1 /*
2 * Copyright(c) 2015 - 2018 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/idr.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <rdma/rdma_vt.h>
58
59 #include "hfi.h"
60 #include "device.h"
61 #include "common.h"
62 #include "trace.h"
63 #include "mad.h"
64 #include "sdma.h"
65 #include "debugfs.h"
66 #include "verbs.h"
67 #include "aspm.h"
68 #include "affinity.h"
69 #include "vnic.h"
70 #include "exp_rcv.h"
71
72 #undef pr_fmt
73 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
74
75 #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
76 /*
77 * min buffers we want to have per context, after driver
78 */
79 #define HFI1_MIN_USER_CTXT_BUFCNT 7
80
81 #define HFI1_MIN_HDRQ_EGRBUF_CNT 2
82 #define HFI1_MAX_HDRQ_EGRBUF_CNT 16352
83 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
84 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
85
86 /*
87 * Number of user receive contexts we are configured to use (to allow for more
88 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
89 */
90 int num_user_contexts = -1;
91 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
92 MODULE_PARM_DESC(
93 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
94
95 uint krcvqs[RXE_NUM_DATA_VL];
96 int krcvqsset;
97 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
98 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
99
100 /* computed based on above array */
101 unsigned long n_krcvqs;
102
103 static unsigned hfi1_rcvarr_split = 25;
104 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
105 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
106
107 static uint eager_buffer_size = (8 << 20); /* 8MB */
108 module_param(eager_buffer_size, uint, S_IRUGO);
109 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
110
111 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
112 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
113 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
114
115 static uint hfi1_hdrq_entsize = 32;
116 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
117 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
118
119 unsigned int user_credit_return_threshold = 33; /* default is 33% */
120 module_param(user_credit_return_threshold, uint, S_IRUGO);
121 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
122
123 static inline u64 encode_rcv_header_entry_size(u16 size);
124
125 static struct idr hfi1_unit_table;
126
hfi1_create_kctxt(struct hfi1_devdata * dd,struct hfi1_pportdata * ppd)127 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
128 struct hfi1_pportdata *ppd)
129 {
130 struct hfi1_ctxtdata *rcd;
131 int ret;
132
133 /* Control context has to be always 0 */
134 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
135
136 ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
137 if (ret < 0) {
138 dd_dev_err(dd, "Kernel receive context allocation failed\n");
139 return ret;
140 }
141
142 /*
143 * Set up the kernel context flags here and now because they use
144 * default values for all receive side memories. User contexts will
145 * be handled as they are created.
146 */
147 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
148 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
149 HFI1_CAP_KGET(NODROP_EGR_FULL) |
150 HFI1_CAP_KGET(DMA_RTAIL);
151
152 /* Control context must use DMA_RTAIL */
153 if (rcd->ctxt == HFI1_CTRL_CTXT)
154 rcd->flags |= HFI1_CAP_DMA_RTAIL;
155 rcd->seq_cnt = 1;
156
157 rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
158 if (!rcd->sc) {
159 dd_dev_err(dd, "Kernel send context allocation failed\n");
160 return -ENOMEM;
161 }
162 hfi1_init_ctxt(rcd->sc);
163
164 return 0;
165 }
166
167 /*
168 * Create the receive context array and one or more kernel contexts
169 */
hfi1_create_kctxts(struct hfi1_devdata * dd)170 int hfi1_create_kctxts(struct hfi1_devdata *dd)
171 {
172 u16 i;
173 int ret;
174
175 dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
176 GFP_KERNEL, dd->node);
177 if (!dd->rcd)
178 return -ENOMEM;
179
180 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
181 ret = hfi1_create_kctxt(dd, dd->pport);
182 if (ret)
183 goto bail;
184 }
185
186 return 0;
187 bail:
188 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
189 hfi1_free_ctxt(dd->rcd[i]);
190
191 /* All the contexts should be freed, free the array */
192 kfree(dd->rcd);
193 dd->rcd = NULL;
194 return ret;
195 }
196
197 /*
198 * Helper routines for the receive context reference count (rcd and uctxt).
199 */
hfi1_rcd_init(struct hfi1_ctxtdata * rcd)200 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
201 {
202 kref_init(&rcd->kref);
203 }
204
205 /**
206 * hfi1_rcd_free - When reference is zero clean up.
207 * @kref: pointer to an initialized rcd data structure
208 *
209 */
hfi1_rcd_free(struct kref * kref)210 static void hfi1_rcd_free(struct kref *kref)
211 {
212 unsigned long flags;
213 struct hfi1_ctxtdata *rcd =
214 container_of(kref, struct hfi1_ctxtdata, kref);
215
216 hfi1_free_ctxtdata(rcd->dd, rcd);
217
218 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
219 rcd->dd->rcd[rcd->ctxt] = NULL;
220 spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
221
222 kfree(rcd);
223 }
224
225 /**
226 * hfi1_rcd_put - decrement reference for rcd
227 * @rcd: pointer to an initialized rcd data structure
228 *
229 * Use this to put a reference after the init.
230 */
hfi1_rcd_put(struct hfi1_ctxtdata * rcd)231 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
232 {
233 if (rcd)
234 return kref_put(&rcd->kref, hfi1_rcd_free);
235
236 return 0;
237 }
238
239 /**
240 * hfi1_rcd_get - increment reference for rcd
241 * @rcd: pointer to an initialized rcd data structure
242 *
243 * Use this to get a reference after the init.
244 */
hfi1_rcd_get(struct hfi1_ctxtdata * rcd)245 void hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
246 {
247 kref_get(&rcd->kref);
248 }
249
250 /**
251 * allocate_rcd_index - allocate an rcd index from the rcd array
252 * @dd: pointer to a valid devdata structure
253 * @rcd: rcd data structure to assign
254 * @index: pointer to index that is allocated
255 *
256 * Find an empty index in the rcd array, and assign the given rcd to it.
257 * If the array is full, we are EBUSY.
258 *
259 */
allocate_rcd_index(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd,u16 * index)260 static int allocate_rcd_index(struct hfi1_devdata *dd,
261 struct hfi1_ctxtdata *rcd, u16 *index)
262 {
263 unsigned long flags;
264 u16 ctxt;
265
266 spin_lock_irqsave(&dd->uctxt_lock, flags);
267 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
268 if (!dd->rcd[ctxt])
269 break;
270
271 if (ctxt < dd->num_rcv_contexts) {
272 rcd->ctxt = ctxt;
273 dd->rcd[ctxt] = rcd;
274 hfi1_rcd_init(rcd);
275 }
276 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
277
278 if (ctxt >= dd->num_rcv_contexts)
279 return -EBUSY;
280
281 *index = ctxt;
282
283 return 0;
284 }
285
286 /**
287 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
288 * array
289 * @dd: pointer to a valid devdata structure
290 * @ctxt: the index of an possilbe rcd
291 *
292 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
293 * ctxt index is valid.
294 *
295 * The caller is responsible for making the _put().
296 *
297 */
hfi1_rcd_get_by_index_safe(struct hfi1_devdata * dd,u16 ctxt)298 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
299 u16 ctxt)
300 {
301 if (ctxt < dd->num_rcv_contexts)
302 return hfi1_rcd_get_by_index(dd, ctxt);
303
304 return NULL;
305 }
306
307 /**
308 * hfi1_rcd_get_by_index
309 * @dd: pointer to a valid devdata structure
310 * @ctxt: the index of an possilbe rcd
311 *
312 * We need to protect access to the rcd array. If access is needed to
313 * one or more index, get the protecting spinlock and then increment the
314 * kref.
315 *
316 * The caller is responsible for making the _put().
317 *
318 */
hfi1_rcd_get_by_index(struct hfi1_devdata * dd,u16 ctxt)319 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
320 {
321 unsigned long flags;
322 struct hfi1_ctxtdata *rcd = NULL;
323
324 spin_lock_irqsave(&dd->uctxt_lock, flags);
325 if (dd->rcd[ctxt]) {
326 rcd = dd->rcd[ctxt];
327 hfi1_rcd_get(rcd);
328 }
329 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
330
331 return rcd;
332 }
333
334 /*
335 * Common code for user and kernel context create and setup.
336 * NOTE: the initial kref is done here (hf1_rcd_init()).
337 */
hfi1_create_ctxtdata(struct hfi1_pportdata * ppd,int numa,struct hfi1_ctxtdata ** context)338 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
339 struct hfi1_ctxtdata **context)
340 {
341 struct hfi1_devdata *dd = ppd->dd;
342 struct hfi1_ctxtdata *rcd;
343 unsigned kctxt_ngroups = 0;
344 u32 base;
345
346 if (dd->rcv_entries.nctxt_extra >
347 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
348 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
349 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
350 rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
351 if (rcd) {
352 u32 rcvtids, max_entries;
353 u16 ctxt;
354 int ret;
355
356 ret = allocate_rcd_index(dd, rcd, &ctxt);
357 if (ret) {
358 *context = NULL;
359 kfree(rcd);
360 return ret;
361 }
362
363 INIT_LIST_HEAD(&rcd->qp_wait_list);
364 hfi1_exp_tid_group_init(rcd);
365 rcd->ppd = ppd;
366 rcd->dd = dd;
367 rcd->numa_id = numa;
368 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
369 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
370
371 mutex_init(&rcd->exp_mutex);
372
373 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
374
375 /*
376 * Calculate the context's RcvArray entry starting point.
377 * We do this here because we have to take into account all
378 * the RcvArray entries that previous context would have
379 * taken and we have to account for any extra groups assigned
380 * to the static (kernel) or dynamic (vnic/user) contexts.
381 */
382 if (ctxt < dd->first_dyn_alloc_ctxt) {
383 if (ctxt < kctxt_ngroups) {
384 base = ctxt * (dd->rcv_entries.ngroups + 1);
385 rcd->rcv_array_groups++;
386 } else {
387 base = kctxt_ngroups +
388 (ctxt * dd->rcv_entries.ngroups);
389 }
390 } else {
391 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
392
393 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
394 kctxt_ngroups);
395 if (ct < dd->rcv_entries.nctxt_extra) {
396 base += ct * (dd->rcv_entries.ngroups + 1);
397 rcd->rcv_array_groups++;
398 } else {
399 base += dd->rcv_entries.nctxt_extra +
400 (ct * dd->rcv_entries.ngroups);
401 }
402 }
403 rcd->eager_base = base * dd->rcv_entries.group_size;
404
405 rcd->rcvhdrq_cnt = rcvhdrcnt;
406 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
407 rcd->rhf_offset =
408 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
409 /*
410 * Simple Eager buffer allocation: we have already pre-allocated
411 * the number of RcvArray entry groups. Each ctxtdata structure
412 * holds the number of groups for that context.
413 *
414 * To follow CSR requirements and maintain cacheline alignment,
415 * make sure all sizes and bases are multiples of group_size.
416 *
417 * The expected entry count is what is left after assigning
418 * eager.
419 */
420 max_entries = rcd->rcv_array_groups *
421 dd->rcv_entries.group_size;
422 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
423 rcd->egrbufs.count = round_down(rcvtids,
424 dd->rcv_entries.group_size);
425 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
426 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
427 rcd->ctxt);
428 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
429 }
430 hfi1_cdbg(PROC,
431 "ctxt%u: max Eager buffer RcvArray entries: %u\n",
432 rcd->ctxt, rcd->egrbufs.count);
433
434 /*
435 * Allocate array that will hold the eager buffer accounting
436 * data.
437 * This will allocate the maximum possible buffer count based
438 * on the value of the RcvArray split parameter.
439 * The resulting value will be rounded down to the closest
440 * multiple of dd->rcv_entries.group_size.
441 */
442 rcd->egrbufs.buffers =
443 kcalloc_node(rcd->egrbufs.count,
444 sizeof(*rcd->egrbufs.buffers),
445 GFP_KERNEL, numa);
446 if (!rcd->egrbufs.buffers)
447 goto bail;
448 rcd->egrbufs.rcvtids =
449 kcalloc_node(rcd->egrbufs.count,
450 sizeof(*rcd->egrbufs.rcvtids),
451 GFP_KERNEL, numa);
452 if (!rcd->egrbufs.rcvtids)
453 goto bail;
454 rcd->egrbufs.size = eager_buffer_size;
455 /*
456 * The size of the buffers programmed into the RcvArray
457 * entries needs to be big enough to handle the highest
458 * MTU supported.
459 */
460 if (rcd->egrbufs.size < hfi1_max_mtu) {
461 rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
462 hfi1_cdbg(PROC,
463 "ctxt%u: eager bufs size too small. Adjusting to %zu\n",
464 rcd->ctxt, rcd->egrbufs.size);
465 }
466 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
467
468 /* Applicable only for statically created kernel contexts */
469 if (ctxt < dd->first_dyn_alloc_ctxt) {
470 rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
471 GFP_KERNEL, numa);
472 if (!rcd->opstats)
473 goto bail;
474 }
475
476 *context = rcd;
477 return 0;
478 }
479
480 bail:
481 *context = NULL;
482 hfi1_free_ctxt(rcd);
483 return -ENOMEM;
484 }
485
486 /**
487 * hfi1_free_ctxt
488 * @rcd: pointer to an initialized rcd data structure
489 *
490 * This wrapper is the free function that matches hfi1_create_ctxtdata().
491 * When a context is done being used (kernel or user), this function is called
492 * for the "final" put to match the kref init from hf1i_create_ctxtdata().
493 * Other users of the context do a get/put sequence to make sure that the
494 * structure isn't removed while in use.
495 */
hfi1_free_ctxt(struct hfi1_ctxtdata * rcd)496 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
497 {
498 hfi1_rcd_put(rcd);
499 }
500
501 /*
502 * Convert a receive header entry size that to the encoding used in the CSR.
503 *
504 * Return a zero if the given size is invalid.
505 */
encode_rcv_header_entry_size(u16 size)506 static inline u64 encode_rcv_header_entry_size(u16 size)
507 {
508 /* there are only 3 valid receive header entry sizes */
509 if (size == 2)
510 return 1;
511 if (size == 16)
512 return 2;
513 else if (size == 32)
514 return 4;
515 return 0; /* invalid */
516 }
517
518 /*
519 * Select the largest ccti value over all SLs to determine the intra-
520 * packet gap for the link.
521 *
522 * called with cca_timer_lock held (to protect access to cca_timer
523 * array), and rcu_read_lock() (to protect access to cc_state).
524 */
set_link_ipg(struct hfi1_pportdata * ppd)525 void set_link_ipg(struct hfi1_pportdata *ppd)
526 {
527 struct hfi1_devdata *dd = ppd->dd;
528 struct cc_state *cc_state;
529 int i;
530 u16 cce, ccti_limit, max_ccti = 0;
531 u16 shift, mult;
532 u64 src;
533 u32 current_egress_rate; /* Mbits /sec */
534 u32 max_pkt_time;
535 /*
536 * max_pkt_time is the maximum packet egress time in units
537 * of the fabric clock period 1/(805 MHz).
538 */
539
540 cc_state = get_cc_state(ppd);
541
542 if (!cc_state)
543 /*
544 * This should _never_ happen - rcu_read_lock() is held,
545 * and set_link_ipg() should not be called if cc_state
546 * is NULL.
547 */
548 return;
549
550 for (i = 0; i < OPA_MAX_SLS; i++) {
551 u16 ccti = ppd->cca_timer[i].ccti;
552
553 if (ccti > max_ccti)
554 max_ccti = ccti;
555 }
556
557 ccti_limit = cc_state->cct.ccti_limit;
558 if (max_ccti > ccti_limit)
559 max_ccti = ccti_limit;
560
561 cce = cc_state->cct.entries[max_ccti].entry;
562 shift = (cce & 0xc000) >> 14;
563 mult = (cce & 0x3fff);
564
565 current_egress_rate = active_egress_rate(ppd);
566
567 max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
568
569 src = (max_pkt_time >> shift) * mult;
570
571 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
572 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
573
574 write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
575 }
576
cca_timer_fn(struct hrtimer * t)577 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
578 {
579 struct cca_timer *cca_timer;
580 struct hfi1_pportdata *ppd;
581 int sl;
582 u16 ccti_timer, ccti_min;
583 struct cc_state *cc_state;
584 unsigned long flags;
585 enum hrtimer_restart ret = HRTIMER_NORESTART;
586
587 cca_timer = container_of(t, struct cca_timer, hrtimer);
588 ppd = cca_timer->ppd;
589 sl = cca_timer->sl;
590
591 rcu_read_lock();
592
593 cc_state = get_cc_state(ppd);
594
595 if (!cc_state) {
596 rcu_read_unlock();
597 return HRTIMER_NORESTART;
598 }
599
600 /*
601 * 1) decrement ccti for SL
602 * 2) calculate IPG for link (set_link_ipg())
603 * 3) restart timer, unless ccti is at min value
604 */
605
606 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
607 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
608
609 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
610
611 if (cca_timer->ccti > ccti_min) {
612 cca_timer->ccti--;
613 set_link_ipg(ppd);
614 }
615
616 if (cca_timer->ccti > ccti_min) {
617 unsigned long nsec = 1024 * ccti_timer;
618 /* ccti_timer is in units of 1.024 usec */
619 hrtimer_forward_now(t, ns_to_ktime(nsec));
620 ret = HRTIMER_RESTART;
621 }
622
623 spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
624 rcu_read_unlock();
625 return ret;
626 }
627
628 /*
629 * Common code for initializing the physical port structure.
630 */
hfi1_init_pportdata(struct pci_dev * pdev,struct hfi1_pportdata * ppd,struct hfi1_devdata * dd,u8 hw_pidx,u8 port)631 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
632 struct hfi1_devdata *dd, u8 hw_pidx, u8 port)
633 {
634 int i;
635 uint default_pkey_idx;
636 struct cc_state *cc_state;
637
638 ppd->dd = dd;
639 ppd->hw_pidx = hw_pidx;
640 ppd->port = port; /* IB port number, not index */
641 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
642 /*
643 * There are C_VL_COUNT number of PortVLXmitWait counters.
644 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
645 */
646 for (i = 0; i < C_VL_COUNT + 1; i++) {
647 ppd->port_vl_xmit_wait_last[i] = 0;
648 ppd->vl_xmit_flit_cnt[i] = 0;
649 }
650
651 default_pkey_idx = 1;
652
653 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
654 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
655
656 if (loopback) {
657 hfi1_early_err(&pdev->dev,
658 "Faking data partition 0x8001 in idx %u\n",
659 !default_pkey_idx);
660 ppd->pkeys[!default_pkey_idx] = 0x8001;
661 }
662
663 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
664 INIT_WORK(&ppd->link_up_work, handle_link_up);
665 INIT_WORK(&ppd->link_down_work, handle_link_down);
666 INIT_WORK(&ppd->freeze_work, handle_freeze);
667 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
668 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
669 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
670 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
671 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
672 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
673
674 mutex_init(&ppd->hls_lock);
675 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
676
677 ppd->qsfp_info.ppd = ppd;
678 ppd->sm_trap_qp = 0x0;
679 ppd->sa_qp = 0x1;
680
681 ppd->hfi1_wq = NULL;
682
683 spin_lock_init(&ppd->cca_timer_lock);
684
685 for (i = 0; i < OPA_MAX_SLS; i++) {
686 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
687 HRTIMER_MODE_REL);
688 ppd->cca_timer[i].ppd = ppd;
689 ppd->cca_timer[i].sl = i;
690 ppd->cca_timer[i].ccti = 0;
691 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
692 }
693
694 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
695
696 spin_lock_init(&ppd->cc_state_lock);
697 spin_lock_init(&ppd->cc_log_lock);
698 cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
699 RCU_INIT_POINTER(ppd->cc_state, cc_state);
700 if (!cc_state)
701 goto bail;
702 return;
703
704 bail:
705
706 hfi1_early_err(&pdev->dev,
707 "Congestion Control Agent disabled for port %d\n", port);
708 }
709
710 /*
711 * Do initialization for device that is only needed on
712 * first detect, not on resets.
713 */
loadtime_init(struct hfi1_devdata * dd)714 static int loadtime_init(struct hfi1_devdata *dd)
715 {
716 return 0;
717 }
718
719 /**
720 * init_after_reset - re-initialize after a reset
721 * @dd: the hfi1_ib device
722 *
723 * sanity check at least some of the values after reset, and
724 * ensure no receive or transmit (explicitly, in case reset
725 * failed
726 */
init_after_reset(struct hfi1_devdata * dd)727 static int init_after_reset(struct hfi1_devdata *dd)
728 {
729 int i;
730 struct hfi1_ctxtdata *rcd;
731 /*
732 * Ensure chip does no sends or receives, tail updates, or
733 * pioavail updates while we re-initialize. This is mostly
734 * for the driver data structures, not chip registers.
735 */
736 for (i = 0; i < dd->num_rcv_contexts; i++) {
737 rcd = hfi1_rcd_get_by_index(dd, i);
738 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
739 HFI1_RCVCTRL_INTRAVAIL_DIS |
740 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
741 hfi1_rcd_put(rcd);
742 }
743 pio_send_control(dd, PSC_GLOBAL_DISABLE);
744 for (i = 0; i < dd->num_send_contexts; i++)
745 sc_disable(dd->send_contexts[i].sc);
746
747 return 0;
748 }
749
enable_chip(struct hfi1_devdata * dd)750 static void enable_chip(struct hfi1_devdata *dd)
751 {
752 struct hfi1_ctxtdata *rcd;
753 u32 rcvmask;
754 u16 i;
755
756 /* enable PIO send */
757 pio_send_control(dd, PSC_GLOBAL_ENABLE);
758
759 /*
760 * Enable kernel ctxts' receive and receive interrupt.
761 * Other ctxts done as user opens and initializes them.
762 */
763 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
764 rcd = hfi1_rcd_get_by_index(dd, i);
765 if (!rcd)
766 continue;
767 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
768 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
769 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
770 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
771 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
772 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
773 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
774 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
775 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
776 hfi1_rcvctrl(dd, rcvmask, rcd);
777 sc_enable(rcd->sc);
778 hfi1_rcd_put(rcd);
779 }
780 }
781
782 /**
783 * create_workqueues - create per port workqueues
784 * @dd: the hfi1_ib device
785 */
create_workqueues(struct hfi1_devdata * dd)786 static int create_workqueues(struct hfi1_devdata *dd)
787 {
788 int pidx;
789 struct hfi1_pportdata *ppd;
790
791 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
792 ppd = dd->pport + pidx;
793 if (!ppd->hfi1_wq) {
794 ppd->hfi1_wq =
795 alloc_workqueue(
796 "hfi%d_%d",
797 WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE,
798 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
799 dd->unit, pidx);
800 if (!ppd->hfi1_wq)
801 goto wq_error;
802 }
803 if (!ppd->link_wq) {
804 /*
805 * Make the link workqueue single-threaded to enforce
806 * serialization.
807 */
808 ppd->link_wq =
809 alloc_workqueue(
810 "hfi_link_%d_%d",
811 WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
812 1, /* max_active */
813 dd->unit, pidx);
814 if (!ppd->link_wq)
815 goto wq_error;
816 }
817 }
818 return 0;
819 wq_error:
820 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
821 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
822 ppd = dd->pport + pidx;
823 if (ppd->hfi1_wq) {
824 destroy_workqueue(ppd->hfi1_wq);
825 ppd->hfi1_wq = NULL;
826 }
827 if (ppd->link_wq) {
828 destroy_workqueue(ppd->link_wq);
829 ppd->link_wq = NULL;
830 }
831 }
832 return -ENOMEM;
833 }
834
835 /**
836 * hfi1_init - do the actual initialization sequence on the chip
837 * @dd: the hfi1_ib device
838 * @reinit: re-initializing, so don't allocate new memory
839 *
840 * Do the actual initialization sequence on the chip. This is done
841 * both from the init routine called from the PCI infrastructure, and
842 * when we reset the chip, or detect that it was reset internally,
843 * or it's administratively re-enabled.
844 *
845 * Memory allocation here and in called routines is only done in
846 * the first case (reinit == 0). We have to be careful, because even
847 * without memory allocation, we need to re-write all the chip registers
848 * TIDs, etc. after the reset or enable has completed.
849 */
hfi1_init(struct hfi1_devdata * dd,int reinit)850 int hfi1_init(struct hfi1_devdata *dd, int reinit)
851 {
852 int ret = 0, pidx, lastfail = 0;
853 unsigned long len;
854 u16 i;
855 struct hfi1_ctxtdata *rcd;
856 struct hfi1_pportdata *ppd;
857
858 /* Set up send low level handlers */
859 dd->process_pio_send = hfi1_verbs_send_pio;
860 dd->process_dma_send = hfi1_verbs_send_dma;
861 dd->pio_inline_send = pio_copy;
862 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
863
864 if (is_ax(dd)) {
865 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
866 dd->do_drop = 1;
867 } else {
868 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
869 dd->do_drop = 0;
870 }
871
872 /* make sure the link is not "up" */
873 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
874 ppd = dd->pport + pidx;
875 ppd->linkup = 0;
876 }
877
878 if (reinit)
879 ret = init_after_reset(dd);
880 else
881 ret = loadtime_init(dd);
882 if (ret)
883 goto done;
884
885 /* allocate dummy tail memory for all receive contexts */
886 dd->rcvhdrtail_dummy_kvaddr = dma_zalloc_coherent(
887 &dd->pcidev->dev, sizeof(u64),
888 &dd->rcvhdrtail_dummy_dma,
889 GFP_KERNEL);
890
891 if (!dd->rcvhdrtail_dummy_kvaddr) {
892 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
893 ret = -ENOMEM;
894 goto done;
895 }
896
897 /* dd->rcd can be NULL if early initialization failed */
898 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
899 /*
900 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
901 * re-init, the simplest way to handle this is to free
902 * existing, and re-allocate.
903 * Need to re-create rest of ctxt 0 ctxtdata as well.
904 */
905 rcd = hfi1_rcd_get_by_index(dd, i);
906 if (!rcd)
907 continue;
908
909 rcd->do_interrupt = &handle_receive_interrupt;
910
911 lastfail = hfi1_create_rcvhdrq(dd, rcd);
912 if (!lastfail)
913 lastfail = hfi1_setup_eagerbufs(rcd);
914 if (lastfail) {
915 dd_dev_err(dd,
916 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
917 ret = lastfail;
918 }
919 hfi1_rcd_put(rcd);
920 }
921
922 /* Allocate enough memory for user event notification. */
923 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
924 sizeof(*dd->events));
925 dd->events = vmalloc_user(len);
926 if (!dd->events)
927 dd_dev_err(dd, "Failed to allocate user events page\n");
928 /*
929 * Allocate a page for device and port status.
930 * Page will be shared amongst all user processes.
931 */
932 dd->status = vmalloc_user(PAGE_SIZE);
933 if (!dd->status)
934 dd_dev_err(dd, "Failed to allocate dev status page\n");
935 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
936 ppd = dd->pport + pidx;
937 if (dd->status)
938 /* Currently, we only have one port */
939 ppd->statusp = &dd->status->port;
940
941 set_mtu(ppd);
942 }
943
944 /* enable chip even if we have an error, so we can debug cause */
945 enable_chip(dd);
946
947 done:
948 /*
949 * Set status even if port serdes is not initialized
950 * so that diags will work.
951 */
952 if (dd->status)
953 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
954 HFI1_STATUS_INITTED;
955 if (!ret) {
956 /* enable all interrupts from the chip */
957 set_intr_state(dd, 1);
958
959 /* chip is OK for user apps; mark it as initialized */
960 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
961 ppd = dd->pport + pidx;
962
963 /*
964 * start the serdes - must be after interrupts are
965 * enabled so we are notified when the link goes up
966 */
967 lastfail = bringup_serdes(ppd);
968 if (lastfail)
969 dd_dev_info(dd,
970 "Failed to bring up port %u\n",
971 ppd->port);
972
973 /*
974 * Set status even if port serdes is not initialized
975 * so that diags will work.
976 */
977 if (ppd->statusp)
978 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
979 HFI1_STATUS_INITTED;
980 if (!ppd->link_speed_enabled)
981 continue;
982 }
983 }
984
985 /* if ret is non-zero, we probably should do some cleanup here... */
986 return ret;
987 }
988
__hfi1_lookup(int unit)989 static inline struct hfi1_devdata *__hfi1_lookup(int unit)
990 {
991 return idr_find(&hfi1_unit_table, unit);
992 }
993
hfi1_lookup(int unit)994 struct hfi1_devdata *hfi1_lookup(int unit)
995 {
996 struct hfi1_devdata *dd;
997 unsigned long flags;
998
999 spin_lock_irqsave(&hfi1_devs_lock, flags);
1000 dd = __hfi1_lookup(unit);
1001 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1002
1003 return dd;
1004 }
1005
1006 /*
1007 * Stop the timers during unit shutdown, or after an error late
1008 * in initialization.
1009 */
stop_timers(struct hfi1_devdata * dd)1010 static void stop_timers(struct hfi1_devdata *dd)
1011 {
1012 struct hfi1_pportdata *ppd;
1013 int pidx;
1014
1015 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016 ppd = dd->pport + pidx;
1017 if (ppd->led_override_timer.function) {
1018 del_timer_sync(&ppd->led_override_timer);
1019 atomic_set(&ppd->led_override_timer_active, 0);
1020 }
1021 }
1022 }
1023
1024 /**
1025 * shutdown_device - shut down a device
1026 * @dd: the hfi1_ib device
1027 *
1028 * This is called to make the device quiet when we are about to
1029 * unload the driver, and also when the device is administratively
1030 * disabled. It does not free any data structures.
1031 * Everything it does has to be setup again by hfi1_init(dd, 1)
1032 */
shutdown_device(struct hfi1_devdata * dd)1033 static void shutdown_device(struct hfi1_devdata *dd)
1034 {
1035 struct hfi1_pportdata *ppd;
1036 struct hfi1_ctxtdata *rcd;
1037 unsigned pidx;
1038 int i;
1039
1040 if (dd->flags & HFI1_SHUTDOWN)
1041 return;
1042 dd->flags |= HFI1_SHUTDOWN;
1043
1044 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1045 ppd = dd->pport + pidx;
1046
1047 ppd->linkup = 0;
1048 if (ppd->statusp)
1049 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1050 HFI1_STATUS_IB_READY);
1051 }
1052 dd->flags &= ~HFI1_INITTED;
1053
1054 /* mask and clean up interrupts, but not errors */
1055 set_intr_state(dd, 0);
1056 hfi1_clean_up_interrupts(dd);
1057
1058 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1059 ppd = dd->pport + pidx;
1060 for (i = 0; i < dd->num_rcv_contexts; i++) {
1061 rcd = hfi1_rcd_get_by_index(dd, i);
1062 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1063 HFI1_RCVCTRL_CTXT_DIS |
1064 HFI1_RCVCTRL_INTRAVAIL_DIS |
1065 HFI1_RCVCTRL_PKEY_DIS |
1066 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1067 hfi1_rcd_put(rcd);
1068 }
1069 /*
1070 * Gracefully stop all sends allowing any in progress to
1071 * trickle out first.
1072 */
1073 for (i = 0; i < dd->num_send_contexts; i++)
1074 sc_flush(dd->send_contexts[i].sc);
1075 }
1076
1077 /*
1078 * Enough for anything that's going to trickle out to have actually
1079 * done so.
1080 */
1081 udelay(20);
1082
1083 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1084 ppd = dd->pport + pidx;
1085
1086 /* disable all contexts */
1087 for (i = 0; i < dd->num_send_contexts; i++)
1088 sc_disable(dd->send_contexts[i].sc);
1089 /* disable the send device */
1090 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1091
1092 shutdown_led_override(ppd);
1093
1094 /*
1095 * Clear SerdesEnable.
1096 * We can't count on interrupts since we are stopping.
1097 */
1098 hfi1_quiet_serdes(ppd);
1099
1100 if (ppd->hfi1_wq) {
1101 destroy_workqueue(ppd->hfi1_wq);
1102 ppd->hfi1_wq = NULL;
1103 }
1104 if (ppd->link_wq) {
1105 destroy_workqueue(ppd->link_wq);
1106 ppd->link_wq = NULL;
1107 }
1108 }
1109 sdma_exit(dd);
1110 }
1111
1112 /**
1113 * hfi1_free_ctxtdata - free a context's allocated data
1114 * @dd: the hfi1_ib device
1115 * @rcd: the ctxtdata structure
1116 *
1117 * free up any allocated data for a context
1118 * It should never change any chip state, or global driver state.
1119 */
hfi1_free_ctxtdata(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1120 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1121 {
1122 u32 e;
1123
1124 if (!rcd)
1125 return;
1126
1127 if (rcd->rcvhdrq) {
1128 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1129 rcd->rcvhdrq, rcd->rcvhdrq_dma);
1130 rcd->rcvhdrq = NULL;
1131 if (rcd->rcvhdrtail_kvaddr) {
1132 dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1133 (void *)rcd->rcvhdrtail_kvaddr,
1134 rcd->rcvhdrqtailaddr_dma);
1135 rcd->rcvhdrtail_kvaddr = NULL;
1136 }
1137 }
1138
1139 /* all the RcvArray entries should have been cleared by now */
1140 kfree(rcd->egrbufs.rcvtids);
1141 rcd->egrbufs.rcvtids = NULL;
1142
1143 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1144 if (rcd->egrbufs.buffers[e].dma)
1145 dma_free_coherent(&dd->pcidev->dev,
1146 rcd->egrbufs.buffers[e].len,
1147 rcd->egrbufs.buffers[e].addr,
1148 rcd->egrbufs.buffers[e].dma);
1149 }
1150 kfree(rcd->egrbufs.buffers);
1151 rcd->egrbufs.alloced = 0;
1152 rcd->egrbufs.buffers = NULL;
1153
1154 sc_free(rcd->sc);
1155 rcd->sc = NULL;
1156
1157 vfree(rcd->subctxt_uregbase);
1158 vfree(rcd->subctxt_rcvegrbuf);
1159 vfree(rcd->subctxt_rcvhdr_base);
1160 kfree(rcd->opstats);
1161
1162 rcd->subctxt_uregbase = NULL;
1163 rcd->subctxt_rcvegrbuf = NULL;
1164 rcd->subctxt_rcvhdr_base = NULL;
1165 rcd->opstats = NULL;
1166 }
1167
1168 /*
1169 * Release our hold on the shared asic data. If we are the last one,
1170 * return the structure to be finalized outside the lock. Must be
1171 * holding hfi1_devs_lock.
1172 */
release_asic_data(struct hfi1_devdata * dd)1173 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1174 {
1175 struct hfi1_asic_data *ad;
1176 int other;
1177
1178 if (!dd->asic_data)
1179 return NULL;
1180 dd->asic_data->dds[dd->hfi1_id] = NULL;
1181 other = dd->hfi1_id ? 0 : 1;
1182 ad = dd->asic_data;
1183 dd->asic_data = NULL;
1184 /* return NULL if the other dd still has a link */
1185 return ad->dds[other] ? NULL : ad;
1186 }
1187
finalize_asic_data(struct hfi1_devdata * dd,struct hfi1_asic_data * ad)1188 static void finalize_asic_data(struct hfi1_devdata *dd,
1189 struct hfi1_asic_data *ad)
1190 {
1191 clean_up_i2c(dd, ad);
1192 kfree(ad);
1193 }
1194
1195 /**
1196 * hfi1_clean_devdata - cleans up per-unit data structure
1197 * @dd: pointer to a valid devdata structure
1198 *
1199 * It cleans up all data structures set up by
1200 * by hfi1_alloc_devdata().
1201 */
hfi1_clean_devdata(struct hfi1_devdata * dd)1202 static void hfi1_clean_devdata(struct hfi1_devdata *dd)
1203 {
1204 struct hfi1_asic_data *ad;
1205 unsigned long flags;
1206
1207 spin_lock_irqsave(&hfi1_devs_lock, flags);
1208 if (!list_empty(&dd->list)) {
1209 idr_remove(&hfi1_unit_table, dd->unit);
1210 list_del_init(&dd->list);
1211 }
1212 ad = release_asic_data(dd);
1213 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1214
1215 finalize_asic_data(dd, ad);
1216 free_platform_config(dd);
1217 rcu_barrier(); /* wait for rcu callbacks to complete */
1218 free_percpu(dd->int_counter);
1219 free_percpu(dd->rcv_limit);
1220 free_percpu(dd->send_schedule);
1221 free_percpu(dd->tx_opstats);
1222 dd->int_counter = NULL;
1223 dd->rcv_limit = NULL;
1224 dd->send_schedule = NULL;
1225 dd->tx_opstats = NULL;
1226 kfree(dd->comp_vect);
1227 dd->comp_vect = NULL;
1228 sdma_clean(dd, dd->num_sdma);
1229 rvt_dealloc_device(&dd->verbs_dev.rdi);
1230 }
1231
__hfi1_free_devdata(struct kobject * kobj)1232 static void __hfi1_free_devdata(struct kobject *kobj)
1233 {
1234 struct hfi1_devdata *dd =
1235 container_of(kobj, struct hfi1_devdata, kobj);
1236
1237 hfi1_clean_devdata(dd);
1238 }
1239
1240 static struct kobj_type hfi1_devdata_type = {
1241 .release = __hfi1_free_devdata,
1242 };
1243
hfi1_free_devdata(struct hfi1_devdata * dd)1244 void hfi1_free_devdata(struct hfi1_devdata *dd)
1245 {
1246 kobject_put(&dd->kobj);
1247 }
1248
1249 /*
1250 * Allocate our primary per-unit data structure. Must be done via verbs
1251 * allocator, because the verbs cleanup process both does cleanup and
1252 * free of the data structure.
1253 * "extra" is for chip-specific data.
1254 *
1255 * Use the idr mechanism to get a unit number for this unit.
1256 */
hfi1_alloc_devdata(struct pci_dev * pdev,size_t extra)1257 struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev, size_t extra)
1258 {
1259 unsigned long flags;
1260 struct hfi1_devdata *dd;
1261 int ret, nports;
1262
1263 /* extra is * number of ports */
1264 nports = extra / sizeof(struct hfi1_pportdata);
1265
1266 dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1267 nports);
1268 if (!dd)
1269 return ERR_PTR(-ENOMEM);
1270 dd->num_pports = nports;
1271 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1272 dd->pcidev = pdev;
1273 pci_set_drvdata(pdev, dd);
1274
1275 INIT_LIST_HEAD(&dd->list);
1276 idr_preload(GFP_KERNEL);
1277 spin_lock_irqsave(&hfi1_devs_lock, flags);
1278
1279 ret = idr_alloc(&hfi1_unit_table, dd, 0, 0, GFP_NOWAIT);
1280 if (ret >= 0) {
1281 dd->unit = ret;
1282 list_add(&dd->list, &hfi1_dev_list);
1283 }
1284 dd->node = -1;
1285
1286 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
1287 idr_preload_end();
1288
1289 if (ret < 0) {
1290 hfi1_early_err(&pdev->dev,
1291 "Could not allocate unit ID: error %d\n", -ret);
1292 goto bail;
1293 }
1294 rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1295
1296 /*
1297 * Initialize all locks for the device. This needs to be as early as
1298 * possible so locks are usable.
1299 */
1300 spin_lock_init(&dd->sc_lock);
1301 spin_lock_init(&dd->sendctrl_lock);
1302 spin_lock_init(&dd->rcvctrl_lock);
1303 spin_lock_init(&dd->uctxt_lock);
1304 spin_lock_init(&dd->hfi1_diag_trans_lock);
1305 spin_lock_init(&dd->sc_init_lock);
1306 spin_lock_init(&dd->dc8051_memlock);
1307 seqlock_init(&dd->sc2vl_lock);
1308 spin_lock_init(&dd->sde_map_lock);
1309 spin_lock_init(&dd->pio_map_lock);
1310 mutex_init(&dd->dc8051_lock);
1311 init_waitqueue_head(&dd->event_queue);
1312
1313 dd->int_counter = alloc_percpu(u64);
1314 if (!dd->int_counter) {
1315 ret = -ENOMEM;
1316 goto bail;
1317 }
1318
1319 dd->rcv_limit = alloc_percpu(u64);
1320 if (!dd->rcv_limit) {
1321 ret = -ENOMEM;
1322 goto bail;
1323 }
1324
1325 dd->send_schedule = alloc_percpu(u64);
1326 if (!dd->send_schedule) {
1327 ret = -ENOMEM;
1328 goto bail;
1329 }
1330
1331 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1332 if (!dd->tx_opstats) {
1333 ret = -ENOMEM;
1334 goto bail;
1335 }
1336
1337 dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1338 if (!dd->comp_vect) {
1339 ret = -ENOMEM;
1340 goto bail;
1341 }
1342
1343 kobject_init(&dd->kobj, &hfi1_devdata_type);
1344 return dd;
1345
1346 bail:
1347 hfi1_clean_devdata(dd);
1348 return ERR_PTR(ret);
1349 }
1350
1351 /*
1352 * Called from freeze mode handlers, and from PCI error
1353 * reporting code. Should be paranoid about state of
1354 * system and data structures.
1355 */
hfi1_disable_after_error(struct hfi1_devdata * dd)1356 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1357 {
1358 if (dd->flags & HFI1_INITTED) {
1359 u32 pidx;
1360
1361 dd->flags &= ~HFI1_INITTED;
1362 if (dd->pport)
1363 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1364 struct hfi1_pportdata *ppd;
1365
1366 ppd = dd->pport + pidx;
1367 if (dd->flags & HFI1_PRESENT)
1368 set_link_state(ppd, HLS_DN_DISABLE);
1369
1370 if (ppd->statusp)
1371 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1372 }
1373 }
1374
1375 /*
1376 * Mark as having had an error for driver, and also
1377 * for /sys and status word mapped to user programs.
1378 * This marks unit as not usable, until reset.
1379 */
1380 if (dd->status)
1381 dd->status->dev |= HFI1_STATUS_HWERROR;
1382 }
1383
1384 static void remove_one(struct pci_dev *);
1385 static int init_one(struct pci_dev *, const struct pci_device_id *);
1386 static void shutdown_one(struct pci_dev *);
1387
1388 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1389 #define PFX DRIVER_NAME ": "
1390
1391 const struct pci_device_id hfi1_pci_tbl[] = {
1392 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1393 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1394 { 0, }
1395 };
1396
1397 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1398
1399 static struct pci_driver hfi1_pci_driver = {
1400 .name = DRIVER_NAME,
1401 .probe = init_one,
1402 .remove = remove_one,
1403 .shutdown = shutdown_one,
1404 .id_table = hfi1_pci_tbl,
1405 .err_handler = &hfi1_pci_err_handler,
1406 };
1407
compute_krcvqs(void)1408 static void __init compute_krcvqs(void)
1409 {
1410 int i;
1411
1412 for (i = 0; i < krcvqsset; i++)
1413 n_krcvqs += krcvqs[i];
1414 }
1415
1416 /*
1417 * Do all the generic driver unit- and chip-independent memory
1418 * allocation and initialization.
1419 */
hfi1_mod_init(void)1420 static int __init hfi1_mod_init(void)
1421 {
1422 int ret;
1423
1424 ret = dev_init();
1425 if (ret)
1426 goto bail;
1427
1428 ret = node_affinity_init();
1429 if (ret)
1430 goto bail;
1431
1432 /* validate max MTU before any devices start */
1433 if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1434 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1435 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1436 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1437 }
1438 /* valid CUs run from 1-128 in powers of 2 */
1439 if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1440 hfi1_cu = 1;
1441 /* valid credit return threshold is 0-100, variable is unsigned */
1442 if (user_credit_return_threshold > 100)
1443 user_credit_return_threshold = 100;
1444
1445 compute_krcvqs();
1446 /*
1447 * sanitize receive interrupt count, time must wait until after
1448 * the hardware type is known
1449 */
1450 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1451 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1452 /* reject invalid combinations */
1453 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1454 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1455 rcv_intr_count = 1;
1456 }
1457 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1458 /*
1459 * Avoid indefinite packet delivery by requiring a timeout
1460 * if count is > 1.
1461 */
1462 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1463 rcv_intr_timeout = 1;
1464 }
1465 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1466 /*
1467 * The dynamic algorithm expects a non-zero timeout
1468 * and a count > 1.
1469 */
1470 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1471 rcv_intr_dynamic = 0;
1472 }
1473
1474 /* sanitize link CRC options */
1475 link_crc_mask &= SUPPORTED_CRCS;
1476
1477 /*
1478 * These must be called before the driver is registered with
1479 * the PCI subsystem.
1480 */
1481 idr_init(&hfi1_unit_table);
1482
1483 hfi1_dbg_init();
1484 ret = hfi1_wss_init();
1485 if (ret < 0)
1486 goto bail_wss;
1487 ret = pci_register_driver(&hfi1_pci_driver);
1488 if (ret < 0) {
1489 pr_err("Unable to register driver: error %d\n", -ret);
1490 goto bail_dev;
1491 }
1492 goto bail; /* all OK */
1493
1494 bail_dev:
1495 hfi1_wss_exit();
1496 bail_wss:
1497 hfi1_dbg_exit();
1498 idr_destroy(&hfi1_unit_table);
1499 dev_cleanup();
1500 bail:
1501 return ret;
1502 }
1503
1504 module_init(hfi1_mod_init);
1505
1506 /*
1507 * Do the non-unit driver cleanup, memory free, etc. at unload.
1508 */
hfi1_mod_cleanup(void)1509 static void __exit hfi1_mod_cleanup(void)
1510 {
1511 pci_unregister_driver(&hfi1_pci_driver);
1512 node_affinity_destroy_all();
1513 hfi1_wss_exit();
1514 hfi1_dbg_exit();
1515
1516 idr_destroy(&hfi1_unit_table);
1517 dispose_firmware(); /* asymmetric with obtain_firmware() */
1518 dev_cleanup();
1519 }
1520
1521 module_exit(hfi1_mod_cleanup);
1522
1523 /* this can only be called after a successful initialization */
cleanup_device_data(struct hfi1_devdata * dd)1524 static void cleanup_device_data(struct hfi1_devdata *dd)
1525 {
1526 int ctxt;
1527 int pidx;
1528
1529 /* users can't do anything more with chip */
1530 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1531 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1532 struct cc_state *cc_state;
1533 int i;
1534
1535 if (ppd->statusp)
1536 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1537
1538 for (i = 0; i < OPA_MAX_SLS; i++)
1539 hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1540
1541 spin_lock(&ppd->cc_state_lock);
1542 cc_state = get_cc_state_protected(ppd);
1543 RCU_INIT_POINTER(ppd->cc_state, NULL);
1544 spin_unlock(&ppd->cc_state_lock);
1545
1546 if (cc_state)
1547 kfree_rcu(cc_state, rcu);
1548 }
1549
1550 free_credit_return(dd);
1551
1552 if (dd->rcvhdrtail_dummy_kvaddr) {
1553 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1554 (void *)dd->rcvhdrtail_dummy_kvaddr,
1555 dd->rcvhdrtail_dummy_dma);
1556 dd->rcvhdrtail_dummy_kvaddr = NULL;
1557 }
1558
1559 /*
1560 * Free any resources still in use (usually just kernel contexts)
1561 * at unload; we do for ctxtcnt, because that's what we allocate.
1562 */
1563 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1564 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1565
1566 if (rcd) {
1567 hfi1_clear_tids(rcd);
1568 hfi1_free_ctxt(rcd);
1569 }
1570 }
1571
1572 kfree(dd->rcd);
1573 dd->rcd = NULL;
1574
1575 free_pio_map(dd);
1576 /* must follow rcv context free - need to remove rcv's hooks */
1577 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1578 sc_free(dd->send_contexts[ctxt].sc);
1579 dd->num_send_contexts = 0;
1580 kfree(dd->send_contexts);
1581 dd->send_contexts = NULL;
1582 kfree(dd->hw_to_sw);
1583 dd->hw_to_sw = NULL;
1584 kfree(dd->boardname);
1585 vfree(dd->events);
1586 vfree(dd->status);
1587 }
1588
1589 /*
1590 * Clean up on unit shutdown, or error during unit load after
1591 * successful initialization.
1592 */
postinit_cleanup(struct hfi1_devdata * dd)1593 static void postinit_cleanup(struct hfi1_devdata *dd)
1594 {
1595 hfi1_start_cleanup(dd);
1596 hfi1_comp_vectors_clean_up(dd);
1597 hfi1_dev_affinity_clean_up(dd);
1598
1599 hfi1_pcie_ddcleanup(dd);
1600 hfi1_pcie_cleanup(dd->pcidev);
1601
1602 cleanup_device_data(dd);
1603
1604 hfi1_free_devdata(dd);
1605 }
1606
init_validate_rcvhdrcnt(struct device * dev,uint thecnt)1607 static int init_validate_rcvhdrcnt(struct device *dev, uint thecnt)
1608 {
1609 if (thecnt <= HFI1_MIN_HDRQ_EGRBUF_CNT) {
1610 hfi1_early_err(dev, "Receive header queue count too small\n");
1611 return -EINVAL;
1612 }
1613
1614 if (thecnt > HFI1_MAX_HDRQ_EGRBUF_CNT) {
1615 hfi1_early_err(dev,
1616 "Receive header queue count cannot be greater than %u\n",
1617 HFI1_MAX_HDRQ_EGRBUF_CNT);
1618 return -EINVAL;
1619 }
1620
1621 if (thecnt % HDRQ_INCREMENT) {
1622 hfi1_early_err(dev, "Receive header queue count %d must be divisible by %lu\n",
1623 thecnt, HDRQ_INCREMENT);
1624 return -EINVAL;
1625 }
1626
1627 return 0;
1628 }
1629
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)1630 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1631 {
1632 int ret = 0, j, pidx, initfail;
1633 struct hfi1_devdata *dd;
1634 struct hfi1_pportdata *ppd;
1635
1636 /* First, lock the non-writable module parameters */
1637 HFI1_CAP_LOCK();
1638
1639 /* Validate dev ids */
1640 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1641 ent->device == PCI_DEVICE_ID_INTEL1)) {
1642 hfi1_early_err(&pdev->dev,
1643 "Failing on unknown Intel deviceid 0x%x\n",
1644 ent->device);
1645 ret = -ENODEV;
1646 goto bail;
1647 }
1648
1649 /* Validate some global module parameters */
1650 ret = init_validate_rcvhdrcnt(&pdev->dev, rcvhdrcnt);
1651 if (ret)
1652 goto bail;
1653
1654 /* use the encoding function as a sanitization check */
1655 if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1656 hfi1_early_err(&pdev->dev, "Invalid HdrQ Entry size %u\n",
1657 hfi1_hdrq_entsize);
1658 ret = -EINVAL;
1659 goto bail;
1660 }
1661
1662 /* The receive eager buffer size must be set before the receive
1663 * contexts are created.
1664 *
1665 * Set the eager buffer size. Validate that it falls in a range
1666 * allowed by the hardware - all powers of 2 between the min and
1667 * max. The maximum valid MTU is within the eager buffer range
1668 * so we do not need to cap the max_mtu by an eager buffer size
1669 * setting.
1670 */
1671 if (eager_buffer_size) {
1672 if (!is_power_of_2(eager_buffer_size))
1673 eager_buffer_size =
1674 roundup_pow_of_two(eager_buffer_size);
1675 eager_buffer_size =
1676 clamp_val(eager_buffer_size,
1677 MIN_EAGER_BUFFER * 8,
1678 MAX_EAGER_BUFFER_TOTAL);
1679 hfi1_early_info(&pdev->dev, "Eager buffer size %u\n",
1680 eager_buffer_size);
1681 } else {
1682 hfi1_early_err(&pdev->dev, "Invalid Eager buffer size of 0\n");
1683 ret = -EINVAL;
1684 goto bail;
1685 }
1686
1687 /* restrict value of hfi1_rcvarr_split */
1688 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1689
1690 ret = hfi1_pcie_init(pdev, ent);
1691 if (ret)
1692 goto bail;
1693
1694 /*
1695 * Do device-specific initialization, function table setup, dd
1696 * allocation, etc.
1697 */
1698 dd = hfi1_init_dd(pdev, ent);
1699
1700 if (IS_ERR(dd)) {
1701 ret = PTR_ERR(dd);
1702 goto clean_bail; /* error already printed */
1703 }
1704
1705 ret = create_workqueues(dd);
1706 if (ret)
1707 goto clean_bail;
1708
1709 /* do the generic initialization */
1710 initfail = hfi1_init(dd, 0);
1711
1712 /* setup vnic */
1713 hfi1_vnic_setup(dd);
1714
1715 ret = hfi1_register_ib_device(dd);
1716
1717 /*
1718 * Now ready for use. this should be cleared whenever we
1719 * detect a reset, or initiate one. If earlier failure,
1720 * we still create devices, so diags, etc. can be used
1721 * to determine cause of problem.
1722 */
1723 if (!initfail && !ret) {
1724 dd->flags |= HFI1_INITTED;
1725 /* create debufs files after init and ib register */
1726 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1727 }
1728
1729 j = hfi1_device_create(dd);
1730 if (j)
1731 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1732
1733 if (initfail || ret) {
1734 hfi1_clean_up_interrupts(dd);
1735 stop_timers(dd);
1736 flush_workqueue(ib_wq);
1737 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1738 hfi1_quiet_serdes(dd->pport + pidx);
1739 ppd = dd->pport + pidx;
1740 if (ppd->hfi1_wq) {
1741 destroy_workqueue(ppd->hfi1_wq);
1742 ppd->hfi1_wq = NULL;
1743 }
1744 if (ppd->link_wq) {
1745 destroy_workqueue(ppd->link_wq);
1746 ppd->link_wq = NULL;
1747 }
1748 }
1749 if (!j)
1750 hfi1_device_remove(dd);
1751 if (!ret)
1752 hfi1_unregister_ib_device(dd);
1753 hfi1_vnic_cleanup(dd);
1754 postinit_cleanup(dd);
1755 if (initfail)
1756 ret = initfail;
1757 goto bail; /* everything already cleaned */
1758 }
1759
1760 sdma_start(dd);
1761
1762 return 0;
1763
1764 clean_bail:
1765 hfi1_pcie_cleanup(pdev);
1766 bail:
1767 return ret;
1768 }
1769
wait_for_clients(struct hfi1_devdata * dd)1770 static void wait_for_clients(struct hfi1_devdata *dd)
1771 {
1772 /*
1773 * Remove the device init value and complete the device if there is
1774 * no clients or wait for active clients to finish.
1775 */
1776 if (atomic_dec_and_test(&dd->user_refcount))
1777 complete(&dd->user_comp);
1778
1779 wait_for_completion(&dd->user_comp);
1780 }
1781
remove_one(struct pci_dev * pdev)1782 static void remove_one(struct pci_dev *pdev)
1783 {
1784 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1785
1786 /* close debugfs files before ib unregister */
1787 hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1788
1789 /* remove the /dev hfi1 interface */
1790 hfi1_device_remove(dd);
1791
1792 /* wait for existing user space clients to finish */
1793 wait_for_clients(dd);
1794
1795 /* unregister from IB core */
1796 hfi1_unregister_ib_device(dd);
1797
1798 /* cleanup vnic */
1799 hfi1_vnic_cleanup(dd);
1800
1801 /*
1802 * Disable the IB link, disable interrupts on the device,
1803 * clear dma engines, etc.
1804 */
1805 shutdown_device(dd);
1806
1807 stop_timers(dd);
1808
1809 /* wait until all of our (qsfp) queue_work() calls complete */
1810 flush_workqueue(ib_wq);
1811
1812 postinit_cleanup(dd);
1813 }
1814
shutdown_one(struct pci_dev * pdev)1815 static void shutdown_one(struct pci_dev *pdev)
1816 {
1817 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1818
1819 shutdown_device(dd);
1820 }
1821
1822 /**
1823 * hfi1_create_rcvhdrq - create a receive header queue
1824 * @dd: the hfi1_ib device
1825 * @rcd: the context data
1826 *
1827 * This must be contiguous memory (from an i/o perspective), and must be
1828 * DMA'able (which means for some systems, it will go through an IOMMU,
1829 * or be forced into a low address range).
1830 */
hfi1_create_rcvhdrq(struct hfi1_devdata * dd,struct hfi1_ctxtdata * rcd)1831 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1832 {
1833 unsigned amt;
1834 u64 reg;
1835
1836 if (!rcd->rcvhdrq) {
1837 gfp_t gfp_flags;
1838
1839 amt = rcvhdrq_size(rcd);
1840
1841 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1842 gfp_flags = GFP_KERNEL;
1843 else
1844 gfp_flags = GFP_USER;
1845 rcd->rcvhdrq = dma_zalloc_coherent(
1846 &dd->pcidev->dev, amt, &rcd->rcvhdrq_dma,
1847 gfp_flags | __GFP_COMP);
1848
1849 if (!rcd->rcvhdrq) {
1850 dd_dev_err(dd,
1851 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1852 amt, rcd->ctxt);
1853 goto bail;
1854 }
1855
1856 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1857 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1858 rcd->rcvhdrtail_kvaddr = dma_zalloc_coherent(
1859 &dd->pcidev->dev, PAGE_SIZE,
1860 &rcd->rcvhdrqtailaddr_dma, gfp_flags);
1861 if (!rcd->rcvhdrtail_kvaddr)
1862 goto bail_free;
1863 }
1864 }
1865 /*
1866 * These values are per-context:
1867 * RcvHdrCnt
1868 * RcvHdrEntSize
1869 * RcvHdrSize
1870 */
1871 reg = ((u64)(rcd->rcvhdrq_cnt >> HDRQ_SIZE_SHIFT)
1872 & RCV_HDR_CNT_CNT_MASK)
1873 << RCV_HDR_CNT_CNT_SHIFT;
1874 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_CNT, reg);
1875 reg = (encode_rcv_header_entry_size(rcd->rcvhdrqentsize)
1876 & RCV_HDR_ENT_SIZE_ENT_SIZE_MASK)
1877 << RCV_HDR_ENT_SIZE_ENT_SIZE_SHIFT;
1878 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_ENT_SIZE, reg);
1879 reg = ((u64)DEFAULT_RCVHDRSIZE & RCV_HDR_SIZE_HDR_SIZE_MASK)
1880 << RCV_HDR_SIZE_HDR_SIZE_SHIFT;
1881 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_SIZE, reg);
1882
1883 /*
1884 * Program dummy tail address for every receive context
1885 * before enabling any receive context
1886 */
1887 write_kctxt_csr(dd, rcd->ctxt, RCV_HDR_TAIL_ADDR,
1888 dd->rcvhdrtail_dummy_dma);
1889
1890 return 0;
1891
1892 bail_free:
1893 dd_dev_err(dd,
1894 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1895 rcd->ctxt);
1896 dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1897 rcd->rcvhdrq_dma);
1898 rcd->rcvhdrq = NULL;
1899 bail:
1900 return -ENOMEM;
1901 }
1902
1903 /**
1904 * allocate eager buffers, both kernel and user contexts.
1905 * @rcd: the context we are setting up.
1906 *
1907 * Allocate the eager TID buffers and program them into hip.
1908 * They are no longer completely contiguous, we do multiple allocation
1909 * calls. Otherwise we get the OOM code involved, by asking for too
1910 * much per call, with disastrous results on some kernels.
1911 */
hfi1_setup_eagerbufs(struct hfi1_ctxtdata * rcd)1912 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1913 {
1914 struct hfi1_devdata *dd = rcd->dd;
1915 u32 max_entries, egrtop, alloced_bytes = 0;
1916 gfp_t gfp_flags;
1917 u16 order, idx = 0;
1918 int ret = 0;
1919 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1920
1921 /*
1922 * GFP_USER, but without GFP_FS, so buffer cache can be
1923 * coalesced (we hope); otherwise, even at order 4,
1924 * heavy filesystem activity makes these fail, and we can
1925 * use compound pages.
1926 */
1927 gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1928
1929 /*
1930 * The minimum size of the eager buffers is a groups of MTU-sized
1931 * buffers.
1932 * The global eager_buffer_size parameter is checked against the
1933 * theoretical lower limit of the value. Here, we check against the
1934 * MTU.
1935 */
1936 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1937 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1938 /*
1939 * If using one-pkt-per-egr-buffer, lower the eager buffer
1940 * size to the max MTU (page-aligned).
1941 */
1942 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1943 rcd->egrbufs.rcvtid_size = round_mtu;
1944
1945 /*
1946 * Eager buffers sizes of 1MB or less require smaller TID sizes
1947 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1948 */
1949 if (rcd->egrbufs.size <= (1 << 20))
1950 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1951 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1952
1953 while (alloced_bytes < rcd->egrbufs.size &&
1954 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1955 rcd->egrbufs.buffers[idx].addr =
1956 dma_zalloc_coherent(&dd->pcidev->dev,
1957 rcd->egrbufs.rcvtid_size,
1958 &rcd->egrbufs.buffers[idx].dma,
1959 gfp_flags);
1960 if (rcd->egrbufs.buffers[idx].addr) {
1961 rcd->egrbufs.buffers[idx].len =
1962 rcd->egrbufs.rcvtid_size;
1963 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1964 rcd->egrbufs.buffers[idx].addr;
1965 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1966 rcd->egrbufs.buffers[idx].dma;
1967 rcd->egrbufs.alloced++;
1968 alloced_bytes += rcd->egrbufs.rcvtid_size;
1969 idx++;
1970 } else {
1971 u32 new_size, i, j;
1972 u64 offset = 0;
1973
1974 /*
1975 * Fail the eager buffer allocation if:
1976 * - we are already using the lowest acceptable size
1977 * - we are using one-pkt-per-egr-buffer (this implies
1978 * that we are accepting only one size)
1979 */
1980 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1981 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1982 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1983 rcd->ctxt);
1984 ret = -ENOMEM;
1985 goto bail_rcvegrbuf_phys;
1986 }
1987
1988 new_size = rcd->egrbufs.rcvtid_size / 2;
1989
1990 /*
1991 * If the first attempt to allocate memory failed, don't
1992 * fail everything but continue with the next lower
1993 * size.
1994 */
1995 if (idx == 0) {
1996 rcd->egrbufs.rcvtid_size = new_size;
1997 continue;
1998 }
1999
2000 /*
2001 * Re-partition already allocated buffers to a smaller
2002 * size.
2003 */
2004 rcd->egrbufs.alloced = 0;
2005 for (i = 0, j = 0, offset = 0; j < idx; i++) {
2006 if (i >= rcd->egrbufs.count)
2007 break;
2008 rcd->egrbufs.rcvtids[i].dma =
2009 rcd->egrbufs.buffers[j].dma + offset;
2010 rcd->egrbufs.rcvtids[i].addr =
2011 rcd->egrbufs.buffers[j].addr + offset;
2012 rcd->egrbufs.alloced++;
2013 if ((rcd->egrbufs.buffers[j].dma + offset +
2014 new_size) ==
2015 (rcd->egrbufs.buffers[j].dma +
2016 rcd->egrbufs.buffers[j].len)) {
2017 j++;
2018 offset = 0;
2019 } else {
2020 offset += new_size;
2021 }
2022 }
2023 rcd->egrbufs.rcvtid_size = new_size;
2024 }
2025 }
2026 rcd->egrbufs.numbufs = idx;
2027 rcd->egrbufs.size = alloced_bytes;
2028
2029 hfi1_cdbg(PROC,
2030 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %zuKB\n",
2031 rcd->ctxt, rcd->egrbufs.alloced,
2032 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
2033
2034 /*
2035 * Set the contexts rcv array head update threshold to the closest
2036 * power of 2 (so we can use a mask instead of modulo) below half
2037 * the allocated entries.
2038 */
2039 rcd->egrbufs.threshold =
2040 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2041 /*
2042 * Compute the expected RcvArray entry base. This is done after
2043 * allocating the eager buffers in order to maximize the
2044 * expected RcvArray entries for the context.
2045 */
2046 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2047 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2048 rcd->expected_count = max_entries - egrtop;
2049 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2050 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2051
2052 rcd->expected_base = rcd->eager_base + egrtop;
2053 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2054 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2055 rcd->eager_base, rcd->expected_base);
2056
2057 if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2058 hfi1_cdbg(PROC,
2059 "ctxt%u: current Eager buffer size is invalid %u\n",
2060 rcd->ctxt, rcd->egrbufs.rcvtid_size);
2061 ret = -EINVAL;
2062 goto bail_rcvegrbuf_phys;
2063 }
2064
2065 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2066 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2067 rcd->egrbufs.rcvtids[idx].dma, order);
2068 cond_resched();
2069 }
2070
2071 return 0;
2072
2073 bail_rcvegrbuf_phys:
2074 for (idx = 0; idx < rcd->egrbufs.alloced &&
2075 rcd->egrbufs.buffers[idx].addr;
2076 idx++) {
2077 dma_free_coherent(&dd->pcidev->dev,
2078 rcd->egrbufs.buffers[idx].len,
2079 rcd->egrbufs.buffers[idx].addr,
2080 rcd->egrbufs.buffers[idx].dma);
2081 rcd->egrbufs.buffers[idx].addr = NULL;
2082 rcd->egrbufs.buffers[idx].dma = 0;
2083 rcd->egrbufs.buffers[idx].len = 0;
2084 }
2085
2086 return ret;
2087 }
2088