1 /*
2 * Copyright(c) 2020 Cornelis Networks, Inc.
3 * Copyright(c) 2015-2020 Intel Corporation.
4 *
5 * This file is provided under a dual BSD/GPLv2 license. When using or
6 * redistributing this file, you may do so under either license.
7 *
8 * GPL LICENSE SUMMARY
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 *
25 * - Redistributions of source code must retain the above copyright
26 * notice, this list of conditions and the following disclaimer.
27 * - Redistributions in binary form must reproduce the above copyright
28 * notice, this list of conditions and the following disclaimer in
29 * the documentation and/or other materials provided with the
30 * distribution.
31 * - Neither the name of Intel Corporation nor the names of its
32 * contributors may be used to endorse or promote products derived
33 * from this software without specific prior written permission.
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
36 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
37 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
38 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
39 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
41 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
42 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
43 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
44 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
45 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
46 *
47 */
48 #include <linux/poll.h>
49 #include <linux/cdev.h>
50 #include <linux/vmalloc.h>
51 #include <linux/io.h>
52 #include <linux/sched/mm.h>
53 #include <linux/bitmap.h>
54
55 #include <rdma/ib.h>
56
57 #include "hfi.h"
58 #include "pio.h"
59 #include "device.h"
60 #include "common.h"
61 #include "trace.h"
62 #include "mmu_rb.h"
63 #include "user_sdma.h"
64 #include "user_exp_rcv.h"
65 #include "aspm.h"
66
67 #undef pr_fmt
68 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
69
70 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
71
72 /*
73 * File operation functions
74 */
75 static int hfi1_file_open(struct inode *inode, struct file *fp);
76 static int hfi1_file_close(struct inode *inode, struct file *fp);
77 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
78 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
79 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
80
81 static u64 kvirt_to_phys(void *addr);
82 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
83 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
84 const struct hfi1_user_info *uinfo);
85 static int init_user_ctxt(struct hfi1_filedata *fd,
86 struct hfi1_ctxtdata *uctxt);
87 static void user_init(struct hfi1_ctxtdata *uctxt);
88 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
90 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
91 u32 len);
92 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
93 u32 len);
94 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
95 u32 len);
96 static int setup_base_ctxt(struct hfi1_filedata *fd,
97 struct hfi1_ctxtdata *uctxt);
98 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
99
100 static int find_sub_ctxt(struct hfi1_filedata *fd,
101 const struct hfi1_user_info *uinfo);
102 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
103 struct hfi1_user_info *uinfo,
104 struct hfi1_ctxtdata **cd);
105 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
106 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
107 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
108 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
109 unsigned long arg);
110 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
111 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
112 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
113 unsigned long arg);
114 static vm_fault_t vma_fault(struct vm_fault *vmf);
115 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
116 unsigned long arg);
117
118 static const struct file_operations hfi1_file_ops = {
119 .owner = THIS_MODULE,
120 .write_iter = hfi1_write_iter,
121 .open = hfi1_file_open,
122 .release = hfi1_file_close,
123 .unlocked_ioctl = hfi1_file_ioctl,
124 .poll = hfi1_poll,
125 .mmap = hfi1_file_mmap,
126 .llseek = noop_llseek,
127 };
128
129 static const struct vm_operations_struct vm_ops = {
130 .fault = vma_fault,
131 };
132
133 /*
134 * Types of memories mapped into user processes' space
135 */
136 enum mmap_types {
137 PIO_BUFS = 1,
138 PIO_BUFS_SOP,
139 PIO_CRED,
140 RCV_HDRQ,
141 RCV_EGRBUF,
142 UREGS,
143 EVENTS,
144 STATUS,
145 RTAIL,
146 SUBCTXT_UREGS,
147 SUBCTXT_RCV_HDRQ,
148 SUBCTXT_EGRBUF,
149 SDMA_COMP
150 };
151
152 /*
153 * Masks and offsets defining the mmap tokens
154 */
155 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
156 #define HFI1_MMAP_OFFSET_SHIFT 0
157 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
158 #define HFI1_MMAP_SUBCTXT_SHIFT 12
159 #define HFI1_MMAP_CTXT_MASK 0xffULL
160 #define HFI1_MMAP_CTXT_SHIFT 16
161 #define HFI1_MMAP_TYPE_MASK 0xfULL
162 #define HFI1_MMAP_TYPE_SHIFT 24
163 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
164 #define HFI1_MMAP_MAGIC_SHIFT 32
165
166 #define HFI1_MMAP_MAGIC 0xdabbad00
167
168 #define HFI1_MMAP_TOKEN_SET(field, val) \
169 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
170 #define HFI1_MMAP_TOKEN_GET(field, token) \
171 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
172 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
173 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
174 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
175 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
176 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
177 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
178
179 #define dbg(fmt, ...) \
180 pr_info(fmt, ##__VA_ARGS__)
181
is_valid_mmap(u64 token)182 static inline int is_valid_mmap(u64 token)
183 {
184 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
185 }
186
hfi1_file_open(struct inode * inode,struct file * fp)187 static int hfi1_file_open(struct inode *inode, struct file *fp)
188 {
189 struct hfi1_filedata *fd;
190 struct hfi1_devdata *dd = container_of(inode->i_cdev,
191 struct hfi1_devdata,
192 user_cdev);
193
194 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
195 return -EINVAL;
196
197 if (!atomic_inc_not_zero(&dd->user_refcount))
198 return -ENXIO;
199
200 /* The real work is performed later in assign_ctxt() */
201
202 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
203
204 if (!fd || init_srcu_struct(&fd->pq_srcu))
205 goto nomem;
206 spin_lock_init(&fd->pq_rcu_lock);
207 spin_lock_init(&fd->tid_lock);
208 spin_lock_init(&fd->invalid_lock);
209 fd->rec_cpu_num = -1; /* no cpu affinity by default */
210 fd->dd = dd;
211 fp->private_data = fd;
212 return 0;
213 nomem:
214 kfree(fd);
215 fp->private_data = NULL;
216 if (atomic_dec_and_test(&dd->user_refcount))
217 complete(&dd->user_comp);
218 return -ENOMEM;
219 }
220
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)221 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
222 unsigned long arg)
223 {
224 struct hfi1_filedata *fd = fp->private_data;
225 struct hfi1_ctxtdata *uctxt = fd->uctxt;
226 int ret = 0;
227 int uval = 0;
228
229 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
230 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
231 cmd != HFI1_IOCTL_GET_VERS &&
232 !uctxt)
233 return -EINVAL;
234
235 switch (cmd) {
236 case HFI1_IOCTL_ASSIGN_CTXT:
237 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
238 break;
239
240 case HFI1_IOCTL_CTXT_INFO:
241 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
242 break;
243
244 case HFI1_IOCTL_USER_INFO:
245 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
246 break;
247
248 case HFI1_IOCTL_CREDIT_UPD:
249 if (uctxt)
250 sc_return_credits(uctxt->sc);
251 break;
252
253 case HFI1_IOCTL_TID_UPDATE:
254 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
255 break;
256
257 case HFI1_IOCTL_TID_FREE:
258 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
259 break;
260
261 case HFI1_IOCTL_TID_INVAL_READ:
262 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
263 break;
264
265 case HFI1_IOCTL_RECV_CTRL:
266 ret = manage_rcvq(uctxt, fd->subctxt, arg);
267 break;
268
269 case HFI1_IOCTL_POLL_TYPE:
270 if (get_user(uval, (int __user *)arg))
271 return -EFAULT;
272 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
273 break;
274
275 case HFI1_IOCTL_ACK_EVENT:
276 ret = user_event_ack(uctxt, fd->subctxt, arg);
277 break;
278
279 case HFI1_IOCTL_SET_PKEY:
280 ret = set_ctxt_pkey(uctxt, arg);
281 break;
282
283 case HFI1_IOCTL_CTXT_RESET:
284 ret = ctxt_reset(uctxt);
285 break;
286
287 case HFI1_IOCTL_GET_VERS:
288 uval = HFI1_USER_SWVERSION;
289 if (put_user(uval, (int __user *)arg))
290 return -EFAULT;
291 break;
292
293 default:
294 return -EINVAL;
295 }
296
297 return ret;
298 }
299
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)300 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
301 {
302 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
303 struct hfi1_user_sdma_pkt_q *pq;
304 struct hfi1_user_sdma_comp_q *cq = fd->cq;
305 int done = 0, reqs = 0;
306 unsigned long dim = from->nr_segs;
307 int idx;
308
309 idx = srcu_read_lock(&fd->pq_srcu);
310 pq = srcu_dereference(fd->pq, &fd->pq_srcu);
311 if (!cq || !pq) {
312 srcu_read_unlock(&fd->pq_srcu, idx);
313 return -EIO;
314 }
315
316 if (!iter_is_iovec(from) || !dim) {
317 srcu_read_unlock(&fd->pq_srcu, idx);
318 return -EINVAL;
319 }
320
321 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
322
323 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs) {
324 srcu_read_unlock(&fd->pq_srcu, idx);
325 return -ENOSPC;
326 }
327
328 while (dim) {
329 int ret;
330 unsigned long count = 0;
331
332 ret = hfi1_user_sdma_process_request(
333 fd, (struct iovec *)(from->iov + done),
334 dim, &count);
335 if (ret) {
336 reqs = ret;
337 break;
338 }
339 dim -= count;
340 done += count;
341 reqs++;
342 }
343
344 srcu_read_unlock(&fd->pq_srcu, idx);
345 return reqs;
346 }
347
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)348 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
349 {
350 struct hfi1_filedata *fd = fp->private_data;
351 struct hfi1_ctxtdata *uctxt = fd->uctxt;
352 struct hfi1_devdata *dd;
353 unsigned long flags;
354 u64 token = vma->vm_pgoff << PAGE_SHIFT,
355 memaddr = 0;
356 void *memvirt = NULL;
357 u8 subctxt, mapio = 0, vmf = 0, type;
358 ssize_t memlen = 0;
359 int ret = 0;
360 u16 ctxt;
361
362 if (!is_valid_mmap(token) || !uctxt ||
363 !(vma->vm_flags & VM_SHARED)) {
364 ret = -EINVAL;
365 goto done;
366 }
367 dd = uctxt->dd;
368 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
369 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
370 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
371 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
372 ret = -EINVAL;
373 goto done;
374 }
375
376 flags = vma->vm_flags;
377
378 switch (type) {
379 case PIO_BUFS:
380 case PIO_BUFS_SOP:
381 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
382 /* chip pio base */
383 (uctxt->sc->hw_context * BIT(16))) +
384 /* 64K PIO space / ctxt */
385 (type == PIO_BUFS_SOP ?
386 (TXE_PIO_SIZE / 2) : 0); /* sop? */
387 /*
388 * Map only the amount allocated to the context, not the
389 * entire available context's PIO space.
390 */
391 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
392 flags &= ~VM_MAYREAD;
393 flags |= VM_DONTCOPY | VM_DONTEXPAND;
394 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
395 mapio = 1;
396 break;
397 case PIO_CRED:
398 if (flags & VM_WRITE) {
399 ret = -EPERM;
400 goto done;
401 }
402 /*
403 * The credit return location for this context could be on the
404 * second or third page allocated for credit returns (if number
405 * of enabled contexts > 64 and 128 respectively).
406 */
407 memvirt = dd->cr_base[uctxt->numa_id].va;
408 memaddr = virt_to_phys(memvirt) +
409 (((u64)uctxt->sc->hw_free -
410 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
411 memlen = PAGE_SIZE;
412 flags &= ~VM_MAYWRITE;
413 flags |= VM_DONTCOPY | VM_DONTEXPAND;
414 /*
415 * The driver has already allocated memory for credit
416 * returns and programmed it into the chip. Has that
417 * memory been flagged as non-cached?
418 */
419 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
420 mapio = 1;
421 break;
422 case RCV_HDRQ:
423 memlen = rcvhdrq_size(uctxt);
424 memvirt = uctxt->rcvhdrq;
425 break;
426 case RCV_EGRBUF: {
427 unsigned long addr;
428 int i;
429 /*
430 * The RcvEgr buffer need to be handled differently
431 * as multiple non-contiguous pages need to be mapped
432 * into the user process.
433 */
434 memlen = uctxt->egrbufs.size;
435 if ((vma->vm_end - vma->vm_start) != memlen) {
436 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
437 (vma->vm_end - vma->vm_start), memlen);
438 ret = -EINVAL;
439 goto done;
440 }
441 if (vma->vm_flags & VM_WRITE) {
442 ret = -EPERM;
443 goto done;
444 }
445 vma->vm_flags &= ~VM_MAYWRITE;
446 addr = vma->vm_start;
447 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
448 memlen = uctxt->egrbufs.buffers[i].len;
449 memvirt = uctxt->egrbufs.buffers[i].addr;
450 ret = remap_pfn_range(
451 vma, addr,
452 /*
453 * virt_to_pfn() does the same, but
454 * it's not available on x86_64
455 * when CONFIG_MMU is enabled.
456 */
457 PFN_DOWN(__pa(memvirt)),
458 memlen,
459 vma->vm_page_prot);
460 if (ret < 0)
461 goto done;
462 addr += memlen;
463 }
464 ret = 0;
465 goto done;
466 }
467 case UREGS:
468 /*
469 * Map only the page that contains this context's user
470 * registers.
471 */
472 memaddr = (unsigned long)
473 (dd->physaddr + RXE_PER_CONTEXT_USER)
474 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
475 /*
476 * TidFlow table is on the same page as the rest of the
477 * user registers.
478 */
479 memlen = PAGE_SIZE;
480 flags |= VM_DONTCOPY | VM_DONTEXPAND;
481 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
482 mapio = 1;
483 break;
484 case EVENTS:
485 /*
486 * Use the page where this context's flags are. User level
487 * knows where it's own bitmap is within the page.
488 */
489 memaddr = (unsigned long)
490 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
491 memlen = PAGE_SIZE;
492 /*
493 * v3.7 removes VM_RESERVED but the effect is kept by
494 * using VM_IO.
495 */
496 flags |= VM_IO | VM_DONTEXPAND;
497 vmf = 1;
498 break;
499 case STATUS:
500 if (flags & VM_WRITE) {
501 ret = -EPERM;
502 goto done;
503 }
504 memaddr = kvirt_to_phys((void *)dd->status);
505 memlen = PAGE_SIZE;
506 flags |= VM_IO | VM_DONTEXPAND;
507 break;
508 case RTAIL:
509 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
510 /*
511 * If the memory allocation failed, the context alloc
512 * also would have failed, so we would never get here
513 */
514 ret = -EINVAL;
515 goto done;
516 }
517 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(uctxt)) {
518 ret = -EPERM;
519 goto done;
520 }
521 memlen = PAGE_SIZE;
522 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(uctxt);
523 flags &= ~VM_MAYWRITE;
524 break;
525 case SUBCTXT_UREGS:
526 memaddr = (u64)uctxt->subctxt_uregbase;
527 memlen = PAGE_SIZE;
528 flags |= VM_IO | VM_DONTEXPAND;
529 vmf = 1;
530 break;
531 case SUBCTXT_RCV_HDRQ:
532 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
533 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
534 flags |= VM_IO | VM_DONTEXPAND;
535 vmf = 1;
536 break;
537 case SUBCTXT_EGRBUF:
538 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
539 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
540 flags |= VM_IO | VM_DONTEXPAND;
541 flags &= ~VM_MAYWRITE;
542 vmf = 1;
543 break;
544 case SDMA_COMP: {
545 struct hfi1_user_sdma_comp_q *cq = fd->cq;
546
547 if (!cq) {
548 ret = -EFAULT;
549 goto done;
550 }
551 memaddr = (u64)cq->comps;
552 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
553 flags |= VM_IO | VM_DONTEXPAND;
554 vmf = 1;
555 break;
556 }
557 default:
558 ret = -EINVAL;
559 break;
560 }
561
562 if ((vma->vm_end - vma->vm_start) != memlen) {
563 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
564 uctxt->ctxt, fd->subctxt,
565 (vma->vm_end - vma->vm_start), memlen);
566 ret = -EINVAL;
567 goto done;
568 }
569
570 vma->vm_flags = flags;
571 hfi1_cdbg(PROC,
572 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
573 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
574 vma->vm_end - vma->vm_start, vma->vm_flags);
575 if (vmf) {
576 vma->vm_pgoff = PFN_DOWN(memaddr);
577 vma->vm_ops = &vm_ops;
578 ret = 0;
579 } else if (mapio) {
580 ret = io_remap_pfn_range(vma, vma->vm_start,
581 PFN_DOWN(memaddr),
582 memlen,
583 vma->vm_page_prot);
584 } else if (memvirt) {
585 ret = remap_pfn_range(vma, vma->vm_start,
586 PFN_DOWN(__pa(memvirt)),
587 memlen,
588 vma->vm_page_prot);
589 } else {
590 ret = remap_pfn_range(vma, vma->vm_start,
591 PFN_DOWN(memaddr),
592 memlen,
593 vma->vm_page_prot);
594 }
595 done:
596 return ret;
597 }
598
599 /*
600 * Local (non-chip) user memory is not mapped right away but as it is
601 * accessed by the user-level code.
602 */
vma_fault(struct vm_fault * vmf)603 static vm_fault_t vma_fault(struct vm_fault *vmf)
604 {
605 struct page *page;
606
607 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
608 if (!page)
609 return VM_FAULT_SIGBUS;
610
611 get_page(page);
612 vmf->page = page;
613
614 return 0;
615 }
616
hfi1_poll(struct file * fp,struct poll_table_struct * pt)617 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
618 {
619 struct hfi1_ctxtdata *uctxt;
620 __poll_t pollflag;
621
622 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
623 if (!uctxt)
624 pollflag = EPOLLERR;
625 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
626 pollflag = poll_urgent(fp, pt);
627 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
628 pollflag = poll_next(fp, pt);
629 else /* invalid */
630 pollflag = EPOLLERR;
631
632 return pollflag;
633 }
634
hfi1_file_close(struct inode * inode,struct file * fp)635 static int hfi1_file_close(struct inode *inode, struct file *fp)
636 {
637 struct hfi1_filedata *fdata = fp->private_data;
638 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
639 struct hfi1_devdata *dd = container_of(inode->i_cdev,
640 struct hfi1_devdata,
641 user_cdev);
642 unsigned long flags, *ev;
643
644 fp->private_data = NULL;
645
646 if (!uctxt)
647 goto done;
648
649 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
650
651 flush_wc();
652 /* drain user sdma queue */
653 hfi1_user_sdma_free_queues(fdata, uctxt);
654
655 /* release the cpu */
656 hfi1_put_proc_affinity(fdata->rec_cpu_num);
657
658 /* clean up rcv side */
659 hfi1_user_exp_rcv_free(fdata);
660
661 /*
662 * fdata->uctxt is used in the above cleanup. It is not ready to be
663 * removed until here.
664 */
665 fdata->uctxt = NULL;
666 hfi1_rcd_put(uctxt);
667
668 /*
669 * Clear any left over, unhandled events so the next process that
670 * gets this context doesn't get confused.
671 */
672 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
673 *ev = 0;
674
675 spin_lock_irqsave(&dd->uctxt_lock, flags);
676 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
677 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
678 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
679 goto done;
680 }
681 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
682
683 /*
684 * Disable receive context and interrupt available, reset all
685 * RcvCtxtCtrl bits to default values.
686 */
687 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
688 HFI1_RCVCTRL_TIDFLOW_DIS |
689 HFI1_RCVCTRL_INTRAVAIL_DIS |
690 HFI1_RCVCTRL_TAILUPD_DIS |
691 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
692 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
693 HFI1_RCVCTRL_NO_EGR_DROP_DIS |
694 HFI1_RCVCTRL_URGENT_DIS, uctxt);
695 /* Clear the context's J_KEY */
696 hfi1_clear_ctxt_jkey(dd, uctxt);
697 /*
698 * If a send context is allocated, reset context integrity
699 * checks to default and disable the send context.
700 */
701 if (uctxt->sc) {
702 sc_disable(uctxt->sc);
703 set_pio_integrity(uctxt->sc);
704 }
705
706 hfi1_free_ctxt_rcv_groups(uctxt);
707 hfi1_clear_ctxt_pkey(dd, uctxt);
708
709 uctxt->event_flags = 0;
710
711 deallocate_ctxt(uctxt);
712 done:
713
714 if (atomic_dec_and_test(&dd->user_refcount))
715 complete(&dd->user_comp);
716
717 cleanup_srcu_struct(&fdata->pq_srcu);
718 kfree(fdata);
719 return 0;
720 }
721
722 /*
723 * Convert kernel *virtual* addresses to physical addresses.
724 * This is used to vmalloc'ed addresses.
725 */
kvirt_to_phys(void * addr)726 static u64 kvirt_to_phys(void *addr)
727 {
728 struct page *page;
729 u64 paddr = 0;
730
731 page = vmalloc_to_page(addr);
732 if (page)
733 paddr = page_to_pfn(page) << PAGE_SHIFT;
734
735 return paddr;
736 }
737
738 /**
739 * complete_subctxt
740 * @fd: valid filedata pointer
741 *
742 * Sub-context info can only be set up after the base context
743 * has been completed. This is indicated by the clearing of the
744 * HFI1_CTXT_BASE_UINIT bit.
745 *
746 * Wait for the bit to be cleared, and then complete the subcontext
747 * initialization.
748 *
749 */
complete_subctxt(struct hfi1_filedata * fd)750 static int complete_subctxt(struct hfi1_filedata *fd)
751 {
752 int ret;
753 unsigned long flags;
754
755 /*
756 * sub-context info can only be set up after the base context
757 * has been completed.
758 */
759 ret = wait_event_interruptible(
760 fd->uctxt->wait,
761 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
762
763 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
764 ret = -ENOMEM;
765
766 /* Finish the sub-context init */
767 if (!ret) {
768 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
769 ret = init_user_ctxt(fd, fd->uctxt);
770 }
771
772 if (ret) {
773 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
774 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
775 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
776 hfi1_rcd_put(fd->uctxt);
777 fd->uctxt = NULL;
778 }
779
780 return ret;
781 }
782
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)783 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
784 {
785 int ret;
786 unsigned int swmajor;
787 struct hfi1_ctxtdata *uctxt = NULL;
788 struct hfi1_user_info uinfo;
789
790 if (fd->uctxt)
791 return -EINVAL;
792
793 if (sizeof(uinfo) != len)
794 return -EINVAL;
795
796 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
797 return -EFAULT;
798
799 swmajor = uinfo.userversion >> 16;
800 if (swmajor != HFI1_USER_SWMAJOR)
801 return -ENODEV;
802
803 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
804 return -EINVAL;
805
806 /*
807 * Acquire the mutex to protect against multiple creations of what
808 * could be a shared base context.
809 */
810 mutex_lock(&hfi1_mutex);
811 /*
812 * Get a sub context if available (fd->uctxt will be set).
813 * ret < 0 error, 0 no context, 1 sub-context found
814 */
815 ret = find_sub_ctxt(fd, &uinfo);
816
817 /*
818 * Allocate a base context if context sharing is not required or a
819 * sub context wasn't found.
820 */
821 if (!ret)
822 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
823
824 mutex_unlock(&hfi1_mutex);
825
826 /* Depending on the context type, finish the appropriate init */
827 switch (ret) {
828 case 0:
829 ret = setup_base_ctxt(fd, uctxt);
830 if (ret)
831 deallocate_ctxt(uctxt);
832 break;
833 case 1:
834 ret = complete_subctxt(fd);
835 break;
836 default:
837 break;
838 }
839
840 return ret;
841 }
842
843 /**
844 * match_ctxt
845 * @fd: valid filedata pointer
846 * @uinfo: user info to compare base context with
847 * @uctxt: context to compare uinfo to.
848 *
849 * Compare the given context with the given information to see if it
850 * can be used for a sub context.
851 */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)852 static int match_ctxt(struct hfi1_filedata *fd,
853 const struct hfi1_user_info *uinfo,
854 struct hfi1_ctxtdata *uctxt)
855 {
856 struct hfi1_devdata *dd = fd->dd;
857 unsigned long flags;
858 u16 subctxt;
859
860 /* Skip dynamically allocated kernel contexts */
861 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
862 return 0;
863
864 /* Skip ctxt if it doesn't match the requested one */
865 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
866 uctxt->jkey != generate_jkey(current_uid()) ||
867 uctxt->subctxt_id != uinfo->subctxt_id ||
868 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
869 return 0;
870
871 /* Verify the sharing process matches the base */
872 if (uctxt->userversion != uinfo->userversion)
873 return -EINVAL;
874
875 /* Find an unused sub context */
876 spin_lock_irqsave(&dd->uctxt_lock, flags);
877 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
878 /* context is being closed, do not use */
879 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
880 return 0;
881 }
882
883 subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
884 HFI1_MAX_SHARED_CTXTS);
885 if (subctxt >= uctxt->subctxt_cnt) {
886 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
887 return -EBUSY;
888 }
889
890 fd->subctxt = subctxt;
891 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
892 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
893
894 fd->uctxt = uctxt;
895 hfi1_rcd_get(uctxt);
896
897 return 1;
898 }
899
900 /**
901 * find_sub_ctxt
902 * @fd: valid filedata pointer
903 * @uinfo: matching info to use to find a possible context to share.
904 *
905 * The hfi1_mutex must be held when this function is called. It is
906 * necessary to ensure serialized creation of shared contexts.
907 *
908 * Return:
909 * 0 No sub-context found
910 * 1 Subcontext found and allocated
911 * errno EINVAL (incorrect parameters)
912 * EBUSY (all sub contexts in use)
913 */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)914 static int find_sub_ctxt(struct hfi1_filedata *fd,
915 const struct hfi1_user_info *uinfo)
916 {
917 struct hfi1_ctxtdata *uctxt;
918 struct hfi1_devdata *dd = fd->dd;
919 u16 i;
920 int ret;
921
922 if (!uinfo->subctxt_cnt)
923 return 0;
924
925 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
926 uctxt = hfi1_rcd_get_by_index(dd, i);
927 if (uctxt) {
928 ret = match_ctxt(fd, uinfo, uctxt);
929 hfi1_rcd_put(uctxt);
930 /* value of != 0 will return */
931 if (ret)
932 return ret;
933 }
934 }
935
936 return 0;
937 }
938
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)939 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
940 struct hfi1_user_info *uinfo,
941 struct hfi1_ctxtdata **rcd)
942 {
943 struct hfi1_ctxtdata *uctxt;
944 int ret, numa;
945
946 if (dd->flags & HFI1_FROZEN) {
947 /*
948 * Pick an error that is unique from all other errors
949 * that are returned so the user process knows that
950 * it tried to allocate while the SPC was frozen. It
951 * it should be able to retry with success in a short
952 * while.
953 */
954 return -EIO;
955 }
956
957 if (!dd->freectxts)
958 return -EBUSY;
959
960 /*
961 * If we don't have a NUMA node requested, preference is towards
962 * device NUMA node.
963 */
964 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
965 if (fd->rec_cpu_num != -1)
966 numa = cpu_to_node(fd->rec_cpu_num);
967 else
968 numa = numa_node_id();
969 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
970 if (ret < 0) {
971 dd_dev_err(dd, "user ctxtdata allocation failed\n");
972 return ret;
973 }
974 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
975 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
976 uctxt->numa_id);
977
978 /*
979 * Allocate and enable a PIO send context.
980 */
981 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
982 if (!uctxt->sc) {
983 ret = -ENOMEM;
984 goto ctxdata_free;
985 }
986 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
987 uctxt->sc->hw_context);
988 ret = sc_enable(uctxt->sc);
989 if (ret)
990 goto ctxdata_free;
991
992 /*
993 * Setup sub context information if the user-level has requested
994 * sub contexts.
995 * This has to be done here so the rest of the sub-contexts find the
996 * proper base context.
997 * NOTE: _set_bit() can be used here because the context creation is
998 * protected by the mutex (rather than the spin_lock), and will be the
999 * very first instance of this context.
1000 */
1001 __set_bit(0, uctxt->in_use_ctxts);
1002 if (uinfo->subctxt_cnt)
1003 init_subctxts(uctxt, uinfo);
1004 uctxt->userversion = uinfo->userversion;
1005 uctxt->flags = hfi1_cap_mask; /* save current flag state */
1006 init_waitqueue_head(&uctxt->wait);
1007 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1008 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1009 uctxt->jkey = generate_jkey(current_uid());
1010 hfi1_stats.sps_ctxts++;
1011 /*
1012 * Disable ASPM when there are open user/PSM contexts to avoid
1013 * issues with ASPM L1 exit latency
1014 */
1015 if (dd->freectxts-- == dd->num_user_contexts)
1016 aspm_disable_all(dd);
1017
1018 *rcd = uctxt;
1019
1020 return 0;
1021
1022 ctxdata_free:
1023 hfi1_free_ctxt(uctxt);
1024 return ret;
1025 }
1026
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1027 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1028 {
1029 mutex_lock(&hfi1_mutex);
1030 hfi1_stats.sps_ctxts--;
1031 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1032 aspm_enable_all(uctxt->dd);
1033 mutex_unlock(&hfi1_mutex);
1034
1035 hfi1_free_ctxt(uctxt);
1036 }
1037
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1038 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1039 const struct hfi1_user_info *uinfo)
1040 {
1041 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1042 uctxt->subctxt_id = uinfo->subctxt_id;
1043 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1044 }
1045
setup_subctxt(struct hfi1_ctxtdata * uctxt)1046 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1047 {
1048 int ret = 0;
1049 u16 num_subctxts = uctxt->subctxt_cnt;
1050
1051 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1052 if (!uctxt->subctxt_uregbase)
1053 return -ENOMEM;
1054
1055 /* We can take the size of the RcvHdr Queue from the master */
1056 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1057 num_subctxts);
1058 if (!uctxt->subctxt_rcvhdr_base) {
1059 ret = -ENOMEM;
1060 goto bail_ureg;
1061 }
1062
1063 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1064 num_subctxts);
1065 if (!uctxt->subctxt_rcvegrbuf) {
1066 ret = -ENOMEM;
1067 goto bail_rhdr;
1068 }
1069
1070 return 0;
1071
1072 bail_rhdr:
1073 vfree(uctxt->subctxt_rcvhdr_base);
1074 uctxt->subctxt_rcvhdr_base = NULL;
1075 bail_ureg:
1076 vfree(uctxt->subctxt_uregbase);
1077 uctxt->subctxt_uregbase = NULL;
1078
1079 return ret;
1080 }
1081
user_init(struct hfi1_ctxtdata * uctxt)1082 static void user_init(struct hfi1_ctxtdata *uctxt)
1083 {
1084 unsigned int rcvctrl_ops = 0;
1085
1086 /* initialize poll variables... */
1087 uctxt->urgent = 0;
1088 uctxt->urgent_poll = 0;
1089
1090 /*
1091 * Now enable the ctxt for receive.
1092 * For chips that are set to DMA the tail register to memory
1093 * when they change (and when the update bit transitions from
1094 * 0 to 1. So for those chips, we turn it off and then back on.
1095 * This will (very briefly) affect any other open ctxts, but the
1096 * duration is very short, and therefore isn't an issue. We
1097 * explicitly set the in-memory tail copy to 0 beforehand, so we
1098 * don't have to wait to be sure the DMA update has happened
1099 * (chip resets head/tail to 0 on transition to enable).
1100 */
1101 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1102 clear_rcvhdrtail(uctxt);
1103
1104 /* Setup J_KEY before enabling the context */
1105 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1106
1107 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1108 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1109 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1110 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1111 /*
1112 * Ignore the bit in the flags for now until proper
1113 * support for multiple packet per rcv array entry is
1114 * added.
1115 */
1116 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1117 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1118 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1119 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1121 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1122 /*
1123 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1124 * We can't rely on the correct value to be set from prior
1125 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1126 * for both cases.
1127 */
1128 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1129 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1130 else
1131 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1132 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1133 }
1134
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1135 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1136 {
1137 struct hfi1_ctxt_info cinfo;
1138 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1139
1140 if (sizeof(cinfo) != len)
1141 return -EINVAL;
1142
1143 memset(&cinfo, 0, sizeof(cinfo));
1144 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1145 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1146 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1147 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1148 /* adjust flag if this fd is not able to cache */
1149 if (!fd->use_mn)
1150 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1151
1152 cinfo.num_active = hfi1_count_active_units();
1153 cinfo.unit = uctxt->dd->unit;
1154 cinfo.ctxt = uctxt->ctxt;
1155 cinfo.subctxt = fd->subctxt;
1156 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1157 uctxt->dd->rcv_entries.group_size) +
1158 uctxt->expected_count;
1159 cinfo.credits = uctxt->sc->credits;
1160 cinfo.numa_node = uctxt->numa_id;
1161 cinfo.rec_cpu = fd->rec_cpu_num;
1162 cinfo.send_ctxt = uctxt->sc->hw_context;
1163
1164 cinfo.egrtids = uctxt->egrbufs.alloced;
1165 cinfo.rcvhdrq_cnt = get_hdrq_cnt(uctxt);
1166 cinfo.rcvhdrq_entsize = get_hdrqentsize(uctxt) << 2;
1167 cinfo.sdma_ring_size = fd->cq->nentries;
1168 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1169
1170 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1171 if (copy_to_user((void __user *)arg, &cinfo, len))
1172 return -EFAULT;
1173
1174 return 0;
1175 }
1176
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1177 static int init_user_ctxt(struct hfi1_filedata *fd,
1178 struct hfi1_ctxtdata *uctxt)
1179 {
1180 int ret;
1181
1182 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1183 if (ret)
1184 return ret;
1185
1186 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1187 if (ret)
1188 hfi1_user_sdma_free_queues(fd, uctxt);
1189
1190 return ret;
1191 }
1192
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1193 static int setup_base_ctxt(struct hfi1_filedata *fd,
1194 struct hfi1_ctxtdata *uctxt)
1195 {
1196 struct hfi1_devdata *dd = uctxt->dd;
1197 int ret = 0;
1198
1199 hfi1_init_ctxt(uctxt->sc);
1200
1201 /* Now allocate the RcvHdr queue and eager buffers. */
1202 ret = hfi1_create_rcvhdrq(dd, uctxt);
1203 if (ret)
1204 goto done;
1205
1206 ret = hfi1_setup_eagerbufs(uctxt);
1207 if (ret)
1208 goto done;
1209
1210 /* If sub-contexts are enabled, do the appropriate setup */
1211 if (uctxt->subctxt_cnt)
1212 ret = setup_subctxt(uctxt);
1213 if (ret)
1214 goto done;
1215
1216 ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1217 if (ret)
1218 goto done;
1219
1220 ret = init_user_ctxt(fd, uctxt);
1221 if (ret)
1222 goto done;
1223
1224 user_init(uctxt);
1225
1226 /* Now that the context is set up, the fd can get a reference. */
1227 fd->uctxt = uctxt;
1228 hfi1_rcd_get(uctxt);
1229
1230 done:
1231 if (uctxt->subctxt_cnt) {
1232 /*
1233 * On error, set the failed bit so sub-contexts will clean up
1234 * correctly.
1235 */
1236 if (ret)
1237 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1238
1239 /*
1240 * Base context is done (successfully or not), notify anybody
1241 * using a sub-context that is waiting for this completion.
1242 */
1243 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1244 wake_up(&uctxt->wait);
1245 }
1246
1247 return ret;
1248 }
1249
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1250 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1251 {
1252 struct hfi1_base_info binfo;
1253 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1254 struct hfi1_devdata *dd = uctxt->dd;
1255 unsigned offset;
1256
1257 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1258
1259 if (sizeof(binfo) != len)
1260 return -EINVAL;
1261
1262 memset(&binfo, 0, sizeof(binfo));
1263 binfo.hw_version = dd->revision;
1264 binfo.sw_version = HFI1_KERN_SWVERSION;
1265 binfo.bthqp = RVT_KDETH_QP_PREFIX;
1266 binfo.jkey = uctxt->jkey;
1267 /*
1268 * If more than 64 contexts are enabled the allocated credit
1269 * return will span two or three contiguous pages. Since we only
1270 * map the page containing the context's credit return address,
1271 * we need to calculate the offset in the proper page.
1272 */
1273 offset = ((u64)uctxt->sc->hw_free -
1274 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1275 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1276 fd->subctxt, offset);
1277 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1278 fd->subctxt,
1279 uctxt->sc->base_addr);
1280 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1281 uctxt->ctxt,
1282 fd->subctxt,
1283 uctxt->sc->base_addr);
1284 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1285 fd->subctxt,
1286 uctxt->rcvhdrq);
1287 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1288 fd->subctxt,
1289 uctxt->egrbufs.rcvtids[0].dma);
1290 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1291 fd->subctxt, 0);
1292 /*
1293 * user regs are at
1294 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1295 */
1296 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1297 fd->subctxt, 0);
1298 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1299 sizeof(*dd->events));
1300 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1301 fd->subctxt,
1302 offset);
1303 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1304 fd->subctxt,
1305 dd->status);
1306 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1307 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1308 fd->subctxt, 0);
1309 if (uctxt->subctxt_cnt) {
1310 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1311 uctxt->ctxt,
1312 fd->subctxt, 0);
1313 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1314 uctxt->ctxt,
1315 fd->subctxt, 0);
1316 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1317 uctxt->ctxt,
1318 fd->subctxt, 0);
1319 }
1320
1321 if (copy_to_user((void __user *)arg, &binfo, len))
1322 return -EFAULT;
1323
1324 return 0;
1325 }
1326
1327 /**
1328 * user_exp_rcv_setup - Set up the given tid rcv list
1329 * @fd: file data of the current driver instance
1330 * @arg: ioctl argumnent for user space information
1331 * @len: length of data structure associated with ioctl command
1332 *
1333 * Wrapper to validate ioctl information before doing _rcv_setup.
1334 *
1335 */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1336 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1337 u32 len)
1338 {
1339 int ret;
1340 unsigned long addr;
1341 struct hfi1_tid_info tinfo;
1342
1343 if (sizeof(tinfo) != len)
1344 return -EINVAL;
1345
1346 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1347 return -EFAULT;
1348
1349 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1350 if (!ret) {
1351 /*
1352 * Copy the number of tidlist entries we used
1353 * and the length of the buffer we registered.
1354 */
1355 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1356 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1357 sizeof(tinfo.tidcnt)))
1358 return -EFAULT;
1359
1360 addr = arg + offsetof(struct hfi1_tid_info, length);
1361 if (copy_to_user((void __user *)addr, &tinfo.length,
1362 sizeof(tinfo.length)))
1363 ret = -EFAULT;
1364 }
1365
1366 return ret;
1367 }
1368
1369 /**
1370 * user_exp_rcv_clear - Clear the given tid rcv list
1371 * @fd: file data of the current driver instance
1372 * @arg: ioctl argumnent for user space information
1373 * @len: length of data structure associated with ioctl command
1374 *
1375 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1376 * of this, we need to use this wrapper to copy the user space information
1377 * before doing the clear.
1378 */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1379 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1380 u32 len)
1381 {
1382 int ret;
1383 unsigned long addr;
1384 struct hfi1_tid_info tinfo;
1385
1386 if (sizeof(tinfo) != len)
1387 return -EINVAL;
1388
1389 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1390 return -EFAULT;
1391
1392 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1393 if (!ret) {
1394 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1395 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1396 sizeof(tinfo.tidcnt)))
1397 return -EFAULT;
1398 }
1399
1400 return ret;
1401 }
1402
1403 /**
1404 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1405 * @fd: file data of the current driver instance
1406 * @arg: ioctl argumnent for user space information
1407 * @len: length of data structure associated with ioctl command
1408 *
1409 * Wrapper to validate ioctl information before doing _rcv_invalid.
1410 *
1411 */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1412 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1413 u32 len)
1414 {
1415 int ret;
1416 unsigned long addr;
1417 struct hfi1_tid_info tinfo;
1418
1419 if (sizeof(tinfo) != len)
1420 return -EINVAL;
1421
1422 if (!fd->invalid_tids)
1423 return -EINVAL;
1424
1425 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1426 return -EFAULT;
1427
1428 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1429 if (ret)
1430 return ret;
1431
1432 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1433 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1434 sizeof(tinfo.tidcnt)))
1435 ret = -EFAULT;
1436
1437 return ret;
1438 }
1439
poll_urgent(struct file * fp,struct poll_table_struct * pt)1440 static __poll_t poll_urgent(struct file *fp,
1441 struct poll_table_struct *pt)
1442 {
1443 struct hfi1_filedata *fd = fp->private_data;
1444 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1445 struct hfi1_devdata *dd = uctxt->dd;
1446 __poll_t pollflag;
1447
1448 poll_wait(fp, &uctxt->wait, pt);
1449
1450 spin_lock_irq(&dd->uctxt_lock);
1451 if (uctxt->urgent != uctxt->urgent_poll) {
1452 pollflag = EPOLLIN | EPOLLRDNORM;
1453 uctxt->urgent_poll = uctxt->urgent;
1454 } else {
1455 pollflag = 0;
1456 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1457 }
1458 spin_unlock_irq(&dd->uctxt_lock);
1459
1460 return pollflag;
1461 }
1462
poll_next(struct file * fp,struct poll_table_struct * pt)1463 static __poll_t poll_next(struct file *fp,
1464 struct poll_table_struct *pt)
1465 {
1466 struct hfi1_filedata *fd = fp->private_data;
1467 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1468 struct hfi1_devdata *dd = uctxt->dd;
1469 __poll_t pollflag;
1470
1471 poll_wait(fp, &uctxt->wait, pt);
1472
1473 spin_lock_irq(&dd->uctxt_lock);
1474 if (hdrqempty(uctxt)) {
1475 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1476 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1477 pollflag = 0;
1478 } else {
1479 pollflag = EPOLLIN | EPOLLRDNORM;
1480 }
1481 spin_unlock_irq(&dd->uctxt_lock);
1482
1483 return pollflag;
1484 }
1485
1486 /*
1487 * Find all user contexts in use, and set the specified bit in their
1488 * event mask.
1489 * See also find_ctxt() for a similar use, that is specific to send buffers.
1490 */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1491 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1492 {
1493 struct hfi1_ctxtdata *uctxt;
1494 struct hfi1_devdata *dd = ppd->dd;
1495 u16 ctxt;
1496
1497 if (!dd->events)
1498 return -EINVAL;
1499
1500 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1501 ctxt++) {
1502 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1503 if (uctxt) {
1504 unsigned long *evs;
1505 int i;
1506 /*
1507 * subctxt_cnt is 0 if not shared, so do base
1508 * separately, first, then remaining subctxt, if any
1509 */
1510 evs = dd->events + uctxt_offset(uctxt);
1511 set_bit(evtbit, evs);
1512 for (i = 1; i < uctxt->subctxt_cnt; i++)
1513 set_bit(evtbit, evs + i);
1514 hfi1_rcd_put(uctxt);
1515 }
1516 }
1517
1518 return 0;
1519 }
1520
1521 /**
1522 * manage_rcvq - manage a context's receive queue
1523 * @uctxt: the context
1524 * @subctxt: the sub-context
1525 * @start_stop: action to carry out
1526 *
1527 * start_stop == 0 disables receive on the context, for use in queue
1528 * overflow conditions. start_stop==1 re-enables, to be used to
1529 * re-init the software copy of the head register
1530 */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1531 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1532 unsigned long arg)
1533 {
1534 struct hfi1_devdata *dd = uctxt->dd;
1535 unsigned int rcvctrl_op;
1536 int start_stop;
1537
1538 if (subctxt)
1539 return 0;
1540
1541 if (get_user(start_stop, (int __user *)arg))
1542 return -EFAULT;
1543
1544 /* atomically clear receive enable ctxt. */
1545 if (start_stop) {
1546 /*
1547 * On enable, force in-memory copy of the tail register to
1548 * 0, so that protocol code doesn't have to worry about
1549 * whether or not the chip has yet updated the in-memory
1550 * copy or not on return from the system call. The chip
1551 * always resets it's tail register back to 0 on a
1552 * transition from disabled to enabled.
1553 */
1554 if (hfi1_rcvhdrtail_kvaddr(uctxt))
1555 clear_rcvhdrtail(uctxt);
1556 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1557 } else {
1558 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1559 }
1560 hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1561 /* always; new head should be equal to new tail; see above */
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * clear the event notifier events for this context.
1568 * User process then performs actions appropriate to bit having been
1569 * set, if desired, and checks again in future.
1570 */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1571 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1572 unsigned long arg)
1573 {
1574 int i;
1575 struct hfi1_devdata *dd = uctxt->dd;
1576 unsigned long *evs;
1577 unsigned long events;
1578
1579 if (!dd->events)
1580 return 0;
1581
1582 if (get_user(events, (unsigned long __user *)arg))
1583 return -EFAULT;
1584
1585 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1586
1587 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1588 if (!test_bit(i, &events))
1589 continue;
1590 clear_bit(i, evs);
1591 }
1592 return 0;
1593 }
1594
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1595 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1596 {
1597 int i;
1598 struct hfi1_pportdata *ppd = uctxt->ppd;
1599 struct hfi1_devdata *dd = uctxt->dd;
1600 u16 pkey;
1601
1602 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1603 return -EPERM;
1604
1605 if (get_user(pkey, (u16 __user *)arg))
1606 return -EFAULT;
1607
1608 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1609 return -EINVAL;
1610
1611 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1612 if (pkey == ppd->pkeys[i])
1613 return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1614
1615 return -ENOENT;
1616 }
1617
1618 /**
1619 * ctxt_reset - Reset the user context
1620 * @uctxt: valid user context
1621 */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1622 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1623 {
1624 struct send_context *sc;
1625 struct hfi1_devdata *dd;
1626 int ret = 0;
1627
1628 if (!uctxt || !uctxt->dd || !uctxt->sc)
1629 return -EINVAL;
1630
1631 /*
1632 * There is no protection here. User level has to guarantee that
1633 * no one will be writing to the send context while it is being
1634 * re-initialized. If user level breaks that guarantee, it will
1635 * break it's own context and no one else's.
1636 */
1637 dd = uctxt->dd;
1638 sc = uctxt->sc;
1639
1640 /*
1641 * Wait until the interrupt handler has marked the context as
1642 * halted or frozen. Report error if we time out.
1643 */
1644 wait_event_interruptible_timeout(
1645 sc->halt_wait, (sc->flags & SCF_HALTED),
1646 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1647 if (!(sc->flags & SCF_HALTED))
1648 return -ENOLCK;
1649
1650 /*
1651 * If the send context was halted due to a Freeze, wait until the
1652 * device has been "unfrozen" before resetting the context.
1653 */
1654 if (sc->flags & SCF_FROZEN) {
1655 wait_event_interruptible_timeout(
1656 dd->event_queue,
1657 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1658 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1659 if (dd->flags & HFI1_FROZEN)
1660 return -ENOLCK;
1661
1662 if (dd->flags & HFI1_FORCED_FREEZE)
1663 /*
1664 * Don't allow context reset if we are into
1665 * forced freeze
1666 */
1667 return -ENODEV;
1668
1669 sc_disable(sc);
1670 ret = sc_enable(sc);
1671 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1672 } else {
1673 ret = sc_restart(sc);
1674 }
1675 if (!ret)
1676 sc_return_credits(sc);
1677
1678 return ret;
1679 }
1680
user_remove(struct hfi1_devdata * dd)1681 static void user_remove(struct hfi1_devdata *dd)
1682 {
1683
1684 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1685 }
1686
user_add(struct hfi1_devdata * dd)1687 static int user_add(struct hfi1_devdata *dd)
1688 {
1689 char name[10];
1690 int ret;
1691
1692 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1693 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1694 &dd->user_cdev, &dd->user_device,
1695 true, &dd->verbs_dev.rdi.ibdev.dev.kobj);
1696 if (ret)
1697 user_remove(dd);
1698
1699 return ret;
1700 }
1701
1702 /*
1703 * Create per-unit files in /dev
1704 */
hfi1_device_create(struct hfi1_devdata * dd)1705 int hfi1_device_create(struct hfi1_devdata *dd)
1706 {
1707 return user_add(dd);
1708 }
1709
1710 /*
1711 * Remove per-unit files in /dev
1712 * void, core kernel returns no errors for this stuff
1713 */
hfi1_device_remove(struct hfi1_devdata * dd)1714 void hfi1_device_remove(struct hfi1_devdata *dd)
1715 {
1716 user_remove(dd);
1717 }
1718