 packet->pad = OPA_16B_L4_FM_PAD;
1523 packet->hlen = OPA_16B_L4_FM_HLEN;
1524 packet->migrated = false;
1525 } else {
1526 goto drop;
1527 }
1528
1529 /* Query commonly used fields from packet header */
1530 packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES;
1531 packet->slid = hfi1_16B_get_slid(packet->hdr);
1532 packet->dlid = hfi1_16B_get_dlid(packet->hdr);
1533 if (unlikely(hfi1_is_16B_mcast(packet->dlid)))
1534 packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) -
1535 opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR),
1536 16B);
1537 packet->sc = hfi1_16B_get_sc(packet->hdr);
1538 packet->sl = ibp->sc_to_sl[packet->sc];
1539 packet->extra_byte = SIZE_OF_LT;
1540 packet->pkey = hfi1_16B_get_pkey(packet->hdr);
1541
1542 if (hfi1_bypass_ingress_pkt_check(packet))
1543 goto drop;
1544
1545 return 0;
1546 drop:
1547 hfi1_cdbg(PKT, "%s: packet dropped\n", __func__);
1548 ibp->rvp.n_pkt_drops++;
1549 return -EINVAL;
1550 }
1551
handle_eflags(struct hfi1_packet * packet)1552 void handle_eflags(struct hfi1_packet *packet)
1553 {
1554 struct hfi1_ctxtdata *rcd = packet->rcd;
1555 u32 rte = rhf_rcv_type_err(packet->rhf);
1556
1557 rcv_hdrerr(rcd, rcd->ppd, packet);
1558 if (rhf_err_flags(packet->rhf))
1559 dd_dev_err(rcd->dd,
1560 "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s%s] rte 0x%x\n",
1561 rcd->ctxt, packet->rhf,
1562 packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "",
1563 packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "",
1564 packet->rhf & RHF_DC_ERR ? "dc " : "",
1565 packet->rhf & RHF_TID_ERR ? "tid " : "",
1566 packet->rhf & RHF_LEN_ERR ? "len " : "",
1567 packet->rhf & RHF_ECC_ERR ? "ecc " : "",
1568 packet->rhf & RHF_VCRC_ERR ? "vcrc " : "",
1569 packet->rhf & RHF_ICRC_ERR ? "icrc " : "",
1570 rte);
1571 }
1572
1573 /*
1574 * The following functions are called by the interrupt handler. They are type
1575 * specific handlers for each packet type.
1576 */
process_receive_ib(struct hfi1_packet * packet)1577 static int process_receive_ib(struct hfi1_packet *packet)
1578 {
1579 if (hfi1_setup_9B_packet(packet))
1580 return RHF_RCV_CONTINUE;
1581
1582 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1583 return RHF_RCV_CONTINUE;
1584
1585 trace_hfi1_rcvhdr(packet);
1586
1587 if (unlikely(rhf_err_flags(packet->rhf))) {
1588 handle_eflags(packet);
1589 return RHF_RCV_CONTINUE;
1590 }
1591
1592 hfi1_ib_rcv(packet);
1593 return RHF_RCV_CONTINUE;
1594 }
1595
hfi1_is_vnic_packet(struct hfi1_packet * packet)1596 static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet)
1597 {
1598 /* Packet received in VNIC context via RSM */
1599 if (packet->rcd->is_vnic)
1600 return true;
1601
1602 if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) &&
1603 (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR))
1604 return true;
1605
1606 return false;
1607 }
1608
process_receive_bypass(struct hfi1_packet * packet)1609 static int process_receive_bypass(struct hfi1_packet *packet)
1610 {
1611 struct hfi1_devdata *dd = packet->rcd->dd;
1612
1613 if (hfi1_is_vnic_packet(packet)) {
1614 hfi1_vnic_bypass_rcv(packet);
1615 return RHF_RCV_CONTINUE;
1616 }
1617
1618 if (hfi1_setup_bypass_packet(packet))
1619 return RHF_RCV_CONTINUE;
1620
1621 trace_hfi1_rcvhdr(packet);
1622
1623 if (unlikely(rhf_err_flags(packet->rhf))) {
1624 handle_eflags(packet);
1625 return RHF_RCV_CONTINUE;
1626 }
1627
1628 if (hfi1_16B_get_l2(packet->hdr) == 0x2) {
1629 hfi1_16B_rcv(packet);
1630 } else {
1631 dd_dev_err(dd,
1632 "Bypass packets other than 16B are not supported in normal operation. Dropping\n");
1633 incr_cntr64(&dd->sw_rcv_bypass_packet_errors);
1634 if (!(dd->err_info_rcvport.status_and_code &
1635 OPA_EI_STATUS_SMASK)) {
1636 u64 *flits = packet->ebuf;
1637
1638 if (flits && !(packet->rhf & RHF_LEN_ERR)) {
1639 dd->err_info_rcvport.packet_flit1 = flits[0];
1640 dd->err_info_rcvport.packet_flit2 =
1641 packet->tlen > sizeof(flits[0]) ?
1642 flits[1] : 0;
1643 }
1644 dd->err_info_rcvport.status_and_code |=
1645 (OPA_EI_STATUS_SMASK | BAD_L2_ERR);
1646 }
1647 }
1648 return RHF_RCV_CONTINUE;
1649 }
1650
process_receive_error(struct hfi1_packet * packet)1651 static int process_receive_error(struct hfi1_packet *packet)
1652 {
1653 /* KHdrHCRCErr -- KDETH packet with a bad HCRC */
1654 if (unlikely(
1655 hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) &&
1656 (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR ||
1657 packet->rhf & RHF_DC_ERR)))
1658 return RHF_RCV_CONTINUE;
1659
1660 hfi1_setup_ib_header(packet);
1661 handle_eflags(packet);
1662
1663 if (unlikely(rhf_err_flags(packet->rhf)))
1664 dd_dev_err(packet->rcd->dd,
1665 "Unhandled error packet received. Dropping.\n");
1666
1667 return RHF_RCV_CONTINUE;
1668 }
1669
kdeth_process_expected(struct hfi1_packet * packet)1670 static int kdeth_process_expected(struct hfi1_packet *packet)
1671 {
1672 hfi1_setup_9B_packet(packet);
1673 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1674 return RHF_RCV_CONTINUE;
1675
1676 if (unlikely(rhf_err_flags(packet->rhf)))
1677 handle_eflags(packet);
1678
1679 dd_dev_err(packet->rcd->dd,
1680 "Unhandled expected packet received. Dropping.\n");
1681 return RHF_RCV_CONTINUE;
1682 }
1683
kdeth_process_eager(struct hfi1_packet * packet)1684 static int kdeth_process_eager(struct hfi1_packet *packet)
1685 {
1686 hfi1_setup_9B_packet(packet);
1687 if (unlikely(hfi1_dbg_should_fault_rx(packet)))
1688 return RHF_RCV_CONTINUE;
1689 if (unlikely(rhf_err_flags(packet->rhf)))
1690 handle_eflags(packet);
1691
1692 dd_dev_err(packet->rcd->dd,
1693 "Unhandled eager packet received. Dropping.\n");
1694 return RHF_RCV_CONTINUE;
1695 }
1696
process_receive_invalid(struct hfi1_packet * packet)1697 static int process_receive_invalid(struct hfi1_packet *packet)
1698 {
1699 dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n",
1700 rhf_rcv_type(packet->rhf));
1701 return RHF_RCV_CONTINUE;
1702 }
1703
seqfile_dump_rcd(struct seq_file * s,struct hfi1_ctxtdata * rcd)1704 void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd)
1705 {
1706 struct hfi1_packet packet;
1707 struct ps_mdata mdata;
1708
1709 seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n",
1710 rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize,
1711 HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
1712 "dma_rtail" : "nodma_rtail",
1713 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) &
1714 RCV_HDR_HEAD_HEAD_MASK,
1715 read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL));
1716
1717 init_packet(rcd, &packet);
1718 init_ps_mdata(&mdata, &packet);
1719
1720 while (1) {
1721 __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head +
1722 rcd->rhf_offset;
1723 struct ib_header *hdr;
1724 u64 rhf = rhf_to_cpu(rhf_addr);
1725 u32 etype = rhf_rcv_type(rhf), qpn;
1726 u8 opcode;
1727 u32 psn;
1728 u8 lnh;
1729
1730 if (ps_done(&mdata, rhf, rcd))
1731 break;
1732
1733 if (ps_skip(&mdata, rhf, rcd))
1734 goto next;
1735
1736 if (etype > RHF_RCV_TYPE_IB)
1737 goto next;
1738
1739 packet.hdr = hfi1_get_msgheader(rcd, rhf_addr);
1740 hdr = packet.hdr;
1741
1742 lnh = be16_to_cpu(hdr->lrh[0]) & 3;
1743
1744 if (lnh == HFI1_LRH_BTH)
1745 packet.ohdr = &hdr->u.oth;
1746 else if (lnh == HFI1_LRH_GRH)
1747 packet.ohdr = &hdr->u.l.oth;
1748 else
1749 goto next; /* just in case */
1750
1751 opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24);
1752 qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK;
1753 psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2]));
1754
1755 seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n",
1756 mdata.ps_head, opcode, qpn, psn);
1757 next:
1758 update_ps_mdata(&mdata, rcd);
1759 }
1760 }
1761
1762 const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = {
1763 [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected,
1764 [RHF_RCV_TYPE_EAGER] = kdeth_process_eager,
1765 [RHF_RCV_TYPE_IB] = process_receive_ib,
1766 [RHF_RCV_TYPE_ERROR] = process_receive_error,
1767 [RHF_RCV_TYPE_BYPASS] = process_receive_bypass,
1768 [RHF_RCV_TYPE_INVALID5] = process_receive_invalid,
1769 [RHF_RCV_TYPE_INVALID6] = process_receive_invalid,
1770 [RHF_RCV_TYPE_INVALID7] = process_receive_invalid,
1771 };
1772