1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/prism2/driver/hfa384x_usb.c
3 *
4 * Functions that talk to the USB variantof the Intersil hfa384x MAC
5 *
6 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
7 * --------------------------------------------------------------------
8 *
9 * linux-wlan
10 *
11 * The contents of this file are subject to the Mozilla Public
12 * License Version 1.1 (the "License"); you may not use this file
13 * except in compliance with the License. You may obtain a copy of
14 * the License at http://www.mozilla.org/MPL/
15 *
16 * Software distributed under the License is distributed on an "AS
17 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18 * implied. See the License for the specific language governing
19 * rights and limitations under the License.
20 *
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU Public License version 2 (the "GPL"), in which
23 * case the provisions of the GPL are applicable instead of the
24 * above. If you wish to allow the use of your version of this file
25 * only under the terms of the GPL and not to allow others to use
26 * your version of this file under the MPL, indicate your decision
27 * by deleting the provisions above and replace them with the notice
28 * and other provisions required by the GPL. If you do not delete
29 * the provisions above, a recipient may use your version of this
30 * file under either the MPL or the GPL.
31 *
32 * --------------------------------------------------------------------
33 *
34 * Inquiries regarding the linux-wlan Open Source project can be
35 * made directly to:
36 *
37 * AbsoluteValue Systems Inc.
38 * info@linux-wlan.com
39 * http://www.linux-wlan.com
40 *
41 * --------------------------------------------------------------------
42 *
43 * Portions of the development of this software were funded by
44 * Intersil Corporation as part of PRISM(R) chipset product development.
45 *
46 * --------------------------------------------------------------------
47 *
48 * This file implements functions that correspond to the prism2/hfa384x
49 * 802.11 MAC hardware and firmware host interface.
50 *
51 * The functions can be considered to represent several levels of
52 * abstraction. The lowest level functions are simply C-callable wrappers
53 * around the register accesses. The next higher level represents C-callable
54 * prism2 API functions that match the Intersil documentation as closely
55 * as is reasonable. The next higher layer implements common sequences
56 * of invocations of the API layer (e.g. write to bap, followed by cmd).
57 *
58 * Common sequences:
59 * hfa384x_drvr_xxx Highest level abstractions provided by the
60 * hfa384x code. They are driver defined wrappers
61 * for common sequences. These functions generally
62 * use the services of the lower levels.
63 *
64 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
65 * functions are wrappers for the RID get/set
66 * sequence. They call copy_[to|from]_bap() and
67 * cmd_access(). These functions operate on the
68 * RIDs and buffers without validation. The caller
69 * is responsible for that.
70 *
71 * API wrapper functions:
72 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
73 * The function arguments correspond to each command
74 * argument, even command arguments that get packed
75 * into single registers. These functions _just_
76 * issue the command by setting the cmd/parm regs
77 * & reading the status/resp regs. Additional
78 * activities required to fully use a command
79 * (read/write from/to bap, get/set int status etc.)
80 * are implemented separately. Think of these as
81 * C-callable prism2 commands.
82 *
83 * Lowest Layer Functions:
84 * hfa384x_docmd_xxx These functions implement the sequence required
85 * to issue any prism2 command. Primarily used by the
86 * hfa384x_cmd_xxx functions.
87 *
88 * hfa384x_bap_xxx BAP read/write access functions.
89 * Note: we usually use BAP0 for non-interrupt context
90 * and BAP1 for interrupt context.
91 *
92 * hfa384x_dl_xxx download related functions.
93 *
94 * Driver State Issues:
95 * Note that there are two pairs of functions that manage the
96 * 'initialized' and 'running' states of the hw/MAC combo. The four
97 * functions are create(), destroy(), start(), and stop(). create()
98 * sets up the data structures required to support the hfa384x_*
99 * functions and destroy() cleans them up. The start() function gets
100 * the actual hardware running and enables the interrupts. The stop()
101 * function shuts the hardware down. The sequence should be:
102 * create()
103 * start()
104 * .
105 * . Do interesting things w/ the hardware
106 * .
107 * stop()
108 * destroy()
109 *
110 * Note that destroy() can be called without calling stop() first.
111 * --------------------------------------------------------------------
112 */
113
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141
142 enum cmd_mode {
143 DOWAIT = 0,
144 DOASYNC
145 };
146
147 #define THROTTLE_JIFFIES (HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158 struct hfa384x_usb_rxfrm *rxfrm);
159
160 static void hfa384x_usb_defer(struct work_struct *data);
161
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178 union hfa384x_usbin *usbin);
179
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181 int urb_status);
182
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193
194 static void hfa384x_usbctlx_completion_task(unsigned long data);
195
196 static void hfa384x_usbctlx_reaper_task(unsigned long data);
197
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199 struct hfa384x_usbctlx *ctlx);
200
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202 struct hfa384x_usbctlx *ctlx);
203
204 struct usbctlx_completor {
205 int (*complete)(struct usbctlx_completor *completor);
206 };
207
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210 struct hfa384x_usbctlx *ctlx,
211 struct usbctlx_completor *completor);
212
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215
216 static void hfa384x_cb_status(struct hfa384x *hw,
217 const struct hfa384x_usbctlx *ctlx);
218
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221 struct hfa384x_cmdresult *result);
222
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225 struct hfa384x_rridresult *result);
226
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static int
230 hfa384x_docmd(struct hfa384x *hw,
231 enum cmd_mode mode,
232 struct hfa384x_metacmd *cmd,
233 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
234
235 static int
236 hfa384x_dorrid(struct hfa384x *hw,
237 enum cmd_mode mode,
238 u16 rid,
239 void *riddata,
240 unsigned int riddatalen,
241 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
242
243 static int
244 hfa384x_dowrid(struct hfa384x *hw,
245 enum cmd_mode mode,
246 u16 rid,
247 void *riddata,
248 unsigned int riddatalen,
249 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
250
251 static int
252 hfa384x_dormem(struct hfa384x *hw,
253 enum cmd_mode mode,
254 u16 page,
255 u16 offset,
256 void *data,
257 unsigned int len,
258 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
259
260 static int
261 hfa384x_dowmem(struct hfa384x *hw,
262 enum cmd_mode mode,
263 u16 page,
264 u16 offset,
265 void *data,
266 unsigned int len,
267 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
268
269 static int hfa384x_isgood_pdrcode(u16 pdrcode);
270
ctlxstr(enum ctlx_state s)271 static inline const char *ctlxstr(enum ctlx_state s)
272 {
273 static const char * const ctlx_str[] = {
274 "Initial state",
275 "Complete",
276 "Request failed",
277 "Request pending",
278 "Request packet submitted",
279 "Request packet completed",
280 "Response packet completed"
281 };
282
283 return ctlx_str[s];
284 };
285
get_active_ctlx(struct hfa384x * hw)286 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
287 {
288 return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
289 }
290
291 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)292 void dbprint_urb(struct urb *urb)
293 {
294 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
295 pr_debug("urb->status=0x%08x\n", urb->status);
296 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
297 pr_debug("urb->transfer_buffer=0x%08x\n",
298 (unsigned int)urb->transfer_buffer);
299 pr_debug("urb->transfer_buffer_length=0x%08x\n",
300 urb->transfer_buffer_length);
301 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
302 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
303 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
304 (unsigned int)urb->setup_packet);
305 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
306 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
307 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
308 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
309 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
310 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
311 }
312 #endif
313
314 /*----------------------------------------------------------------
315 * submit_rx_urb
316 *
317 * Listen for input data on the BULK-IN pipe. If the pipe has
318 * stalled then schedule it to be reset.
319 *
320 * Arguments:
321 * hw device struct
322 * memflags memory allocation flags
323 *
324 * Returns:
325 * error code from submission
326 *
327 * Call context:
328 * Any
329 *----------------------------------------------------------------
330 */
submit_rx_urb(struct hfa384x * hw,gfp_t memflags)331 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
332 {
333 struct sk_buff *skb;
334 int result;
335
336 skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
337 if (!skb) {
338 result = -ENOMEM;
339 goto done;
340 }
341
342 /* Post the IN urb */
343 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
344 hw->endp_in,
345 skb->data, sizeof(union hfa384x_usbin),
346 hfa384x_usbin_callback, hw->wlandev);
347
348 hw->rx_urb_skb = skb;
349
350 result = -ENOLINK;
351 if (!hw->wlandev->hwremoved &&
352 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
353 result = usb_submit_urb(&hw->rx_urb, memflags);
354
355 /* Check whether we need to reset the RX pipe */
356 if (result == -EPIPE) {
357 netdev_warn(hw->wlandev->netdev,
358 "%s rx pipe stalled: requesting reset\n",
359 hw->wlandev->netdev->name);
360 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
361 schedule_work(&hw->usb_work);
362 }
363 }
364
365 /* Don't leak memory if anything should go wrong */
366 if (result != 0) {
367 dev_kfree_skb(skb);
368 hw->rx_urb_skb = NULL;
369 }
370
371 done:
372 return result;
373 }
374
375 /*----------------------------------------------------------------
376 * submit_tx_urb
377 *
378 * Prepares and submits the URB of transmitted data. If the
379 * submission fails then it will schedule the output pipe to
380 * be reset.
381 *
382 * Arguments:
383 * hw device struct
384 * tx_urb URB of data for transmission
385 * memflags memory allocation flags
386 *
387 * Returns:
388 * error code from submission
389 *
390 * Call context:
391 * Any
392 *----------------------------------------------------------------
393 */
submit_tx_urb(struct hfa384x * hw,struct urb * tx_urb,gfp_t memflags)394 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
395 {
396 struct net_device *netdev = hw->wlandev->netdev;
397 int result;
398
399 result = -ENOLINK;
400 if (netif_running(netdev)) {
401 if (!hw->wlandev->hwremoved &&
402 !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
403 result = usb_submit_urb(tx_urb, memflags);
404
405 /* Test whether we need to reset the TX pipe */
406 if (result == -EPIPE) {
407 netdev_warn(hw->wlandev->netdev,
408 "%s tx pipe stalled: requesting reset\n",
409 netdev->name);
410 set_bit(WORK_TX_HALT, &hw->usb_flags);
411 schedule_work(&hw->usb_work);
412 } else if (result == 0) {
413 netif_stop_queue(netdev);
414 }
415 }
416 }
417
418 return result;
419 }
420
421 /*----------------------------------------------------------------
422 * hfa394x_usb_defer
423 *
424 * There are some things that the USB stack cannot do while
425 * in interrupt context, so we arrange this function to run
426 * in process context.
427 *
428 * Arguments:
429 * hw device structure
430 *
431 * Returns:
432 * nothing
433 *
434 * Call context:
435 * process (by design)
436 *----------------------------------------------------------------
437 */
hfa384x_usb_defer(struct work_struct * data)438 static void hfa384x_usb_defer(struct work_struct *data)
439 {
440 struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
441 struct net_device *netdev = hw->wlandev->netdev;
442
443 /* Don't bother trying to reset anything if the plug
444 * has been pulled ...
445 */
446 if (hw->wlandev->hwremoved)
447 return;
448
449 /* Reception has stopped: try to reset the input pipe */
450 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
451 int ret;
452
453 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
454
455 ret = usb_clear_halt(hw->usb, hw->endp_in);
456 if (ret != 0) {
457 netdev_err(hw->wlandev->netdev,
458 "Failed to clear rx pipe for %s: err=%d\n",
459 netdev->name, ret);
460 } else {
461 netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
462 netdev->name);
463 clear_bit(WORK_RX_HALT, &hw->usb_flags);
464 set_bit(WORK_RX_RESUME, &hw->usb_flags);
465 }
466 }
467
468 /* Resume receiving data back from the device. */
469 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
470 int ret;
471
472 ret = submit_rx_urb(hw, GFP_KERNEL);
473 if (ret != 0) {
474 netdev_err(hw->wlandev->netdev,
475 "Failed to resume %s rx pipe.\n",
476 netdev->name);
477 } else {
478 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
479 }
480 }
481
482 /* Transmission has stopped: try to reset the output pipe */
483 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
484 int ret;
485
486 usb_kill_urb(&hw->tx_urb);
487 ret = usb_clear_halt(hw->usb, hw->endp_out);
488 if (ret != 0) {
489 netdev_err(hw->wlandev->netdev,
490 "Failed to clear tx pipe for %s: err=%d\n",
491 netdev->name, ret);
492 } else {
493 netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
494 netdev->name);
495 clear_bit(WORK_TX_HALT, &hw->usb_flags);
496 set_bit(WORK_TX_RESUME, &hw->usb_flags);
497
498 /* Stopping the BULK-OUT pipe also blocked
499 * us from sending any more CTLX URBs, so
500 * we need to re-run our queue ...
501 */
502 hfa384x_usbctlxq_run(hw);
503 }
504 }
505
506 /* Resume transmitting. */
507 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
508 netif_wake_queue(hw->wlandev->netdev);
509 }
510
511 /*----------------------------------------------------------------
512 * hfa384x_create
513 *
514 * Sets up the struct hfa384x data structure for use. Note this
515 * does _not_ initialize the actual hardware, just the data structures
516 * we use to keep track of its state.
517 *
518 * Arguments:
519 * hw device structure
520 * irq device irq number
521 * iobase i/o base address for register access
522 * membase memory base address for register access
523 *
524 * Returns:
525 * nothing
526 *
527 * Side effects:
528 *
529 * Call context:
530 * process
531 *----------------------------------------------------------------
532 */
hfa384x_create(struct hfa384x * hw,struct usb_device * usb)533 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
534 {
535 memset(hw, 0, sizeof(*hw));
536 hw->usb = usb;
537
538 /* set up the endpoints */
539 hw->endp_in = usb_rcvbulkpipe(usb, 1);
540 hw->endp_out = usb_sndbulkpipe(usb, 2);
541
542 /* Set up the waitq */
543 init_waitqueue_head(&hw->cmdq);
544
545 /* Initialize the command queue */
546 spin_lock_init(&hw->ctlxq.lock);
547 INIT_LIST_HEAD(&hw->ctlxq.pending);
548 INIT_LIST_HEAD(&hw->ctlxq.active);
549 INIT_LIST_HEAD(&hw->ctlxq.completing);
550 INIT_LIST_HEAD(&hw->ctlxq.reapable);
551
552 /* Initialize the authentication queue */
553 skb_queue_head_init(&hw->authq);
554
555 tasklet_init(&hw->reaper_bh,
556 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
557 tasklet_init(&hw->completion_bh,
558 hfa384x_usbctlx_completion_task, (unsigned long)hw);
559 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
560 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
561
562 timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
563
564 timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
565
566 timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
567
568 usb_init_urb(&hw->rx_urb);
569 usb_init_urb(&hw->tx_urb);
570 usb_init_urb(&hw->ctlx_urb);
571
572 hw->link_status = HFA384x_LINK_NOTCONNECTED;
573 hw->state = HFA384x_STATE_INIT;
574
575 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
576 timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
577 }
578
579 /*----------------------------------------------------------------
580 * hfa384x_destroy
581 *
582 * Partner to hfa384x_create(). This function cleans up the hw
583 * structure so that it can be freed by the caller using a simple
584 * kfree. Currently, this function is just a placeholder. If, at some
585 * point in the future, an hw in the 'shutdown' state requires a 'deep'
586 * kfree, this is where it should be done. Note that if this function
587 * is called on a _running_ hw structure, the drvr_stop() function is
588 * called.
589 *
590 * Arguments:
591 * hw device structure
592 *
593 * Returns:
594 * nothing, this function is not allowed to fail.
595 *
596 * Side effects:
597 *
598 * Call context:
599 * process
600 *----------------------------------------------------------------
601 */
hfa384x_destroy(struct hfa384x * hw)602 void hfa384x_destroy(struct hfa384x *hw)
603 {
604 struct sk_buff *skb;
605
606 if (hw->state == HFA384x_STATE_RUNNING)
607 hfa384x_drvr_stop(hw);
608 hw->state = HFA384x_STATE_PREINIT;
609
610 kfree(hw->scanresults);
611 hw->scanresults = NULL;
612
613 /* Now to clean out the auth queue */
614 while ((skb = skb_dequeue(&hw->authq)))
615 dev_kfree_skb(skb);
616 }
617
usbctlx_alloc(void)618 static struct hfa384x_usbctlx *usbctlx_alloc(void)
619 {
620 struct hfa384x_usbctlx *ctlx;
621
622 ctlx = kzalloc(sizeof(*ctlx),
623 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
624 if (ctlx)
625 init_completion(&ctlx->done);
626
627 return ctlx;
628 }
629
630 static int
usbctlx_get_status(const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)631 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
632 struct hfa384x_cmdresult *result)
633 {
634 result->status = le16_to_cpu(cmdresp->status);
635 result->resp0 = le16_to_cpu(cmdresp->resp0);
636 result->resp1 = le16_to_cpu(cmdresp->resp1);
637 result->resp2 = le16_to_cpu(cmdresp->resp2);
638
639 pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
640 result->status, result->resp0, result->resp1, result->resp2);
641
642 return result->status & HFA384x_STATUS_RESULT;
643 }
644
645 static void
usbctlx_get_rridresult(const struct hfa384x_usb_rridresp * rridresp,struct hfa384x_rridresult * result)646 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
647 struct hfa384x_rridresult *result)
648 {
649 result->rid = le16_to_cpu(rridresp->rid);
650 result->riddata = rridresp->data;
651 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
652 }
653
654 /*----------------------------------------------------------------
655 * Completor object:
656 * This completor must be passed to hfa384x_usbctlx_complete_sync()
657 * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
658 *----------------------------------------------------------------
659 */
660 struct usbctlx_cmd_completor {
661 struct usbctlx_completor head;
662
663 const struct hfa384x_usb_statusresp *cmdresp;
664 struct hfa384x_cmdresult *result;
665 };
666
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)667 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
668 {
669 struct usbctlx_cmd_completor *complete;
670
671 complete = (struct usbctlx_cmd_completor *)head;
672 return usbctlx_get_status(complete->cmdresp, complete->result);
673 }
674
675 static inline struct usbctlx_completor *
init_cmd_completor(struct usbctlx_cmd_completor * completor,const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)676 init_cmd_completor(struct usbctlx_cmd_completor *completor,
677 const struct hfa384x_usb_statusresp *cmdresp,
678 struct hfa384x_cmdresult *result)
679 {
680 completor->head.complete = usbctlx_cmd_completor_fn;
681 completor->cmdresp = cmdresp;
682 completor->result = result;
683 return &completor->head;
684 }
685
686 /*----------------------------------------------------------------
687 * Completor object:
688 * This completor must be passed to hfa384x_usbctlx_complete_sync()
689 * when processing a CTLX that reads a RID.
690 *----------------------------------------------------------------
691 */
692 struct usbctlx_rrid_completor {
693 struct usbctlx_completor head;
694
695 const struct hfa384x_usb_rridresp *rridresp;
696 void *riddata;
697 unsigned int riddatalen;
698 };
699
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)700 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
701 {
702 struct usbctlx_rrid_completor *complete;
703 struct hfa384x_rridresult rridresult;
704
705 complete = (struct usbctlx_rrid_completor *)head;
706 usbctlx_get_rridresult(complete->rridresp, &rridresult);
707
708 /* Validate the length, note body len calculation in bytes */
709 if (rridresult.riddata_len != complete->riddatalen) {
710 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
711 rridresult.rid,
712 complete->riddatalen, rridresult.riddata_len);
713 return -ENODATA;
714 }
715
716 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
717 return 0;
718 }
719
720 static inline struct usbctlx_completor *
init_rrid_completor(struct usbctlx_rrid_completor * completor,const struct hfa384x_usb_rridresp * rridresp,void * riddata,unsigned int riddatalen)721 init_rrid_completor(struct usbctlx_rrid_completor *completor,
722 const struct hfa384x_usb_rridresp *rridresp,
723 void *riddata,
724 unsigned int riddatalen)
725 {
726 completor->head.complete = usbctlx_rrid_completor_fn;
727 completor->rridresp = rridresp;
728 completor->riddata = riddata;
729 completor->riddatalen = riddatalen;
730 return &completor->head;
731 }
732
733 /*----------------------------------------------------------------
734 * Completor object:
735 * Interprets the results of a synchronous RID-write
736 *----------------------------------------------------------------
737 */
738 #define init_wrid_completor init_cmd_completor
739
740 /*----------------------------------------------------------------
741 * Completor object:
742 * Interprets the results of a synchronous memory-write
743 *----------------------------------------------------------------
744 */
745 #define init_wmem_completor init_cmd_completor
746
747 /*----------------------------------------------------------------
748 * Completor object:
749 * Interprets the results of a synchronous memory-read
750 *----------------------------------------------------------------
751 */
752 struct usbctlx_rmem_completor {
753 struct usbctlx_completor head;
754
755 const struct hfa384x_usb_rmemresp *rmemresp;
756 void *data;
757 unsigned int len;
758 };
759
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)760 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
761 {
762 struct usbctlx_rmem_completor *complete =
763 (struct usbctlx_rmem_completor *)head;
764
765 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
766 memcpy(complete->data, complete->rmemresp->data, complete->len);
767 return 0;
768 }
769
770 static inline struct usbctlx_completor *
init_rmem_completor(struct usbctlx_rmem_completor * completor,struct hfa384x_usb_rmemresp * rmemresp,void * data,unsigned int len)771 init_rmem_completor(struct usbctlx_rmem_completor *completor,
772 struct hfa384x_usb_rmemresp *rmemresp,
773 void *data,
774 unsigned int len)
775 {
776 completor->head.complete = usbctlx_rmem_completor_fn;
777 completor->rmemresp = rmemresp;
778 completor->data = data;
779 completor->len = len;
780 return &completor->head;
781 }
782
783 /*----------------------------------------------------------------
784 * hfa384x_cb_status
785 *
786 * Ctlx_complete handler for async CMD type control exchanges.
787 * mark the hw struct as such.
788 *
789 * Note: If the handling is changed here, it should probably be
790 * changed in docmd as well.
791 *
792 * Arguments:
793 * hw hw struct
794 * ctlx completed CTLX
795 *
796 * Returns:
797 * nothing
798 *
799 * Side effects:
800 *
801 * Call context:
802 * interrupt
803 *----------------------------------------------------------------
804 */
hfa384x_cb_status(struct hfa384x * hw,const struct hfa384x_usbctlx * ctlx)805 static void hfa384x_cb_status(struct hfa384x *hw,
806 const struct hfa384x_usbctlx *ctlx)
807 {
808 if (ctlx->usercb) {
809 struct hfa384x_cmdresult cmdresult;
810
811 if (ctlx->state != CTLX_COMPLETE) {
812 memset(&cmdresult, 0, sizeof(cmdresult));
813 cmdresult.status =
814 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
815 } else {
816 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
817 }
818
819 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
820 }
821 }
822
hfa384x_docmd_wait(struct hfa384x * hw,struct hfa384x_metacmd * cmd)823 static inline int hfa384x_docmd_wait(struct hfa384x *hw,
824 struct hfa384x_metacmd *cmd)
825 {
826 return hfa384x_docmd(hw, DOWAIT, cmd, NULL, NULL, NULL);
827 }
828
829 static inline int
hfa384x_docmd_async(struct hfa384x * hw,struct hfa384x_metacmd * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)830 hfa384x_docmd_async(struct hfa384x *hw,
831 struct hfa384x_metacmd *cmd,
832 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
833 {
834 return hfa384x_docmd(hw, DOASYNC, cmd, cmdcb, usercb, usercb_data);
835 }
836
837 static inline int
hfa384x_dorrid_wait(struct hfa384x * hw,u16 rid,void * riddata,unsigned int riddatalen)838 hfa384x_dorrid_wait(struct hfa384x *hw, u16 rid, void *riddata,
839 unsigned int riddatalen)
840 {
841 return hfa384x_dorrid(hw, DOWAIT,
842 rid, riddata, riddatalen, NULL, NULL, NULL);
843 }
844
845 static inline int
hfa384x_dorrid_async(struct hfa384x * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)846 hfa384x_dorrid_async(struct hfa384x *hw,
847 u16 rid, void *riddata, unsigned int riddatalen,
848 ctlx_cmdcb_t cmdcb,
849 ctlx_usercb_t usercb, void *usercb_data)
850 {
851 return hfa384x_dorrid(hw, DOASYNC,
852 rid, riddata, riddatalen,
853 cmdcb, usercb, usercb_data);
854 }
855
856 static inline int
hfa384x_dowrid_wait(struct hfa384x * hw,u16 rid,void * riddata,unsigned int riddatalen)857 hfa384x_dowrid_wait(struct hfa384x *hw, u16 rid, void *riddata,
858 unsigned int riddatalen)
859 {
860 return hfa384x_dowrid(hw, DOWAIT,
861 rid, riddata, riddatalen, NULL, NULL, NULL);
862 }
863
864 static inline int
hfa384x_dowrid_async(struct hfa384x * hw,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)865 hfa384x_dowrid_async(struct hfa384x *hw,
866 u16 rid, void *riddata, unsigned int riddatalen,
867 ctlx_cmdcb_t cmdcb,
868 ctlx_usercb_t usercb, void *usercb_data)
869 {
870 return hfa384x_dowrid(hw, DOASYNC,
871 rid, riddata, riddatalen,
872 cmdcb, usercb, usercb_data);
873 }
874
875 static inline int
hfa384x_dormem_wait(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)876 hfa384x_dormem_wait(struct hfa384x *hw,
877 u16 page, u16 offset, void *data, unsigned int len)
878 {
879 return hfa384x_dormem(hw, DOWAIT,
880 page, offset, data, len, NULL, NULL, NULL);
881 }
882
883 static inline int
hfa384x_dormem_async(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)884 hfa384x_dormem_async(struct hfa384x *hw,
885 u16 page, u16 offset, void *data, unsigned int len,
886 ctlx_cmdcb_t cmdcb,
887 ctlx_usercb_t usercb, void *usercb_data)
888 {
889 return hfa384x_dormem(hw, DOASYNC,
890 page, offset, data, len,
891 cmdcb, usercb, usercb_data);
892 }
893
894 static inline int
hfa384x_dowmem_wait(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)895 hfa384x_dowmem_wait(struct hfa384x *hw,
896 u16 page, u16 offset, void *data, unsigned int len)
897 {
898 return hfa384x_dowmem(hw, DOWAIT,
899 page, offset, data, len, NULL, NULL, NULL);
900 }
901
902 static inline int
hfa384x_dowmem_async(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)903 hfa384x_dowmem_async(struct hfa384x *hw,
904 u16 page,
905 u16 offset,
906 void *data,
907 unsigned int len,
908 ctlx_cmdcb_t cmdcb,
909 ctlx_usercb_t usercb, void *usercb_data)
910 {
911 return hfa384x_dowmem(hw, DOASYNC,
912 page, offset, data, len,
913 cmdcb, usercb, usercb_data);
914 }
915
916 /*----------------------------------------------------------------
917 * hfa384x_cmd_initialize
918 *
919 * Issues the initialize command and sets the hw->state based
920 * on the result.
921 *
922 * Arguments:
923 * hw device structure
924 *
925 * Returns:
926 * 0 success
927 * >0 f/w reported error - f/w status code
928 * <0 driver reported error
929 *
930 * Side effects:
931 *
932 * Call context:
933 * process
934 *----------------------------------------------------------------
935 */
hfa384x_cmd_initialize(struct hfa384x * hw)936 int hfa384x_cmd_initialize(struct hfa384x *hw)
937 {
938 int result = 0;
939 int i;
940 struct hfa384x_metacmd cmd;
941
942 cmd.cmd = HFA384x_CMDCODE_INIT;
943 cmd.parm0 = 0;
944 cmd.parm1 = 0;
945 cmd.parm2 = 0;
946
947 result = hfa384x_docmd_wait(hw, &cmd);
948
949 pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
950 cmd.result.status,
951 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
952 if (result == 0) {
953 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
954 hw->port_enabled[i] = 0;
955 }
956
957 hw->link_status = HFA384x_LINK_NOTCONNECTED;
958
959 return result;
960 }
961
962 /*----------------------------------------------------------------
963 * hfa384x_cmd_disable
964 *
965 * Issues the disable command to stop communications on one of
966 * the MACs 'ports'.
967 *
968 * Arguments:
969 * hw device structure
970 * macport MAC port number (host order)
971 *
972 * Returns:
973 * 0 success
974 * >0 f/w reported failure - f/w status code
975 * <0 driver reported error (timeout|bad arg)
976 *
977 * Side effects:
978 *
979 * Call context:
980 * process
981 *----------------------------------------------------------------
982 */
hfa384x_cmd_disable(struct hfa384x * hw,u16 macport)983 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
984 {
985 struct hfa384x_metacmd cmd;
986
987 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
988 HFA384x_CMD_MACPORT_SET(macport);
989 cmd.parm0 = 0;
990 cmd.parm1 = 0;
991 cmd.parm2 = 0;
992
993 return hfa384x_docmd_wait(hw, &cmd);
994 }
995
996 /*----------------------------------------------------------------
997 * hfa384x_cmd_enable
998 *
999 * Issues the enable command to enable communications on one of
1000 * the MACs 'ports'.
1001 *
1002 * Arguments:
1003 * hw device structure
1004 * macport MAC port number
1005 *
1006 * Returns:
1007 * 0 success
1008 * >0 f/w reported failure - f/w status code
1009 * <0 driver reported error (timeout|bad arg)
1010 *
1011 * Side effects:
1012 *
1013 * Call context:
1014 * process
1015 *----------------------------------------------------------------
1016 */
hfa384x_cmd_enable(struct hfa384x * hw,u16 macport)1017 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
1018 {
1019 struct hfa384x_metacmd cmd;
1020
1021 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
1022 HFA384x_CMD_MACPORT_SET(macport);
1023 cmd.parm0 = 0;
1024 cmd.parm1 = 0;
1025 cmd.parm2 = 0;
1026
1027 return hfa384x_docmd_wait(hw, &cmd);
1028 }
1029
1030 /*----------------------------------------------------------------
1031 * hfa384x_cmd_monitor
1032 *
1033 * Enables the 'monitor mode' of the MAC. Here's the description of
1034 * monitor mode that I've received thus far:
1035 *
1036 * "The "monitor mode" of operation is that the MAC passes all
1037 * frames for which the PLCP checks are correct. All received
1038 * MPDUs are passed to the host with MAC Port = 7, with a
1039 * receive status of good, FCS error, or undecryptable. Passing
1040 * certain MPDUs is a violation of the 802.11 standard, but useful
1041 * for a debugging tool." Normal communication is not possible
1042 * while monitor mode is enabled.
1043 *
1044 * Arguments:
1045 * hw device structure
1046 * enable a code (0x0b|0x0f) that enables/disables
1047 * monitor mode. (host order)
1048 *
1049 * Returns:
1050 * 0 success
1051 * >0 f/w reported failure - f/w status code
1052 * <0 driver reported error (timeout|bad arg)
1053 *
1054 * Side effects:
1055 *
1056 * Call context:
1057 * process
1058 *----------------------------------------------------------------
1059 */
hfa384x_cmd_monitor(struct hfa384x * hw,u16 enable)1060 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
1061 {
1062 struct hfa384x_metacmd cmd;
1063
1064 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
1065 HFA384x_CMD_AINFO_SET(enable);
1066 cmd.parm0 = 0;
1067 cmd.parm1 = 0;
1068 cmd.parm2 = 0;
1069
1070 return hfa384x_docmd_wait(hw, &cmd);
1071 }
1072
1073 /*----------------------------------------------------------------
1074 * hfa384x_cmd_download
1075 *
1076 * Sets the controls for the MAC controller code/data download
1077 * process. The arguments set the mode and address associated
1078 * with a download. Note that the aux registers should be enabled
1079 * prior to setting one of the download enable modes.
1080 *
1081 * Arguments:
1082 * hw device structure
1083 * mode 0 - Disable programming and begin code exec
1084 * 1 - Enable volatile mem programming
1085 * 2 - Enable non-volatile mem programming
1086 * 3 - Program non-volatile section from NV download
1087 * buffer.
1088 * (host order)
1089 * lowaddr
1090 * highaddr For mode 1, sets the high & low order bits of
1091 * the "destination address". This address will be
1092 * the execution start address when download is
1093 * subsequently disabled.
1094 * For mode 2, sets the high & low order bits of
1095 * the destination in NV ram.
1096 * For modes 0 & 3, should be zero. (host order)
1097 * NOTE: these are CMD format.
1098 * codelen Length of the data to write in mode 2,
1099 * zero otherwise. (host order)
1100 *
1101 * Returns:
1102 * 0 success
1103 * >0 f/w reported failure - f/w status code
1104 * <0 driver reported error (timeout|bad arg)
1105 *
1106 * Side effects:
1107 *
1108 * Call context:
1109 * process
1110 *----------------------------------------------------------------
1111 */
hfa384x_cmd_download(struct hfa384x * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1112 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1113 u16 highaddr, u16 codelen)
1114 {
1115 struct hfa384x_metacmd cmd;
1116
1117 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1118 mode, lowaddr, highaddr, codelen);
1119
1120 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1121 HFA384x_CMD_PROGMODE_SET(mode));
1122
1123 cmd.parm0 = lowaddr;
1124 cmd.parm1 = highaddr;
1125 cmd.parm2 = codelen;
1126
1127 return hfa384x_docmd_wait(hw, &cmd);
1128 }
1129
1130 /*----------------------------------------------------------------
1131 * hfa384x_corereset
1132 *
1133 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1134 * structure is in its "created" state. That is, it is initialized
1135 * with proper values. Note that if a reset is done after the
1136 * device has been active for awhile, the caller might have to clean
1137 * up some leftover cruft in the hw structure.
1138 *
1139 * Arguments:
1140 * hw device structure
1141 * holdtime how long (in ms) to hold the reset
1142 * settletime how long (in ms) to wait after releasing
1143 * the reset
1144 *
1145 * Returns:
1146 * nothing
1147 *
1148 * Side effects:
1149 *
1150 * Call context:
1151 * process
1152 *----------------------------------------------------------------
1153 */
hfa384x_corereset(struct hfa384x * hw,int holdtime,int settletime,int genesis)1154 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1155 int settletime, int genesis)
1156 {
1157 int result;
1158
1159 result = usb_reset_device(hw->usb);
1160 if (result < 0) {
1161 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1162 result);
1163 }
1164
1165 return result;
1166 }
1167
1168 /*----------------------------------------------------------------
1169 * hfa384x_usbctlx_complete_sync
1170 *
1171 * Waits for a synchronous CTLX object to complete,
1172 * and then handles the response.
1173 *
1174 * Arguments:
1175 * hw device structure
1176 * ctlx CTLX ptr
1177 * completor functor object to decide what to
1178 * do with the CTLX's result.
1179 *
1180 * Returns:
1181 * 0 Success
1182 * -ERESTARTSYS Interrupted by a signal
1183 * -EIO CTLX failed
1184 * -ENODEV Adapter was unplugged
1185 * ??? Result from completor
1186 *
1187 * Side effects:
1188 *
1189 * Call context:
1190 * process
1191 *----------------------------------------------------------------
1192 */
hfa384x_usbctlx_complete_sync(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx,struct usbctlx_completor * completor)1193 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1194 struct hfa384x_usbctlx *ctlx,
1195 struct usbctlx_completor *completor)
1196 {
1197 unsigned long flags;
1198 int result;
1199
1200 result = wait_for_completion_interruptible(&ctlx->done);
1201
1202 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1203
1204 /*
1205 * We can only handle the CTLX if the USB disconnect
1206 * function has not run yet ...
1207 */
1208 cleanup:
1209 if (hw->wlandev->hwremoved) {
1210 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1211 result = -ENODEV;
1212 } else if (result != 0) {
1213 int runqueue = 0;
1214
1215 /*
1216 * We were probably interrupted, so delete
1217 * this CTLX asynchronously, kill the timers
1218 * and the URB, and then start the next
1219 * pending CTLX.
1220 *
1221 * NOTE: We can only delete the timers and
1222 * the URB if this CTLX is active.
1223 */
1224 if (ctlx == get_active_ctlx(hw)) {
1225 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1226
1227 del_singleshot_timer_sync(&hw->reqtimer);
1228 del_singleshot_timer_sync(&hw->resptimer);
1229 hw->req_timer_done = 1;
1230 hw->resp_timer_done = 1;
1231 usb_kill_urb(&hw->ctlx_urb);
1232
1233 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1234
1235 runqueue = 1;
1236
1237 /*
1238 * This scenario is so unlikely that I'm
1239 * happy with a grubby "goto" solution ...
1240 */
1241 if (hw->wlandev->hwremoved)
1242 goto cleanup;
1243 }
1244
1245 /*
1246 * The completion task will send this CTLX
1247 * to the reaper the next time it runs. We
1248 * are no longer in a hurry.
1249 */
1250 ctlx->reapable = 1;
1251 ctlx->state = CTLX_REQ_FAILED;
1252 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1253
1254 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1255
1256 if (runqueue)
1257 hfa384x_usbctlxq_run(hw);
1258 } else {
1259 if (ctlx->state == CTLX_COMPLETE) {
1260 result = completor->complete(completor);
1261 } else {
1262 netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1263 le16_to_cpu(ctlx->outbuf.type),
1264 ctlxstr(ctlx->state));
1265 result = -EIO;
1266 }
1267
1268 list_del(&ctlx->list);
1269 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1270 kfree(ctlx);
1271 }
1272
1273 return result;
1274 }
1275
1276 /*----------------------------------------------------------------
1277 * hfa384x_docmd
1278 *
1279 * Constructs a command CTLX and submits it.
1280 *
1281 * NOTE: Any changes to the 'post-submit' code in this function
1282 * need to be carried over to hfa384x_cbcmd() since the handling
1283 * is virtually identical.
1284 *
1285 * Arguments:
1286 * hw device structure
1287 * mode DOWAIT or DOASYNC
1288 * cmd cmd structure. Includes all arguments and result
1289 * data points. All in host order. in host order
1290 * cmdcb command-specific callback
1291 * usercb user callback for async calls, NULL for DOWAIT calls
1292 * usercb_data user supplied data pointer for async calls, NULL
1293 * for DOWAIT calls
1294 *
1295 * Returns:
1296 * 0 success
1297 * -EIO CTLX failure
1298 * -ERESTARTSYS Awakened on signal
1299 * >0 command indicated error, Status and Resp0-2 are
1300 * in hw structure.
1301 *
1302 * Side effects:
1303 *
1304 *
1305 * Call context:
1306 * process
1307 *----------------------------------------------------------------
1308 */
1309 static int
hfa384x_docmd(struct hfa384x * hw,enum cmd_mode mode,struct hfa384x_metacmd * cmd,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1310 hfa384x_docmd(struct hfa384x *hw,
1311 enum cmd_mode mode,
1312 struct hfa384x_metacmd *cmd,
1313 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1314 {
1315 int result;
1316 struct hfa384x_usbctlx *ctlx;
1317
1318 ctlx = usbctlx_alloc();
1319 if (!ctlx) {
1320 result = -ENOMEM;
1321 goto done;
1322 }
1323
1324 /* Initialize the command */
1325 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1326 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1327 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1328 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1329 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1330
1331 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1332
1333 pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1334 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1335
1336 ctlx->reapable = mode;
1337 ctlx->cmdcb = cmdcb;
1338 ctlx->usercb = usercb;
1339 ctlx->usercb_data = usercb_data;
1340
1341 result = hfa384x_usbctlx_submit(hw, ctlx);
1342 if (result != 0) {
1343 kfree(ctlx);
1344 } else if (mode == DOWAIT) {
1345 struct usbctlx_cmd_completor cmd_completor;
1346 struct usbctlx_completor *completor;
1347
1348 completor = init_cmd_completor(&cmd_completor,
1349 &ctlx->inbuf.cmdresp,
1350 &cmd->result);
1351
1352 result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1353 }
1354
1355 done:
1356 return result;
1357 }
1358
1359 /*----------------------------------------------------------------
1360 * hfa384x_dorrid
1361 *
1362 * Constructs a read rid CTLX and issues it.
1363 *
1364 * NOTE: Any changes to the 'post-submit' code in this function
1365 * need to be carried over to hfa384x_cbrrid() since the handling
1366 * is virtually identical.
1367 *
1368 * Arguments:
1369 * hw device structure
1370 * mode DOWAIT or DOASYNC
1371 * rid Read RID number (host order)
1372 * riddata Caller supplied buffer that MAC formatted RID.data
1373 * record will be written to for DOWAIT calls. Should
1374 * be NULL for DOASYNC calls.
1375 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1376 * cmdcb command callback for async calls, NULL for DOWAIT calls
1377 * usercb user callback for async calls, NULL for DOWAIT calls
1378 * usercb_data user supplied data pointer for async calls, NULL
1379 * for DOWAIT calls
1380 *
1381 * Returns:
1382 * 0 success
1383 * -EIO CTLX failure
1384 * -ERESTARTSYS Awakened on signal
1385 * -ENODATA riddatalen != macdatalen
1386 * >0 command indicated error, Status and Resp0-2 are
1387 * in hw structure.
1388 *
1389 * Side effects:
1390 *
1391 * Call context:
1392 * interrupt (DOASYNC)
1393 * process (DOWAIT or DOASYNC)
1394 *----------------------------------------------------------------
1395 */
1396 static int
hfa384x_dorrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1397 hfa384x_dorrid(struct hfa384x *hw,
1398 enum cmd_mode mode,
1399 u16 rid,
1400 void *riddata,
1401 unsigned int riddatalen,
1402 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1403 {
1404 int result;
1405 struct hfa384x_usbctlx *ctlx;
1406
1407 ctlx = usbctlx_alloc();
1408 if (!ctlx) {
1409 result = -ENOMEM;
1410 goto done;
1411 }
1412
1413 /* Initialize the command */
1414 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1415 ctlx->outbuf.rridreq.frmlen =
1416 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1417 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1418
1419 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1420
1421 ctlx->reapable = mode;
1422 ctlx->cmdcb = cmdcb;
1423 ctlx->usercb = usercb;
1424 ctlx->usercb_data = usercb_data;
1425
1426 /* Submit the CTLX */
1427 result = hfa384x_usbctlx_submit(hw, ctlx);
1428 if (result != 0) {
1429 kfree(ctlx);
1430 } else if (mode == DOWAIT) {
1431 struct usbctlx_rrid_completor completor;
1432
1433 result =
1434 hfa384x_usbctlx_complete_sync(hw, ctlx,
1435 init_rrid_completor
1436 (&completor,
1437 &ctlx->inbuf.rridresp,
1438 riddata, riddatalen));
1439 }
1440
1441 done:
1442 return result;
1443 }
1444
1445 /*----------------------------------------------------------------
1446 * hfa384x_dowrid
1447 *
1448 * Constructs a write rid CTLX and issues it.
1449 *
1450 * NOTE: Any changes to the 'post-submit' code in this function
1451 * need to be carried over to hfa384x_cbwrid() since the handling
1452 * is virtually identical.
1453 *
1454 * Arguments:
1455 * hw device structure
1456 * enum cmd_mode DOWAIT or DOASYNC
1457 * rid RID code
1458 * riddata Data portion of RID formatted for MAC
1459 * riddatalen Length of the data portion in bytes
1460 * cmdcb command callback for async calls, NULL for DOWAIT calls
1461 * usercb user callback for async calls, NULL for DOWAIT calls
1462 * usercb_data user supplied data pointer for async calls
1463 *
1464 * Returns:
1465 * 0 success
1466 * -ETIMEDOUT timed out waiting for register ready or
1467 * command completion
1468 * >0 command indicated error, Status and Resp0-2 are
1469 * in hw structure.
1470 *
1471 * Side effects:
1472 *
1473 * Call context:
1474 * interrupt (DOASYNC)
1475 * process (DOWAIT or DOASYNC)
1476 *----------------------------------------------------------------
1477 */
1478 static int
hfa384x_dowrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1479 hfa384x_dowrid(struct hfa384x *hw,
1480 enum cmd_mode mode,
1481 u16 rid,
1482 void *riddata,
1483 unsigned int riddatalen,
1484 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1485 {
1486 int result;
1487 struct hfa384x_usbctlx *ctlx;
1488
1489 ctlx = usbctlx_alloc();
1490 if (!ctlx) {
1491 result = -ENOMEM;
1492 goto done;
1493 }
1494
1495 /* Initialize the command */
1496 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1497 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1498 (ctlx->outbuf.wridreq.rid) +
1499 riddatalen + 1) / 2);
1500 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1501 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1502
1503 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1504 sizeof(ctlx->outbuf.wridreq.frmlen) +
1505 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1506
1507 ctlx->reapable = mode;
1508 ctlx->cmdcb = cmdcb;
1509 ctlx->usercb = usercb;
1510 ctlx->usercb_data = usercb_data;
1511
1512 /* Submit the CTLX */
1513 result = hfa384x_usbctlx_submit(hw, ctlx);
1514 if (result != 0) {
1515 kfree(ctlx);
1516 } else if (mode == DOWAIT) {
1517 struct usbctlx_cmd_completor completor;
1518 struct hfa384x_cmdresult wridresult;
1519
1520 result = hfa384x_usbctlx_complete_sync(hw,
1521 ctlx,
1522 init_wrid_completor
1523 (&completor,
1524 &ctlx->inbuf.wridresp,
1525 &wridresult));
1526 }
1527
1528 done:
1529 return result;
1530 }
1531
1532 /*----------------------------------------------------------------
1533 * hfa384x_dormem
1534 *
1535 * Constructs a readmem CTLX and issues it.
1536 *
1537 * NOTE: Any changes to the 'post-submit' code in this function
1538 * need to be carried over to hfa384x_cbrmem() since the handling
1539 * is virtually identical.
1540 *
1541 * Arguments:
1542 * hw device structure
1543 * mode DOWAIT or DOASYNC
1544 * page MAC address space page (CMD format)
1545 * offset MAC address space offset
1546 * data Ptr to data buffer to receive read
1547 * len Length of the data to read (max == 2048)
1548 * cmdcb command callback for async calls, NULL for DOWAIT calls
1549 * usercb user callback for async calls, NULL for DOWAIT calls
1550 * usercb_data user supplied data pointer for async calls
1551 *
1552 * Returns:
1553 * 0 success
1554 * -ETIMEDOUT timed out waiting for register ready or
1555 * command completion
1556 * >0 command indicated error, Status and Resp0-2 are
1557 * in hw structure.
1558 *
1559 * Side effects:
1560 *
1561 * Call context:
1562 * interrupt (DOASYNC)
1563 * process (DOWAIT or DOASYNC)
1564 *----------------------------------------------------------------
1565 */
1566 static int
hfa384x_dormem(struct hfa384x * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1567 hfa384x_dormem(struct hfa384x *hw,
1568 enum cmd_mode mode,
1569 u16 page,
1570 u16 offset,
1571 void *data,
1572 unsigned int len,
1573 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1574 {
1575 int result;
1576 struct hfa384x_usbctlx *ctlx;
1577
1578 ctlx = usbctlx_alloc();
1579 if (!ctlx) {
1580 result = -ENOMEM;
1581 goto done;
1582 }
1583
1584 /* Initialize the command */
1585 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1586 ctlx->outbuf.rmemreq.frmlen =
1587 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1588 sizeof(ctlx->outbuf.rmemreq.page) + len);
1589 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1590 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1591
1592 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1593
1594 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1595 ctlx->outbuf.rmemreq.type,
1596 ctlx->outbuf.rmemreq.frmlen,
1597 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1598
1599 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1600
1601 ctlx->reapable = mode;
1602 ctlx->cmdcb = cmdcb;
1603 ctlx->usercb = usercb;
1604 ctlx->usercb_data = usercb_data;
1605
1606 result = hfa384x_usbctlx_submit(hw, ctlx);
1607 if (result != 0) {
1608 kfree(ctlx);
1609 } else if (mode == DOWAIT) {
1610 struct usbctlx_rmem_completor completor;
1611
1612 result =
1613 hfa384x_usbctlx_complete_sync(hw, ctlx,
1614 init_rmem_completor
1615 (&completor,
1616 &ctlx->inbuf.rmemresp, data,
1617 len));
1618 }
1619
1620 done:
1621 return result;
1622 }
1623
1624 /*----------------------------------------------------------------
1625 * hfa384x_dowmem
1626 *
1627 * Constructs a writemem CTLX and issues it.
1628 *
1629 * NOTE: Any changes to the 'post-submit' code in this function
1630 * need to be carried over to hfa384x_cbwmem() since the handling
1631 * is virtually identical.
1632 *
1633 * Arguments:
1634 * hw device structure
1635 * mode DOWAIT or DOASYNC
1636 * page MAC address space page (CMD format)
1637 * offset MAC address space offset
1638 * data Ptr to data buffer containing write data
1639 * len Length of the data to read (max == 2048)
1640 * cmdcb command callback for async calls, NULL for DOWAIT calls
1641 * usercb user callback for async calls, NULL for DOWAIT calls
1642 * usercb_data user supplied data pointer for async calls.
1643 *
1644 * Returns:
1645 * 0 success
1646 * -ETIMEDOUT timed out waiting for register ready or
1647 * command completion
1648 * >0 command indicated error, Status and Resp0-2 are
1649 * in hw structure.
1650 *
1651 * Side effects:
1652 *
1653 * Call context:
1654 * interrupt (DOWAIT)
1655 * process (DOWAIT or DOASYNC)
1656 *----------------------------------------------------------------
1657 */
1658 static int
hfa384x_dowmem(struct hfa384x * hw,enum cmd_mode mode,u16 page,u16 offset,void * data,unsigned int len,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1659 hfa384x_dowmem(struct hfa384x *hw,
1660 enum cmd_mode mode,
1661 u16 page,
1662 u16 offset,
1663 void *data,
1664 unsigned int len,
1665 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1666 {
1667 int result;
1668 struct hfa384x_usbctlx *ctlx;
1669
1670 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1671
1672 ctlx = usbctlx_alloc();
1673 if (!ctlx) {
1674 result = -ENOMEM;
1675 goto done;
1676 }
1677
1678 /* Initialize the command */
1679 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1680 ctlx->outbuf.wmemreq.frmlen =
1681 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1682 sizeof(ctlx->outbuf.wmemreq.page) + len);
1683 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1684 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1685 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1686
1687 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1688 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1689 sizeof(ctlx->outbuf.wmemreq.offset) +
1690 sizeof(ctlx->outbuf.wmemreq.page) + len;
1691
1692 ctlx->reapable = mode;
1693 ctlx->cmdcb = cmdcb;
1694 ctlx->usercb = usercb;
1695 ctlx->usercb_data = usercb_data;
1696
1697 result = hfa384x_usbctlx_submit(hw, ctlx);
1698 if (result != 0) {
1699 kfree(ctlx);
1700 } else if (mode == DOWAIT) {
1701 struct usbctlx_cmd_completor completor;
1702 struct hfa384x_cmdresult wmemresult;
1703
1704 result = hfa384x_usbctlx_complete_sync(hw,
1705 ctlx,
1706 init_wmem_completor
1707 (&completor,
1708 &ctlx->inbuf.wmemresp,
1709 &wmemresult));
1710 }
1711
1712 done:
1713 return result;
1714 }
1715
1716 /*----------------------------------------------------------------
1717 * hfa384x_drvr_disable
1718 *
1719 * Issues the disable command to stop communications on one of
1720 * the MACs 'ports'. Only macport 0 is valid for stations.
1721 * APs may also disable macports 1-6. Only ports that have been
1722 * previously enabled may be disabled.
1723 *
1724 * Arguments:
1725 * hw device structure
1726 * macport MAC port number (host order)
1727 *
1728 * Returns:
1729 * 0 success
1730 * >0 f/w reported failure - f/w status code
1731 * <0 driver reported error (timeout|bad arg)
1732 *
1733 * Side effects:
1734 *
1735 * Call context:
1736 * process
1737 *----------------------------------------------------------------
1738 */
hfa384x_drvr_disable(struct hfa384x * hw,u16 macport)1739 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1740 {
1741 int result = 0;
1742
1743 if ((!hw->isap && macport != 0) ||
1744 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1745 !(hw->port_enabled[macport])) {
1746 result = -EINVAL;
1747 } else {
1748 result = hfa384x_cmd_disable(hw, macport);
1749 if (result == 0)
1750 hw->port_enabled[macport] = 0;
1751 }
1752 return result;
1753 }
1754
1755 /*----------------------------------------------------------------
1756 * hfa384x_drvr_enable
1757 *
1758 * Issues the enable command to enable communications on one of
1759 * the MACs 'ports'. Only macport 0 is valid for stations.
1760 * APs may also enable macports 1-6. Only ports that are currently
1761 * disabled may be enabled.
1762 *
1763 * Arguments:
1764 * hw device structure
1765 * macport MAC port number
1766 *
1767 * Returns:
1768 * 0 success
1769 * >0 f/w reported failure - f/w status code
1770 * <0 driver reported error (timeout|bad arg)
1771 *
1772 * Side effects:
1773 *
1774 * Call context:
1775 * process
1776 *----------------------------------------------------------------
1777 */
hfa384x_drvr_enable(struct hfa384x * hw,u16 macport)1778 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1779 {
1780 int result = 0;
1781
1782 if ((!hw->isap && macport != 0) ||
1783 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1784 (hw->port_enabled[macport])) {
1785 result = -EINVAL;
1786 } else {
1787 result = hfa384x_cmd_enable(hw, macport);
1788 if (result == 0)
1789 hw->port_enabled[macport] = 1;
1790 }
1791 return result;
1792 }
1793
1794 /*----------------------------------------------------------------
1795 * hfa384x_drvr_flashdl_enable
1796 *
1797 * Begins the flash download state. Checks to see that we're not
1798 * already in a download state and that a port isn't enabled.
1799 * Sets the download state and retrieves the flash download
1800 * buffer location, buffer size, and timeout length.
1801 *
1802 * Arguments:
1803 * hw device structure
1804 *
1805 * Returns:
1806 * 0 success
1807 * >0 f/w reported error - f/w status code
1808 * <0 driver reported error
1809 *
1810 * Side effects:
1811 *
1812 * Call context:
1813 * process
1814 *----------------------------------------------------------------
1815 */
hfa384x_drvr_flashdl_enable(struct hfa384x * hw)1816 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1817 {
1818 int result = 0;
1819 int i;
1820
1821 /* Check that a port isn't active */
1822 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1823 if (hw->port_enabled[i]) {
1824 pr_debug("called when port enabled.\n");
1825 return -EINVAL;
1826 }
1827 }
1828
1829 /* Check that we're not already in a download state */
1830 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1831 return -EINVAL;
1832
1833 /* Retrieve the buffer loc&size and timeout */
1834 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1835 &hw->bufinfo, sizeof(hw->bufinfo));
1836 if (result)
1837 return result;
1838
1839 le16_to_cpus(&hw->bufinfo.page);
1840 le16_to_cpus(&hw->bufinfo.offset);
1841 le16_to_cpus(&hw->bufinfo.len);
1842 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1843 &hw->dltimeout);
1844 if (result)
1845 return result;
1846
1847 le16_to_cpus(&hw->dltimeout);
1848
1849 pr_debug("flashdl_enable\n");
1850
1851 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1852
1853 return result;
1854 }
1855
1856 /*----------------------------------------------------------------
1857 * hfa384x_drvr_flashdl_disable
1858 *
1859 * Ends the flash download state. Note that this will cause the MAC
1860 * firmware to restart.
1861 *
1862 * Arguments:
1863 * hw device structure
1864 *
1865 * Returns:
1866 * 0 success
1867 * >0 f/w reported error - f/w status code
1868 * <0 driver reported error
1869 *
1870 * Side effects:
1871 *
1872 * Call context:
1873 * process
1874 *----------------------------------------------------------------
1875 */
hfa384x_drvr_flashdl_disable(struct hfa384x * hw)1876 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1877 {
1878 /* Check that we're already in the download state */
1879 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1880 return -EINVAL;
1881
1882 pr_debug("flashdl_enable\n");
1883
1884 /* There isn't much we can do at this point, so I don't */
1885 /* bother w/ the return value */
1886 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1887 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1888
1889 return 0;
1890 }
1891
1892 /*----------------------------------------------------------------
1893 * hfa384x_drvr_flashdl_write
1894 *
1895 * Performs a FLASH download of a chunk of data. First checks to see
1896 * that we're in the FLASH download state, then sets the download
1897 * mode, uses the aux functions to 1) copy the data to the flash
1898 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1899 * compare. Lather rinse, repeat as many times an necessary to get
1900 * all the given data into flash.
1901 * When all data has been written using this function (possibly
1902 * repeatedly), call drvr_flashdl_disable() to end the download state
1903 * and restart the MAC.
1904 *
1905 * Arguments:
1906 * hw device structure
1907 * daddr Card address to write to. (host order)
1908 * buf Ptr to data to write.
1909 * len Length of data (host order).
1910 *
1911 * Returns:
1912 * 0 success
1913 * >0 f/w reported error - f/w status code
1914 * <0 driver reported error
1915 *
1916 * Side effects:
1917 *
1918 * Call context:
1919 * process
1920 *----------------------------------------------------------------
1921 */
hfa384x_drvr_flashdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)1922 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1923 void *buf, u32 len)
1924 {
1925 int result = 0;
1926 u32 dlbufaddr;
1927 int nburns;
1928 u32 burnlen;
1929 u32 burndaddr;
1930 u16 burnlo;
1931 u16 burnhi;
1932 int nwrites;
1933 u8 *writebuf;
1934 u16 writepage;
1935 u16 writeoffset;
1936 u32 writelen;
1937 int i;
1938 int j;
1939
1940 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1941
1942 /* Check that we're in the flash download state */
1943 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1944 return -EINVAL;
1945
1946 netdev_info(hw->wlandev->netdev,
1947 "Download %d bytes to flash @0x%06x\n", len, daddr);
1948
1949 /* Convert to flat address for arithmetic */
1950 /* NOTE: dlbuffer RID stores the address in AUX format */
1951 dlbufaddr =
1952 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1953 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1954 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1955 /* Calculations to determine how many fills of the dlbuffer to do
1956 * and how many USB wmemreq's to do for each fill. At this point
1957 * in time, the dlbuffer size and the wmemreq size are the same.
1958 * Therefore, nwrites should always be 1. The extra complexity
1959 * here is a hedge against future changes.
1960 */
1961
1962 /* Figure out how many times to do the flash programming */
1963 nburns = len / hw->bufinfo.len;
1964 nburns += (len % hw->bufinfo.len) ? 1 : 0;
1965
1966 /* For each flash program cycle, how many USB wmemreq's are needed? */
1967 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1968 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1969
1970 /* For each burn */
1971 for (i = 0; i < nburns; i++) {
1972 /* Get the dest address and len */
1973 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1974 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1975 burndaddr = daddr + (hw->bufinfo.len * i);
1976 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1977 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1978
1979 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1980 burnlen, burndaddr);
1981
1982 /* Set the download mode */
1983 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1984 burnlo, burnhi, burnlen);
1985 if (result) {
1986 netdev_err(hw->wlandev->netdev,
1987 "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1988 burnlo, burnhi, burnlen, result);
1989 goto exit_proc;
1990 }
1991
1992 /* copy the data to the flash download buffer */
1993 for (j = 0; j < nwrites; j++) {
1994 writebuf = buf +
1995 (i * hw->bufinfo.len) +
1996 (j * HFA384x_USB_RWMEM_MAXLEN);
1997
1998 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1999 (j * HFA384x_USB_RWMEM_MAXLEN));
2000 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
2001 (j * HFA384x_USB_RWMEM_MAXLEN));
2002
2003 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
2004 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
2005 HFA384x_USB_RWMEM_MAXLEN : writelen;
2006
2007 result = hfa384x_dowmem_wait(hw,
2008 writepage,
2009 writeoffset,
2010 writebuf, writelen);
2011 }
2012
2013 /* set the download 'write flash' mode */
2014 result = hfa384x_cmd_download(hw,
2015 HFA384x_PROGMODE_NVWRITE,
2016 0, 0, 0);
2017 if (result) {
2018 netdev_err(hw->wlandev->netdev,
2019 "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
2020 burnlo, burnhi, burnlen, result);
2021 goto exit_proc;
2022 }
2023
2024 /* TODO: We really should do a readback and compare. */
2025 }
2026
2027 exit_proc:
2028
2029 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
2030 /* actually disable programming mode. Remember, that will cause the */
2031 /* the firmware to effectively reset itself. */
2032
2033 return result;
2034 }
2035
2036 /*----------------------------------------------------------------
2037 * hfa384x_drvr_getconfig
2038 *
2039 * Performs the sequence necessary to read a config/info item.
2040 *
2041 * Arguments:
2042 * hw device structure
2043 * rid config/info record id (host order)
2044 * buf host side record buffer. Upon return it will
2045 * contain the body portion of the record (minus the
2046 * RID and len).
2047 * len buffer length (in bytes, should match record length)
2048 *
2049 * Returns:
2050 * 0 success
2051 * >0 f/w reported error - f/w status code
2052 * <0 driver reported error
2053 * -ENODATA length mismatch between argument and retrieved
2054 * record.
2055 *
2056 * Side effects:
2057 *
2058 * Call context:
2059 * process
2060 *----------------------------------------------------------------
2061 */
hfa384x_drvr_getconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)2062 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2063 {
2064 return hfa384x_dorrid_wait(hw, rid, buf, len);
2065 }
2066
2067 /*----------------------------------------------------------------
2068 * hfa384x_drvr_setconfig_async
2069 *
2070 * Performs the sequence necessary to write a config/info item.
2071 *
2072 * Arguments:
2073 * hw device structure
2074 * rid config/info record id (in host order)
2075 * buf host side record buffer
2076 * len buffer length (in bytes)
2077 * usercb completion callback
2078 * usercb_data completion callback argument
2079 *
2080 * Returns:
2081 * 0 success
2082 * >0 f/w reported error - f/w status code
2083 * <0 driver reported error
2084 *
2085 * Side effects:
2086 *
2087 * Call context:
2088 * process
2089 *----------------------------------------------------------------
2090 */
2091 int
hfa384x_drvr_setconfig_async(struct hfa384x * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)2092 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
2093 u16 rid,
2094 void *buf,
2095 u16 len, ctlx_usercb_t usercb, void *usercb_data)
2096 {
2097 return hfa384x_dowrid_async(hw, rid, buf, len,
2098 hfa384x_cb_status, usercb, usercb_data);
2099 }
2100
2101 /*----------------------------------------------------------------
2102 * hfa384x_drvr_ramdl_disable
2103 *
2104 * Ends the ram download state.
2105 *
2106 * Arguments:
2107 * hw device structure
2108 *
2109 * Returns:
2110 * 0 success
2111 * >0 f/w reported error - f/w status code
2112 * <0 driver reported error
2113 *
2114 * Side effects:
2115 *
2116 * Call context:
2117 * process
2118 *----------------------------------------------------------------
2119 */
hfa384x_drvr_ramdl_disable(struct hfa384x * hw)2120 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
2121 {
2122 /* Check that we're already in the download state */
2123 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2124 return -EINVAL;
2125
2126 pr_debug("ramdl_disable()\n");
2127
2128 /* There isn't much we can do at this point, so I don't */
2129 /* bother w/ the return value */
2130 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2131 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2132
2133 return 0;
2134 }
2135
2136 /*----------------------------------------------------------------
2137 * hfa384x_drvr_ramdl_enable
2138 *
2139 * Begins the ram download state. Checks to see that we're not
2140 * already in a download state and that a port isn't enabled.
2141 * Sets the download state and calls cmd_download with the
2142 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2143 *
2144 * Arguments:
2145 * hw device structure
2146 * exeaddr the card execution address that will be
2147 * jumped to when ramdl_disable() is called
2148 * (host order).
2149 *
2150 * Returns:
2151 * 0 success
2152 * >0 f/w reported error - f/w status code
2153 * <0 driver reported error
2154 *
2155 * Side effects:
2156 *
2157 * Call context:
2158 * process
2159 *----------------------------------------------------------------
2160 */
hfa384x_drvr_ramdl_enable(struct hfa384x * hw,u32 exeaddr)2161 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2162 {
2163 int result = 0;
2164 u16 lowaddr;
2165 u16 hiaddr;
2166 int i;
2167
2168 /* Check that a port isn't active */
2169 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2170 if (hw->port_enabled[i]) {
2171 netdev_err(hw->wlandev->netdev,
2172 "Can't download with a macport enabled.\n");
2173 return -EINVAL;
2174 }
2175 }
2176
2177 /* Check that we're not already in a download state */
2178 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2179 netdev_err(hw->wlandev->netdev,
2180 "Download state not disabled.\n");
2181 return -EINVAL;
2182 }
2183
2184 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2185
2186 /* Call the download(1,addr) function */
2187 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2188 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2189
2190 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2191 lowaddr, hiaddr, 0);
2192
2193 if (result == 0) {
2194 /* Set the download state */
2195 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2196 } else {
2197 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2198 lowaddr, hiaddr, result);
2199 }
2200
2201 return result;
2202 }
2203
2204 /*----------------------------------------------------------------
2205 * hfa384x_drvr_ramdl_write
2206 *
2207 * Performs a RAM download of a chunk of data. First checks to see
2208 * that we're in the RAM download state, then uses the [read|write]mem USB
2209 * commands to 1) copy the data, 2) readback and compare. The download
2210 * state is unaffected. When all data has been written using
2211 * this function, call drvr_ramdl_disable() to end the download state
2212 * and restart the MAC.
2213 *
2214 * Arguments:
2215 * hw device structure
2216 * daddr Card address to write to. (host order)
2217 * buf Ptr to data to write.
2218 * len Length of data (host order).
2219 *
2220 * Returns:
2221 * 0 success
2222 * >0 f/w reported error - f/w status code
2223 * <0 driver reported error
2224 *
2225 * Side effects:
2226 *
2227 * Call context:
2228 * process
2229 *----------------------------------------------------------------
2230 */
hfa384x_drvr_ramdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)2231 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2232 {
2233 int result = 0;
2234 int nwrites;
2235 u8 *data = buf;
2236 int i;
2237 u32 curraddr;
2238 u16 currpage;
2239 u16 curroffset;
2240 u16 currlen;
2241
2242 /* Check that we're in the ram download state */
2243 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2244 return -EINVAL;
2245
2246 netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2247 len, daddr);
2248
2249 /* How many dowmem calls? */
2250 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2251 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2252
2253 /* Do blocking wmem's */
2254 for (i = 0; i < nwrites; i++) {
2255 /* make address args */
2256 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2257 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2258 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2259 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2260 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2261 currlen = HFA384x_USB_RWMEM_MAXLEN;
2262
2263 /* Do blocking ctlx */
2264 result = hfa384x_dowmem_wait(hw,
2265 currpage,
2266 curroffset,
2267 data +
2268 (i * HFA384x_USB_RWMEM_MAXLEN),
2269 currlen);
2270
2271 if (result)
2272 break;
2273
2274 /* TODO: We really should have a readback. */
2275 }
2276
2277 return result;
2278 }
2279
2280 /*----------------------------------------------------------------
2281 * hfa384x_drvr_readpda
2282 *
2283 * Performs the sequence to read the PDA space. Note there is no
2284 * drvr_writepda() function. Writing a PDA is
2285 * generally implemented by a calling component via calls to
2286 * cmd_download and writing to the flash download buffer via the
2287 * aux regs.
2288 *
2289 * Arguments:
2290 * hw device structure
2291 * buf buffer to store PDA in
2292 * len buffer length
2293 *
2294 * Returns:
2295 * 0 success
2296 * >0 f/w reported error - f/w status code
2297 * <0 driver reported error
2298 * -ETIMEDOUT timeout waiting for the cmd regs to become
2299 * available, or waiting for the control reg
2300 * to indicate the Aux port is enabled.
2301 * -ENODATA the buffer does NOT contain a valid PDA.
2302 * Either the card PDA is bad, or the auxdata
2303 * reads are giving us garbage.
2304 *
2305 *
2306 * Side effects:
2307 *
2308 * Call context:
2309 * process or non-card interrupt.
2310 *----------------------------------------------------------------
2311 */
hfa384x_drvr_readpda(struct hfa384x * hw,void * buf,unsigned int len)2312 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2313 {
2314 int result = 0;
2315 __le16 *pda = buf;
2316 int pdaok = 0;
2317 int morepdrs = 1;
2318 int currpdr = 0; /* word offset of the current pdr */
2319 size_t i;
2320 u16 pdrlen; /* pdr length in bytes, host order */
2321 u16 pdrcode; /* pdr code, host order */
2322 u16 currpage;
2323 u16 curroffset;
2324 struct pdaloc {
2325 u32 cardaddr;
2326 u16 auxctl;
2327 } pdaloc[] = {
2328 {
2329 HFA3842_PDA_BASE, 0}, {
2330 HFA3841_PDA_BASE, 0}, {
2331 HFA3841_PDA_BOGUS_BASE, 0}
2332 };
2333
2334 /* Read the pda from each known address. */
2335 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2336 /* Make address */
2337 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2338 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2339
2340 /* units of bytes */
2341 result = hfa384x_dormem_wait(hw, currpage, curroffset, buf,
2342 len);
2343
2344 if (result) {
2345 netdev_warn(hw->wlandev->netdev,
2346 "Read from index %zd failed, continuing\n",
2347 i);
2348 continue;
2349 }
2350
2351 /* Test for garbage */
2352 pdaok = 1; /* initially assume good */
2353 morepdrs = 1;
2354 while (pdaok && morepdrs) {
2355 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2356 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2357 /* Test the record length */
2358 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2359 netdev_err(hw->wlandev->netdev,
2360 "pdrlen invalid=%d\n", pdrlen);
2361 pdaok = 0;
2362 break;
2363 }
2364 /* Test the code */
2365 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2366 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2367 pdrcode);
2368 pdaok = 0;
2369 break;
2370 }
2371 /* Test for completion */
2372 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2373 morepdrs = 0;
2374
2375 /* Move to the next pdr (if necessary) */
2376 if (morepdrs) {
2377 /* note the access to pda[], need words here */
2378 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2379 }
2380 }
2381 if (pdaok) {
2382 netdev_info(hw->wlandev->netdev,
2383 "PDA Read from 0x%08x in %s space.\n",
2384 pdaloc[i].cardaddr,
2385 pdaloc[i].auxctl == 0 ? "EXTDS" :
2386 pdaloc[i].auxctl == 1 ? "NV" :
2387 pdaloc[i].auxctl == 2 ? "PHY" :
2388 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2389 "<bogus auxctl>");
2390 break;
2391 }
2392 }
2393 result = pdaok ? 0 : -ENODATA;
2394
2395 if (result)
2396 pr_debug("Failure: pda is not okay\n");
2397
2398 return result;
2399 }
2400
2401 /*----------------------------------------------------------------
2402 * hfa384x_drvr_setconfig
2403 *
2404 * Performs the sequence necessary to write a config/info item.
2405 *
2406 * Arguments:
2407 * hw device structure
2408 * rid config/info record id (in host order)
2409 * buf host side record buffer
2410 * len buffer length (in bytes)
2411 *
2412 * Returns:
2413 * 0 success
2414 * >0 f/w reported error - f/w status code
2415 * <0 driver reported error
2416 *
2417 * Side effects:
2418 *
2419 * Call context:
2420 * process
2421 *----------------------------------------------------------------
2422 */
hfa384x_drvr_setconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)2423 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2424 {
2425 return hfa384x_dowrid_wait(hw, rid, buf, len);
2426 }
2427
2428 /*----------------------------------------------------------------
2429 * hfa384x_drvr_start
2430 *
2431 * Issues the MAC initialize command, sets up some data structures,
2432 * and enables the interrupts. After this function completes, the
2433 * low-level stuff should be ready for any/all commands.
2434 *
2435 * Arguments:
2436 * hw device structure
2437 * Returns:
2438 * 0 success
2439 * >0 f/w reported error - f/w status code
2440 * <0 driver reported error
2441 *
2442 * Side effects:
2443 *
2444 * Call context:
2445 * process
2446 *----------------------------------------------------------------
2447 */
hfa384x_drvr_start(struct hfa384x * hw)2448 int hfa384x_drvr_start(struct hfa384x *hw)
2449 {
2450 int result, result1, result2;
2451 u16 status;
2452
2453 might_sleep();
2454
2455 /* Clear endpoint stalls - but only do this if the endpoint
2456 * is showing a stall status. Some prism2 cards seem to behave
2457 * badly if a clear_halt is called when the endpoint is already
2458 * ok
2459 */
2460 result =
2461 usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2462 &status);
2463 if (result < 0) {
2464 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2465 goto done;
2466 }
2467 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2468 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2469
2470 result =
2471 usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2472 &status);
2473 if (result < 0) {
2474 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2475 goto done;
2476 }
2477 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2478 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2479
2480 /* Synchronous unlink, in case we're trying to restart the driver */
2481 usb_kill_urb(&hw->rx_urb);
2482
2483 /* Post the IN urb */
2484 result = submit_rx_urb(hw, GFP_KERNEL);
2485 if (result != 0) {
2486 netdev_err(hw->wlandev->netdev,
2487 "Fatal, failed to submit RX URB, result=%d\n",
2488 result);
2489 goto done;
2490 }
2491
2492 /* Call initialize twice, with a 1 second sleep in between.
2493 * This is a nasty work-around since many prism2 cards seem to
2494 * need time to settle after an init from cold. The second
2495 * call to initialize in theory is not necessary - but we call
2496 * it anyway as a double insurance policy:
2497 * 1) If the first init should fail, the second may well succeed
2498 * and the card can still be used
2499 * 2) It helps ensures all is well with the card after the first
2500 * init and settle time.
2501 */
2502 result1 = hfa384x_cmd_initialize(hw);
2503 msleep(1000);
2504 result = hfa384x_cmd_initialize(hw);
2505 result2 = result;
2506 if (result1 != 0) {
2507 if (result2 != 0) {
2508 netdev_err(hw->wlandev->netdev,
2509 "cmd_initialize() failed on two attempts, results %d and %d\n",
2510 result1, result2);
2511 usb_kill_urb(&hw->rx_urb);
2512 goto done;
2513 } else {
2514 pr_debug("First cmd_initialize() failed (result %d),\n",
2515 result1);
2516 pr_debug("but second attempt succeeded. All should be ok\n");
2517 }
2518 } else if (result2 != 0) {
2519 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2520 result2);
2521 netdev_warn(hw->wlandev->netdev,
2522 "Most likely the card will be functional\n");
2523 goto done;
2524 }
2525
2526 hw->state = HFA384x_STATE_RUNNING;
2527
2528 done:
2529 return result;
2530 }
2531
2532 /*----------------------------------------------------------------
2533 * hfa384x_drvr_stop
2534 *
2535 * Shuts down the MAC to the point where it is safe to unload the
2536 * driver. Any subsystem that may be holding a data or function
2537 * ptr into the driver must be cleared/deinitialized.
2538 *
2539 * Arguments:
2540 * hw device structure
2541 * Returns:
2542 * 0 success
2543 * >0 f/w reported error - f/w status code
2544 * <0 driver reported error
2545 *
2546 * Side effects:
2547 *
2548 * Call context:
2549 * process
2550 *----------------------------------------------------------------
2551 */
hfa384x_drvr_stop(struct hfa384x * hw)2552 int hfa384x_drvr_stop(struct hfa384x *hw)
2553 {
2554 int i;
2555
2556 might_sleep();
2557
2558 /* There's no need for spinlocks here. The USB "disconnect"
2559 * function sets this "removed" flag and then calls us.
2560 */
2561 if (!hw->wlandev->hwremoved) {
2562 /* Call initialize to leave the MAC in its 'reset' state */
2563 hfa384x_cmd_initialize(hw);
2564
2565 /* Cancel the rxurb */
2566 usb_kill_urb(&hw->rx_urb);
2567 }
2568
2569 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2570 hw->state = HFA384x_STATE_INIT;
2571
2572 del_timer_sync(&hw->commsqual_timer);
2573
2574 /* Clear all the port status */
2575 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2576 hw->port_enabled[i] = 0;
2577
2578 return 0;
2579 }
2580
2581 /*----------------------------------------------------------------
2582 * hfa384x_drvr_txframe
2583 *
2584 * Takes a frame from prism2sta and queues it for transmission.
2585 *
2586 * Arguments:
2587 * hw device structure
2588 * skb packet buffer struct. Contains an 802.11
2589 * data frame.
2590 * p80211_hdr points to the 802.11 header for the packet.
2591 * Returns:
2592 * 0 Success and more buffs available
2593 * 1 Success but no more buffs
2594 * 2 Allocation failure
2595 * 4 Buffer full or queue busy
2596 *
2597 * Side effects:
2598 *
2599 * Call context:
2600 * interrupt
2601 *----------------------------------------------------------------
2602 */
hfa384x_drvr_txframe(struct hfa384x * hw,struct sk_buff * skb,union p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2603 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2604 union p80211_hdr *p80211_hdr,
2605 struct p80211_metawep *p80211_wep)
2606 {
2607 int usbpktlen = sizeof(struct hfa384x_tx_frame);
2608 int result;
2609 int ret;
2610 char *ptr;
2611
2612 if (hw->tx_urb.status == -EINPROGRESS) {
2613 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2614 result = 3;
2615 goto exit;
2616 }
2617
2618 /* Build Tx frame structure */
2619 /* Set up the control field */
2620 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2621
2622 /* Setup the usb type field */
2623 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2624
2625 /* Set up the sw_support field to identify this frame */
2626 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2627
2628 /* Tx complete and Tx exception disable per dleach. Might be causing
2629 * buf depletion
2630 */
2631 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2632 #if defined(DOBOTH)
2633 hw->txbuff.txfrm.desc.tx_control =
2634 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2635 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2636 #elif defined(DOEXC)
2637 hw->txbuff.txfrm.desc.tx_control =
2638 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2639 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2640 #else
2641 hw->txbuff.txfrm.desc.tx_control =
2642 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2643 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2644 #endif
2645 cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2646
2647 /* copy the header over to the txdesc */
2648 memcpy(&hw->txbuff.txfrm.desc.frame_control, p80211_hdr,
2649 sizeof(union p80211_hdr));
2650
2651 /* if we're using host WEP, increase size by IV+ICV */
2652 if (p80211_wep->data) {
2653 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2654 usbpktlen += 8;
2655 } else {
2656 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2657 }
2658
2659 usbpktlen += skb->len;
2660
2661 /* copy over the WEP IV if we are using host WEP */
2662 ptr = hw->txbuff.txfrm.data;
2663 if (p80211_wep->data) {
2664 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2665 ptr += sizeof(p80211_wep->iv);
2666 memcpy(ptr, p80211_wep->data, skb->len);
2667 } else {
2668 memcpy(ptr, skb->data, skb->len);
2669 }
2670 /* copy over the packet data */
2671 ptr += skb->len;
2672
2673 /* copy over the WEP ICV if we are using host WEP */
2674 if (p80211_wep->data)
2675 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2676
2677 /* Send the USB packet */
2678 usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2679 hw->endp_out,
2680 &hw->txbuff, ROUNDUP64(usbpktlen),
2681 hfa384x_usbout_callback, hw->wlandev);
2682 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2683
2684 result = 1;
2685 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2686 if (ret != 0) {
2687 netdev_err(hw->wlandev->netdev,
2688 "submit_tx_urb() failed, error=%d\n", ret);
2689 result = 3;
2690 }
2691
2692 exit:
2693 return result;
2694 }
2695
hfa384x_tx_timeout(struct wlandevice * wlandev)2696 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2697 {
2698 struct hfa384x *hw = wlandev->priv;
2699 unsigned long flags;
2700
2701 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2702
2703 if (!hw->wlandev->hwremoved) {
2704 int sched;
2705
2706 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2707 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2708 if (sched)
2709 schedule_work(&hw->usb_work);
2710 }
2711
2712 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2713 }
2714
2715 /*----------------------------------------------------------------
2716 * hfa384x_usbctlx_reaper_task
2717 *
2718 * Tasklet to delete dead CTLX objects
2719 *
2720 * Arguments:
2721 * data ptr to a struct hfa384x
2722 *
2723 * Returns:
2724 *
2725 * Call context:
2726 * Interrupt
2727 *----------------------------------------------------------------
2728 */
hfa384x_usbctlx_reaper_task(unsigned long data)2729 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2730 {
2731 struct hfa384x *hw = (struct hfa384x *)data;
2732 struct hfa384x_usbctlx *ctlx, *temp;
2733 unsigned long flags;
2734
2735 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2736
2737 /* This list is guaranteed to be empty if someone
2738 * has unplugged the adapter.
2739 */
2740 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2741 list_del(&ctlx->list);
2742 kfree(ctlx);
2743 }
2744
2745 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2746 }
2747
2748 /*----------------------------------------------------------------
2749 * hfa384x_usbctlx_completion_task
2750 *
2751 * Tasklet to call completion handlers for returned CTLXs
2752 *
2753 * Arguments:
2754 * data ptr to struct hfa384x
2755 *
2756 * Returns:
2757 * Nothing
2758 *
2759 * Call context:
2760 * Interrupt
2761 *----------------------------------------------------------------
2762 */
hfa384x_usbctlx_completion_task(unsigned long data)2763 static void hfa384x_usbctlx_completion_task(unsigned long data)
2764 {
2765 struct hfa384x *hw = (struct hfa384x *)data;
2766 struct hfa384x_usbctlx *ctlx, *temp;
2767 unsigned long flags;
2768
2769 int reap = 0;
2770
2771 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2772
2773 /* This list is guaranteed to be empty if someone
2774 * has unplugged the adapter ...
2775 */
2776 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2777 /* Call the completion function that this
2778 * command was assigned, assuming it has one.
2779 */
2780 if (ctlx->cmdcb) {
2781 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2782 ctlx->cmdcb(hw, ctlx);
2783 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2784
2785 /* Make sure we don't try and complete
2786 * this CTLX more than once!
2787 */
2788 ctlx->cmdcb = NULL;
2789
2790 /* Did someone yank the adapter out
2791 * while our list was (briefly) unlocked?
2792 */
2793 if (hw->wlandev->hwremoved) {
2794 reap = 0;
2795 break;
2796 }
2797 }
2798
2799 /*
2800 * "Reapable" CTLXs are ones which don't have any
2801 * threads waiting for them to die. Hence they must
2802 * be delivered to The Reaper!
2803 */
2804 if (ctlx->reapable) {
2805 /* Move the CTLX off the "completing" list (hopefully)
2806 * on to the "reapable" list where the reaper task
2807 * can find it. And "reapable" means that this CTLX
2808 * isn't sitting on a wait-queue somewhere.
2809 */
2810 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2811 reap = 1;
2812 }
2813
2814 complete(&ctlx->done);
2815 }
2816 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2817
2818 if (reap)
2819 tasklet_schedule(&hw->reaper_bh);
2820 }
2821
2822 /*----------------------------------------------------------------
2823 * unlocked_usbctlx_cancel_async
2824 *
2825 * Mark the CTLX dead asynchronously, and ensure that the
2826 * next command on the queue is run afterwards.
2827 *
2828 * Arguments:
2829 * hw ptr to the struct hfa384x structure
2830 * ctlx ptr to a CTLX structure
2831 *
2832 * Returns:
2833 * 0 the CTLX's URB is inactive
2834 * -EINPROGRESS the URB is currently being unlinked
2835 *
2836 * Call context:
2837 * Either process or interrupt, but presumably interrupt
2838 *----------------------------------------------------------------
2839 */
unlocked_usbctlx_cancel_async(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2840 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2841 struct hfa384x_usbctlx *ctlx)
2842 {
2843 int ret;
2844
2845 /*
2846 * Try to delete the URB containing our request packet.
2847 * If we succeed, then its completion handler will be
2848 * called with a status of -ECONNRESET.
2849 */
2850 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2851 ret = usb_unlink_urb(&hw->ctlx_urb);
2852
2853 if (ret != -EINPROGRESS) {
2854 /*
2855 * The OUT URB had either already completed
2856 * or was still in the pending queue, so the
2857 * URB's completion function will not be called.
2858 * We will have to complete the CTLX ourselves.
2859 */
2860 ctlx->state = CTLX_REQ_FAILED;
2861 unlocked_usbctlx_complete(hw, ctlx);
2862 ret = 0;
2863 }
2864
2865 return ret;
2866 }
2867
2868 /*----------------------------------------------------------------
2869 * unlocked_usbctlx_complete
2870 *
2871 * A CTLX has completed. It may have been successful, it may not
2872 * have been. At this point, the CTLX should be quiescent. The URBs
2873 * aren't active and the timers should have been stopped.
2874 *
2875 * The CTLX is migrated to the "completing" queue, and the completing
2876 * tasklet is scheduled.
2877 *
2878 * Arguments:
2879 * hw ptr to a struct hfa384x structure
2880 * ctlx ptr to a ctlx structure
2881 *
2882 * Returns:
2883 * nothing
2884 *
2885 * Side effects:
2886 *
2887 * Call context:
2888 * Either, assume interrupt
2889 *----------------------------------------------------------------
2890 */
unlocked_usbctlx_complete(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2891 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2892 struct hfa384x_usbctlx *ctlx)
2893 {
2894 /* Timers have been stopped, and ctlx should be in
2895 * a terminal state. Retire it from the "active"
2896 * queue.
2897 */
2898 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2899 tasklet_schedule(&hw->completion_bh);
2900
2901 switch (ctlx->state) {
2902 case CTLX_COMPLETE:
2903 case CTLX_REQ_FAILED:
2904 /* This are the correct terminating states. */
2905 break;
2906
2907 default:
2908 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2909 le16_to_cpu(ctlx->outbuf.type),
2910 ctlxstr(ctlx->state));
2911 break;
2912 } /* switch */
2913 }
2914
2915 /*----------------------------------------------------------------
2916 * hfa384x_usbctlxq_run
2917 *
2918 * Checks to see if the head item is running. If not, starts it.
2919 *
2920 * Arguments:
2921 * hw ptr to struct hfa384x
2922 *
2923 * Returns:
2924 * nothing
2925 *
2926 * Side effects:
2927 *
2928 * Call context:
2929 * any
2930 *----------------------------------------------------------------
2931 */
hfa384x_usbctlxq_run(struct hfa384x * hw)2932 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2933 {
2934 unsigned long flags;
2935
2936 /* acquire lock */
2937 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2938
2939 /* Only one active CTLX at any one time, because there's no
2940 * other (reliable) way to match the response URB to the
2941 * correct CTLX.
2942 *
2943 * Don't touch any of these CTLXs if the hardware
2944 * has been removed or the USB subsystem is stalled.
2945 */
2946 if (!list_empty(&hw->ctlxq.active) ||
2947 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2948 goto unlock;
2949
2950 while (!list_empty(&hw->ctlxq.pending)) {
2951 struct hfa384x_usbctlx *head;
2952 int result;
2953
2954 /* This is the first pending command */
2955 head = list_entry(hw->ctlxq.pending.next,
2956 struct hfa384x_usbctlx, list);
2957
2958 /* We need to split this off to avoid a race condition */
2959 list_move_tail(&head->list, &hw->ctlxq.active);
2960
2961 /* Fill the out packet */
2962 usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2963 hw->endp_out,
2964 &head->outbuf, ROUNDUP64(head->outbufsize),
2965 hfa384x_ctlxout_callback, hw);
2966 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2967
2968 /* Now submit the URB and update the CTLX's state */
2969 result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2970 if (result == 0) {
2971 /* This CTLX is now running on the active queue */
2972 head->state = CTLX_REQ_SUBMITTED;
2973
2974 /* Start the OUT wait timer */
2975 hw->req_timer_done = 0;
2976 hw->reqtimer.expires = jiffies + HZ;
2977 add_timer(&hw->reqtimer);
2978
2979 /* Start the IN wait timer */
2980 hw->resp_timer_done = 0;
2981 hw->resptimer.expires = jiffies + 2 * HZ;
2982 add_timer(&hw->resptimer);
2983
2984 break;
2985 }
2986
2987 if (result == -EPIPE) {
2988 /* The OUT pipe needs resetting, so put
2989 * this CTLX back in the "pending" queue
2990 * and schedule a reset ...
2991 */
2992 netdev_warn(hw->wlandev->netdev,
2993 "%s tx pipe stalled: requesting reset\n",
2994 hw->wlandev->netdev->name);
2995 list_move(&head->list, &hw->ctlxq.pending);
2996 set_bit(WORK_TX_HALT, &hw->usb_flags);
2997 schedule_work(&hw->usb_work);
2998 break;
2999 }
3000
3001 if (result == -ESHUTDOWN) {
3002 netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
3003 hw->wlandev->netdev->name);
3004 break;
3005 }
3006
3007 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
3008 le16_to_cpu(head->outbuf.type), result);
3009 unlocked_usbctlx_complete(hw, head);
3010 } /* while */
3011
3012 unlock:
3013 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3014 }
3015
3016 /*----------------------------------------------------------------
3017 * hfa384x_usbin_callback
3018 *
3019 * Callback for URBs on the BULKIN endpoint.
3020 *
3021 * Arguments:
3022 * urb ptr to the completed urb
3023 *
3024 * Returns:
3025 * nothing
3026 *
3027 * Side effects:
3028 *
3029 * Call context:
3030 * interrupt
3031 *----------------------------------------------------------------
3032 */
hfa384x_usbin_callback(struct urb * urb)3033 static void hfa384x_usbin_callback(struct urb *urb)
3034 {
3035 struct wlandevice *wlandev = urb->context;
3036 struct hfa384x *hw;
3037 union hfa384x_usbin *usbin;
3038 struct sk_buff *skb = NULL;
3039 int result;
3040 int urb_status;
3041 u16 type;
3042
3043 enum USBIN_ACTION {
3044 HANDLE,
3045 RESUBMIT,
3046 ABORT
3047 } action;
3048
3049 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
3050 goto exit;
3051
3052 hw = wlandev->priv;
3053 if (!hw)
3054 goto exit;
3055
3056 skb = hw->rx_urb_skb;
3057 if (!skb || (skb->data != urb->transfer_buffer)) {
3058 WARN_ON(1);
3059 return;
3060 }
3061
3062 hw->rx_urb_skb = NULL;
3063
3064 /* Check for error conditions within the URB */
3065 switch (urb->status) {
3066 case 0:
3067 action = HANDLE;
3068
3069 /* Check for short packet */
3070 if (urb->actual_length == 0) {
3071 wlandev->netdev->stats.rx_errors++;
3072 wlandev->netdev->stats.rx_length_errors++;
3073 action = RESUBMIT;
3074 }
3075 break;
3076
3077 case -EPIPE:
3078 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
3079 wlandev->netdev->name);
3080 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
3081 schedule_work(&hw->usb_work);
3082 wlandev->netdev->stats.rx_errors++;
3083 action = ABORT;
3084 break;
3085
3086 case -EILSEQ:
3087 case -ETIMEDOUT:
3088 case -EPROTO:
3089 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
3090 !timer_pending(&hw->throttle)) {
3091 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
3092 }
3093 wlandev->netdev->stats.rx_errors++;
3094 action = ABORT;
3095 break;
3096
3097 case -EOVERFLOW:
3098 wlandev->netdev->stats.rx_over_errors++;
3099 action = RESUBMIT;
3100 break;
3101
3102 case -ENODEV:
3103 case -ESHUTDOWN:
3104 pr_debug("status=%d, device removed.\n", urb->status);
3105 action = ABORT;
3106 break;
3107
3108 case -ENOENT:
3109 case -ECONNRESET:
3110 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
3111 action = ABORT;
3112 break;
3113
3114 default:
3115 pr_debug("urb status=%d, transfer flags=0x%x\n",
3116 urb->status, urb->transfer_flags);
3117 wlandev->netdev->stats.rx_errors++;
3118 action = RESUBMIT;
3119 break;
3120 }
3121
3122 urb_status = urb->status;
3123
3124 if (action != ABORT) {
3125 /* Repost the RX URB */
3126 result = submit_rx_urb(hw, GFP_ATOMIC);
3127
3128 if (result != 0) {
3129 netdev_err(hw->wlandev->netdev,
3130 "Fatal, failed to resubmit rx_urb. error=%d\n",
3131 result);
3132 }
3133 }
3134
3135 /* Handle any USB-IN packet */
3136 /* Note: the check of the sw_support field, the type field doesn't
3137 * have bit 12 set like the docs suggest.
3138 */
3139 usbin = (union hfa384x_usbin *)urb->transfer_buffer;
3140 type = le16_to_cpu(usbin->type);
3141 if (HFA384x_USB_ISRXFRM(type)) {
3142 if (action == HANDLE) {
3143 if (usbin->txfrm.desc.sw_support == 0x0123) {
3144 hfa384x_usbin_txcompl(wlandev, usbin);
3145 } else {
3146 skb_put(skb, sizeof(*usbin));
3147 hfa384x_usbin_rx(wlandev, skb);
3148 skb = NULL;
3149 }
3150 }
3151 goto exit;
3152 }
3153 if (HFA384x_USB_ISTXFRM(type)) {
3154 if (action == HANDLE)
3155 hfa384x_usbin_txcompl(wlandev, usbin);
3156 goto exit;
3157 }
3158 switch (type) {
3159 case HFA384x_USB_INFOFRM:
3160 if (action == ABORT)
3161 goto exit;
3162 if (action == HANDLE)
3163 hfa384x_usbin_info(wlandev, usbin);
3164 break;
3165
3166 case HFA384x_USB_CMDRESP:
3167 case HFA384x_USB_WRIDRESP:
3168 case HFA384x_USB_RRIDRESP:
3169 case HFA384x_USB_WMEMRESP:
3170 case HFA384x_USB_RMEMRESP:
3171 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3172 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3173 break;
3174
3175 case HFA384x_USB_BUFAVAIL:
3176 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3177 usbin->bufavail.frmlen);
3178 break;
3179
3180 case HFA384x_USB_ERROR:
3181 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3182 usbin->usberror.errortype);
3183 break;
3184
3185 default:
3186 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3187 usbin->type, urb_status);
3188 break;
3189 } /* switch */
3190
3191 exit:
3192
3193 if (skb)
3194 dev_kfree_skb(skb);
3195 }
3196
3197 /*----------------------------------------------------------------
3198 * hfa384x_usbin_ctlx
3199 *
3200 * We've received a URB containing a Prism2 "response" message.
3201 * This message needs to be matched up with a CTLX on the active
3202 * queue and our state updated accordingly.
3203 *
3204 * Arguments:
3205 * hw ptr to struct hfa384x
3206 * usbin ptr to USB IN packet
3207 * urb_status status of this Bulk-In URB
3208 *
3209 * Returns:
3210 * nothing
3211 *
3212 * Side effects:
3213 *
3214 * Call context:
3215 * interrupt
3216 *----------------------------------------------------------------
3217 */
hfa384x_usbin_ctlx(struct hfa384x * hw,union hfa384x_usbin * usbin,int urb_status)3218 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3219 int urb_status)
3220 {
3221 struct hfa384x_usbctlx *ctlx;
3222 int run_queue = 0;
3223 unsigned long flags;
3224
3225 retry:
3226 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3227
3228 /* There can be only one CTLX on the active queue
3229 * at any one time, and this is the CTLX that the
3230 * timers are waiting for.
3231 */
3232 if (list_empty(&hw->ctlxq.active))
3233 goto unlock;
3234
3235 /* Remove the "response timeout". It's possible that
3236 * we are already too late, and that the timeout is
3237 * already running. And that's just too bad for us,
3238 * because we could lose our CTLX from the active
3239 * queue here ...
3240 */
3241 if (del_timer(&hw->resptimer) == 0) {
3242 if (hw->resp_timer_done == 0) {
3243 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3244 goto retry;
3245 }
3246 } else {
3247 hw->resp_timer_done = 1;
3248 }
3249
3250 ctlx = get_active_ctlx(hw);
3251
3252 if (urb_status != 0) {
3253 /*
3254 * Bad CTLX, so get rid of it. But we only
3255 * remove it from the active queue if we're no
3256 * longer expecting the OUT URB to complete.
3257 */
3258 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3259 run_queue = 1;
3260 } else {
3261 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3262
3263 /*
3264 * Check that our message is what we're expecting ...
3265 */
3266 if (ctlx->outbuf.type != intype) {
3267 netdev_warn(hw->wlandev->netdev,
3268 "Expected IN[%d], received IN[%d] - ignored.\n",
3269 le16_to_cpu(ctlx->outbuf.type),
3270 le16_to_cpu(intype));
3271 goto unlock;
3272 }
3273
3274 /* This URB has succeeded, so grab the data ... */
3275 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3276
3277 switch (ctlx->state) {
3278 case CTLX_REQ_SUBMITTED:
3279 /*
3280 * We have received our response URB before
3281 * our request has been acknowledged. Odd,
3282 * but our OUT URB is still alive...
3283 */
3284 pr_debug("Causality violation: please reboot Universe\n");
3285 ctlx->state = CTLX_RESP_COMPLETE;
3286 break;
3287
3288 case CTLX_REQ_COMPLETE:
3289 /*
3290 * This is the usual path: our request
3291 * has already been acknowledged, and
3292 * now we have received the reply too.
3293 */
3294 ctlx->state = CTLX_COMPLETE;
3295 unlocked_usbctlx_complete(hw, ctlx);
3296 run_queue = 1;
3297 break;
3298
3299 default:
3300 /*
3301 * Throw this CTLX away ...
3302 */
3303 netdev_err(hw->wlandev->netdev,
3304 "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3305 le16_to_cpu(ctlx->outbuf.type),
3306 ctlxstr(ctlx->state));
3307 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3308 run_queue = 1;
3309 break;
3310 } /* switch */
3311 }
3312
3313 unlock:
3314 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3315
3316 if (run_queue)
3317 hfa384x_usbctlxq_run(hw);
3318 }
3319
3320 /*----------------------------------------------------------------
3321 * hfa384x_usbin_txcompl
3322 *
3323 * At this point we have the results of a previous transmit.
3324 *
3325 * Arguments:
3326 * wlandev wlan device
3327 * usbin ptr to the usb transfer buffer
3328 *
3329 * Returns:
3330 * nothing
3331 *
3332 * Side effects:
3333 *
3334 * Call context:
3335 * interrupt
3336 *----------------------------------------------------------------
3337 */
hfa384x_usbin_txcompl(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3338 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3339 union hfa384x_usbin *usbin)
3340 {
3341 u16 status;
3342
3343 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3344
3345 /* Was there an error? */
3346 if (HFA384x_TXSTATUS_ISERROR(status))
3347 prism2sta_ev_txexc(wlandev, status);
3348 else
3349 prism2sta_ev_tx(wlandev, status);
3350 }
3351
3352 /*----------------------------------------------------------------
3353 * hfa384x_usbin_rx
3354 *
3355 * At this point we have a successful received a rx frame packet.
3356 *
3357 * Arguments:
3358 * wlandev wlan device
3359 * usbin ptr to the usb transfer buffer
3360 *
3361 * Returns:
3362 * nothing
3363 *
3364 * Side effects:
3365 *
3366 * Call context:
3367 * interrupt
3368 *----------------------------------------------------------------
3369 */
hfa384x_usbin_rx(struct wlandevice * wlandev,struct sk_buff * skb)3370 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3371 {
3372 union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3373 struct hfa384x *hw = wlandev->priv;
3374 int hdrlen;
3375 struct p80211_rxmeta *rxmeta;
3376 u16 data_len;
3377 u16 fc;
3378
3379 /* Byte order convert once up front. */
3380 le16_to_cpus(&usbin->rxfrm.desc.status);
3381 le32_to_cpus(&usbin->rxfrm.desc.time);
3382
3383 /* Now handle frame based on port# */
3384 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3385 case 0:
3386 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3387
3388 /* If exclude and we receive an unencrypted, drop it */
3389 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3390 !WLAN_GET_FC_ISWEP(fc)) {
3391 break;
3392 }
3393
3394 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3395
3396 /* How much header data do we have? */
3397 hdrlen = p80211_headerlen(fc);
3398
3399 /* Pull off the descriptor */
3400 skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3401
3402 /* Now shunt the header block up against the data block
3403 * with an "overlapping" copy
3404 */
3405 memmove(skb_push(skb, hdrlen),
3406 &usbin->rxfrm.desc.frame_control, hdrlen);
3407
3408 skb->dev = wlandev->netdev;
3409
3410 /* And set the frame length properly */
3411 skb_trim(skb, data_len + hdrlen);
3412
3413 /* The prism2 series does not return the CRC */
3414 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3415
3416 skb_reset_mac_header(skb);
3417
3418 /* Attach the rxmeta, set some stuff */
3419 p80211skb_rxmeta_attach(wlandev, skb);
3420 rxmeta = p80211skb_rxmeta(skb);
3421 rxmeta->mactime = usbin->rxfrm.desc.time;
3422 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3423 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3424 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3425
3426 p80211netdev_rx(wlandev, skb);
3427
3428 break;
3429
3430 case 7:
3431 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3432 /* Copy to wlansnif skb */
3433 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3434 dev_kfree_skb(skb);
3435 } else {
3436 pr_debug("Received monitor frame: FCSerr set\n");
3437 }
3438 break;
3439
3440 default:
3441 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3442 HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3443 break;
3444 }
3445 }
3446
3447 /*----------------------------------------------------------------
3448 * hfa384x_int_rxmonitor
3449 *
3450 * Helper function for int_rx. Handles monitor frames.
3451 * Note that this function allocates space for the FCS and sets it
3452 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3453 * higher layers expect it. 0xffffffff is used as a flag to indicate
3454 * the FCS is bogus.
3455 *
3456 * Arguments:
3457 * wlandev wlan device structure
3458 * rxfrm rx descriptor read from card in int_rx
3459 *
3460 * Returns:
3461 * nothing
3462 *
3463 * Side effects:
3464 * Allocates an skb and passes it up via the PF_PACKET interface.
3465 * Call context:
3466 * interrupt
3467 *----------------------------------------------------------------
3468 */
hfa384x_int_rxmonitor(struct wlandevice * wlandev,struct hfa384x_usb_rxfrm * rxfrm)3469 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3470 struct hfa384x_usb_rxfrm *rxfrm)
3471 {
3472 struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3473 unsigned int hdrlen = 0;
3474 unsigned int datalen = 0;
3475 unsigned int skblen = 0;
3476 u8 *datap;
3477 u16 fc;
3478 struct sk_buff *skb;
3479 struct hfa384x *hw = wlandev->priv;
3480
3481 /* Remember the status, time, and data_len fields are in host order */
3482 /* Figure out how big the frame is */
3483 fc = le16_to_cpu(rxdesc->frame_control);
3484 hdrlen = p80211_headerlen(fc);
3485 datalen = le16_to_cpu(rxdesc->data_len);
3486
3487 /* Allocate an ind message+framesize skb */
3488 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3489
3490 /* sanity check the length */
3491 if (skblen >
3492 (sizeof(struct p80211_caphdr) +
3493 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3494 pr_debug("overlen frm: len=%zd\n",
3495 skblen - sizeof(struct p80211_caphdr));
3496 }
3497
3498 skb = dev_alloc_skb(skblen);
3499 if (!skb)
3500 return;
3501
3502 /* only prepend the prism header if in the right mode */
3503 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3504 (hw->sniffhdr != 0)) {
3505 struct p80211_caphdr *caphdr;
3506 /* The NEW header format! */
3507 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3508 caphdr = (struct p80211_caphdr *)datap;
3509
3510 caphdr->version = htonl(P80211CAPTURE_VERSION);
3511 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3512 caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3513 caphdr->hosttime = __cpu_to_be64(jiffies);
3514 caphdr->phytype = htonl(4); /* dss_dot11_b */
3515 caphdr->channel = htonl(hw->sniff_channel);
3516 caphdr->datarate = htonl(rxdesc->rate);
3517 caphdr->antenna = htonl(0); /* unknown */
3518 caphdr->priority = htonl(0); /* unknown */
3519 caphdr->ssi_type = htonl(3); /* rssi_raw */
3520 caphdr->ssi_signal = htonl(rxdesc->signal);
3521 caphdr->ssi_noise = htonl(rxdesc->silence);
3522 caphdr->preamble = htonl(0); /* unknown */
3523 caphdr->encoding = htonl(1); /* cck */
3524 }
3525
3526 /* Copy the 802.11 header to the skb
3527 * (ctl frames may be less than a full header)
3528 */
3529 skb_put_data(skb, &rxdesc->frame_control, hdrlen);
3530
3531 /* If any, copy the data from the card to the skb */
3532 if (datalen > 0) {
3533 datap = skb_put_data(skb, rxfrm->data, datalen);
3534
3535 /* check for unencrypted stuff if WEP bit set. */
3536 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3537 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3538 /* clear wep; it's the 802.2 header! */
3539 *(datap - hdrlen + 1) &= 0xbf;
3540 }
3541
3542 if (hw->sniff_fcs) {
3543 /* Set the FCS */
3544 datap = skb_put(skb, WLAN_CRC_LEN);
3545 memset(datap, 0xff, WLAN_CRC_LEN);
3546 }
3547
3548 /* pass it back up */
3549 p80211netdev_rx(wlandev, skb);
3550 }
3551
3552 /*----------------------------------------------------------------
3553 * hfa384x_usbin_info
3554 *
3555 * At this point we have a successful received a Prism2 info frame.
3556 *
3557 * Arguments:
3558 * wlandev wlan device
3559 * usbin ptr to the usb transfer buffer
3560 *
3561 * Returns:
3562 * nothing
3563 *
3564 * Side effects:
3565 *
3566 * Call context:
3567 * interrupt
3568 *----------------------------------------------------------------
3569 */
hfa384x_usbin_info(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3570 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3571 union hfa384x_usbin *usbin)
3572 {
3573 le16_to_cpus(&usbin->infofrm.info.framelen);
3574 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3575 }
3576
3577 /*----------------------------------------------------------------
3578 * hfa384x_usbout_callback
3579 *
3580 * Callback for URBs on the BULKOUT endpoint.
3581 *
3582 * Arguments:
3583 * urb ptr to the completed urb
3584 *
3585 * Returns:
3586 * nothing
3587 *
3588 * Side effects:
3589 *
3590 * Call context:
3591 * interrupt
3592 *----------------------------------------------------------------
3593 */
hfa384x_usbout_callback(struct urb * urb)3594 static void hfa384x_usbout_callback(struct urb *urb)
3595 {
3596 struct wlandevice *wlandev = urb->context;
3597
3598 #ifdef DEBUG_USB
3599 dbprint_urb(urb);
3600 #endif
3601
3602 if (wlandev && wlandev->netdev) {
3603 switch (urb->status) {
3604 case 0:
3605 prism2sta_ev_alloc(wlandev);
3606 break;
3607
3608 case -EPIPE:
3609 {
3610 struct hfa384x *hw = wlandev->priv;
3611
3612 netdev_warn(hw->wlandev->netdev,
3613 "%s tx pipe stalled: requesting reset\n",
3614 wlandev->netdev->name);
3615 if (!test_and_set_bit
3616 (WORK_TX_HALT, &hw->usb_flags))
3617 schedule_work(&hw->usb_work);
3618 wlandev->netdev->stats.tx_errors++;
3619 break;
3620 }
3621
3622 case -EPROTO:
3623 case -ETIMEDOUT:
3624 case -EILSEQ:
3625 {
3626 struct hfa384x *hw = wlandev->priv;
3627
3628 if (!test_and_set_bit
3629 (THROTTLE_TX, &hw->usb_flags) &&
3630 !timer_pending(&hw->throttle)) {
3631 mod_timer(&hw->throttle,
3632 jiffies + THROTTLE_JIFFIES);
3633 }
3634 wlandev->netdev->stats.tx_errors++;
3635 netif_stop_queue(wlandev->netdev);
3636 break;
3637 }
3638
3639 case -ENOENT:
3640 case -ESHUTDOWN:
3641 /* Ignorable errors */
3642 break;
3643
3644 default:
3645 netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3646 urb->status);
3647 wlandev->netdev->stats.tx_errors++;
3648 break;
3649 } /* switch */
3650 }
3651 }
3652
3653 /*----------------------------------------------------------------
3654 * hfa384x_ctlxout_callback
3655 *
3656 * Callback for control data on the BULKOUT endpoint.
3657 *
3658 * Arguments:
3659 * urb ptr to the completed urb
3660 *
3661 * Returns:
3662 * nothing
3663 *
3664 * Side effects:
3665 *
3666 * Call context:
3667 * interrupt
3668 *----------------------------------------------------------------
3669 */
hfa384x_ctlxout_callback(struct urb * urb)3670 static void hfa384x_ctlxout_callback(struct urb *urb)
3671 {
3672 struct hfa384x *hw = urb->context;
3673 int delete_resptimer = 0;
3674 int timer_ok = 1;
3675 int run_queue = 0;
3676 struct hfa384x_usbctlx *ctlx;
3677 unsigned long flags;
3678
3679 pr_debug("urb->status=%d\n", urb->status);
3680 #ifdef DEBUG_USB
3681 dbprint_urb(urb);
3682 #endif
3683 if ((urb->status == -ESHUTDOWN) ||
3684 (urb->status == -ENODEV) || !hw)
3685 return;
3686
3687 retry:
3688 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3689
3690 /*
3691 * Only one CTLX at a time on the "active" list, and
3692 * none at all if we are unplugged. However, we can
3693 * rely on the disconnect function to clean everything
3694 * up if someone unplugged the adapter.
3695 */
3696 if (list_empty(&hw->ctlxq.active)) {
3697 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3698 return;
3699 }
3700
3701 /*
3702 * Having something on the "active" queue means
3703 * that we have timers to worry about ...
3704 */
3705 if (del_timer(&hw->reqtimer) == 0) {
3706 if (hw->req_timer_done == 0) {
3707 /*
3708 * This timer was actually running while we
3709 * were trying to delete it. Let it terminate
3710 * gracefully instead.
3711 */
3712 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3713 goto retry;
3714 }
3715 } else {
3716 hw->req_timer_done = 1;
3717 }
3718
3719 ctlx = get_active_ctlx(hw);
3720
3721 if (urb->status == 0) {
3722 /* Request portion of a CTLX is successful */
3723 switch (ctlx->state) {
3724 case CTLX_REQ_SUBMITTED:
3725 /* This OUT-ACK received before IN */
3726 ctlx->state = CTLX_REQ_COMPLETE;
3727 break;
3728
3729 case CTLX_RESP_COMPLETE:
3730 /* IN already received before this OUT-ACK,
3731 * so this command must now be complete.
3732 */
3733 ctlx->state = CTLX_COMPLETE;
3734 unlocked_usbctlx_complete(hw, ctlx);
3735 run_queue = 1;
3736 break;
3737
3738 default:
3739 /* This is NOT a valid CTLX "success" state! */
3740 netdev_err(hw->wlandev->netdev,
3741 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3742 le16_to_cpu(ctlx->outbuf.type),
3743 ctlxstr(ctlx->state), urb->status);
3744 break;
3745 } /* switch */
3746 } else {
3747 /* If the pipe has stalled then we need to reset it */
3748 if ((urb->status == -EPIPE) &&
3749 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3750 netdev_warn(hw->wlandev->netdev,
3751 "%s tx pipe stalled: requesting reset\n",
3752 hw->wlandev->netdev->name);
3753 schedule_work(&hw->usb_work);
3754 }
3755
3756 /* If someone cancels the OUT URB then its status
3757 * should be either -ECONNRESET or -ENOENT.
3758 */
3759 ctlx->state = CTLX_REQ_FAILED;
3760 unlocked_usbctlx_complete(hw, ctlx);
3761 delete_resptimer = 1;
3762 run_queue = 1;
3763 }
3764
3765 delresp:
3766 if (delete_resptimer) {
3767 timer_ok = del_timer(&hw->resptimer);
3768 if (timer_ok != 0)
3769 hw->resp_timer_done = 1;
3770 }
3771
3772 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3773
3774 if (!timer_ok && (hw->resp_timer_done == 0)) {
3775 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3776 goto delresp;
3777 }
3778
3779 if (run_queue)
3780 hfa384x_usbctlxq_run(hw);
3781 }
3782
3783 /*----------------------------------------------------------------
3784 * hfa384x_usbctlx_reqtimerfn
3785 *
3786 * Timer response function for CTLX request timeouts. If this
3787 * function is called, it means that the callback for the OUT
3788 * URB containing a Prism2.x XXX_Request was never called.
3789 *
3790 * Arguments:
3791 * data a ptr to the struct hfa384x
3792 *
3793 * Returns:
3794 * nothing
3795 *
3796 * Side effects:
3797 *
3798 * Call context:
3799 * interrupt
3800 *----------------------------------------------------------------
3801 */
hfa384x_usbctlx_reqtimerfn(struct timer_list * t)3802 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3803 {
3804 struct hfa384x *hw = from_timer(hw, t, reqtimer);
3805 unsigned long flags;
3806
3807 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3808
3809 hw->req_timer_done = 1;
3810
3811 /* Removing the hardware automatically empties
3812 * the active list ...
3813 */
3814 if (!list_empty(&hw->ctlxq.active)) {
3815 /*
3816 * We must ensure that our URB is removed from
3817 * the system, if it hasn't already expired.
3818 */
3819 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3820 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3821 struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3822
3823 ctlx->state = CTLX_REQ_FAILED;
3824
3825 /* This URB was active, but has now been
3826 * cancelled. It will now have a status of
3827 * -ECONNRESET in the callback function.
3828 *
3829 * We are cancelling this CTLX, so we're
3830 * not going to need to wait for a response.
3831 * The URB's callback function will check
3832 * that this timer is truly dead.
3833 */
3834 if (del_timer(&hw->resptimer) != 0)
3835 hw->resp_timer_done = 1;
3836 }
3837 }
3838
3839 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3840 }
3841
3842 /*----------------------------------------------------------------
3843 * hfa384x_usbctlx_resptimerfn
3844 *
3845 * Timer response function for CTLX response timeouts. If this
3846 * function is called, it means that the callback for the IN
3847 * URB containing a Prism2.x XXX_Response was never called.
3848 *
3849 * Arguments:
3850 * data a ptr to the struct hfa384x
3851 *
3852 * Returns:
3853 * nothing
3854 *
3855 * Side effects:
3856 *
3857 * Call context:
3858 * interrupt
3859 *----------------------------------------------------------------
3860 */
hfa384x_usbctlx_resptimerfn(struct timer_list * t)3861 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3862 {
3863 struct hfa384x *hw = from_timer(hw, t, resptimer);
3864 unsigned long flags;
3865
3866 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3867
3868 hw->resp_timer_done = 1;
3869
3870 /* The active list will be empty if the
3871 * adapter has been unplugged ...
3872 */
3873 if (!list_empty(&hw->ctlxq.active)) {
3874 struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3875
3876 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3877 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3878 hfa384x_usbctlxq_run(hw);
3879 return;
3880 }
3881 }
3882 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3883 }
3884
3885 /*----------------------------------------------------------------
3886 * hfa384x_usb_throttlefn
3887 *
3888 *
3889 * Arguments:
3890 * data ptr to hw
3891 *
3892 * Returns:
3893 * Nothing
3894 *
3895 * Side effects:
3896 *
3897 * Call context:
3898 * Interrupt
3899 *----------------------------------------------------------------
3900 */
hfa384x_usb_throttlefn(struct timer_list * t)3901 static void hfa384x_usb_throttlefn(struct timer_list *t)
3902 {
3903 struct hfa384x *hw = from_timer(hw, t, throttle);
3904 unsigned long flags;
3905
3906 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3907
3908 /*
3909 * We need to check BOTH the RX and the TX throttle controls,
3910 * so we use the bitwise OR instead of the logical OR.
3911 */
3912 pr_debug("flags=0x%lx\n", hw->usb_flags);
3913 if (!hw->wlandev->hwremoved &&
3914 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3915 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3916 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3917 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3918 )) {
3919 schedule_work(&hw->usb_work);
3920 }
3921
3922 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3923 }
3924
3925 /*----------------------------------------------------------------
3926 * hfa384x_usbctlx_submit
3927 *
3928 * Called from the doxxx functions to submit a CTLX to the queue
3929 *
3930 * Arguments:
3931 * hw ptr to the hw struct
3932 * ctlx ctlx structure to enqueue
3933 *
3934 * Returns:
3935 * -ENODEV if the adapter is unplugged
3936 * 0
3937 *
3938 * Side effects:
3939 *
3940 * Call context:
3941 * process or interrupt
3942 *----------------------------------------------------------------
3943 */
hfa384x_usbctlx_submit(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)3944 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3945 struct hfa384x_usbctlx *ctlx)
3946 {
3947 unsigned long flags;
3948
3949 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3950
3951 if (hw->wlandev->hwremoved) {
3952 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3953 return -ENODEV;
3954 }
3955
3956 ctlx->state = CTLX_PENDING;
3957 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3958 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3959 hfa384x_usbctlxq_run(hw);
3960
3961 return 0;
3962 }
3963
3964 /*----------------------------------------------------------------
3965 * hfa384x_isgood_pdrcore
3966 *
3967 * Quick check of PDR codes.
3968 *
3969 * Arguments:
3970 * pdrcode PDR code number (host order)
3971 *
3972 * Returns:
3973 * zero not good.
3974 * one is good.
3975 *
3976 * Side effects:
3977 *
3978 * Call context:
3979 *----------------------------------------------------------------
3980 */
hfa384x_isgood_pdrcode(u16 pdrcode)3981 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3982 {
3983 switch (pdrcode) {
3984 case HFA384x_PDR_END_OF_PDA:
3985 case HFA384x_PDR_PCB_PARTNUM:
3986 case HFA384x_PDR_PDAVER:
3987 case HFA384x_PDR_NIC_SERIAL:
3988 case HFA384x_PDR_MKK_MEASUREMENTS:
3989 case HFA384x_PDR_NIC_RAMSIZE:
3990 case HFA384x_PDR_MFISUPRANGE:
3991 case HFA384x_PDR_CFISUPRANGE:
3992 case HFA384x_PDR_NICID:
3993 case HFA384x_PDR_MAC_ADDRESS:
3994 case HFA384x_PDR_REGDOMAIN:
3995 case HFA384x_PDR_ALLOWED_CHANNEL:
3996 case HFA384x_PDR_DEFAULT_CHANNEL:
3997 case HFA384x_PDR_TEMPTYPE:
3998 case HFA384x_PDR_IFR_SETTING:
3999 case HFA384x_PDR_RFR_SETTING:
4000 case HFA384x_PDR_HFA3861_BASELINE:
4001 case HFA384x_PDR_HFA3861_SHADOW:
4002 case HFA384x_PDR_HFA3861_IFRF:
4003 case HFA384x_PDR_HFA3861_CHCALSP:
4004 case HFA384x_PDR_HFA3861_CHCALI:
4005 case HFA384x_PDR_3842_NIC_CONFIG:
4006 case HFA384x_PDR_USB_ID:
4007 case HFA384x_PDR_PCI_ID:
4008 case HFA384x_PDR_PCI_IFCONF:
4009 case HFA384x_PDR_PCI_PMCONF:
4010 case HFA384x_PDR_RFENRGY:
4011 case HFA384x_PDR_HFA3861_MANF_TESTSP:
4012 case HFA384x_PDR_HFA3861_MANF_TESTI:
4013 /* code is OK */
4014 return 1;
4015 default:
4016 if (pdrcode < 0x1000) {
4017 /* code is OK, but we don't know exactly what it is */
4018 pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
4019 pdrcode);
4020 return 1;
4021 }
4022 break;
4023 }
4024 /* bad code */
4025 pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
4026 pdrcode);
4027 return 0;
4028 }
4029