1 /*
2  * Copyright(c) 2015-2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/poll.h>
48 #include <linux/cdev.h>
49 #include <linux/vmalloc.h>
50 #include <linux/io.h>
51 #include <linux/sched/mm.h>
52 #include <linux/bitmap.h>
53 
54 #include <rdma/ib.h>
55 
56 #include "hfi.h"
57 #include "pio.h"
58 #include "device.h"
59 #include "common.h"
60 #include "trace.h"
61 #include "mmu_rb.h"
62 #include "user_sdma.h"
63 #include "user_exp_rcv.h"
64 #include "aspm.h"
65 
66 #undef pr_fmt
67 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
68 
69 #define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
70 
71 /*
72  * File operation functions
73  */
74 static int hfi1_file_open(struct inode *inode, struct file *fp);
75 static int hfi1_file_close(struct inode *inode, struct file *fp);
76 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
77 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
78 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
79 
80 static u64 kvirt_to_phys(void *addr);
81 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
82 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
83 			  const struct hfi1_user_info *uinfo);
84 static int init_user_ctxt(struct hfi1_filedata *fd,
85 			  struct hfi1_ctxtdata *uctxt);
86 static void user_init(struct hfi1_ctxtdata *uctxt);
87 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
88 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
89 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
90 			      u32 len);
91 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
92 			      u32 len);
93 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
94 				u32 len);
95 static int setup_base_ctxt(struct hfi1_filedata *fd,
96 			   struct hfi1_ctxtdata *uctxt);
97 static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
98 
99 static int find_sub_ctxt(struct hfi1_filedata *fd,
100 			 const struct hfi1_user_info *uinfo);
101 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
102 			 struct hfi1_user_info *uinfo,
103 			 struct hfi1_ctxtdata **cd);
104 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
105 static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
106 static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
107 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
108 			  unsigned long arg);
109 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
110 static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
111 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
112 		       unsigned long arg);
113 static vm_fault_t vma_fault(struct vm_fault *vmf);
114 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
115 			    unsigned long arg);
116 
117 static const struct file_operations hfi1_file_ops = {
118 	.owner = THIS_MODULE,
119 	.write_iter = hfi1_write_iter,
120 	.open = hfi1_file_open,
121 	.release = hfi1_file_close,
122 	.unlocked_ioctl = hfi1_file_ioctl,
123 	.poll = hfi1_poll,
124 	.mmap = hfi1_file_mmap,
125 	.llseek = noop_llseek,
126 };
127 
128 static const struct vm_operations_struct vm_ops = {
129 	.fault = vma_fault,
130 };
131 
132 /*
133  * Types of memories mapped into user processes' space
134  */
135 enum mmap_types {
136 	PIO_BUFS = 1,
137 	PIO_BUFS_SOP,
138 	PIO_CRED,
139 	RCV_HDRQ,
140 	RCV_EGRBUF,
141 	UREGS,
142 	EVENTS,
143 	STATUS,
144 	RTAIL,
145 	SUBCTXT_UREGS,
146 	SUBCTXT_RCV_HDRQ,
147 	SUBCTXT_EGRBUF,
148 	SDMA_COMP
149 };
150 
151 /*
152  * Masks and offsets defining the mmap tokens
153  */
154 #define HFI1_MMAP_OFFSET_MASK   0xfffULL
155 #define HFI1_MMAP_OFFSET_SHIFT  0
156 #define HFI1_MMAP_SUBCTXT_MASK  0xfULL
157 #define HFI1_MMAP_SUBCTXT_SHIFT 12
158 #define HFI1_MMAP_CTXT_MASK     0xffULL
159 #define HFI1_MMAP_CTXT_SHIFT    16
160 #define HFI1_MMAP_TYPE_MASK     0xfULL
161 #define HFI1_MMAP_TYPE_SHIFT    24
162 #define HFI1_MMAP_MAGIC_MASK    0xffffffffULL
163 #define HFI1_MMAP_MAGIC_SHIFT   32
164 
165 #define HFI1_MMAP_MAGIC         0xdabbad00
166 
167 #define HFI1_MMAP_TOKEN_SET(field, val)	\
168 	(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
169 #define HFI1_MMAP_TOKEN_GET(field, token) \
170 	(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
171 #define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr)   \
172 	(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
173 	HFI1_MMAP_TOKEN_SET(TYPE, type) | \
174 	HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
175 	HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
176 	HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
177 
178 #define dbg(fmt, ...)				\
179 	pr_info(fmt, ##__VA_ARGS__)
180 
is_valid_mmap(u64 token)181 static inline int is_valid_mmap(u64 token)
182 {
183 	return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
184 }
185 
hfi1_file_open(struct inode * inode,struct file * fp)186 static int hfi1_file_open(struct inode *inode, struct file *fp)
187 {
188 	struct hfi1_filedata *fd;
189 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
190 					       struct hfi1_devdata,
191 					       user_cdev);
192 
193 	if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
194 		return -EINVAL;
195 
196 	if (!atomic_inc_not_zero(&dd->user_refcount))
197 		return -ENXIO;
198 
199 	/* The real work is performed later in assign_ctxt() */
200 
201 	fd = kzalloc(sizeof(*fd), GFP_KERNEL);
202 
203 	if (fd) {
204 		fd->rec_cpu_num = -1; /* no cpu affinity by default */
205 		fd->mm = current->mm;
206 		mmgrab(fd->mm);
207 		fd->dd = dd;
208 		kobject_get(&fd->dd->kobj);
209 		fp->private_data = fd;
210 	} else {
211 		fp->private_data = NULL;
212 
213 		if (atomic_dec_and_test(&dd->user_refcount))
214 			complete(&dd->user_comp);
215 
216 		return -ENOMEM;
217 	}
218 
219 	return 0;
220 }
221 
hfi1_file_ioctl(struct file * fp,unsigned int cmd,unsigned long arg)222 static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
223 			    unsigned long arg)
224 {
225 	struct hfi1_filedata *fd = fp->private_data;
226 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
227 	int ret = 0;
228 	int uval = 0;
229 
230 	hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
231 	if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
232 	    cmd != HFI1_IOCTL_GET_VERS &&
233 	    !uctxt)
234 		return -EINVAL;
235 
236 	switch (cmd) {
237 	case HFI1_IOCTL_ASSIGN_CTXT:
238 		ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
239 		break;
240 
241 	case HFI1_IOCTL_CTXT_INFO:
242 		ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
243 		break;
244 
245 	case HFI1_IOCTL_USER_INFO:
246 		ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
247 		break;
248 
249 	case HFI1_IOCTL_CREDIT_UPD:
250 		if (uctxt)
251 			sc_return_credits(uctxt->sc);
252 		break;
253 
254 	case HFI1_IOCTL_TID_UPDATE:
255 		ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
256 		break;
257 
258 	case HFI1_IOCTL_TID_FREE:
259 		ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
260 		break;
261 
262 	case HFI1_IOCTL_TID_INVAL_READ:
263 		ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
264 		break;
265 
266 	case HFI1_IOCTL_RECV_CTRL:
267 		ret = manage_rcvq(uctxt, fd->subctxt, arg);
268 		break;
269 
270 	case HFI1_IOCTL_POLL_TYPE:
271 		if (get_user(uval, (int __user *)arg))
272 			return -EFAULT;
273 		uctxt->poll_type = (typeof(uctxt->poll_type))uval;
274 		break;
275 
276 	case HFI1_IOCTL_ACK_EVENT:
277 		ret = user_event_ack(uctxt, fd->subctxt, arg);
278 		break;
279 
280 	case HFI1_IOCTL_SET_PKEY:
281 		ret = set_ctxt_pkey(uctxt, arg);
282 		break;
283 
284 	case HFI1_IOCTL_CTXT_RESET:
285 		ret = ctxt_reset(uctxt);
286 		break;
287 
288 	case HFI1_IOCTL_GET_VERS:
289 		uval = HFI1_USER_SWVERSION;
290 		if (put_user(uval, (int __user *)arg))
291 			return -EFAULT;
292 		break;
293 
294 	default:
295 		return -EINVAL;
296 	}
297 
298 	return ret;
299 }
300 
hfi1_write_iter(struct kiocb * kiocb,struct iov_iter * from)301 static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
302 {
303 	struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
304 	struct hfi1_user_sdma_pkt_q *pq = fd->pq;
305 	struct hfi1_user_sdma_comp_q *cq = fd->cq;
306 	int done = 0, reqs = 0;
307 	unsigned long dim = from->nr_segs;
308 
309 	if (!cq || !pq)
310 		return -EIO;
311 
312 	if (!iter_is_iovec(from) || !dim)
313 		return -EINVAL;
314 
315 	trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
316 
317 	if (atomic_read(&pq->n_reqs) == pq->n_max_reqs)
318 		return -ENOSPC;
319 
320 	while (dim) {
321 		int ret;
322 		unsigned long count = 0;
323 
324 		ret = hfi1_user_sdma_process_request(
325 			fd, (struct iovec *)(from->iov + done),
326 			dim, &count);
327 		if (ret) {
328 			reqs = ret;
329 			break;
330 		}
331 		dim -= count;
332 		done += count;
333 		reqs++;
334 	}
335 
336 	return reqs;
337 }
338 
hfi1_file_mmap(struct file * fp,struct vm_area_struct * vma)339 static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
340 {
341 	struct hfi1_filedata *fd = fp->private_data;
342 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
343 	struct hfi1_devdata *dd;
344 	unsigned long flags;
345 	u64 token = vma->vm_pgoff << PAGE_SHIFT,
346 		memaddr = 0;
347 	void *memvirt = NULL;
348 	u8 subctxt, mapio = 0, vmf = 0, type;
349 	ssize_t memlen = 0;
350 	int ret = 0;
351 	u16 ctxt;
352 
353 	if (!is_valid_mmap(token) || !uctxt ||
354 	    !(vma->vm_flags & VM_SHARED)) {
355 		ret = -EINVAL;
356 		goto done;
357 	}
358 	dd = uctxt->dd;
359 	ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
360 	subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
361 	type = HFI1_MMAP_TOKEN_GET(TYPE, token);
362 	if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
363 		ret = -EINVAL;
364 		goto done;
365 	}
366 
367 	flags = vma->vm_flags;
368 
369 	switch (type) {
370 	case PIO_BUFS:
371 	case PIO_BUFS_SOP:
372 		memaddr = ((dd->physaddr + TXE_PIO_SEND) +
373 				/* chip pio base */
374 			   (uctxt->sc->hw_context * BIT(16))) +
375 				/* 64K PIO space / ctxt */
376 			(type == PIO_BUFS_SOP ?
377 				(TXE_PIO_SIZE / 2) : 0); /* sop? */
378 		/*
379 		 * Map only the amount allocated to the context, not the
380 		 * entire available context's PIO space.
381 		 */
382 		memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
383 		flags &= ~VM_MAYREAD;
384 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
385 		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
386 		mapio = 1;
387 		break;
388 	case PIO_CRED:
389 		if (flags & VM_WRITE) {
390 			ret = -EPERM;
391 			goto done;
392 		}
393 		/*
394 		 * The credit return location for this context could be on the
395 		 * second or third page allocated for credit returns (if number
396 		 * of enabled contexts > 64 and 128 respectively).
397 		 */
398 		memvirt = dd->cr_base[uctxt->numa_id].va;
399 		memaddr = virt_to_phys(memvirt) +
400 			(((u64)uctxt->sc->hw_free -
401 			  (u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
402 		memlen = PAGE_SIZE;
403 		flags &= ~VM_MAYWRITE;
404 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
405 		/*
406 		 * The driver has already allocated memory for credit
407 		 * returns and programmed it into the chip. Has that
408 		 * memory been flagged as non-cached?
409 		 */
410 		/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
411 		mapio = 1;
412 		break;
413 	case RCV_HDRQ:
414 		memlen = rcvhdrq_size(uctxt);
415 		memvirt = uctxt->rcvhdrq;
416 		break;
417 	case RCV_EGRBUF: {
418 		unsigned long addr;
419 		int i;
420 		/*
421 		 * The RcvEgr buffer need to be handled differently
422 		 * as multiple non-contiguous pages need to be mapped
423 		 * into the user process.
424 		 */
425 		memlen = uctxt->egrbufs.size;
426 		if ((vma->vm_end - vma->vm_start) != memlen) {
427 			dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
428 				   (vma->vm_end - vma->vm_start), memlen);
429 			ret = -EINVAL;
430 			goto done;
431 		}
432 		if (vma->vm_flags & VM_WRITE) {
433 			ret = -EPERM;
434 			goto done;
435 		}
436 		vma->vm_flags &= ~VM_MAYWRITE;
437 		addr = vma->vm_start;
438 		for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
439 			memlen = uctxt->egrbufs.buffers[i].len;
440 			memvirt = uctxt->egrbufs.buffers[i].addr;
441 			ret = remap_pfn_range(
442 				vma, addr,
443 				/*
444 				 * virt_to_pfn() does the same, but
445 				 * it's not available on x86_64
446 				 * when CONFIG_MMU is enabled.
447 				 */
448 				PFN_DOWN(__pa(memvirt)),
449 				memlen,
450 				vma->vm_page_prot);
451 			if (ret < 0)
452 				goto done;
453 			addr += memlen;
454 		}
455 		ret = 0;
456 		goto done;
457 	}
458 	case UREGS:
459 		/*
460 		 * Map only the page that contains this context's user
461 		 * registers.
462 		 */
463 		memaddr = (unsigned long)
464 			(dd->physaddr + RXE_PER_CONTEXT_USER)
465 			+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
466 		/*
467 		 * TidFlow table is on the same page as the rest of the
468 		 * user registers.
469 		 */
470 		memlen = PAGE_SIZE;
471 		flags |= VM_DONTCOPY | VM_DONTEXPAND;
472 		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
473 		mapio = 1;
474 		break;
475 	case EVENTS:
476 		/*
477 		 * Use the page where this context's flags are. User level
478 		 * knows where it's own bitmap is within the page.
479 		 */
480 		memaddr = (unsigned long)
481 			(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
482 		memlen = PAGE_SIZE;
483 		/*
484 		 * v3.7 removes VM_RESERVED but the effect is kept by
485 		 * using VM_IO.
486 		 */
487 		flags |= VM_IO | VM_DONTEXPAND;
488 		vmf = 1;
489 		break;
490 	case STATUS:
491 		if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) {
492 			ret = -EPERM;
493 			goto done;
494 		}
495 		memaddr = kvirt_to_phys((void *)dd->status);
496 		memlen = PAGE_SIZE;
497 		flags |= VM_IO | VM_DONTEXPAND;
498 		break;
499 	case RTAIL:
500 		if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
501 			/*
502 			 * If the memory allocation failed, the context alloc
503 			 * also would have failed, so we would never get here
504 			 */
505 			ret = -EINVAL;
506 			goto done;
507 		}
508 		if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) {
509 			ret = -EPERM;
510 			goto done;
511 		}
512 		memlen = PAGE_SIZE;
513 		memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
514 		flags &= ~VM_MAYWRITE;
515 		break;
516 	case SUBCTXT_UREGS:
517 		memaddr = (u64)uctxt->subctxt_uregbase;
518 		memlen = PAGE_SIZE;
519 		flags |= VM_IO | VM_DONTEXPAND;
520 		vmf = 1;
521 		break;
522 	case SUBCTXT_RCV_HDRQ:
523 		memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524 		memlen = rcvhdrq_size(uctxt) * uctxt->subctxt_cnt;
525 		flags |= VM_IO | VM_DONTEXPAND;
526 		vmf = 1;
527 		break;
528 	case SUBCTXT_EGRBUF:
529 		memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530 		memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531 		flags |= VM_IO | VM_DONTEXPAND;
532 		flags &= ~VM_MAYWRITE;
533 		vmf = 1;
534 		break;
535 	case SDMA_COMP: {
536 		struct hfi1_user_sdma_comp_q *cq = fd->cq;
537 
538 		if (!cq) {
539 			ret = -EFAULT;
540 			goto done;
541 		}
542 		memaddr = (u64)cq->comps;
543 		memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544 		flags |= VM_IO | VM_DONTEXPAND;
545 		vmf = 1;
546 		break;
547 	}
548 	default:
549 		ret = -EINVAL;
550 		break;
551 	}
552 
553 	if ((vma->vm_end - vma->vm_start) != memlen) {
554 		hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555 			  uctxt->ctxt, fd->subctxt,
556 			  (vma->vm_end - vma->vm_start), memlen);
557 		ret = -EINVAL;
558 		goto done;
559 	}
560 
561 	vma->vm_flags = flags;
562 	hfi1_cdbg(PROC,
563 		  "%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
564 		    ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
565 		    vma->vm_end - vma->vm_start, vma->vm_flags);
566 	if (vmf) {
567 		vma->vm_pgoff = PFN_DOWN(memaddr);
568 		vma->vm_ops = &vm_ops;
569 		ret = 0;
570 	} else if (mapio) {
571 		ret = io_remap_pfn_range(vma, vma->vm_start,
572 					 PFN_DOWN(memaddr),
573 					 memlen,
574 					 vma->vm_page_prot);
575 	} else if (memvirt) {
576 		ret = remap_pfn_range(vma, vma->vm_start,
577 				      PFN_DOWN(__pa(memvirt)),
578 				      memlen,
579 				      vma->vm_page_prot);
580 	} else {
581 		ret = remap_pfn_range(vma, vma->vm_start,
582 				      PFN_DOWN(memaddr),
583 				      memlen,
584 				      vma->vm_page_prot);
585 	}
586 done:
587 	return ret;
588 }
589 
590 /*
591  * Local (non-chip) user memory is not mapped right away but as it is
592  * accessed by the user-level code.
593  */
vma_fault(struct vm_fault * vmf)594 static vm_fault_t vma_fault(struct vm_fault *vmf)
595 {
596 	struct page *page;
597 
598 	page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
599 	if (!page)
600 		return VM_FAULT_SIGBUS;
601 
602 	get_page(page);
603 	vmf->page = page;
604 
605 	return 0;
606 }
607 
hfi1_poll(struct file * fp,struct poll_table_struct * pt)608 static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
609 {
610 	struct hfi1_ctxtdata *uctxt;
611 	__poll_t pollflag;
612 
613 	uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
614 	if (!uctxt)
615 		pollflag = EPOLLERR;
616 	else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
617 		pollflag = poll_urgent(fp, pt);
618 	else  if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
619 		pollflag = poll_next(fp, pt);
620 	else /* invalid */
621 		pollflag = EPOLLERR;
622 
623 	return pollflag;
624 }
625 
hfi1_file_close(struct inode * inode,struct file * fp)626 static int hfi1_file_close(struct inode *inode, struct file *fp)
627 {
628 	struct hfi1_filedata *fdata = fp->private_data;
629 	struct hfi1_ctxtdata *uctxt = fdata->uctxt;
630 	struct hfi1_devdata *dd = container_of(inode->i_cdev,
631 					       struct hfi1_devdata,
632 					       user_cdev);
633 	unsigned long flags, *ev;
634 
635 	fp->private_data = NULL;
636 
637 	if (!uctxt)
638 		goto done;
639 
640 	hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
641 
642 	flush_wc();
643 	/* drain user sdma queue */
644 	hfi1_user_sdma_free_queues(fdata, uctxt);
645 
646 	/* release the cpu */
647 	hfi1_put_proc_affinity(fdata->rec_cpu_num);
648 
649 	/* clean up rcv side */
650 	hfi1_user_exp_rcv_free(fdata);
651 
652 	/*
653 	 * fdata->uctxt is used in the above cleanup.  It is not ready to be
654 	 * removed until here.
655 	 */
656 	fdata->uctxt = NULL;
657 	hfi1_rcd_put(uctxt);
658 
659 	/*
660 	 * Clear any left over, unhandled events so the next process that
661 	 * gets this context doesn't get confused.
662 	 */
663 	ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
664 	*ev = 0;
665 
666 	spin_lock_irqsave(&dd->uctxt_lock, flags);
667 	__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
668 	if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
669 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
670 		goto done;
671 	}
672 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
673 
674 	/*
675 	 * Disable receive context and interrupt available, reset all
676 	 * RcvCtxtCtrl bits to default values.
677 	 */
678 	hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
679 		     HFI1_RCVCTRL_TIDFLOW_DIS |
680 		     HFI1_RCVCTRL_INTRAVAIL_DIS |
681 		     HFI1_RCVCTRL_TAILUPD_DIS |
682 		     HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
683 		     HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
684 		     HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt);
685 	/* Clear the context's J_KEY */
686 	hfi1_clear_ctxt_jkey(dd, uctxt);
687 	/*
688 	 * If a send context is allocated, reset context integrity
689 	 * checks to default and disable the send context.
690 	 */
691 	if (uctxt->sc) {
692 		sc_disable(uctxt->sc);
693 		set_pio_integrity(uctxt->sc);
694 	}
695 
696 	hfi1_free_ctxt_rcv_groups(uctxt);
697 	hfi1_clear_ctxt_pkey(dd, uctxt);
698 
699 	uctxt->event_flags = 0;
700 
701 	deallocate_ctxt(uctxt);
702 done:
703 	mmdrop(fdata->mm);
704 	kobject_put(&dd->kobj);
705 
706 	if (atomic_dec_and_test(&dd->user_refcount))
707 		complete(&dd->user_comp);
708 
709 	kfree(fdata);
710 	return 0;
711 }
712 
713 /*
714  * Convert kernel *virtual* addresses to physical addresses.
715  * This is used to vmalloc'ed addresses.
716  */
kvirt_to_phys(void * addr)717 static u64 kvirt_to_phys(void *addr)
718 {
719 	struct page *page;
720 	u64 paddr = 0;
721 
722 	page = vmalloc_to_page(addr);
723 	if (page)
724 		paddr = page_to_pfn(page) << PAGE_SHIFT;
725 
726 	return paddr;
727 }
728 
729 /**
730  * complete_subctxt
731  * @fd: valid filedata pointer
732  *
733  * Sub-context info can only be set up after the base context
734  * has been completed.  This is indicated by the clearing of the
735  * HFI1_CTXT_BASE_UINIT bit.
736  *
737  * Wait for the bit to be cleared, and then complete the subcontext
738  * initialization.
739  *
740  */
complete_subctxt(struct hfi1_filedata * fd)741 static int complete_subctxt(struct hfi1_filedata *fd)
742 {
743 	int ret;
744 	unsigned long flags;
745 
746 	/*
747 	 * sub-context info can only be set up after the base context
748 	 * has been completed.
749 	 */
750 	ret = wait_event_interruptible(
751 		fd->uctxt->wait,
752 		!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
753 
754 	if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
755 		ret = -ENOMEM;
756 
757 	/* Finish the sub-context init */
758 	if (!ret) {
759 		fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
760 		ret = init_user_ctxt(fd, fd->uctxt);
761 	}
762 
763 	if (ret) {
764 		spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
765 		__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
766 		spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
767 		hfi1_rcd_put(fd->uctxt);
768 		fd->uctxt = NULL;
769 	}
770 
771 	return ret;
772 }
773 
assign_ctxt(struct hfi1_filedata * fd,unsigned long arg,u32 len)774 static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
775 {
776 	int ret;
777 	unsigned int swmajor;
778 	struct hfi1_ctxtdata *uctxt = NULL;
779 	struct hfi1_user_info uinfo;
780 
781 	if (fd->uctxt)
782 		return -EINVAL;
783 
784 	if (sizeof(uinfo) != len)
785 		return -EINVAL;
786 
787 	if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
788 		return -EFAULT;
789 
790 	swmajor = uinfo.userversion >> 16;
791 	if (swmajor != HFI1_USER_SWMAJOR)
792 		return -ENODEV;
793 
794 	if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
795 		return -EINVAL;
796 
797 	/*
798 	 * Acquire the mutex to protect against multiple creations of what
799 	 * could be a shared base context.
800 	 */
801 	mutex_lock(&hfi1_mutex);
802 	/*
803 	 * Get a sub context if available  (fd->uctxt will be set).
804 	 * ret < 0 error, 0 no context, 1 sub-context found
805 	 */
806 	ret = find_sub_ctxt(fd, &uinfo);
807 
808 	/*
809 	 * Allocate a base context if context sharing is not required or a
810 	 * sub context wasn't found.
811 	 */
812 	if (!ret)
813 		ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
814 
815 	mutex_unlock(&hfi1_mutex);
816 
817 	/* Depending on the context type, finish the appropriate init */
818 	switch (ret) {
819 	case 0:
820 		ret = setup_base_ctxt(fd, uctxt);
821 		if (ret)
822 			deallocate_ctxt(uctxt);
823 		break;
824 	case 1:
825 		ret = complete_subctxt(fd);
826 		break;
827 	default:
828 		break;
829 	}
830 
831 	return ret;
832 }
833 
834 /**
835  * match_ctxt
836  * @fd: valid filedata pointer
837  * @uinfo: user info to compare base context with
838  * @uctxt: context to compare uinfo to.
839  *
840  * Compare the given context with the given information to see if it
841  * can be used for a sub context.
842  */
match_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo,struct hfi1_ctxtdata * uctxt)843 static int match_ctxt(struct hfi1_filedata *fd,
844 		      const struct hfi1_user_info *uinfo,
845 		      struct hfi1_ctxtdata *uctxt)
846 {
847 	struct hfi1_devdata *dd = fd->dd;
848 	unsigned long flags;
849 	u16 subctxt;
850 
851 	/* Skip dynamically allocated kernel contexts */
852 	if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
853 		return 0;
854 
855 	/* Skip ctxt if it doesn't match the requested one */
856 	if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
857 	    uctxt->jkey != generate_jkey(current_uid()) ||
858 	    uctxt->subctxt_id != uinfo->subctxt_id ||
859 	    uctxt->subctxt_cnt != uinfo->subctxt_cnt)
860 		return 0;
861 
862 	/* Verify the sharing process matches the base */
863 	if (uctxt->userversion != uinfo->userversion)
864 		return -EINVAL;
865 
866 	/* Find an unused sub context */
867 	spin_lock_irqsave(&dd->uctxt_lock, flags);
868 	if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
869 		/* context is being closed, do not use */
870 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
871 		return 0;
872 	}
873 
874 	subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
875 				      HFI1_MAX_SHARED_CTXTS);
876 	if (subctxt >= uctxt->subctxt_cnt) {
877 		spin_unlock_irqrestore(&dd->uctxt_lock, flags);
878 		return -EBUSY;
879 	}
880 
881 	fd->subctxt = subctxt;
882 	__set_bit(fd->subctxt, uctxt->in_use_ctxts);
883 	spin_unlock_irqrestore(&dd->uctxt_lock, flags);
884 
885 	fd->uctxt = uctxt;
886 	hfi1_rcd_get(uctxt);
887 
888 	return 1;
889 }
890 
891 /**
892  * find_sub_ctxt
893  * @fd: valid filedata pointer
894  * @uinfo: matching info to use to find a possible context to share.
895  *
896  * The hfi1_mutex must be held when this function is called.  It is
897  * necessary to ensure serialized creation of shared contexts.
898  *
899  * Return:
900  *    0      No sub-context found
901  *    1      Subcontext found and allocated
902  *    errno  EINVAL (incorrect parameters)
903  *           EBUSY (all sub contexts in use)
904  */
find_sub_ctxt(struct hfi1_filedata * fd,const struct hfi1_user_info * uinfo)905 static int find_sub_ctxt(struct hfi1_filedata *fd,
906 			 const struct hfi1_user_info *uinfo)
907 {
908 	struct hfi1_ctxtdata *uctxt;
909 	struct hfi1_devdata *dd = fd->dd;
910 	u16 i;
911 	int ret;
912 
913 	if (!uinfo->subctxt_cnt)
914 		return 0;
915 
916 	for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
917 		uctxt = hfi1_rcd_get_by_index(dd, i);
918 		if (uctxt) {
919 			ret = match_ctxt(fd, uinfo, uctxt);
920 			hfi1_rcd_put(uctxt);
921 			/* value of != 0 will return */
922 			if (ret)
923 				return ret;
924 		}
925 	}
926 
927 	return 0;
928 }
929 
allocate_ctxt(struct hfi1_filedata * fd,struct hfi1_devdata * dd,struct hfi1_user_info * uinfo,struct hfi1_ctxtdata ** rcd)930 static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
931 			 struct hfi1_user_info *uinfo,
932 			 struct hfi1_ctxtdata **rcd)
933 {
934 	struct hfi1_ctxtdata *uctxt;
935 	int ret, numa;
936 
937 	if (dd->flags & HFI1_FROZEN) {
938 		/*
939 		 * Pick an error that is unique from all other errors
940 		 * that are returned so the user process knows that
941 		 * it tried to allocate while the SPC was frozen.  It
942 		 * it should be able to retry with success in a short
943 		 * while.
944 		 */
945 		return -EIO;
946 	}
947 
948 	if (!dd->freectxts)
949 		return -EBUSY;
950 
951 	/*
952 	 * If we don't have a NUMA node requested, preference is towards
953 	 * device NUMA node.
954 	 */
955 	fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
956 	if (fd->rec_cpu_num != -1)
957 		numa = cpu_to_node(fd->rec_cpu_num);
958 	else
959 		numa = numa_node_id();
960 	ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
961 	if (ret < 0) {
962 		dd_dev_err(dd, "user ctxtdata allocation failed\n");
963 		return ret;
964 	}
965 	hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
966 		  uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
967 		  uctxt->numa_id);
968 
969 	/*
970 	 * Allocate and enable a PIO send context.
971 	 */
972 	uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
973 	if (!uctxt->sc) {
974 		ret = -ENOMEM;
975 		goto ctxdata_free;
976 	}
977 	hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
978 		  uctxt->sc->hw_context);
979 	ret = sc_enable(uctxt->sc);
980 	if (ret)
981 		goto ctxdata_free;
982 
983 	/*
984 	 * Setup sub context information if the user-level has requested
985 	 * sub contexts.
986 	 * This has to be done here so the rest of the sub-contexts find the
987 	 * proper base context.
988 	 * NOTE: _set_bit() can be used here because the context creation is
989 	 * protected by the mutex (rather than the spin_lock), and will be the
990 	 * very first instance of this context.
991 	 */
992 	__set_bit(0, uctxt->in_use_ctxts);
993 	if (uinfo->subctxt_cnt)
994 		init_subctxts(uctxt, uinfo);
995 	uctxt->userversion = uinfo->userversion;
996 	uctxt->flags = hfi1_cap_mask; /* save current flag state */
997 	init_waitqueue_head(&uctxt->wait);
998 	strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
999 	memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1000 	uctxt->jkey = generate_jkey(current_uid());
1001 	hfi1_stats.sps_ctxts++;
1002 	/*
1003 	 * Disable ASPM when there are open user/PSM contexts to avoid
1004 	 * issues with ASPM L1 exit latency
1005 	 */
1006 	if (dd->freectxts-- == dd->num_user_contexts)
1007 		aspm_disable_all(dd);
1008 
1009 	*rcd = uctxt;
1010 
1011 	return 0;
1012 
1013 ctxdata_free:
1014 	hfi1_free_ctxt(uctxt);
1015 	return ret;
1016 }
1017 
deallocate_ctxt(struct hfi1_ctxtdata * uctxt)1018 static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1019 {
1020 	mutex_lock(&hfi1_mutex);
1021 	hfi1_stats.sps_ctxts--;
1022 	if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1023 		aspm_enable_all(uctxt->dd);
1024 	mutex_unlock(&hfi1_mutex);
1025 
1026 	hfi1_free_ctxt(uctxt);
1027 }
1028 
init_subctxts(struct hfi1_ctxtdata * uctxt,const struct hfi1_user_info * uinfo)1029 static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1030 			  const struct hfi1_user_info *uinfo)
1031 {
1032 	uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1033 	uctxt->subctxt_id = uinfo->subctxt_id;
1034 	set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1035 }
1036 
setup_subctxt(struct hfi1_ctxtdata * uctxt)1037 static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1038 {
1039 	int ret = 0;
1040 	u16 num_subctxts = uctxt->subctxt_cnt;
1041 
1042 	uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1043 	if (!uctxt->subctxt_uregbase)
1044 		return -ENOMEM;
1045 
1046 	/* We can take the size of the RcvHdr Queue from the master */
1047 	uctxt->subctxt_rcvhdr_base = vmalloc_user(rcvhdrq_size(uctxt) *
1048 						  num_subctxts);
1049 	if (!uctxt->subctxt_rcvhdr_base) {
1050 		ret = -ENOMEM;
1051 		goto bail_ureg;
1052 	}
1053 
1054 	uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
1055 						num_subctxts);
1056 	if (!uctxt->subctxt_rcvegrbuf) {
1057 		ret = -ENOMEM;
1058 		goto bail_rhdr;
1059 	}
1060 
1061 	return 0;
1062 
1063 bail_rhdr:
1064 	vfree(uctxt->subctxt_rcvhdr_base);
1065 	uctxt->subctxt_rcvhdr_base = NULL;
1066 bail_ureg:
1067 	vfree(uctxt->subctxt_uregbase);
1068 	uctxt->subctxt_uregbase = NULL;
1069 
1070 	return ret;
1071 }
1072 
user_init(struct hfi1_ctxtdata * uctxt)1073 static void user_init(struct hfi1_ctxtdata *uctxt)
1074 {
1075 	unsigned int rcvctrl_ops = 0;
1076 
1077 	/* initialize poll variables... */
1078 	uctxt->urgent = 0;
1079 	uctxt->urgent_poll = 0;
1080 
1081 	/*
1082 	 * Now enable the ctxt for receive.
1083 	 * For chips that are set to DMA the tail register to memory
1084 	 * when they change (and when the update bit transitions from
1085 	 * 0 to 1.  So for those chips, we turn it off and then back on.
1086 	 * This will (very briefly) affect any other open ctxts, but the
1087 	 * duration is very short, and therefore isn't an issue.  We
1088 	 * explicitly set the in-memory tail copy to 0 beforehand, so we
1089 	 * don't have to wait to be sure the DMA update has happened
1090 	 * (chip resets head/tail to 0 on transition to enable).
1091 	 */
1092 	if (uctxt->rcvhdrtail_kvaddr)
1093 		clear_rcvhdrtail(uctxt);
1094 
1095 	/* Setup J_KEY before enabling the context */
1096 	hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
1097 
1098 	rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1099 	if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1100 		rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1101 	/*
1102 	 * Ignore the bit in the flags for now until proper
1103 	 * support for multiple packet per rcv array entry is
1104 	 * added.
1105 	 */
1106 	if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1107 		rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1108 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1109 		rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1110 	if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1111 		rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1112 	/*
1113 	 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1114 	 * We can't rely on the correct value to be set from prior
1115 	 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1116 	 * for both cases.
1117 	 */
1118 	if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1119 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1120 	else
1121 		rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1122 	hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
1123 }
1124 
get_ctxt_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1125 static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1126 {
1127 	struct hfi1_ctxt_info cinfo;
1128 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1129 
1130 	if (sizeof(cinfo) != len)
1131 		return -EINVAL;
1132 
1133 	memset(&cinfo, 0, sizeof(cinfo));
1134 	cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1135 				HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1136 			HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1137 			HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1138 	/* adjust flag if this fd is not able to cache */
1139 	if (!fd->handler)
1140 		cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1141 
1142 	cinfo.num_active = hfi1_count_active_units();
1143 	cinfo.unit = uctxt->dd->unit;
1144 	cinfo.ctxt = uctxt->ctxt;
1145 	cinfo.subctxt = fd->subctxt;
1146 	cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1147 				uctxt->dd->rcv_entries.group_size) +
1148 		uctxt->expected_count;
1149 	cinfo.credits = uctxt->sc->credits;
1150 	cinfo.numa_node = uctxt->numa_id;
1151 	cinfo.rec_cpu = fd->rec_cpu_num;
1152 	cinfo.send_ctxt = uctxt->sc->hw_context;
1153 
1154 	cinfo.egrtids = uctxt->egrbufs.alloced;
1155 	cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
1156 	cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
1157 	cinfo.sdma_ring_size = fd->cq->nentries;
1158 	cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1159 
1160 	trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
1161 	if (copy_to_user((void __user *)arg, &cinfo, len))
1162 		return -EFAULT;
1163 
1164 	return 0;
1165 }
1166 
init_user_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1167 static int init_user_ctxt(struct hfi1_filedata *fd,
1168 			  struct hfi1_ctxtdata *uctxt)
1169 {
1170 	int ret;
1171 
1172 	ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1173 	if (ret)
1174 		return ret;
1175 
1176 	ret = hfi1_user_exp_rcv_init(fd, uctxt);
1177 	if (ret)
1178 		hfi1_user_sdma_free_queues(fd, uctxt);
1179 
1180 	return ret;
1181 }
1182 
setup_base_ctxt(struct hfi1_filedata * fd,struct hfi1_ctxtdata * uctxt)1183 static int setup_base_ctxt(struct hfi1_filedata *fd,
1184 			   struct hfi1_ctxtdata *uctxt)
1185 {
1186 	struct hfi1_devdata *dd = uctxt->dd;
1187 	int ret = 0;
1188 
1189 	hfi1_init_ctxt(uctxt->sc);
1190 
1191 	/* Now allocate the RcvHdr queue and eager buffers. */
1192 	ret = hfi1_create_rcvhdrq(dd, uctxt);
1193 	if (ret)
1194 		goto done;
1195 
1196 	ret = hfi1_setup_eagerbufs(uctxt);
1197 	if (ret)
1198 		goto done;
1199 
1200 	/* If sub-contexts are enabled, do the appropriate setup */
1201 	if (uctxt->subctxt_cnt)
1202 		ret = setup_subctxt(uctxt);
1203 	if (ret)
1204 		goto done;
1205 
1206 	ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
1207 	if (ret)
1208 		goto done;
1209 
1210 	ret = init_user_ctxt(fd, uctxt);
1211 	if (ret)
1212 		goto done;
1213 
1214 	user_init(uctxt);
1215 
1216 	/* Now that the context is set up, the fd can get a reference. */
1217 	fd->uctxt = uctxt;
1218 	hfi1_rcd_get(uctxt);
1219 
1220 done:
1221 	if (uctxt->subctxt_cnt) {
1222 		/*
1223 		 * On error, set the failed bit so sub-contexts will clean up
1224 		 * correctly.
1225 		 */
1226 		if (ret)
1227 			set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
1228 
1229 		/*
1230 		 * Base context is done (successfully or not), notify anybody
1231 		 * using a sub-context that is waiting for this completion.
1232 		 */
1233 		clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
1234 		wake_up(&uctxt->wait);
1235 	}
1236 
1237 	return ret;
1238 }
1239 
get_base_info(struct hfi1_filedata * fd,unsigned long arg,u32 len)1240 static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1241 {
1242 	struct hfi1_base_info binfo;
1243 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1244 	struct hfi1_devdata *dd = uctxt->dd;
1245 	unsigned offset;
1246 
1247 	trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
1248 
1249 	if (sizeof(binfo) != len)
1250 		return -EINVAL;
1251 
1252 	memset(&binfo, 0, sizeof(binfo));
1253 	binfo.hw_version = dd->revision;
1254 	binfo.sw_version = HFI1_KERN_SWVERSION;
1255 	binfo.bthqp = kdeth_qp;
1256 	binfo.jkey = uctxt->jkey;
1257 	/*
1258 	 * If more than 64 contexts are enabled the allocated credit
1259 	 * return will span two or three contiguous pages. Since we only
1260 	 * map the page containing the context's credit return address,
1261 	 * we need to calculate the offset in the proper page.
1262 	 */
1263 	offset = ((u64)uctxt->sc->hw_free -
1264 		  (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1265 	binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1266 						fd->subctxt, offset);
1267 	binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1268 					    fd->subctxt,
1269 					    uctxt->sc->base_addr);
1270 	binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1271 						uctxt->ctxt,
1272 						fd->subctxt,
1273 						uctxt->sc->base_addr);
1274 	binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1275 					       fd->subctxt,
1276 					       uctxt->rcvhdrq);
1277 	binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1278 					       fd->subctxt,
1279 					       uctxt->egrbufs.rcvtids[0].dma);
1280 	binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1281 						  fd->subctxt, 0);
1282 	/*
1283 	 * user regs are at
1284 	 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1285 	 */
1286 	binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1287 					     fd->subctxt, 0);
1288 	offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1289 				sizeof(*dd->events));
1290 	binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1291 					       fd->subctxt,
1292 					       offset);
1293 	binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1294 					       fd->subctxt,
1295 					       dd->status);
1296 	if (HFI1_CAP_IS_USET(DMA_RTAIL))
1297 		binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1298 							fd->subctxt, 0);
1299 	if (uctxt->subctxt_cnt) {
1300 		binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1301 							 uctxt->ctxt,
1302 							 fd->subctxt, 0);
1303 		binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1304 							  uctxt->ctxt,
1305 							  fd->subctxt, 0);
1306 		binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1307 							  uctxt->ctxt,
1308 							  fd->subctxt, 0);
1309 	}
1310 
1311 	if (copy_to_user((void __user *)arg, &binfo, len))
1312 		return -EFAULT;
1313 
1314 	return 0;
1315 }
1316 
1317 /**
1318  * user_exp_rcv_setup - Set up the given tid rcv list
1319  * @fd: file data of the current driver instance
1320  * @arg: ioctl argumnent for user space information
1321  * @len: length of data structure associated with ioctl command
1322  *
1323  * Wrapper to validate ioctl information before doing _rcv_setup.
1324  *
1325  */
user_exp_rcv_setup(struct hfi1_filedata * fd,unsigned long arg,u32 len)1326 static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1327 			      u32 len)
1328 {
1329 	int ret;
1330 	unsigned long addr;
1331 	struct hfi1_tid_info tinfo;
1332 
1333 	if (sizeof(tinfo) != len)
1334 		return -EINVAL;
1335 
1336 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1337 		return -EFAULT;
1338 
1339 	ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
1340 	if (!ret) {
1341 		/*
1342 		 * Copy the number of tidlist entries we used
1343 		 * and the length of the buffer we registered.
1344 		 */
1345 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1346 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1347 				 sizeof(tinfo.tidcnt)))
1348 			return -EFAULT;
1349 
1350 		addr = arg + offsetof(struct hfi1_tid_info, length);
1351 		if (copy_to_user((void __user *)addr, &tinfo.length,
1352 				 sizeof(tinfo.length)))
1353 			ret = -EFAULT;
1354 	}
1355 
1356 	return ret;
1357 }
1358 
1359 /**
1360  * user_exp_rcv_clear - Clear the given tid rcv list
1361  * @fd: file data of the current driver instance
1362  * @arg: ioctl argumnent for user space information
1363  * @len: length of data structure associated with ioctl command
1364  *
1365  * The hfi1_user_exp_rcv_clear() can be called from the error path.  Because
1366  * of this, we need to use this wrapper to copy the user space information
1367  * before doing the clear.
1368  */
user_exp_rcv_clear(struct hfi1_filedata * fd,unsigned long arg,u32 len)1369 static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1370 			      u32 len)
1371 {
1372 	int ret;
1373 	unsigned long addr;
1374 	struct hfi1_tid_info tinfo;
1375 
1376 	if (sizeof(tinfo) != len)
1377 		return -EINVAL;
1378 
1379 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1380 		return -EFAULT;
1381 
1382 	ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
1383 	if (!ret) {
1384 		addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1385 		if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1386 				 sizeof(tinfo.tidcnt)))
1387 			return -EFAULT;
1388 	}
1389 
1390 	return ret;
1391 }
1392 
1393 /**
1394  * user_exp_rcv_invalid - Invalidate the given tid rcv list
1395  * @fd: file data of the current driver instance
1396  * @arg: ioctl argumnent for user space information
1397  * @len: length of data structure associated with ioctl command
1398  *
1399  * Wrapper to validate ioctl information before doing _rcv_invalid.
1400  *
1401  */
user_exp_rcv_invalid(struct hfi1_filedata * fd,unsigned long arg,u32 len)1402 static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1403 				u32 len)
1404 {
1405 	int ret;
1406 	unsigned long addr;
1407 	struct hfi1_tid_info tinfo;
1408 
1409 	if (sizeof(tinfo) != len)
1410 		return -EINVAL;
1411 
1412 	if (!fd->invalid_tids)
1413 		return -EINVAL;
1414 
1415 	if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
1416 		return -EFAULT;
1417 
1418 	ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
1419 	if (ret)
1420 		return ret;
1421 
1422 	addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1423 	if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
1424 			 sizeof(tinfo.tidcnt)))
1425 		ret = -EFAULT;
1426 
1427 	return ret;
1428 }
1429 
poll_urgent(struct file * fp,struct poll_table_struct * pt)1430 static __poll_t poll_urgent(struct file *fp,
1431 				struct poll_table_struct *pt)
1432 {
1433 	struct hfi1_filedata *fd = fp->private_data;
1434 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1435 	struct hfi1_devdata *dd = uctxt->dd;
1436 	__poll_t pollflag;
1437 
1438 	poll_wait(fp, &uctxt->wait, pt);
1439 
1440 	spin_lock_irq(&dd->uctxt_lock);
1441 	if (uctxt->urgent != uctxt->urgent_poll) {
1442 		pollflag = EPOLLIN | EPOLLRDNORM;
1443 		uctxt->urgent_poll = uctxt->urgent;
1444 	} else {
1445 		pollflag = 0;
1446 		set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
1447 	}
1448 	spin_unlock_irq(&dd->uctxt_lock);
1449 
1450 	return pollflag;
1451 }
1452 
poll_next(struct file * fp,struct poll_table_struct * pt)1453 static __poll_t poll_next(struct file *fp,
1454 			      struct poll_table_struct *pt)
1455 {
1456 	struct hfi1_filedata *fd = fp->private_data;
1457 	struct hfi1_ctxtdata *uctxt = fd->uctxt;
1458 	struct hfi1_devdata *dd = uctxt->dd;
1459 	__poll_t pollflag;
1460 
1461 	poll_wait(fp, &uctxt->wait, pt);
1462 
1463 	spin_lock_irq(&dd->uctxt_lock);
1464 	if (hdrqempty(uctxt)) {
1465 		set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
1466 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
1467 		pollflag = 0;
1468 	} else {
1469 		pollflag = EPOLLIN | EPOLLRDNORM;
1470 	}
1471 	spin_unlock_irq(&dd->uctxt_lock);
1472 
1473 	return pollflag;
1474 }
1475 
1476 /*
1477  * Find all user contexts in use, and set the specified bit in their
1478  * event mask.
1479  * See also find_ctxt() for a similar use, that is specific to send buffers.
1480  */
hfi1_set_uevent_bits(struct hfi1_pportdata * ppd,const int evtbit)1481 int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1482 {
1483 	struct hfi1_ctxtdata *uctxt;
1484 	struct hfi1_devdata *dd = ppd->dd;
1485 	u16 ctxt;
1486 
1487 	if (!dd->events)
1488 		return -EINVAL;
1489 
1490 	for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1491 	     ctxt++) {
1492 		uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1493 		if (uctxt) {
1494 			unsigned long *evs;
1495 			int i;
1496 			/*
1497 			 * subctxt_cnt is 0 if not shared, so do base
1498 			 * separately, first, then remaining subctxt, if any
1499 			 */
1500 			evs = dd->events + uctxt_offset(uctxt);
1501 			set_bit(evtbit, evs);
1502 			for (i = 1; i < uctxt->subctxt_cnt; i++)
1503 				set_bit(evtbit, evs + i);
1504 			hfi1_rcd_put(uctxt);
1505 		}
1506 	}
1507 
1508 	return 0;
1509 }
1510 
1511 /**
1512  * manage_rcvq - manage a context's receive queue
1513  * @uctxt: the context
1514  * @subctxt: the sub-context
1515  * @start_stop: action to carry out
1516  *
1517  * start_stop == 0 disables receive on the context, for use in queue
1518  * overflow conditions.  start_stop==1 re-enables, to be used to
1519  * re-init the software copy of the head register
1520  */
manage_rcvq(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1521 static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1522 		       unsigned long arg)
1523 {
1524 	struct hfi1_devdata *dd = uctxt->dd;
1525 	unsigned int rcvctrl_op;
1526 	int start_stop;
1527 
1528 	if (subctxt)
1529 		return 0;
1530 
1531 	if (get_user(start_stop, (int __user *)arg))
1532 		return -EFAULT;
1533 
1534 	/* atomically clear receive enable ctxt. */
1535 	if (start_stop) {
1536 		/*
1537 		 * On enable, force in-memory copy of the tail register to
1538 		 * 0, so that protocol code doesn't have to worry about
1539 		 * whether or not the chip has yet updated the in-memory
1540 		 * copy or not on return from the system call. The chip
1541 		 * always resets it's tail register back to 0 on a
1542 		 * transition from disabled to enabled.
1543 		 */
1544 		if (uctxt->rcvhdrtail_kvaddr)
1545 			clear_rcvhdrtail(uctxt);
1546 		rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1547 	} else {
1548 		rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1549 	}
1550 	hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
1551 	/* always; new head should be equal to new tail; see above */
1552 
1553 	return 0;
1554 }
1555 
1556 /*
1557  * clear the event notifier events for this context.
1558  * User process then performs actions appropriate to bit having been
1559  * set, if desired, and checks again in future.
1560  */
user_event_ack(struct hfi1_ctxtdata * uctxt,u16 subctxt,unsigned long arg)1561 static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1562 			  unsigned long arg)
1563 {
1564 	int i;
1565 	struct hfi1_devdata *dd = uctxt->dd;
1566 	unsigned long *evs;
1567 	unsigned long events;
1568 
1569 	if (!dd->events)
1570 		return 0;
1571 
1572 	if (get_user(events, (unsigned long __user *)arg))
1573 		return -EFAULT;
1574 
1575 	evs = dd->events + uctxt_offset(uctxt) + subctxt;
1576 
1577 	for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1578 		if (!test_bit(i, &events))
1579 			continue;
1580 		clear_bit(i, evs);
1581 	}
1582 	return 0;
1583 }
1584 
set_ctxt_pkey(struct hfi1_ctxtdata * uctxt,unsigned long arg)1585 static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1586 {
1587 	int i;
1588 	struct hfi1_pportdata *ppd = uctxt->ppd;
1589 	struct hfi1_devdata *dd = uctxt->dd;
1590 	u16 pkey;
1591 
1592 	if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1593 		return -EPERM;
1594 
1595 	if (get_user(pkey, (u16 __user *)arg))
1596 		return -EFAULT;
1597 
1598 	if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1599 		return -EINVAL;
1600 
1601 	for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1602 		if (pkey == ppd->pkeys[i])
1603 			return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
1604 
1605 	return -ENOENT;
1606 }
1607 
1608 /**
1609  * ctxt_reset - Reset the user context
1610  * @uctxt: valid user context
1611  */
ctxt_reset(struct hfi1_ctxtdata * uctxt)1612 static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1613 {
1614 	struct send_context *sc;
1615 	struct hfi1_devdata *dd;
1616 	int ret = 0;
1617 
1618 	if (!uctxt || !uctxt->dd || !uctxt->sc)
1619 		return -EINVAL;
1620 
1621 	/*
1622 	 * There is no protection here. User level has to guarantee that
1623 	 * no one will be writing to the send context while it is being
1624 	 * re-initialized.  If user level breaks that guarantee, it will
1625 	 * break it's own context and no one else's.
1626 	 */
1627 	dd = uctxt->dd;
1628 	sc = uctxt->sc;
1629 
1630 	/*
1631 	 * Wait until the interrupt handler has marked the context as
1632 	 * halted or frozen. Report error if we time out.
1633 	 */
1634 	wait_event_interruptible_timeout(
1635 		sc->halt_wait, (sc->flags & SCF_HALTED),
1636 		msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1637 	if (!(sc->flags & SCF_HALTED))
1638 		return -ENOLCK;
1639 
1640 	/*
1641 	 * If the send context was halted due to a Freeze, wait until the
1642 	 * device has been "unfrozen" before resetting the context.
1643 	 */
1644 	if (sc->flags & SCF_FROZEN) {
1645 		wait_event_interruptible_timeout(
1646 			dd->event_queue,
1647 			!(READ_ONCE(dd->flags) & HFI1_FROZEN),
1648 			msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1649 		if (dd->flags & HFI1_FROZEN)
1650 			return -ENOLCK;
1651 
1652 		if (dd->flags & HFI1_FORCED_FREEZE)
1653 			/*
1654 			 * Don't allow context reset if we are into
1655 			 * forced freeze
1656 			 */
1657 			return -ENODEV;
1658 
1659 		sc_disable(sc);
1660 		ret = sc_enable(sc);
1661 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
1662 	} else {
1663 		ret = sc_restart(sc);
1664 	}
1665 	if (!ret)
1666 		sc_return_credits(sc);
1667 
1668 	return ret;
1669 }
1670 
user_remove(struct hfi1_devdata * dd)1671 static void user_remove(struct hfi1_devdata *dd)
1672 {
1673 
1674 	hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
1675 }
1676 
user_add(struct hfi1_devdata * dd)1677 static int user_add(struct hfi1_devdata *dd)
1678 {
1679 	char name[10];
1680 	int ret;
1681 
1682 	snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
1683 	ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
1684 			     &dd->user_cdev, &dd->user_device,
1685 			     true, &dd->kobj);
1686 	if (ret)
1687 		user_remove(dd);
1688 
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Create per-unit files in /dev
1694  */
hfi1_device_create(struct hfi1_devdata * dd)1695 int hfi1_device_create(struct hfi1_devdata *dd)
1696 {
1697 	return user_add(dd);
1698 }
1699 
1700 /*
1701  * Remove per-unit files in /dev
1702  * void, core kernel returns no errors for this stuff
1703  */
hfi1_device_remove(struct hfi1_devdata * dd)1704 void hfi1_device_remove(struct hfi1_devdata *dd)
1705 {
1706 	user_remove(dd);
1707 }
1708