1 /*
2 * Copyright(c) 2015-2017 Intel Corporation.
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * BSD LICENSE
19 *
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted provided that the following conditions
22 * are met:
23 *
24 * - Redistributions of source code must retain the above copyright
25 * notice, this list of conditions and the following disclaimer.
26 * - Redistributions in binary form must reproduce the above copyright
27 * notice, this list of conditions and the following disclaimer in
28 * the documentation and/or other materials provided with the
29 * distribution.
30 * - Neither the name of Intel Corporation nor the names of its
31 * contributors may be used to endorse or promote products derived
32 * from this software without specific prior written permission.
33 *
34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45 *
46 */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
53
54 #include <rdma/ib.h>
55
56 #include "hfi.h"
57 #include "pio.h"
58 #include "device.h"
59 #include "common.h"
60 #include "trace.h"
61 #include "mmu_rb.h"
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
64 #include "aspm.h"
65
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
70
71 /*
72 * File operation functions
73 */
74 static int hfi1_file_open(struct inode *inode, struct file *fp);
75 static int hfi1_file_close(struct inode *inode, struct file *fp);
76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
79
80 static u64 kvirt_to_phys(void *addr);
81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
82 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
83 const struct hfi1_user_info *uinfo);
84 static int init_user_ctxt(struct hfi1_filedata *fd,
85 struct hfi1_ctxtdata *uctxt);
86 static void user_init(struct hfi1_ctxtdata *uctxt);
87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
90 u32 len);
91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
92 u32 len);
93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
94 u32 len);
95 static int setup_base_ctxt(struct hfi1_filedata *fd,
96 struct hfi1_ctxtdata *uctxt);
97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
98
99 static int find_sub_ctxt(struct hfi1_filedata *fd,
100 const struct hfi1_user_info *uinfo);
101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
102 struct hfi1_user_info *uinfo,
103 struct hfi1_ctxtdata **cd);
104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
108 unsigned long arg);
109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
112 unsigned long arg);
113 static vm_fault_t vma_fault(struct vm_fault *vmf);
114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
115 unsigned long arg);
116
117 static const struct file_operations hfi1_file_ops = {
118 .owner = THIS_MODULE,
119 .write_iter = hfi1_write_iter,
120 .open = hfi1_file_open,
121 .release = hfi1_file_close,
122 .unlocked_ioctl = hfi1_file_ioctl,
123 .poll = hfi1_poll,
124 .mmap = hfi1_file_mmap,
125 .llseek = noop_llseek,
126 };
127
128 static const struct vm_operations_struct vm_ops = {
129 .fault = vma_fault,
130 };
131
132 /*
133 * Types of memories mapped into user processes' space
134 */
135 enum mmap_types {
136 PIO_BUFS = 1,
137 PIO_BUFS_SOP,
138 PIO_CRED,
139 RCV_HDRQ,
140 RCV_EGRBUF,
141 UREGS,
142 EVENTS,
143 STATUS,
144 RTAIL,
145 SUBCTXT_UREGS,
146 SUBCTXT_RCV_HDRQ,
147 SUBCTXT_EGRBUF,
148 SDMA_COMP
149 };
150
151 /*
152 * Masks and offsets defining the mmap tokens
153 */
154 #define HFI1_MMAP_OFFSET_MASK 0xfffULL
155 #define HFI1_MMAP_OFFSET_SHIFT 0
156 #define HFI1_MMAP_SUBCTXT_MASK 0xfULL
157 #define HFI1_MMAP_SUBCTXT_SHIFT 12
158 #define HFI1_MMAP_CTXT_MASK 0xffULL
159 #define HFI1_MMAP_CTXT_SHIFT 16
160 #define HFI1_MMAP_TYPE_MASK 0xfULL
161 #define HFI1_MMAP_TYPE_SHIFT 24
162 #define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
163 #define HFI1_MMAP_MAGIC_SHIFT 32
164
165 #define HFI1_MMAP_MAGIC 0xdabbad00
166
167 #define HFI1_MMAP_TOKEN_SET(field, val) \
168 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
169 #define HFI1_MMAP_TOKEN_GET(field, token) \
170 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
172 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
173 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
174 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
175 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
176 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
177
178 #define dbg(fmt, ...) \
179 pr_info(fmt, ##__VA_ARGS__)
180
is_valid_mmap(u64 token)181 static inline int is_valid_mmap(u64 token)
182 {
183 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
184 }
185
hfi1_file_open(struct inode * inode,struct file * fp)186 static int hfi1_file_open(struct inode *inode, struct file *fp)
187 {
188 struct hfi1_filedata *fd;
189 struct hfi1_devdata *dd = container_of(inode->i_cdev,
190 struct hfi1_devdata,
191 user_cdev);
192
193 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
194 return -EINVAL;
195
196 if (!atomic_inc_not_zero(&dd->user_refcount))
197 return -ENXIO;
198
199 /* The real work is performed later in assign_ctxt() */
200
201 fd = kzalloc(sizeof(*fd), GFP_KERNEL);
202
203 if (fd) {
204 fd->rec_cpu_num = -1; /* no cpu affinity by default */
205 fd->mm = current->mm;
206 mmgrab(fd->mm);
207 fd->dd = dd;
208 kobject_get(&fd->dd->kobj);
209 fp->private_data = fd;
210 } else {
211 fp->private_data = NULL;
212
213 if (atomic_dec_and_test(&dd->user_refcount))
214 complete(&dd->user_comp);
215
216 return -ENOMEM;
217 }
218
219 return 0;
220 }
221
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
223 unsigned long arg)
224 {
225 struct hfi1_filedata *fd = fp->private_data;
226 struct hfi1_ctxtdata *uctxt = fd->uctxt;
227 int ret = 0;
228 int uval = 0;
229
230 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
231 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
232 cmd != HFI1_IOCTL_GET_VERS &&
233 !uctxt)
234 return -EINVAL;
235
236 switch (cmd) {
237 case HFI1_IOCTL_ASSIGN_CTXT:
238 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
239 break;
240
241 case HFI1_IOCTL_CTXT_INFO:
242 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
243 break;
244
245 case HFI1_IOCTL_USER_INFO:
246 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
247 break;
248
249 case HFI1_IOCTL_CREDIT_UPD:
250 if (uctxt)
251 sc_return_credits(uctxt->sc);
252 break;
253
254 case HFI1_IOCTL_TID_UPDATE:
255 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
256 break;
257
258 case HFI1_IOCTL_TID_FREE:
259 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
260 break;
261
262 case HFI1_IOCTL_TID_INVAL_READ:
263 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
264 break;
265
266 case HFI1_IOCTL_RECV_CTRL:
267 ret = manage_rcvq(uctxt, fd->subctxt, arg);
268 break;
269
270 case HFI1_IOCTL_POLL_TYPE:
271 if (get_user(uval, (int __user *)arg))
272 return -EFAULT;
273 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
274 break;
275
276 case HFI1_IOCTL_ACK_EVENT:
277 ret = user_event_ack(uctxt, fd->subctxt, arg);
278 break;
279
280 case HFI1_IOCTL_SET_PKEY:
281 ret = set_ctxt_pkey(uctxt, arg);
282 break;
283
284 case HFI1_IOCTL_CTXT_RESET:
285 ret = ctxt_reset(uctxt);
286 break;
287
288 case HFI1_IOCTL_GET_VERS:
289 uval = HFI1_USER_SWVERSION;
290 if (put_user(uval, (int __user *)arg))
291 return -EFAULT;
292 break;
293
294 default:
295 return -EINVAL;
296 }
297
298 return ret;
299 }
300
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
302 {
303 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
304 struct hfi1_user_sdma_pkt_q *pq = fd->pq;
305 struct hfi1_user_sdma_comp_q *cq = fd->cq;
306 int done = 0, reqs = 0;
307 unsigned long dim = from->nr_segs;
308
309 if (!cq || !pq)
310 return -EIO;
311
312 if (!iter_is_iovec(from) || !dim)
313 return -EINVAL;
314
315 trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
316
317 if (atomic_read(&pq->n_reqs) == pq->n_max_reqs)
318 return -ENOSPC;
319
320 while (dim) {
321 int ret;
322 unsigned long count = 0;
323
324 ret = hfi1_user_sdma_process_request(
325 fd, (struct iovec *)(from->iov + done),
326 dim, &count);
327 if (ret) {
328 reqs = ret;
329 break;
330 }
331 dim -= count;
332 done += count;
333 reqs++;
334 }
335
336 return reqs;
337 }
338
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)339 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
340 {
341 struct hfi1_filedata *fd = fp->private_data;
342 struct hfi1_ctxtdata *uctxt = fd->uctxt;
343 struct hfi1_devdata *dd;
344 unsigned long flags;
345 u64 token = vma->vm_pgoff << PAGE_SHIFT,
346 memaddr = 0;
347 void *memvirt = NULL;
348 u8 subctxt, mapio = 0, vmf = 0, type;
349 ssize_t memlen = 0;
350 int ret = 0;
351 u16 ctxt;
352
353 if (!is_valid_mmap(token) || !uctxt ||
354 !(vma->vm_flags & VM_SHARED)) {
355 ret = -EINVAL;
356 goto done;
357 }
358 dd = uctxt->dd;
359 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
360 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
361 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
362 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
363 ret = -EINVAL;
364 goto done;
365 }
366
367 flags = vma->vm_flags;
368
369 switch (type) {
370 case PIO_BUFS:
371 case PIO_BUFS_SOP:
372 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
373 /* chip pio base */
374 (uctxt->sc->hw_context * BIT(16))) +
375 /* 64K PIO space / ctxt */
376 (type == PIO_BUFS_SOP ?
377 (TXE_PIO_SIZE / 2) : 0); /* sop? */
378 /*
379 * Map only the amount allocated to the context, not the
380 * entire available context's PIO space.
381 */
382 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
383 flags &= ~VM_MAYREAD;
384 flags |= VM_DONTCOPY | VM_DONTEXPAND;
385 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
386 mapio = 1;
387 break;
388 case PIO_CRED:
389 if (flags & VM_WRITE) {
390 ret = -EPERM;
391 goto done;
392 }
393 /*
394 * The credit return location for this context could be on the
395 * second or third page allocated for credit returns (if number
396 * of enabled contexts > 64 and 128 respectively).
397 */
398 memvirt = dd->cr_base[uctxt->numa_id].va;
399 memaddr = virt_to_phys(memvirt) +
400 (((u64)uctxt->sc->hw_free -
401 (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
402 memlen = PAGE_SIZE;
403 flags &= ~VM_MAYWRITE;
404 flags |= VM_DONTCOPY | VM_DONTEXPAND;
405 /*
406 * The driver has already allocated memory for credit
407 * returns and programmed it into the chip. Has that
408 * memory been flagged as non-cached?
409 */
410 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
411 mapio = 1;
412 break;
413 case RCV_HDRQ:
414 memlen = rcvhdrq_size(uctxt);
415 memvirt = uctxt->rcvhdrq;
416 break;
417 case RCV_EGRBUF: {
418 unsigned long addr;
419 int i;
420 /*
421 * The RcvEgr buffer need to be handled differently
422 * as multiple non-contiguous pages need to be mapped
423 * into the user process.
424 */
425 memlen = uctxt->egrbufs.size;
426 if ((vma->vm_end - vma->vm_start) != memlen) {
427 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
428 (vma->vm_end - vma->vm_start), memlen);
429 ret = -EINVAL;
430 goto done;
431 }
432 if (vma->vm_flags & VM_WRITE) {
433 ret = -EPERM;
434 goto done;
435 }
436 vma->vm_flags &= ~VM_MAYWRITE;
437 addr = vma->vm_start;
438 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
439 memlen = uctxt->egrbufs.buffers[i].len;
440 memvirt = uctxt->egrbufs.buffers[i].addr;
441 ret = remap_pfn_range(
442 vma, addr,
443 /*
444 * virt_to_pfn() does the same, but
445 * it's not available on x86_64
446 * when CONFIG_MMU is enabled.
447 */
448 PFN_DOWN(__pa(memvirt)),
449 memlen,
450 vma->vm_page_prot);
451 if (ret < 0)
452 goto done;
453 addr += memlen;
454 }
455 ret = 0;
456 goto done;
457 }
458 case UREGS:
459 /*
460 * Map only the page that contains this context's user
461 * registers.
462 */
463 memaddr = (unsigned long)
464 (dd->physaddr + RXE_PER_CONTEXT_USER)
465 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
466 /*
467 * TidFlow table is on the same page as the rest of the
468 * user registers.
469 */
470 memlen = PAGE_SIZE;
471 flags |= VM_DONTCOPY | VM_DONTEXPAND;
472 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
473 mapio = 1;
474 break;
475 case EVENTS:
476 /*
477 * Use the page where this context's flags are. User level
478 * knows where it's own bitmap is within the page.
479 */
480 memaddr = (unsigned long)
481 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
482 memlen = PAGE_SIZE;
483 /*
484 * v3.7 removes VM_RESERVED but the effect is kept by
485 * using VM_IO.
486 */
487 flags |= VM_IO | VM_DONTEXPAND;
488 vmf = 1;
489 break;
490 case STATUS:
491 if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) {
492 ret = -EPERM;
493 goto done;
494 }
495 memaddr = kvirt_to_phys((void *)dd->status);
496 memlen = PAGE_SIZE;
497 flags |= VM_IO | VM_DONTEXPAND;
498 break;
499 case RTAIL:
500 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
501 /*
502 * If the memory allocation failed, the context alloc
503 * also would have failed, so we would never get here
504 */
505 ret = -EINVAL;
506 goto done;
507 }
508 if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) {
509 ret = -EPERM;
510 goto done;
511 }
512 memlen = PAGE_SIZE;
513 memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
514 flags &= ~VM_MAYWRITE;
515 break;
516 case SUBCTXT_UREGS:
517 memaddr = (u64)uctxt->subctxt_uregbase;
518 memlen = PAGE_SIZE;
519 flags |= VM_IO | VM_DONTEXPAND;
520 vmf = 1;
521 break;
522 case SUBCTXT_RCV_HDRQ:
523 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524 memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525 flags |= VM_IO | VM_DONTEXPAND;
526 vmf = 1;
527 break;
528 case SUBCTXT_EGRBUF:
529 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531 flags |= VM_IO | VM_DONTEXPAND;
532 flags &= ~VM_MAYWRITE;
533 vmf = 1;
534 break;
535 case SDMA_COMP: {
536 struct hfi1_user_sdma_comp_q *cq = fd->cq;
537
538 if (!cq) {
539 ret = -EFAULT;
540 goto done;
541 }
542 memaddr = (u64)cq->comps;
543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544 flags |= VM_IO | VM_DONTEXPAND;
545 vmf = 1;
546 break;
547 }
548 default:
549 ret = -EINVAL;
550 break;
551 }
552
553 if ((vma->vm_end - vma->vm_start) != memlen) {
554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555 uctxt->ctxt, fd->subctxt,
556 (vma->vm_end - vma->vm_start), memlen);
557 ret = -EINVAL;
558 goto done;
559 }
560
561 vma->vm_flags = flags;
562 hfi1_cdbg(PROC,
563 "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
564 ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
565 vma->vm_end - vma->vm_start, vma->vm_flags);
566 if (vmf) {
567 vma->vm_pgoff = PFN_DOWN(memaddr);
568 vma->vm_ops = &vm_ops;
569 ret = 0;
570 } else if (mapio) {
571 ret = io_remap_pfn_range(vma, vma->vm_start,
572 PFN_DOWN(memaddr),
573 memlen,
574 vma->vm_page_prot);
575 } else if (memvirt) {
576 ret = remap_pfn_range(vma, vma->vm_start,
577 PFN_DOWN(__pa(memvirt)),
578 memlen,
579 vma->vm_page_prot);
580 } else {
581 ret = remap_pfn_range(vma, vma->vm_start,
582 PFN_DOWN(memaddr),
583 memlen,
584 vma->vm_page_prot);
585 }
586 done:
587 return ret;
588 }
589
590 /*
591 * Local (non-chip) user memory is not mapped right away but as it is
592 * accessed by the user-level code.
593 */
vma_fault(struct vm_fault * vmf)594 static vm_fault_t vma_fault(struct vm_fault *vmf)
595 {
596 struct page *page;
597
598 page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
599 if (!page)
600 return VM_FAULT_SIGBUS;
601
602 get_page(page);
603 vmf->page = page;
604
605 return 0;
606 }
607
hfi1_poll(struct file * fp,struct poll_table_struct * pt)608 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
609 {
610 struct hfi1_ctxtdata *uctxt;
611 __poll_t pollflag;
612
613 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
614 if (!uctxt)
615 pollflag = EPOLLERR;
616 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
617 pollflag = poll_urgent(fp, pt);
618 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
619 pollflag = poll_next(fp, pt);
620 else /* invalid */
621 pollflag = EPOLLERR;
622
623 return pollflag;
624 }
625
hfi1_file_close(struct inode * inode,struct file * fp)626 static int hfi1_file_close(struct inode *inode, struct file *fp)
627 {
628 struct hfi1_filedata *fdata = fp->private_data;
629 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
630 struct hfi1_devdata *dd = container_of(inode->i_cdev,
631 struct hfi1_devdata,
632 user_cdev);
633 unsigned long flags, *ev;
634
635 fp->private_data = NULL;
636
637 if (!uctxt)
638 goto done;
639
640 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
641
642 flush_wc();
643 /* drain user sdma queue */
644 hfi1_user_sdma_free_queues(fdata, uctxt);
645
646 /* release the cpu */
647 hfi1_put_proc_affinity(fdata->rec_cpu_num);
648
649 /* clean up rcv side */
650 hfi1_user_exp_rcv_free(fdata);
651
652 /*
653 * fdata->uctxt is used in the above cleanup. It is not ready to be
654 * removed until here.
655 */
656 fdata->uctxt = NULL;
657 hfi1_rcd_put(uctxt);
658
659 /*
660 * Clear any left over, unhandled events so the next process that
661 * gets this context doesn't get confused.
662 */
663 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
664 *ev = 0;
665
666 spin_lock_irqsave(&dd->uctxt_lock, flags);
667 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
668 if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
669 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
670 goto done;
671 }
672 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
673
674 /*
675 * Disable receive context and interrupt available, reset all
676 * RcvCtxtCtrl bits to default values.
677 */
678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
679 HFI1_RCVCTRL_TIDFLOW_DIS |
680 HFI1_RCVCTRL_INTRAVAIL_DIS |
681 HFI1_RCVCTRL_TAILUPD_DIS |
682 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
683 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
684 HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt);
685 /* Clear the context's J_KEY */
686 hfi1_clear_ctxt_jkey(dd, uctxt);
687 /*
688 * If a send context is allocated, reset context integrity
689 * checks to default and disable the send context.
690 */
691 if (uctxt->sc) {
692 sc_disable(uctxt->sc);
693 set_pio_integrity(uctxt->sc);
694 }
695
696 hfi1_free_ctxt_rcv_groups(uctxt);
697 hfi1_clear_ctxt_pkey(dd, uctxt);
698
699 uctxt->event_flags = 0;
700
701 deallocate_ctxt(uctxt);
702 done:
703 mmdrop(fdata->mm);
704 kobject_put(&dd->kobj);
705
706 if (atomic_dec_and_test(&dd->user_refcount))
707 complete(&dd->user_comp);
708
709 kfree(fdata);
710 return 0;
711 }
712
713 /*
714 * Convert kernel *virtual* addresses to physical addresses.
715 * This is used to vmalloc'ed addresses.
716 */
kvirt_to_phys(void * addr)717 static u64 kvirt_to_phys(void *addr)
718 {
719 struct page *page;
720 u64 paddr = 0;
721
722 page = vmalloc_to_page(addr);
723 if (page)
724 paddr = page_to_pfn(page) << PAGE_SHIFT;
725
726 return paddr;
727 }
728
729 /**
730 * complete_subctxt
731 * @fd: valid filedata pointer
732 *
733 * Sub-context info can only be set up after the base context
734 * has been completed. This is indicated by the clearing of the
735 * HFI1_CTXT_BASE_UINIT bit.
736 *
737 * Wait for the bit to be cleared, and then complete the subcontext
738 * initialization.
739 *
740 */
complete_subctxt(struct hfi1_filedata * fd)741 static int complete_subctxt(struct hfi1_filedata *fd)
742 {
743 int ret;
744 unsigned long flags;
745
746 /*
747 * sub-context info can only be set up after the base context
748 * has been completed.
749 */
750 ret = wait_event_interruptible(
751 fd->uctxt->wait,
752 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
753
754 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
755 ret = -ENOMEM;
756
757 /* Finish the sub-context init */
758 if (!ret) {
759 fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
760 ret = init_user_ctxt(fd, fd->uctxt);
761 }
762
763 if (ret) {
764 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
765 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
766 spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
767 hfi1_rcd_put(fd->uctxt);
768 fd->uctxt = NULL;
769 }
770
771 return ret;
772 }
773
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)774 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
775 {
776 int ret;
777 unsigned int swmajor;
778 struct hfi1_ctxtdata *uctxt = NULL;
779 struct hfi1_user_info uinfo;
780
781 if (fd->uctxt)
782 return -EINVAL;
783
784 if (sizeof(uinfo) != len)
785 return -EINVAL;
786
787 if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
788 return -EFAULT;
789
790 swmajor = uinfo.userversion >> 16;
791 if (swmajor != HFI1_USER_SWMAJOR)
792 return -ENODEV;
793
794 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
795 return -EINVAL;
796
797 /*
798 * Acquire the mutex to protect against multiple creations of what
799 * could be a shared base context.
800 */
801 mutex_lock(&hfi1_mutex);
802 /*
803 * Get a sub context if available (fd->uctxt will be set).
804 * ret < 0 error, 0 no context, 1 sub-context found
805 */
806 ret = find_sub_ctxt(fd, &uinfo);
807
808 /*
809 * Allocate a base context if context sharing is not required or a
810 * sub context wasn't found.
811 */
812 if (!ret)
813 ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
814
815 mutex_unlock(&hfi1_mutex);
816
817 /* Depending on the context type, finish the appropriate init */
818 switch (ret) {
819 case 0:
820 ret = setup_base_ctxt(fd, uctxt);
821 if (ret)
822 deallocate_ctxt(uctxt);
823 break;
824 case 1:
825 ret = complete_subctxt(fd);
826 break;
827 default:
828 break;
829 }
830
831 return ret;
832 }
833
834 /**
835 * match_ctxt
836 * @fd: valid filedata pointer
837 * @uinfo: user info to compare base context with
838 * @uctxt: context to compare uinfo to.
839 *
840 * Compare the given context with the given information to see if it
841 * can be used for a sub context.
842 */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)843 static int match_ctxt(struct hfi1_filedata *fd,
844 const struct hfi1_user_info *uinfo,
845 struct hfi1_ctxtdata *uctxt)
846 {
847 struct hfi1_devdata *dd = fd->dd;
848 unsigned long flags;
849 u16 subctxt;
850
851 /* Skip dynamically allocated kernel contexts */
852 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
853 return 0;
854
855 /* Skip ctxt if it doesn't match the requested one */
856 if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
857 uctxt->jkey != generate_jkey(current_uid()) ||
858 uctxt->subctxt_id != uinfo->subctxt_id ||
859 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
860 return 0;
861
862 /* Verify the sharing process matches the base */
863 if (uctxt->userversion != uinfo->userversion)
864 return -EINVAL;
865
866 /* Find an unused sub context */
867 spin_lock_irqsave(&dd->uctxt_lock, flags);
868 if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
869 /* context is being closed, do not use */
870 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
871 return 0;
872 }
873
874 subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
875 HFI1_MAX_SHARED_CTXTS);
876 if (subctxt >= uctxt->subctxt_cnt) {
877 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
878 return -EBUSY;
879 }
880
881 fd->subctxt = subctxt;
882 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
883 spin_unlock_irqrestore(&dd->uctxt_lock, flags);
884
885 fd->uctxt = uctxt;
886 hfi1_rcd_get(uctxt);
887
888 return 1;
889 }
890
891 /**
892 * find_sub_ctxt
893 * @fd: valid filedata pointer
894 * @uinfo: matching info to use to find a possible context to share.
895 *
896 * The hfi1_mutex must be held when this function is called. It is
897 * necessary to ensure serialized creation of shared contexts.
898 *
899 * Return:
900 * 0 No sub-context found
901 * 1 Subcontext found and allocated
902 * errno EINVAL (incorrect parameters)
903 * EBUSY (all sub contexts in use)
904 */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)905 static int find_sub_ctxt(struct hfi1_filedata *fd,
906 const struct hfi1_user_info *uinfo)
907 {
908 struct hfi1_ctxtdata *uctxt;
909 struct hfi1_devdata *dd = fd->dd;
910 u16 i;
911 int ret;
912
913 if (!uinfo->subctxt_cnt)
914 return 0;
915
916 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
917 uctxt = hfi1_rcd_get_by_index(dd, i);
918 if (uctxt) {
919 ret = match_ctxt(fd, uinfo, uctxt);
920 hfi1_rcd_put(uctxt);
921 /* value of != 0 will return */
922 if (ret)
923 return ret;
924 }
925 }
926
927 return 0;
928 }
929
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)930 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
931 struct hfi1_user_info *uinfo,
932 struct hfi1_ctxtdata **rcd)
933 {
934 struct hfi1_ctxtdata *uctxt;
935 int ret, numa;
936
937 if (dd->flags & HFI1_FROZEN) {
938 /*
939 * Pick an error that is unique from all other errors
940 * that are returned so the user process knows that
941 * it tried to allocate while the SPC was frozen. It
942 * it should be able to retry with success in a short
943 * while.
944 */
945 return -EIO;
946 }
947
948 if (!dd->freectxts)
949 return -EBUSY;
950
951 /*
952 * If we don't have a NUMA node requested, preference is towards
953 * device NUMA node.
954 */
955 fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
956 if (fd->rec_cpu_num != -1)
957 numa = cpu_to_node(fd->rec_cpu_num);
958 else
959 numa = numa_node_id();
960 ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
961 if (ret < 0) {
962 dd_dev_err(dd, "user ctxtdata allocation failed\n");
963 return ret;
964 }
965 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
966 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
967 uctxt->numa_id);
968
969 /*
970 * Allocate and enable a PIO send context.
971 */
972 uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
973 if (!uctxt->sc) {
974 ret = -ENOMEM;
975 goto ctxdata_free;
976 }
977 hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
978 uctxt->sc->hw_context);
979 ret = sc_enable(uctxt->sc);
980 if (ret)
981 goto ctxdata_free;
982
983 /*
984 * Setup sub context information if the user-level has requested
985 * sub contexts.
986 * This has to be done here so the rest of the sub-contexts find the
987 * proper base context.
988 * NOTE: _set_bit() can be used here because the context creation is
989 * protected by the mutex (rather than the spin_lock), and will be the
990 * very first instance of this context.
991 */
992 __set_bit(0, uctxt->in_use_ctxts);
993 if (uinfo->subctxt_cnt)
994 init_subctxts(uctxt, uinfo);
995 uctxt->userversion = uinfo->userversion;
996 uctxt->flags = hfi1_cap_mask; /* save current flag state */
997 init_waitqueue_head(&uctxt->wait);
998 strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
999 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1000 uctxt->jkey = generate_jkey(current_uid());
1001 hfi1_stats.sps_ctxts++;
1002 /*
1003 * Disable ASPM when there are open user/PSM contexts to avoid
1004 * issues with ASPM L1 exit latency
1005 */
1006 if (dd->freectxts-- == dd->num_user_contexts)
1007 aspm_disable_all(dd);
1008
1009 *rcd = uctxt;
1010
1011 return 0;
1012
1013 ctxdata_free:
1014 hfi1_free_ctxt(uctxt);
1015 return ret;
1016 }
1017
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1018 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1019 {
1020 mutex_lock(&hfi1_mutex);
1021 hfi1_stats.sps_ctxts--;
1022 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1023 aspm_enable_all(uctxt->dd);
1024 mutex_unlock(&hfi1_mutex);
1025
1026 hfi1_free_ctxt(uctxt);
1027 }
1028
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1029 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1030 const struct hfi1_user_info *uinfo)
1031 {
1032 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1033 uctxt->subctxt_id = uinfo->subctxt_id;
1034 set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1035 }
1036
setup_subctxt(struct hfi1_ctxtdata * uctxt)1037 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1038 {
1039 int ret = 0;
1040 u16 num_subctxts = uctxt->subctxt_cnt;
1041
1042 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1043 if (!uctxt->subctxt_uregbase)
1044 return -ENOMEM;
1045
1046 /* We can take the size of the RcvHdr Queue from the master */
1047 uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1048 num_subctxts);
1049 if (!uctxt->subctxt_rcvhdr_base) {
1050 ret = -ENOMEM;
1051 goto bail_ureg;
1052 }
1053
1054 uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1055 num_subctxts);
1056 if (!uctxt->subctxt_rcvegrbuf) {
1057 ret = -ENOMEM;
1058 goto bail_rhdr;
1059 }
1060
1061 return 0;
1062
1063 bail_rhdr:
1064 vfree(uctxt->subctxt_rcvhdr_base);
1065 uctxt->subctxt_rcvhdr_base = NULL;
1066 bail_ureg:
1067 vfree(uctxt->subctxt_uregbase);
1068 uctxt->subctxt_uregbase = NULL;
1069
1070 return ret;
1071 }
1072
user_init(struct hfi1_ctxtdata * uctxt)1073 static void user_init(struct hfi1_ctxtdata *uctxt)
1074 {
1075 unsigned int rcvctrl_ops = 0;
1076
1077 /* initialize poll variables... */
1078 uctxt->urgent = 0;
1079 uctxt->urgent_poll = 0;
1080
1081 /*
1082 * Now enable the ctxt for receive.
1083 * For chips that are set to DMA the tail register to memory
1084 * when they change (and when the update bit transitions from
1085 * 0 to 1. So for those chips, we turn it off and then back on.
1086 * This will (very briefly) affect any other open ctxts, but the
1087 * duration is very short, and therefore isn't an issue. We
1088 * explicitly set the in-memory tail copy to 0 beforehand, so we
1089 * don't have to wait to be sure the DMA update has happened
1090 * (chip resets head/tail to 0 on transition to enable).
1091 */
1092 if (uctxt->rcvhdrtail_kvaddr)
1093 clear_rcvhdrtail(uctxt);
1094
1095 /* Setup J_KEY before enabling the context */
1096 hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1097
1098 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1099 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1100 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1101 /*
1102 * Ignore the bit in the flags for now until proper
1103 * support for multiple packet per rcv array entry is
1104 * added.
1105 */
1106 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1107 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1108 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1109 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1112 /*
1113 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1114 * We can't rely on the correct value to be set from prior
1115 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1116 * for both cases.
1117 */
1118 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1119 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1120 else
1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1122 hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1123 }
1124
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1125 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1126 {
1127 struct hfi1_ctxt_info cinfo;
1128 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1129
1130 if (sizeof(cinfo) != len)
1131 return -EINVAL;
1132
1133 memset(&cinfo, 0, sizeof(cinfo));
1134 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1135 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1136 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1137 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1138 /* adjust flag if this fd is not able to cache */
1139 if (!fd->handler)
1140 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1141
1142 cinfo.num_active = hfi1_count_active_units();
1143 cinfo.unit = uctxt->dd->unit;
1144 cinfo.ctxt = uctxt->ctxt;
1145 cinfo.subctxt = fd->subctxt;
1146 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1147 uctxt->dd->rcv_entries.group_size) +
1148 uctxt->expected_count;
1149 cinfo.credits = uctxt->sc->credits;
1150 cinfo.numa_node = uctxt->numa_id;
1151 cinfo.rec_cpu = fd->rec_cpu_num;
1152 cinfo.send_ctxt = uctxt->sc->hw_context;
1153
1154 cinfo.egrtids = uctxt->egrbufs.alloced;
1155 cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1156 cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1157 cinfo.sdma_ring_size = fd->cq->nentries;
1158 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1159
1160 trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1161 if (copy_to_user((void __user *)arg, &cinfo, len))
1162 return -EFAULT;
1163
1164 return 0;
1165 }
1166
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1167 static int init_user_ctxt(struct hfi1_filedata *fd,
1168 struct hfi1_ctxtdata *uctxt)
1169 {
1170 int ret;
1171
1172 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1173 if (ret)
1174 return ret;
1175
1176 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1177 if (ret)
1178 hfi1_user_sdma_free_queues(fd, uctxt);
1179
1180 return ret;
1181 }
1182
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1183 static int setup_base_ctxt(struct hfi1_filedata *fd,
1184 struct hfi1_ctxtdata *uctxt)
1185 {
1186 struct hfi1_devdata *dd = uctxt->dd;
1187 int ret = 0;
1188
1189 hfi1_init_ctxt(uctxt->sc);
1190
1191 /* Now allocate the RcvHdr queue and eager buffers. */
1192 ret = hfi1_create_rcvhdrq(dd, uctxt);
1193 if (ret)
1194 goto done;
1195
1196 ret = hfi1_setup_eagerbufs(uctxt);
1197 if (ret)
1198 goto done;
1199
1200 /* If sub-contexts are enabled, do the appropriate setup */
1201 if (uctxt->subctxt_cnt)
1202 ret = setup_subctxt(uctxt);
1203 if (ret)
1204 goto done;
1205
1206 ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1207 if (ret)
1208 goto done;
1209
1210 ret = init_user_ctxt(fd, uctxt);
1211 if (ret)
1212 goto done;
1213
1214 user_init(uctxt);
1215
1216 /* Now that the context is set up, the fd can get a reference. */
1217 fd->uctxt = uctxt;
1218 hfi1_rcd_get(uctxt);
1219
1220 done:
1221 if (uctxt->subctxt_cnt) {
1222 /*
1223 * On error, set the failed bit so sub-contexts will clean up
1224 * correctly.
1225 */
1226 if (ret)
1227 set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1228
1229 /*
1230 * Base context is done (successfully or not), notify anybody
1231 * using a sub-context that is waiting for this completion.
1232 */
1233 clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1234 wake_up(&uctxt->wait);
1235 }
1236
1237 return ret;
1238 }
1239
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1240 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1241 {
1242 struct hfi1_base_info binfo;
1243 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1244 struct hfi1_devdata *dd = uctxt->dd;
1245 unsigned offset;
1246
1247 trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1248
1249 if (sizeof(binfo) != len)
1250 return -EINVAL;
1251
1252 memset(&binfo, 0, sizeof(binfo));
1253 binfo.hw_version = dd->revision;
1254 binfo.sw_version = HFI1_KERN_SWVERSION;
1255 binfo.bthqp = kdeth_qp;
1256 binfo.jkey = uctxt->jkey;
1257 /*
1258 * If more than 64 contexts are enabled the allocated credit
1259 * return will span two or three contiguous pages. Since we only
1260 * map the page containing the context's credit return address,
1261 * we need to calculate the offset in the proper page.
1262 */
1263 offset = ((u64)uctxt->sc->hw_free -
1264 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1265 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1266 fd->subctxt, offset);
1267 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1268 fd->subctxt,
1269 uctxt->sc->base_addr);
1270 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1271 uctxt->ctxt,
1272 fd->subctxt,
1273 uctxt->sc->base_addr);
1274 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1275 fd->subctxt,
1276 uctxt->rcvhdrq);
1277 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1278 fd->subctxt,
1279 uctxt->egrbufs.rcvtids[0].dma);
1280 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1281 fd->subctxt, 0);
1282 /*
1283 * user regs are at
1284 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1285 */
1286 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1287 fd->subctxt, 0);
1288 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1289 sizeof(*dd->events));
1290 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1291 fd->subctxt,
1292 offset);
1293 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1294 fd->subctxt,
1295 dd->status);
1296 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1297 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1298 fd->subctxt, 0);
1299 if (uctxt->subctxt_cnt) {
1300 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1301 uctxt->ctxt,
1302 fd->subctxt, 0);
1303 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1304 uctxt->ctxt,
1305 fd->subctxt, 0);
1306 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1307 uctxt->ctxt,
1308 fd->subctxt, 0);
1309 }
1310
1311 if (copy_to_user((void __user *)arg, &binfo, len))
1312 return -EFAULT;
1313
1314 return 0;
1315 }
1316
1317 /**
1318 * user_exp_rcv_setup - Set up the given tid rcv list
1319 * @fd: file data of the current driver instance
1320 * @arg: ioctl argumnent for user space information
1321 * @len: length of data structure associated with ioctl command
1322 *
1323 * Wrapper to validate ioctl information before doing _rcv_setup.
1324 *
1325 */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1326 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1327 u32 len)
1328 {
1329 int ret;
1330 unsigned long addr;
1331 struct hfi1_tid_info tinfo;
1332
1333 if (sizeof(tinfo) != len)
1334 return -EINVAL;
1335
1336 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1337 return -EFAULT;
1338
1339 ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1340 if (!ret) {
1341 /*
1342 * Copy the number of tidlist entries we used
1343 * and the length of the buffer we registered.
1344 */
1345 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1346 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1347 sizeof(tinfo.tidcnt)))
1348 return -EFAULT;
1349
1350 addr = arg + offsetof(struct hfi1_tid_info, length);
1351 if (copy_to_user((void __user *)addr, &tinfo.length,
1352 sizeof(tinfo.length)))
1353 ret = -EFAULT;
1354 }
1355
1356 return ret;
1357 }
1358
1359 /**
1360 * user_exp_rcv_clear - Clear the given tid rcv list
1361 * @fd: file data of the current driver instance
1362 * @arg: ioctl argumnent for user space information
1363 * @len: length of data structure associated with ioctl command
1364 *
1365 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1366 * of this, we need to use this wrapper to copy the user space information
1367 * before doing the clear.
1368 */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1369 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1370 u32 len)
1371 {
1372 int ret;
1373 unsigned long addr;
1374 struct hfi1_tid_info tinfo;
1375
1376 if (sizeof(tinfo) != len)
1377 return -EINVAL;
1378
1379 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1380 return -EFAULT;
1381
1382 ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1383 if (!ret) {
1384 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1385 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1386 sizeof(tinfo.tidcnt)))
1387 return -EFAULT;
1388 }
1389
1390 return ret;
1391 }
1392
1393 /**
1394 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1395 * @fd: file data of the current driver instance
1396 * @arg: ioctl argumnent for user space information
1397 * @len: length of data structure associated with ioctl command
1398 *
1399 * Wrapper to validate ioctl information before doing _rcv_invalid.
1400 *
1401 */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1402 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1403 u32 len)
1404 {
1405 int ret;
1406 unsigned long addr;
1407 struct hfi1_tid_info tinfo;
1408
1409 if (sizeof(tinfo) != len)
1410 return -EINVAL;
1411
1412 if (!fd->invalid_tids)
1413 return -EINVAL;
1414
1415 if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1416 return -EFAULT;
1417
1418 ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1419 if (ret)
1420 return ret;
1421
1422 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1423 if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1424 sizeof(tinfo.tidcnt)))
1425 ret = -EFAULT;
1426
1427 return ret;
1428 }
1429
poll_urgent(struct file * fp,struct poll_table_struct * pt)1430 static __poll_t poll_urgent(struct file *fp,
1431 struct poll_table_struct *pt)
1432 {
1433 struct hfi1_filedata *fd = fp->private_data;
1434 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1435 struct hfi1_devdata *dd = uctxt->dd;
1436 __poll_t pollflag;
1437
1438 poll_wait(fp, &uctxt->wait, pt);
1439
1440 spin_lock_irq(&dd->uctxt_lock);
1441 if (uctxt->urgent != uctxt->urgent_poll) {
1442 pollflag = EPOLLIN | EPOLLRDNORM;
1443 uctxt->urgent_poll = uctxt->urgent;
1444 } else {
1445 pollflag = 0;
1446 set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1447 }
1448 spin_unlock_irq(&dd->uctxt_lock);
1449
1450 return pollflag;
1451 }
1452
poll_next(struct file * fp,struct poll_table_struct * pt)1453 static __poll_t poll_next(struct file *fp,
1454 struct poll_table_struct *pt)
1455 {
1456 struct hfi1_filedata *fd = fp->private_data;
1457 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1458 struct hfi1_devdata *dd = uctxt->dd;
1459 __poll_t pollflag;
1460
1461 poll_wait(fp, &uctxt->wait, pt);
1462
1463 spin_lock_irq(&dd->uctxt_lock);
1464 if (hdrqempty(uctxt)) {
1465 set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1466 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1467 pollflag = 0;
1468 } else {
1469 pollflag = EPOLLIN | EPOLLRDNORM;
1470 }
1471 spin_unlock_irq(&dd->uctxt_lock);
1472
1473 return pollflag;
1474 }
1475
1476 /*
1477 * Find all user contexts in use, and set the specified bit in their
1478 * event mask.
1479 * See also find_ctxt() for a similar use, that is specific to send buffers.
1480 */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1481 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1482 {
1483 struct hfi1_ctxtdata *uctxt;
1484 struct hfi1_devdata *dd = ppd->dd;
1485 u16 ctxt;
1486
1487 if (!dd->events)
1488 return -EINVAL;
1489
1490 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1491 ctxt++) {
1492 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1493 if (uctxt) {
1494 unsigned long *evs;
1495 int i;
1496 /*
1497 * subctxt_cnt is 0 if not shared, so do base
1498 * separately, first, then remaining subctxt, if any
1499 */
1500 evs = dd->events + uctxt_offset(uctxt);
1501 set_bit(evtbit, evs);
1502 for (i = 1; i < uctxt->subctxt_cnt; i++)
1503 set_bit(evtbit, evs + i);
1504 hfi1_rcd_put(uctxt);
1505 }
1506 }
1507
1508 return 0;
1509 }
1510
1511 /**
1512 * manage_rcvq - manage a context's receive queue
1513 * @uctxt: the context
1514 * @subctxt: the sub-context
1515 * @start_stop: action to carry out
1516 *
1517 * start_stop == 0 disables receive on the context, for use in queue
1518 * overflow conditions. start_stop==1 re-enables, to be used to
1519 * re-init the software copy of the head register
1520 */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1521 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1522 unsigned long arg)
1523 {
1524 struct hfi1_devdata *dd = uctxt->dd;
1525 unsigned int rcvctrl_op;
1526 int start_stop;
1527
1528 if (subctxt)
1529 return 0;
1530
1531 if (get_user(start_stop, (int __user *)arg))
1532 return -EFAULT;
1533
1534 /* atomically clear receive enable ctxt. */
1535 if (start_stop) {
1536 /*
1537 * On enable, force in-memory copy of the tail register to
1538 * 0, so that protocol code doesn't have to worry about
1539 * whether or not the chip has yet updated the in-memory
1540 * copy or not on return from the system call. The chip
1541 * always resets it's tail register back to 0 on a
1542 * transition from disabled to enabled.
1543 */
1544 if (uctxt->rcvhdrtail_kvaddr)
1545 clear_rcvhdrtail(uctxt);
1546 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1547 } else {
1548 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1549 }
1550 hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1551 /* always; new head should be equal to new tail; see above */
1552
1553 return 0;
1554 }
1555
1556 /*
1557 * clear the event notifier events for this context.
1558 * User process then performs actions appropriate to bit having been
1559 * set, if desired, and checks again in future.
1560 */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1561 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1562 unsigned long arg)
1563 {
1564 int i;
1565 struct hfi1_devdata *dd = uctxt->dd;
1566 unsigned long *evs;
1567 unsigned long events;
1568
1569 if (!dd->events)
1570 return 0;
1571
1572 if (get_user(events, (unsigned long __user *)arg))
1573 return -EFAULT;
1574
1575 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1576
1577 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1578 if (!test_bit(i, &events))
1579 continue;
1580 clear_bit(i, evs);
1581 }
1582 return 0;
1583 }
1584
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1585 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1586 {
1587 int i;
1588 struct hfi1_pportdata *ppd = uctxt->ppd;
1589 struct hfi1_devdata *dd = uctxt->dd;
1590 u16 pkey;
1591
1592 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1593 return -EPERM;
1594
1595 if (get_user(pkey, (u16 __user *)arg))
1596 return -EFAULT;
1597
1598 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1599 return -EINVAL;
1600
1601 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1602 if (pkey == ppd->pkeys[i])
1603 return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1604
1605 return -ENOENT;
1606 }
1607
1608 /**
1609 * ctxt_reset - Reset the user context
1610 * @uctxt: valid user context
1611 */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1612 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1613 {
1614 struct send_context *sc;
1615 struct hfi1_devdata *dd;
1616 int ret = 0;
1617
1618 if (!uctxt || !uctxt->dd || !uctxt->sc)
1619 return -EINVAL;
1620
1621 /*
1622 * There is no protection here. User level has to guarantee that
1623 * no one will be writing to the send context while it is being
1624 * re-initialized. If user level breaks that guarantee, it will
1625 * break it's own context and no one else's.
1626 */
1627 dd = uctxt->dd;
1628 sc = uctxt->sc;
1629
1630 /*
1631 * Wait until the interrupt handler has marked the context as
1632 * halted or frozen. Report error if we time out.
1633 */
1634 wait_event_interruptible_timeout(
1635 sc->halt_wait, (sc->flags & SCF_HALTED),
1636 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1637 if (!(sc->flags & SCF_HALTED))
1638 return -ENOLCK;
1639
1640 /*
1641 * If the send context was halted due to a Freeze, wait until the
1642 * device has been "unfrozen" before resetting the context.
1643 */
1644 if (sc->flags & SCF_FROZEN) {
1645 wait_event_interruptible_timeout(
1646 dd->event_queue,
1647 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1648 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1649 if (dd->flags & HFI1_FROZEN)
1650 return -ENOLCK;
1651
1652 if (dd->flags & HFI1_FORCED_FREEZE)
1653 /*
1654 * Don't allow context reset if we are into
1655 * forced freeze
1656 */
1657 return -ENODEV;
1658
1659 sc_disable(sc);
1660 ret = sc_enable(sc);
1661 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1662 } else {
1663 ret = sc_restart(sc);
1664 }
1665 if (!ret)
1666 sc_return_credits(sc);
1667
1668 return ret;
1669 }
1670
user_remove(struct hfi1_devdata * dd)1671 static void user_remove(struct hfi1_devdata *dd)
1672 {
1673
1674 hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1675 }
1676
user_add(struct hfi1_devdata * dd)1677 static int user_add(struct hfi1_devdata *dd)
1678 {
1679 char name[10];
1680 int ret;
1681
1682 snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1683 ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1684 &dd->user_cdev, &dd->user_device,
1685 true, &dd->kobj);
1686 if (ret)
1687 user_remove(dd);
1688
1689 return ret;
1690 }
1691
1692 /*
1693 * Create per-unit files in /dev
1694 */
hfi1_device_create(struct hfi1_devdata * dd)1695 int hfi1_device_create(struct hfi1_devdata *dd)
1696 {
1697 return user_add(dd);
1698 }
1699
1700 /*
1701 * Remove per-unit files in /dev
1702 * void, core kernel returns no errors for this stuff
1703 */
hfi1_device_remove(struct hfi1_devdata * dd)1704 void hfi1_device_remove(struct hfi1_devdata *dd)
1705 {
1706 user_remove(dd);
1707 }
1708