1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/prism2/driver/hfa384x_usb.c
3 *
4 * Functions that talk to the USB variant of the Intersil hfa384x MAC
5 *
6 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
7 * --------------------------------------------------------------------
8 *
9 * linux-wlan
10 *
11 * The contents of this file are subject to the Mozilla Public
12 * License Version 1.1 (the "License"); you may not use this file
13 * except in compliance with the License. You may obtain a copy of
14 * the License at http://www.mozilla.org/MPL/
15 *
16 * Software distributed under the License is distributed on an "AS
17 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18 * implied. See the License for the specific language governing
19 * rights and limitations under the License.
20 *
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU Public License version 2 (the "GPL"), in which
23 * case the provisions of the GPL are applicable instead of the
24 * above. If you wish to allow the use of your version of this file
25 * only under the terms of the GPL and not to allow others to use
26 * your version of this file under the MPL, indicate your decision
27 * by deleting the provisions above and replace them with the notice
28 * and other provisions required by the GPL. If you do not delete
29 * the provisions above, a recipient may use your version of this
30 * file under either the MPL or the GPL.
31 *
32 * --------------------------------------------------------------------
33 *
34 * Inquiries regarding the linux-wlan Open Source project can be
35 * made directly to:
36 *
37 * AbsoluteValue Systems Inc.
38 * info@linux-wlan.com
39 * http://www.linux-wlan.com
40 *
41 * --------------------------------------------------------------------
42 *
43 * Portions of the development of this software were funded by
44 * Intersil Corporation as part of PRISM(R) chipset product development.
45 *
46 * --------------------------------------------------------------------
47 *
48 * This file implements functions that correspond to the prism2/hfa384x
49 * 802.11 MAC hardware and firmware host interface.
50 *
51 * The functions can be considered to represent several levels of
52 * abstraction. The lowest level functions are simply C-callable wrappers
53 * around the register accesses. The next higher level represents C-callable
54 * prism2 API functions that match the Intersil documentation as closely
55 * as is reasonable. The next higher layer implements common sequences
56 * of invocations of the API layer (e.g. write to bap, followed by cmd).
57 *
58 * Common sequences:
59 * hfa384x_drvr_xxx Highest level abstractions provided by the
60 * hfa384x code. They are driver defined wrappers
61 * for common sequences. These functions generally
62 * use the services of the lower levels.
63 *
64 * hfa384x_drvr_xxxconfig An example of the drvr level abstraction. These
65 * functions are wrappers for the RID get/set
66 * sequence. They call copy_[to|from]_bap() and
67 * cmd_access(). These functions operate on the
68 * RIDs and buffers without validation. The caller
69 * is responsible for that.
70 *
71 * API wrapper functions:
72 * hfa384x_cmd_xxx functions that provide access to the f/w commands.
73 * The function arguments correspond to each command
74 * argument, even command arguments that get packed
75 * into single registers. These functions _just_
76 * issue the command by setting the cmd/parm regs
77 * & reading the status/resp regs. Additional
78 * activities required to fully use a command
79 * (read/write from/to bap, get/set int status etc.)
80 * are implemented separately. Think of these as
81 * C-callable prism2 commands.
82 *
83 * Lowest Layer Functions:
84 * hfa384x_docmd_xxx These functions implement the sequence required
85 * to issue any prism2 command. Primarily used by the
86 * hfa384x_cmd_xxx functions.
87 *
88 * hfa384x_bap_xxx BAP read/write access functions.
89 * Note: we usually use BAP0 for non-interrupt context
90 * and BAP1 for interrupt context.
91 *
92 * hfa384x_dl_xxx download related functions.
93 *
94 * Driver State Issues:
95 * Note that there are two pairs of functions that manage the
96 * 'initialized' and 'running' states of the hw/MAC combo. The four
97 * functions are create(), destroy(), start(), and stop(). create()
98 * sets up the data structures required to support the hfa384x_*
99 * functions and destroy() cleans them up. The start() function gets
100 * the actual hardware running and enables the interrupts. The stop()
101 * function shuts the hardware down. The sequence should be:
102 * create()
103 * start()
104 * .
105 * . Do interesting things w/ the hardware
106 * .
107 * stop()
108 * destroy()
109 *
110 * Note that destroy() can be called without calling stop() first.
111 * --------------------------------------------------------------------
112 */
113
114 #include <linux/module.h>
115 #include <linux/kernel.h>
116 #include <linux/sched.h>
117 #include <linux/types.h>
118 #include <linux/slab.h>
119 #include <linux/wireless.h>
120 #include <linux/netdevice.h>
121 #include <linux/timer.h>
122 #include <linux/io.h>
123 #include <linux/delay.h>
124 #include <asm/byteorder.h>
125 #include <linux/bitops.h>
126 #include <linux/list.h>
127 #include <linux/usb.h>
128 #include <linux/byteorder/generic.h>
129
130 #include "p80211types.h"
131 #include "p80211hdr.h"
132 #include "p80211mgmt.h"
133 #include "p80211conv.h"
134 #include "p80211msg.h"
135 #include "p80211netdev.h"
136 #include "p80211req.h"
137 #include "p80211metadef.h"
138 #include "p80211metastruct.h"
139 #include "hfa384x.h"
140 #include "prism2mgmt.h"
141
142 enum cmd_mode {
143 DOWAIT = 0,
144 DOASYNC
145 };
146
147 #define THROTTLE_JIFFIES (HZ / 8)
148 #define URB_ASYNC_UNLINK 0
149 #define USB_QUEUE_BULK 0
150
151 #define ROUNDUP64(a) (((a) + 63) & ~63)
152
153 #ifdef DEBUG_USB
154 static void dbprint_urb(struct urb *urb);
155 #endif
156
157 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
158 struct hfa384x_usb_rxfrm *rxfrm);
159
160 static void hfa384x_usb_defer(struct work_struct *data);
161
162 static int submit_rx_urb(struct hfa384x *hw, gfp_t flags);
163
164 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t flags);
165
166 /*---------------------------------------------------*/
167 /* Callbacks */
168 static void hfa384x_usbout_callback(struct urb *urb);
169 static void hfa384x_ctlxout_callback(struct urb *urb);
170 static void hfa384x_usbin_callback(struct urb *urb);
171
172 static void
173 hfa384x_usbin_txcompl(struct wlandevice *wlandev, union hfa384x_usbin *usbin);
174
175 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb);
176
177 static void hfa384x_usbin_info(struct wlandevice *wlandev,
178 union hfa384x_usbin *usbin);
179
180 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
181 int urb_status);
182
183 /*---------------------------------------------------*/
184 /* Functions to support the prism2 usb command queue */
185
186 static void hfa384x_usbctlxq_run(struct hfa384x *hw);
187
188 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t);
189
190 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t);
191
192 static void hfa384x_usb_throttlefn(struct timer_list *t);
193
194 static void hfa384x_usbctlx_completion_task(unsigned long data);
195
196 static void hfa384x_usbctlx_reaper_task(unsigned long data);
197
198 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
199 struct hfa384x_usbctlx *ctlx);
200
201 static void unlocked_usbctlx_complete(struct hfa384x *hw,
202 struct hfa384x_usbctlx *ctlx);
203
204 struct usbctlx_completor {
205 int (*complete)(struct usbctlx_completor *completor);
206 };
207
208 static int
209 hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
210 struct hfa384x_usbctlx *ctlx,
211 struct usbctlx_completor *completor);
212
213 static int
214 unlocked_usbctlx_cancel_async(struct hfa384x *hw, struct hfa384x_usbctlx *ctlx);
215
216 static void hfa384x_cb_status(struct hfa384x *hw,
217 const struct hfa384x_usbctlx *ctlx);
218
219 static int
220 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
221 struct hfa384x_cmdresult *result);
222
223 static void
224 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
225 struct hfa384x_rridresult *result);
226
227 /*---------------------------------------------------*/
228 /* Low level req/resp CTLX formatters and submitters */
229 static inline int
230 hfa384x_docmd(struct hfa384x *hw,
231 struct hfa384x_metacmd *cmd);
232
233 static int
234 hfa384x_dorrid(struct hfa384x *hw,
235 enum cmd_mode mode,
236 u16 rid,
237 void *riddata,
238 unsigned int riddatalen,
239 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
240
241 static int
242 hfa384x_dowrid(struct hfa384x *hw,
243 enum cmd_mode mode,
244 u16 rid,
245 void *riddata,
246 unsigned int riddatalen,
247 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data);
248
249 static int
250 hfa384x_dormem(struct hfa384x *hw,
251 u16 page,
252 u16 offset,
253 void *data,
254 unsigned int len);
255
256 static int
257 hfa384x_dowmem(struct hfa384x *hw,
258 u16 page,
259 u16 offset,
260 void *data,
261 unsigned int len);
262
263 static int hfa384x_isgood_pdrcode(u16 pdrcode);
264
ctlxstr(enum ctlx_state s)265 static inline const char *ctlxstr(enum ctlx_state s)
266 {
267 static const char * const ctlx_str[] = {
268 "Initial state",
269 "Complete",
270 "Request failed",
271 "Request pending",
272 "Request packet submitted",
273 "Request packet completed",
274 "Response packet completed"
275 };
276
277 return ctlx_str[s];
278 };
279
get_active_ctlx(struct hfa384x * hw)280 static inline struct hfa384x_usbctlx *get_active_ctlx(struct hfa384x *hw)
281 {
282 return list_entry(hw->ctlxq.active.next, struct hfa384x_usbctlx, list);
283 }
284
285 #ifdef DEBUG_USB
dbprint_urb(struct urb * urb)286 void dbprint_urb(struct urb *urb)
287 {
288 pr_debug("urb->pipe=0x%08x\n", urb->pipe);
289 pr_debug("urb->status=0x%08x\n", urb->status);
290 pr_debug("urb->transfer_flags=0x%08x\n", urb->transfer_flags);
291 pr_debug("urb->transfer_buffer=0x%08x\n",
292 (unsigned int)urb->transfer_buffer);
293 pr_debug("urb->transfer_buffer_length=0x%08x\n",
294 urb->transfer_buffer_length);
295 pr_debug("urb->actual_length=0x%08x\n", urb->actual_length);
296 pr_debug("urb->bandwidth=0x%08x\n", urb->bandwidth);
297 pr_debug("urb->setup_packet(ctl)=0x%08x\n",
298 (unsigned int)urb->setup_packet);
299 pr_debug("urb->start_frame(iso/irq)=0x%08x\n", urb->start_frame);
300 pr_debug("urb->interval(irq)=0x%08x\n", urb->interval);
301 pr_debug("urb->error_count(iso)=0x%08x\n", urb->error_count);
302 pr_debug("urb->timeout=0x%08x\n", urb->timeout);
303 pr_debug("urb->context=0x%08x\n", (unsigned int)urb->context);
304 pr_debug("urb->complete=0x%08x\n", (unsigned int)urb->complete);
305 }
306 #endif
307
308 /*----------------------------------------------------------------
309 * submit_rx_urb
310 *
311 * Listen for input data on the BULK-IN pipe. If the pipe has
312 * stalled then schedule it to be reset.
313 *
314 * Arguments:
315 * hw device struct
316 * memflags memory allocation flags
317 *
318 * Returns:
319 * error code from submission
320 *
321 * Call context:
322 * Any
323 *----------------------------------------------------------------
324 */
submit_rx_urb(struct hfa384x * hw,gfp_t memflags)325 static int submit_rx_urb(struct hfa384x *hw, gfp_t memflags)
326 {
327 struct sk_buff *skb;
328 int result;
329
330 skb = dev_alloc_skb(sizeof(union hfa384x_usbin));
331 if (!skb) {
332 result = -ENOMEM;
333 goto done;
334 }
335
336 /* Post the IN urb */
337 usb_fill_bulk_urb(&hw->rx_urb, hw->usb,
338 hw->endp_in,
339 skb->data, sizeof(union hfa384x_usbin),
340 hfa384x_usbin_callback, hw->wlandev);
341
342 hw->rx_urb_skb = skb;
343
344 result = -ENOLINK;
345 if (!hw->wlandev->hwremoved &&
346 !test_bit(WORK_RX_HALT, &hw->usb_flags)) {
347 result = usb_submit_urb(&hw->rx_urb, memflags);
348
349 /* Check whether we need to reset the RX pipe */
350 if (result == -EPIPE) {
351 netdev_warn(hw->wlandev->netdev,
352 "%s rx pipe stalled: requesting reset\n",
353 hw->wlandev->netdev->name);
354 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
355 schedule_work(&hw->usb_work);
356 }
357 }
358
359 /* Don't leak memory if anything should go wrong */
360 if (result != 0) {
361 dev_kfree_skb(skb);
362 hw->rx_urb_skb = NULL;
363 }
364
365 done:
366 return result;
367 }
368
369 /*----------------------------------------------------------------
370 * submit_tx_urb
371 *
372 * Prepares and submits the URB of transmitted data. If the
373 * submission fails then it will schedule the output pipe to
374 * be reset.
375 *
376 * Arguments:
377 * hw device struct
378 * tx_urb URB of data for transmission
379 * memflags memory allocation flags
380 *
381 * Returns:
382 * error code from submission
383 *
384 * Call context:
385 * Any
386 *----------------------------------------------------------------
387 */
submit_tx_urb(struct hfa384x * hw,struct urb * tx_urb,gfp_t memflags)388 static int submit_tx_urb(struct hfa384x *hw, struct urb *tx_urb, gfp_t memflags)
389 {
390 struct net_device *netdev = hw->wlandev->netdev;
391 int result;
392
393 result = -ENOLINK;
394 if (netif_running(netdev)) {
395 if (!hw->wlandev->hwremoved &&
396 !test_bit(WORK_TX_HALT, &hw->usb_flags)) {
397 result = usb_submit_urb(tx_urb, memflags);
398
399 /* Test whether we need to reset the TX pipe */
400 if (result == -EPIPE) {
401 netdev_warn(hw->wlandev->netdev,
402 "%s tx pipe stalled: requesting reset\n",
403 netdev->name);
404 set_bit(WORK_TX_HALT, &hw->usb_flags);
405 schedule_work(&hw->usb_work);
406 } else if (result == 0) {
407 netif_stop_queue(netdev);
408 }
409 }
410 }
411
412 return result;
413 }
414
415 /*----------------------------------------------------------------
416 * hfa394x_usb_defer
417 *
418 * There are some things that the USB stack cannot do while
419 * in interrupt context, so we arrange this function to run
420 * in process context.
421 *
422 * Arguments:
423 * hw device structure
424 *
425 * Returns:
426 * nothing
427 *
428 * Call context:
429 * process (by design)
430 *----------------------------------------------------------------
431 */
hfa384x_usb_defer(struct work_struct * data)432 static void hfa384x_usb_defer(struct work_struct *data)
433 {
434 struct hfa384x *hw = container_of(data, struct hfa384x, usb_work);
435 struct net_device *netdev = hw->wlandev->netdev;
436
437 /* Don't bother trying to reset anything if the plug
438 * has been pulled ...
439 */
440 if (hw->wlandev->hwremoved)
441 return;
442
443 /* Reception has stopped: try to reset the input pipe */
444 if (test_bit(WORK_RX_HALT, &hw->usb_flags)) {
445 int ret;
446
447 usb_kill_urb(&hw->rx_urb); /* Cannot be holding spinlock! */
448
449 ret = usb_clear_halt(hw->usb, hw->endp_in);
450 if (ret != 0) {
451 netdev_err(hw->wlandev->netdev,
452 "Failed to clear rx pipe for %s: err=%d\n",
453 netdev->name, ret);
454 } else {
455 netdev_info(hw->wlandev->netdev, "%s rx pipe reset complete.\n",
456 netdev->name);
457 clear_bit(WORK_RX_HALT, &hw->usb_flags);
458 set_bit(WORK_RX_RESUME, &hw->usb_flags);
459 }
460 }
461
462 /* Resume receiving data back from the device. */
463 if (test_bit(WORK_RX_RESUME, &hw->usb_flags)) {
464 int ret;
465
466 ret = submit_rx_urb(hw, GFP_KERNEL);
467 if (ret != 0) {
468 netdev_err(hw->wlandev->netdev,
469 "Failed to resume %s rx pipe.\n",
470 netdev->name);
471 } else {
472 clear_bit(WORK_RX_RESUME, &hw->usb_flags);
473 }
474 }
475
476 /* Transmission has stopped: try to reset the output pipe */
477 if (test_bit(WORK_TX_HALT, &hw->usb_flags)) {
478 int ret;
479
480 usb_kill_urb(&hw->tx_urb);
481 ret = usb_clear_halt(hw->usb, hw->endp_out);
482 if (ret != 0) {
483 netdev_err(hw->wlandev->netdev,
484 "Failed to clear tx pipe for %s: err=%d\n",
485 netdev->name, ret);
486 } else {
487 netdev_info(hw->wlandev->netdev, "%s tx pipe reset complete.\n",
488 netdev->name);
489 clear_bit(WORK_TX_HALT, &hw->usb_flags);
490 set_bit(WORK_TX_RESUME, &hw->usb_flags);
491
492 /* Stopping the BULK-OUT pipe also blocked
493 * us from sending any more CTLX URBs, so
494 * we need to re-run our queue ...
495 */
496 hfa384x_usbctlxq_run(hw);
497 }
498 }
499
500 /* Resume transmitting. */
501 if (test_and_clear_bit(WORK_TX_RESUME, &hw->usb_flags))
502 netif_wake_queue(hw->wlandev->netdev);
503 }
504
505 /*----------------------------------------------------------------
506 * hfa384x_create
507 *
508 * Sets up the struct hfa384x data structure for use. Note this
509 * does _not_ initialize the actual hardware, just the data structures
510 * we use to keep track of its state.
511 *
512 * Arguments:
513 * hw device structure
514 * irq device irq number
515 * iobase i/o base address for register access
516 * membase memory base address for register access
517 *
518 * Returns:
519 * nothing
520 *
521 * Side effects:
522 *
523 * Call context:
524 * process
525 *----------------------------------------------------------------
526 */
hfa384x_create(struct hfa384x * hw,struct usb_device * usb)527 void hfa384x_create(struct hfa384x *hw, struct usb_device *usb)
528 {
529 memset(hw, 0, sizeof(*hw));
530 hw->usb = usb;
531
532 /* set up the endpoints */
533 hw->endp_in = usb_rcvbulkpipe(usb, 1);
534 hw->endp_out = usb_sndbulkpipe(usb, 2);
535
536 /* Set up the waitq */
537 init_waitqueue_head(&hw->cmdq);
538
539 /* Initialize the command queue */
540 spin_lock_init(&hw->ctlxq.lock);
541 INIT_LIST_HEAD(&hw->ctlxq.pending);
542 INIT_LIST_HEAD(&hw->ctlxq.active);
543 INIT_LIST_HEAD(&hw->ctlxq.completing);
544 INIT_LIST_HEAD(&hw->ctlxq.reapable);
545
546 /* Initialize the authentication queue */
547 skb_queue_head_init(&hw->authq);
548
549 tasklet_init(&hw->reaper_bh,
550 hfa384x_usbctlx_reaper_task, (unsigned long)hw);
551 tasklet_init(&hw->completion_bh,
552 hfa384x_usbctlx_completion_task, (unsigned long)hw);
553 INIT_WORK(&hw->link_bh, prism2sta_processing_defer);
554 INIT_WORK(&hw->usb_work, hfa384x_usb_defer);
555
556 timer_setup(&hw->throttle, hfa384x_usb_throttlefn, 0);
557
558 timer_setup(&hw->resptimer, hfa384x_usbctlx_resptimerfn, 0);
559
560 timer_setup(&hw->reqtimer, hfa384x_usbctlx_reqtimerfn, 0);
561
562 usb_init_urb(&hw->rx_urb);
563 usb_init_urb(&hw->tx_urb);
564 usb_init_urb(&hw->ctlx_urb);
565
566 hw->link_status = HFA384x_LINK_NOTCONNECTED;
567 hw->state = HFA384x_STATE_INIT;
568
569 INIT_WORK(&hw->commsqual_bh, prism2sta_commsqual_defer);
570 timer_setup(&hw->commsqual_timer, prism2sta_commsqual_timer, 0);
571 }
572
573 /*----------------------------------------------------------------
574 * hfa384x_destroy
575 *
576 * Partner to hfa384x_create(). This function cleans up the hw
577 * structure so that it can be freed by the caller using a simple
578 * kfree. Currently, this function is just a placeholder. If, at some
579 * point in the future, an hw in the 'shutdown' state requires a 'deep'
580 * kfree, this is where it should be done. Note that if this function
581 * is called on a _running_ hw structure, the drvr_stop() function is
582 * called.
583 *
584 * Arguments:
585 * hw device structure
586 *
587 * Returns:
588 * nothing, this function is not allowed to fail.
589 *
590 * Side effects:
591 *
592 * Call context:
593 * process
594 *----------------------------------------------------------------
595 */
hfa384x_destroy(struct hfa384x * hw)596 void hfa384x_destroy(struct hfa384x *hw)
597 {
598 struct sk_buff *skb;
599
600 if (hw->state == HFA384x_STATE_RUNNING)
601 hfa384x_drvr_stop(hw);
602 hw->state = HFA384x_STATE_PREINIT;
603
604 kfree(hw->scanresults);
605 hw->scanresults = NULL;
606
607 /* Now to clean out the auth queue */
608 while ((skb = skb_dequeue(&hw->authq)))
609 dev_kfree_skb(skb);
610 }
611
usbctlx_alloc(void)612 static struct hfa384x_usbctlx *usbctlx_alloc(void)
613 {
614 struct hfa384x_usbctlx *ctlx;
615
616 ctlx = kzalloc(sizeof(*ctlx),
617 in_interrupt() ? GFP_ATOMIC : GFP_KERNEL);
618 if (ctlx)
619 init_completion(&ctlx->done);
620
621 return ctlx;
622 }
623
624 static int
usbctlx_get_status(const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)625 usbctlx_get_status(const struct hfa384x_usb_statusresp *cmdresp,
626 struct hfa384x_cmdresult *result)
627 {
628 result->status = le16_to_cpu(cmdresp->status);
629 result->resp0 = le16_to_cpu(cmdresp->resp0);
630 result->resp1 = le16_to_cpu(cmdresp->resp1);
631 result->resp2 = le16_to_cpu(cmdresp->resp2);
632
633 pr_debug("cmdresult:status=0x%04x resp0=0x%04x resp1=0x%04x resp2=0x%04x\n",
634 result->status, result->resp0, result->resp1, result->resp2);
635
636 return result->status & HFA384x_STATUS_RESULT;
637 }
638
639 static void
usbctlx_get_rridresult(const struct hfa384x_usb_rridresp * rridresp,struct hfa384x_rridresult * result)640 usbctlx_get_rridresult(const struct hfa384x_usb_rridresp *rridresp,
641 struct hfa384x_rridresult *result)
642 {
643 result->rid = le16_to_cpu(rridresp->rid);
644 result->riddata = rridresp->data;
645 result->riddata_len = ((le16_to_cpu(rridresp->frmlen) - 1) * 2);
646 }
647
648 /*----------------------------------------------------------------
649 * Completor object:
650 * This completor must be passed to hfa384x_usbctlx_complete_sync()
651 * when processing a CTLX that returns a struct hfa384x_cmdresult structure.
652 *----------------------------------------------------------------
653 */
654 struct usbctlx_cmd_completor {
655 struct usbctlx_completor head;
656
657 const struct hfa384x_usb_statusresp *cmdresp;
658 struct hfa384x_cmdresult *result;
659 };
660
usbctlx_cmd_completor_fn(struct usbctlx_completor * head)661 static inline int usbctlx_cmd_completor_fn(struct usbctlx_completor *head)
662 {
663 struct usbctlx_cmd_completor *complete;
664
665 complete = (struct usbctlx_cmd_completor *)head;
666 return usbctlx_get_status(complete->cmdresp, complete->result);
667 }
668
669 static inline struct usbctlx_completor *
init_cmd_completor(struct usbctlx_cmd_completor * completor,const struct hfa384x_usb_statusresp * cmdresp,struct hfa384x_cmdresult * result)670 init_cmd_completor(struct usbctlx_cmd_completor *completor,
671 const struct hfa384x_usb_statusresp *cmdresp,
672 struct hfa384x_cmdresult *result)
673 {
674 completor->head.complete = usbctlx_cmd_completor_fn;
675 completor->cmdresp = cmdresp;
676 completor->result = result;
677 return &completor->head;
678 }
679
680 /*----------------------------------------------------------------
681 * Completor object:
682 * This completor must be passed to hfa384x_usbctlx_complete_sync()
683 * when processing a CTLX that reads a RID.
684 *----------------------------------------------------------------
685 */
686 struct usbctlx_rrid_completor {
687 struct usbctlx_completor head;
688
689 const struct hfa384x_usb_rridresp *rridresp;
690 void *riddata;
691 unsigned int riddatalen;
692 };
693
usbctlx_rrid_completor_fn(struct usbctlx_completor * head)694 static int usbctlx_rrid_completor_fn(struct usbctlx_completor *head)
695 {
696 struct usbctlx_rrid_completor *complete;
697 struct hfa384x_rridresult rridresult;
698
699 complete = (struct usbctlx_rrid_completor *)head;
700 usbctlx_get_rridresult(complete->rridresp, &rridresult);
701
702 /* Validate the length, note body len calculation in bytes */
703 if (rridresult.riddata_len != complete->riddatalen) {
704 pr_warn("RID len mismatch, rid=0x%04x hlen=%d fwlen=%d\n",
705 rridresult.rid,
706 complete->riddatalen, rridresult.riddata_len);
707 return -ENODATA;
708 }
709
710 memcpy(complete->riddata, rridresult.riddata, complete->riddatalen);
711 return 0;
712 }
713
714 static inline struct usbctlx_completor *
init_rrid_completor(struct usbctlx_rrid_completor * completor,const struct hfa384x_usb_rridresp * rridresp,void * riddata,unsigned int riddatalen)715 init_rrid_completor(struct usbctlx_rrid_completor *completor,
716 const struct hfa384x_usb_rridresp *rridresp,
717 void *riddata,
718 unsigned int riddatalen)
719 {
720 completor->head.complete = usbctlx_rrid_completor_fn;
721 completor->rridresp = rridresp;
722 completor->riddata = riddata;
723 completor->riddatalen = riddatalen;
724 return &completor->head;
725 }
726
727 /*----------------------------------------------------------------
728 * Completor object:
729 * Interprets the results of a synchronous RID-write
730 *----------------------------------------------------------------
731 */
732 #define init_wrid_completor init_cmd_completor
733
734 /*----------------------------------------------------------------
735 * Completor object:
736 * Interprets the results of a synchronous memory-write
737 *----------------------------------------------------------------
738 */
739 #define init_wmem_completor init_cmd_completor
740
741 /*----------------------------------------------------------------
742 * Completor object:
743 * Interprets the results of a synchronous memory-read
744 *----------------------------------------------------------------
745 */
746 struct usbctlx_rmem_completor {
747 struct usbctlx_completor head;
748
749 const struct hfa384x_usb_rmemresp *rmemresp;
750 void *data;
751 unsigned int len;
752 };
753
usbctlx_rmem_completor_fn(struct usbctlx_completor * head)754 static int usbctlx_rmem_completor_fn(struct usbctlx_completor *head)
755 {
756 struct usbctlx_rmem_completor *complete =
757 (struct usbctlx_rmem_completor *)head;
758
759 pr_debug("rmemresp:len=%d\n", complete->rmemresp->frmlen);
760 memcpy(complete->data, complete->rmemresp->data, complete->len);
761 return 0;
762 }
763
764 static inline struct usbctlx_completor *
init_rmem_completor(struct usbctlx_rmem_completor * completor,struct hfa384x_usb_rmemresp * rmemresp,void * data,unsigned int len)765 init_rmem_completor(struct usbctlx_rmem_completor *completor,
766 struct hfa384x_usb_rmemresp *rmemresp,
767 void *data,
768 unsigned int len)
769 {
770 completor->head.complete = usbctlx_rmem_completor_fn;
771 completor->rmemresp = rmemresp;
772 completor->data = data;
773 completor->len = len;
774 return &completor->head;
775 }
776
777 /*----------------------------------------------------------------
778 * hfa384x_cb_status
779 *
780 * Ctlx_complete handler for async CMD type control exchanges.
781 * mark the hw struct as such.
782 *
783 * Note: If the handling is changed here, it should probably be
784 * changed in docmd as well.
785 *
786 * Arguments:
787 * hw hw struct
788 * ctlx completed CTLX
789 *
790 * Returns:
791 * nothing
792 *
793 * Side effects:
794 *
795 * Call context:
796 * interrupt
797 *----------------------------------------------------------------
798 */
hfa384x_cb_status(struct hfa384x * hw,const struct hfa384x_usbctlx * ctlx)799 static void hfa384x_cb_status(struct hfa384x *hw,
800 const struct hfa384x_usbctlx *ctlx)
801 {
802 if (ctlx->usercb) {
803 struct hfa384x_cmdresult cmdresult;
804
805 if (ctlx->state != CTLX_COMPLETE) {
806 memset(&cmdresult, 0, sizeof(cmdresult));
807 cmdresult.status =
808 HFA384x_STATUS_RESULT_SET(HFA384x_CMD_ERR);
809 } else {
810 usbctlx_get_status(&ctlx->inbuf.cmdresp, &cmdresult);
811 }
812
813 ctlx->usercb(hw, &cmdresult, ctlx->usercb_data);
814 }
815 }
816
817 /*----------------------------------------------------------------
818 * hfa384x_cmd_initialize
819 *
820 * Issues the initialize command and sets the hw->state based
821 * on the result.
822 *
823 * Arguments:
824 * hw device structure
825 *
826 * Returns:
827 * 0 success
828 * >0 f/w reported error - f/w status code
829 * <0 driver reported error
830 *
831 * Side effects:
832 *
833 * Call context:
834 * process
835 *----------------------------------------------------------------
836 */
hfa384x_cmd_initialize(struct hfa384x * hw)837 int hfa384x_cmd_initialize(struct hfa384x *hw)
838 {
839 int result = 0;
840 int i;
841 struct hfa384x_metacmd cmd;
842
843 cmd.cmd = HFA384x_CMDCODE_INIT;
844 cmd.parm0 = 0;
845 cmd.parm1 = 0;
846 cmd.parm2 = 0;
847
848 result = hfa384x_docmd(hw, &cmd);
849
850 pr_debug("cmdresp.init: status=0x%04x, resp0=0x%04x, resp1=0x%04x, resp2=0x%04x\n",
851 cmd.result.status,
852 cmd.result.resp0, cmd.result.resp1, cmd.result.resp2);
853 if (result == 0) {
854 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
855 hw->port_enabled[i] = 0;
856 }
857
858 hw->link_status = HFA384x_LINK_NOTCONNECTED;
859
860 return result;
861 }
862
863 /*----------------------------------------------------------------
864 * hfa384x_cmd_disable
865 *
866 * Issues the disable command to stop communications on one of
867 * the MACs 'ports'.
868 *
869 * Arguments:
870 * hw device structure
871 * macport MAC port number (host order)
872 *
873 * Returns:
874 * 0 success
875 * >0 f/w reported failure - f/w status code
876 * <0 driver reported error (timeout|bad arg)
877 *
878 * Side effects:
879 *
880 * Call context:
881 * process
882 *----------------------------------------------------------------
883 */
hfa384x_cmd_disable(struct hfa384x * hw,u16 macport)884 int hfa384x_cmd_disable(struct hfa384x *hw, u16 macport)
885 {
886 struct hfa384x_metacmd cmd;
887
888 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DISABLE) |
889 HFA384x_CMD_MACPORT_SET(macport);
890 cmd.parm0 = 0;
891 cmd.parm1 = 0;
892 cmd.parm2 = 0;
893
894 return hfa384x_docmd(hw, &cmd);
895 }
896
897 /*----------------------------------------------------------------
898 * hfa384x_cmd_enable
899 *
900 * Issues the enable command to enable communications on one of
901 * the MACs 'ports'.
902 *
903 * Arguments:
904 * hw device structure
905 * macport MAC port number
906 *
907 * Returns:
908 * 0 success
909 * >0 f/w reported failure - f/w status code
910 * <0 driver reported error (timeout|bad arg)
911 *
912 * Side effects:
913 *
914 * Call context:
915 * process
916 *----------------------------------------------------------------
917 */
hfa384x_cmd_enable(struct hfa384x * hw,u16 macport)918 int hfa384x_cmd_enable(struct hfa384x *hw, u16 macport)
919 {
920 struct hfa384x_metacmd cmd;
921
922 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_ENABLE) |
923 HFA384x_CMD_MACPORT_SET(macport);
924 cmd.parm0 = 0;
925 cmd.parm1 = 0;
926 cmd.parm2 = 0;
927
928 return hfa384x_docmd(hw, &cmd);
929 }
930
931 /*----------------------------------------------------------------
932 * hfa384x_cmd_monitor
933 *
934 * Enables the 'monitor mode' of the MAC. Here's the description of
935 * monitor mode that I've received thus far:
936 *
937 * "The "monitor mode" of operation is that the MAC passes all
938 * frames for which the PLCP checks are correct. All received
939 * MPDUs are passed to the host with MAC Port = 7, with a
940 * receive status of good, FCS error, or undecryptable. Passing
941 * certain MPDUs is a violation of the 802.11 standard, but useful
942 * for a debugging tool." Normal communication is not possible
943 * while monitor mode is enabled.
944 *
945 * Arguments:
946 * hw device structure
947 * enable a code (0x0b|0x0f) that enables/disables
948 * monitor mode. (host order)
949 *
950 * Returns:
951 * 0 success
952 * >0 f/w reported failure - f/w status code
953 * <0 driver reported error (timeout|bad arg)
954 *
955 * Side effects:
956 *
957 * Call context:
958 * process
959 *----------------------------------------------------------------
960 */
hfa384x_cmd_monitor(struct hfa384x * hw,u16 enable)961 int hfa384x_cmd_monitor(struct hfa384x *hw, u16 enable)
962 {
963 struct hfa384x_metacmd cmd;
964
965 cmd.cmd = HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_MONITOR) |
966 HFA384x_CMD_AINFO_SET(enable);
967 cmd.parm0 = 0;
968 cmd.parm1 = 0;
969 cmd.parm2 = 0;
970
971 return hfa384x_docmd(hw, &cmd);
972 }
973
974 /*----------------------------------------------------------------
975 * hfa384x_cmd_download
976 *
977 * Sets the controls for the MAC controller code/data download
978 * process. The arguments set the mode and address associated
979 * with a download. Note that the aux registers should be enabled
980 * prior to setting one of the download enable modes.
981 *
982 * Arguments:
983 * hw device structure
984 * mode 0 - Disable programming and begin code exec
985 * 1 - Enable volatile mem programming
986 * 2 - Enable non-volatile mem programming
987 * 3 - Program non-volatile section from NV download
988 * buffer.
989 * (host order)
990 * lowaddr
991 * highaddr For mode 1, sets the high & low order bits of
992 * the "destination address". This address will be
993 * the execution start address when download is
994 * subsequently disabled.
995 * For mode 2, sets the high & low order bits of
996 * the destination in NV ram.
997 * For modes 0 & 3, should be zero. (host order)
998 * NOTE: these are CMD format.
999 * codelen Length of the data to write in mode 2,
1000 * zero otherwise. (host order)
1001 *
1002 * Returns:
1003 * 0 success
1004 * >0 f/w reported failure - f/w status code
1005 * <0 driver reported error (timeout|bad arg)
1006 *
1007 * Side effects:
1008 *
1009 * Call context:
1010 * process
1011 *----------------------------------------------------------------
1012 */
hfa384x_cmd_download(struct hfa384x * hw,u16 mode,u16 lowaddr,u16 highaddr,u16 codelen)1013 int hfa384x_cmd_download(struct hfa384x *hw, u16 mode, u16 lowaddr,
1014 u16 highaddr, u16 codelen)
1015 {
1016 struct hfa384x_metacmd cmd;
1017
1018 pr_debug("mode=%d, lowaddr=0x%04x, highaddr=0x%04x, codelen=%d\n",
1019 mode, lowaddr, highaddr, codelen);
1020
1021 cmd.cmd = (HFA384x_CMD_CMDCODE_SET(HFA384x_CMDCODE_DOWNLD) |
1022 HFA384x_CMD_PROGMODE_SET(mode));
1023
1024 cmd.parm0 = lowaddr;
1025 cmd.parm1 = highaddr;
1026 cmd.parm2 = codelen;
1027
1028 return hfa384x_docmd(hw, &cmd);
1029 }
1030
1031 /*----------------------------------------------------------------
1032 * hfa384x_corereset
1033 *
1034 * Perform a reset of the hfa38xx MAC core. We assume that the hw
1035 * structure is in its "created" state. That is, it is initialized
1036 * with proper values. Note that if a reset is done after the
1037 * device has been active for awhile, the caller might have to clean
1038 * up some leftover cruft in the hw structure.
1039 *
1040 * Arguments:
1041 * hw device structure
1042 * holdtime how long (in ms) to hold the reset
1043 * settletime how long (in ms) to wait after releasing
1044 * the reset
1045 *
1046 * Returns:
1047 * nothing
1048 *
1049 * Side effects:
1050 *
1051 * Call context:
1052 * process
1053 *----------------------------------------------------------------
1054 */
hfa384x_corereset(struct hfa384x * hw,int holdtime,int settletime,int genesis)1055 int hfa384x_corereset(struct hfa384x *hw, int holdtime,
1056 int settletime, int genesis)
1057 {
1058 int result;
1059
1060 result = usb_reset_device(hw->usb);
1061 if (result < 0) {
1062 netdev_err(hw->wlandev->netdev, "usb_reset_device() failed, result=%d.\n",
1063 result);
1064 }
1065
1066 return result;
1067 }
1068
1069 /*----------------------------------------------------------------
1070 * hfa384x_usbctlx_complete_sync
1071 *
1072 * Waits for a synchronous CTLX object to complete,
1073 * and then handles the response.
1074 *
1075 * Arguments:
1076 * hw device structure
1077 * ctlx CTLX ptr
1078 * completor functor object to decide what to
1079 * do with the CTLX's result.
1080 *
1081 * Returns:
1082 * 0 Success
1083 * -ERESTARTSYS Interrupted by a signal
1084 * -EIO CTLX failed
1085 * -ENODEV Adapter was unplugged
1086 * ??? Result from completor
1087 *
1088 * Side effects:
1089 *
1090 * Call context:
1091 * process
1092 *----------------------------------------------------------------
1093 */
hfa384x_usbctlx_complete_sync(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx,struct usbctlx_completor * completor)1094 static int hfa384x_usbctlx_complete_sync(struct hfa384x *hw,
1095 struct hfa384x_usbctlx *ctlx,
1096 struct usbctlx_completor *completor)
1097 {
1098 unsigned long flags;
1099 int result;
1100
1101 result = wait_for_completion_interruptible(&ctlx->done);
1102
1103 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1104
1105 /*
1106 * We can only handle the CTLX if the USB disconnect
1107 * function has not run yet ...
1108 */
1109 cleanup:
1110 if (hw->wlandev->hwremoved) {
1111 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1112 result = -ENODEV;
1113 } else if (result != 0) {
1114 int runqueue = 0;
1115
1116 /*
1117 * We were probably interrupted, so delete
1118 * this CTLX asynchronously, kill the timers
1119 * and the URB, and then start the next
1120 * pending CTLX.
1121 *
1122 * NOTE: We can only delete the timers and
1123 * the URB if this CTLX is active.
1124 */
1125 if (ctlx == get_active_ctlx(hw)) {
1126 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1127
1128 del_singleshot_timer_sync(&hw->reqtimer);
1129 del_singleshot_timer_sync(&hw->resptimer);
1130 hw->req_timer_done = 1;
1131 hw->resp_timer_done = 1;
1132 usb_kill_urb(&hw->ctlx_urb);
1133
1134 spin_lock_irqsave(&hw->ctlxq.lock, flags);
1135
1136 runqueue = 1;
1137
1138 /*
1139 * This scenario is so unlikely that I'm
1140 * happy with a grubby "goto" solution ...
1141 */
1142 if (hw->wlandev->hwremoved)
1143 goto cleanup;
1144 }
1145
1146 /*
1147 * The completion task will send this CTLX
1148 * to the reaper the next time it runs. We
1149 * are no longer in a hurry.
1150 */
1151 ctlx->reapable = 1;
1152 ctlx->state = CTLX_REQ_FAILED;
1153 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
1154
1155 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1156
1157 if (runqueue)
1158 hfa384x_usbctlxq_run(hw);
1159 } else {
1160 if (ctlx->state == CTLX_COMPLETE) {
1161 result = completor->complete(completor);
1162 } else {
1163 netdev_warn(hw->wlandev->netdev, "CTLX[%d] error: state(%s)\n",
1164 le16_to_cpu(ctlx->outbuf.type),
1165 ctlxstr(ctlx->state));
1166 result = -EIO;
1167 }
1168
1169 list_del(&ctlx->list);
1170 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
1171 kfree(ctlx);
1172 }
1173
1174 return result;
1175 }
1176
1177 /*----------------------------------------------------------------
1178 * hfa384x_docmd
1179 *
1180 * Constructs a command CTLX and submits it.
1181 *
1182 * NOTE: Any changes to the 'post-submit' code in this function
1183 * need to be carried over to hfa384x_cbcmd() since the handling
1184 * is virtually identical.
1185 *
1186 * Arguments:
1187 * hw device structure
1188 * cmd cmd structure. Includes all arguments and result
1189 * data points. All in host order. in host order
1190 *
1191 * Returns:
1192 * 0 success
1193 * -EIO CTLX failure
1194 * -ERESTARTSYS Awakened on signal
1195 * >0 command indicated error, Status and Resp0-2 are
1196 * in hw structure.
1197 *
1198 * Side effects:
1199 *
1200 *
1201 * Call context:
1202 * process
1203 *----------------------------------------------------------------
1204 */
1205 static inline int
hfa384x_docmd(struct hfa384x * hw,struct hfa384x_metacmd * cmd)1206 hfa384x_docmd(struct hfa384x *hw,
1207 struct hfa384x_metacmd *cmd)
1208 {
1209 int result;
1210 struct hfa384x_usbctlx *ctlx;
1211
1212 ctlx = usbctlx_alloc();
1213 if (!ctlx) {
1214 result = -ENOMEM;
1215 goto done;
1216 }
1217
1218 /* Initialize the command */
1219 ctlx->outbuf.cmdreq.type = cpu_to_le16(HFA384x_USB_CMDREQ);
1220 ctlx->outbuf.cmdreq.cmd = cpu_to_le16(cmd->cmd);
1221 ctlx->outbuf.cmdreq.parm0 = cpu_to_le16(cmd->parm0);
1222 ctlx->outbuf.cmdreq.parm1 = cpu_to_le16(cmd->parm1);
1223 ctlx->outbuf.cmdreq.parm2 = cpu_to_le16(cmd->parm2);
1224
1225 ctlx->outbufsize = sizeof(ctlx->outbuf.cmdreq);
1226
1227 pr_debug("cmdreq: cmd=0x%04x parm0=0x%04x parm1=0x%04x parm2=0x%04x\n",
1228 cmd->cmd, cmd->parm0, cmd->parm1, cmd->parm2);
1229
1230 ctlx->reapable = DOWAIT;
1231 ctlx->cmdcb = NULL;
1232 ctlx->usercb = NULL;
1233 ctlx->usercb_data = NULL;
1234
1235 result = hfa384x_usbctlx_submit(hw, ctlx);
1236 if (result != 0) {
1237 kfree(ctlx);
1238 } else {
1239 struct usbctlx_cmd_completor cmd_completor;
1240 struct usbctlx_completor *completor;
1241
1242 completor = init_cmd_completor(&cmd_completor,
1243 &ctlx->inbuf.cmdresp,
1244 &cmd->result);
1245
1246 result = hfa384x_usbctlx_complete_sync(hw, ctlx, completor);
1247 }
1248
1249 done:
1250 return result;
1251 }
1252
1253 /*----------------------------------------------------------------
1254 * hfa384x_dorrid
1255 *
1256 * Constructs a read rid CTLX and issues it.
1257 *
1258 * NOTE: Any changes to the 'post-submit' code in this function
1259 * need to be carried over to hfa384x_cbrrid() since the handling
1260 * is virtually identical.
1261 *
1262 * Arguments:
1263 * hw device structure
1264 * mode DOWAIT or DOASYNC
1265 * rid Read RID number (host order)
1266 * riddata Caller supplied buffer that MAC formatted RID.data
1267 * record will be written to for DOWAIT calls. Should
1268 * be NULL for DOASYNC calls.
1269 * riddatalen Buffer length for DOWAIT calls. Zero for DOASYNC calls.
1270 * cmdcb command callback for async calls, NULL for DOWAIT calls
1271 * usercb user callback for async calls, NULL for DOWAIT calls
1272 * usercb_data user supplied data pointer for async calls, NULL
1273 * for DOWAIT calls
1274 *
1275 * Returns:
1276 * 0 success
1277 * -EIO CTLX failure
1278 * -ERESTARTSYS Awakened on signal
1279 * -ENODATA riddatalen != macdatalen
1280 * >0 command indicated error, Status and Resp0-2 are
1281 * in hw structure.
1282 *
1283 * Side effects:
1284 *
1285 * Call context:
1286 * interrupt (DOASYNC)
1287 * process (DOWAIT or DOASYNC)
1288 *----------------------------------------------------------------
1289 */
1290 static int
hfa384x_dorrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1291 hfa384x_dorrid(struct hfa384x *hw,
1292 enum cmd_mode mode,
1293 u16 rid,
1294 void *riddata,
1295 unsigned int riddatalen,
1296 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1297 {
1298 int result;
1299 struct hfa384x_usbctlx *ctlx;
1300
1301 ctlx = usbctlx_alloc();
1302 if (!ctlx) {
1303 result = -ENOMEM;
1304 goto done;
1305 }
1306
1307 /* Initialize the command */
1308 ctlx->outbuf.rridreq.type = cpu_to_le16(HFA384x_USB_RRIDREQ);
1309 ctlx->outbuf.rridreq.frmlen =
1310 cpu_to_le16(sizeof(ctlx->outbuf.rridreq.rid));
1311 ctlx->outbuf.rridreq.rid = cpu_to_le16(rid);
1312
1313 ctlx->outbufsize = sizeof(ctlx->outbuf.rridreq);
1314
1315 ctlx->reapable = mode;
1316 ctlx->cmdcb = cmdcb;
1317 ctlx->usercb = usercb;
1318 ctlx->usercb_data = usercb_data;
1319
1320 /* Submit the CTLX */
1321 result = hfa384x_usbctlx_submit(hw, ctlx);
1322 if (result != 0) {
1323 kfree(ctlx);
1324 } else if (mode == DOWAIT) {
1325 struct usbctlx_rrid_completor completor;
1326
1327 result =
1328 hfa384x_usbctlx_complete_sync(hw, ctlx,
1329 init_rrid_completor
1330 (&completor,
1331 &ctlx->inbuf.rridresp,
1332 riddata, riddatalen));
1333 }
1334
1335 done:
1336 return result;
1337 }
1338
1339 /*----------------------------------------------------------------
1340 * hfa384x_dowrid
1341 *
1342 * Constructs a write rid CTLX and issues it.
1343 *
1344 * NOTE: Any changes to the 'post-submit' code in this function
1345 * need to be carried over to hfa384x_cbwrid() since the handling
1346 * is virtually identical.
1347 *
1348 * Arguments:
1349 * hw device structure
1350 * enum cmd_mode DOWAIT or DOASYNC
1351 * rid RID code
1352 * riddata Data portion of RID formatted for MAC
1353 * riddatalen Length of the data portion in bytes
1354 * cmdcb command callback for async calls, NULL for DOWAIT calls
1355 * usercb user callback for async calls, NULL for DOWAIT calls
1356 * usercb_data user supplied data pointer for async calls
1357 *
1358 * Returns:
1359 * 0 success
1360 * -ETIMEDOUT timed out waiting for register ready or
1361 * command completion
1362 * >0 command indicated error, Status and Resp0-2 are
1363 * in hw structure.
1364 *
1365 * Side effects:
1366 *
1367 * Call context:
1368 * interrupt (DOASYNC)
1369 * process (DOWAIT or DOASYNC)
1370 *----------------------------------------------------------------
1371 */
1372 static int
hfa384x_dowrid(struct hfa384x * hw,enum cmd_mode mode,u16 rid,void * riddata,unsigned int riddatalen,ctlx_cmdcb_t cmdcb,ctlx_usercb_t usercb,void * usercb_data)1373 hfa384x_dowrid(struct hfa384x *hw,
1374 enum cmd_mode mode,
1375 u16 rid,
1376 void *riddata,
1377 unsigned int riddatalen,
1378 ctlx_cmdcb_t cmdcb, ctlx_usercb_t usercb, void *usercb_data)
1379 {
1380 int result;
1381 struct hfa384x_usbctlx *ctlx;
1382
1383 ctlx = usbctlx_alloc();
1384 if (!ctlx) {
1385 result = -ENOMEM;
1386 goto done;
1387 }
1388
1389 /* Initialize the command */
1390 ctlx->outbuf.wridreq.type = cpu_to_le16(HFA384x_USB_WRIDREQ);
1391 ctlx->outbuf.wridreq.frmlen = cpu_to_le16((sizeof
1392 (ctlx->outbuf.wridreq.rid) +
1393 riddatalen + 1) / 2);
1394 ctlx->outbuf.wridreq.rid = cpu_to_le16(rid);
1395 memcpy(ctlx->outbuf.wridreq.data, riddata, riddatalen);
1396
1397 ctlx->outbufsize = sizeof(ctlx->outbuf.wridreq.type) +
1398 sizeof(ctlx->outbuf.wridreq.frmlen) +
1399 sizeof(ctlx->outbuf.wridreq.rid) + riddatalen;
1400
1401 ctlx->reapable = mode;
1402 ctlx->cmdcb = cmdcb;
1403 ctlx->usercb = usercb;
1404 ctlx->usercb_data = usercb_data;
1405
1406 /* Submit the CTLX */
1407 result = hfa384x_usbctlx_submit(hw, ctlx);
1408 if (result != 0) {
1409 kfree(ctlx);
1410 } else if (mode == DOWAIT) {
1411 struct usbctlx_cmd_completor completor;
1412 struct hfa384x_cmdresult wridresult;
1413
1414 result = hfa384x_usbctlx_complete_sync(hw,
1415 ctlx,
1416 init_wrid_completor
1417 (&completor,
1418 &ctlx->inbuf.wridresp,
1419 &wridresult));
1420 }
1421
1422 done:
1423 return result;
1424 }
1425
1426 /*----------------------------------------------------------------
1427 * hfa384x_dormem
1428 *
1429 * Constructs a readmem CTLX and issues it.
1430 *
1431 * NOTE: Any changes to the 'post-submit' code in this function
1432 * need to be carried over to hfa384x_cbrmem() since the handling
1433 * is virtually identical.
1434 *
1435 * Arguments:
1436 * hw device structure
1437 * page MAC address space page (CMD format)
1438 * offset MAC address space offset
1439 * data Ptr to data buffer to receive read
1440 * len Length of the data to read (max == 2048)
1441 *
1442 * Returns:
1443 * 0 success
1444 * -ETIMEDOUT timed out waiting for register ready or
1445 * command completion
1446 * >0 command indicated error, Status and Resp0-2 are
1447 * in hw structure.
1448 *
1449 * Side effects:
1450 *
1451 * Call context:
1452 * process (DOWAIT)
1453 *----------------------------------------------------------------
1454 */
1455 static int
hfa384x_dormem(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)1456 hfa384x_dormem(struct hfa384x *hw,
1457 u16 page,
1458 u16 offset,
1459 void *data,
1460 unsigned int len)
1461 {
1462 int result;
1463 struct hfa384x_usbctlx *ctlx;
1464
1465 ctlx = usbctlx_alloc();
1466 if (!ctlx) {
1467 result = -ENOMEM;
1468 goto done;
1469 }
1470
1471 /* Initialize the command */
1472 ctlx->outbuf.rmemreq.type = cpu_to_le16(HFA384x_USB_RMEMREQ);
1473 ctlx->outbuf.rmemreq.frmlen =
1474 cpu_to_le16(sizeof(ctlx->outbuf.rmemreq.offset) +
1475 sizeof(ctlx->outbuf.rmemreq.page) + len);
1476 ctlx->outbuf.rmemreq.offset = cpu_to_le16(offset);
1477 ctlx->outbuf.rmemreq.page = cpu_to_le16(page);
1478
1479 ctlx->outbufsize = sizeof(ctlx->outbuf.rmemreq);
1480
1481 pr_debug("type=0x%04x frmlen=%d offset=0x%04x page=0x%04x\n",
1482 ctlx->outbuf.rmemreq.type,
1483 ctlx->outbuf.rmemreq.frmlen,
1484 ctlx->outbuf.rmemreq.offset, ctlx->outbuf.rmemreq.page);
1485
1486 pr_debug("pktsize=%zd\n", ROUNDUP64(sizeof(ctlx->outbuf.rmemreq)));
1487
1488 ctlx->reapable = DOWAIT;
1489 ctlx->cmdcb = NULL;
1490 ctlx->usercb = NULL;
1491 ctlx->usercb_data = NULL;
1492
1493 result = hfa384x_usbctlx_submit(hw, ctlx);
1494 if (result != 0) {
1495 kfree(ctlx);
1496 } else {
1497 struct usbctlx_rmem_completor completor;
1498
1499 result =
1500 hfa384x_usbctlx_complete_sync(hw, ctlx,
1501 init_rmem_completor
1502 (&completor,
1503 &ctlx->inbuf.rmemresp, data,
1504 len));
1505 }
1506
1507 done:
1508 return result;
1509 }
1510
1511 /*----------------------------------------------------------------
1512 * hfa384x_dowmem
1513 *
1514 * Constructs a writemem CTLX and issues it.
1515 *
1516 * NOTE: Any changes to the 'post-submit' code in this function
1517 * need to be carried over to hfa384x_cbwmem() since the handling
1518 * is virtually identical.
1519 *
1520 * Arguments:
1521 * hw device structure
1522 * page MAC address space page (CMD format)
1523 * offset MAC address space offset
1524 * data Ptr to data buffer containing write data
1525 * len Length of the data to read (max == 2048)
1526 *
1527 * Returns:
1528 * 0 success
1529 * -ETIMEDOUT timed out waiting for register ready or
1530 * command completion
1531 * >0 command indicated error, Status and Resp0-2 are
1532 * in hw structure.
1533 *
1534 * Side effects:
1535 *
1536 * Call context:
1537 * interrupt (DOWAIT)
1538 * process (DOWAIT)
1539 *----------------------------------------------------------------
1540 */
1541 static int
hfa384x_dowmem(struct hfa384x * hw,u16 page,u16 offset,void * data,unsigned int len)1542 hfa384x_dowmem(struct hfa384x *hw,
1543 u16 page,
1544 u16 offset,
1545 void *data,
1546 unsigned int len)
1547 {
1548 int result;
1549 struct hfa384x_usbctlx *ctlx;
1550
1551 pr_debug("page=0x%04x offset=0x%04x len=%d\n", page, offset, len);
1552
1553 ctlx = usbctlx_alloc();
1554 if (!ctlx) {
1555 result = -ENOMEM;
1556 goto done;
1557 }
1558
1559 /* Initialize the command */
1560 ctlx->outbuf.wmemreq.type = cpu_to_le16(HFA384x_USB_WMEMREQ);
1561 ctlx->outbuf.wmemreq.frmlen =
1562 cpu_to_le16(sizeof(ctlx->outbuf.wmemreq.offset) +
1563 sizeof(ctlx->outbuf.wmemreq.page) + len);
1564 ctlx->outbuf.wmemreq.offset = cpu_to_le16(offset);
1565 ctlx->outbuf.wmemreq.page = cpu_to_le16(page);
1566 memcpy(ctlx->outbuf.wmemreq.data, data, len);
1567
1568 ctlx->outbufsize = sizeof(ctlx->outbuf.wmemreq.type) +
1569 sizeof(ctlx->outbuf.wmemreq.frmlen) +
1570 sizeof(ctlx->outbuf.wmemreq.offset) +
1571 sizeof(ctlx->outbuf.wmemreq.page) + len;
1572
1573 ctlx->reapable = DOWAIT;
1574 ctlx->cmdcb = NULL;
1575 ctlx->usercb = NULL;
1576 ctlx->usercb_data = NULL;
1577
1578 result = hfa384x_usbctlx_submit(hw, ctlx);
1579 if (result != 0) {
1580 kfree(ctlx);
1581 } else {
1582 struct usbctlx_cmd_completor completor;
1583 struct hfa384x_cmdresult wmemresult;
1584
1585 result = hfa384x_usbctlx_complete_sync(hw,
1586 ctlx,
1587 init_wmem_completor
1588 (&completor,
1589 &ctlx->inbuf.wmemresp,
1590 &wmemresult));
1591 }
1592
1593 done:
1594 return result;
1595 }
1596
1597 /*----------------------------------------------------------------
1598 * hfa384x_drvr_disable
1599 *
1600 * Issues the disable command to stop communications on one of
1601 * the MACs 'ports'. Only macport 0 is valid for stations.
1602 * APs may also disable macports 1-6. Only ports that have been
1603 * previously enabled may be disabled.
1604 *
1605 * Arguments:
1606 * hw device structure
1607 * macport MAC port number (host order)
1608 *
1609 * Returns:
1610 * 0 success
1611 * >0 f/w reported failure - f/w status code
1612 * <0 driver reported error (timeout|bad arg)
1613 *
1614 * Side effects:
1615 *
1616 * Call context:
1617 * process
1618 *----------------------------------------------------------------
1619 */
hfa384x_drvr_disable(struct hfa384x * hw,u16 macport)1620 int hfa384x_drvr_disable(struct hfa384x *hw, u16 macport)
1621 {
1622 int result = 0;
1623
1624 if ((!hw->isap && macport != 0) ||
1625 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1626 !(hw->port_enabled[macport])) {
1627 result = -EINVAL;
1628 } else {
1629 result = hfa384x_cmd_disable(hw, macport);
1630 if (result == 0)
1631 hw->port_enabled[macport] = 0;
1632 }
1633 return result;
1634 }
1635
1636 /*----------------------------------------------------------------
1637 * hfa384x_drvr_enable
1638 *
1639 * Issues the enable command to enable communications on one of
1640 * the MACs 'ports'. Only macport 0 is valid for stations.
1641 * APs may also enable macports 1-6. Only ports that are currently
1642 * disabled may be enabled.
1643 *
1644 * Arguments:
1645 * hw device structure
1646 * macport MAC port number
1647 *
1648 * Returns:
1649 * 0 success
1650 * >0 f/w reported failure - f/w status code
1651 * <0 driver reported error (timeout|bad arg)
1652 *
1653 * Side effects:
1654 *
1655 * Call context:
1656 * process
1657 *----------------------------------------------------------------
1658 */
hfa384x_drvr_enable(struct hfa384x * hw,u16 macport)1659 int hfa384x_drvr_enable(struct hfa384x *hw, u16 macport)
1660 {
1661 int result = 0;
1662
1663 if ((!hw->isap && macport != 0) ||
1664 (hw->isap && !(macport <= HFA384x_PORTID_MAX)) ||
1665 (hw->port_enabled[macport])) {
1666 result = -EINVAL;
1667 } else {
1668 result = hfa384x_cmd_enable(hw, macport);
1669 if (result == 0)
1670 hw->port_enabled[macport] = 1;
1671 }
1672 return result;
1673 }
1674
1675 /*----------------------------------------------------------------
1676 * hfa384x_drvr_flashdl_enable
1677 *
1678 * Begins the flash download state. Checks to see that we're not
1679 * already in a download state and that a port isn't enabled.
1680 * Sets the download state and retrieves the flash download
1681 * buffer location, buffer size, and timeout length.
1682 *
1683 * Arguments:
1684 * hw device structure
1685 *
1686 * Returns:
1687 * 0 success
1688 * >0 f/w reported error - f/w status code
1689 * <0 driver reported error
1690 *
1691 * Side effects:
1692 *
1693 * Call context:
1694 * process
1695 *----------------------------------------------------------------
1696 */
hfa384x_drvr_flashdl_enable(struct hfa384x * hw)1697 int hfa384x_drvr_flashdl_enable(struct hfa384x *hw)
1698 {
1699 int result = 0;
1700 int i;
1701
1702 /* Check that a port isn't active */
1703 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
1704 if (hw->port_enabled[i]) {
1705 pr_debug("called when port enabled.\n");
1706 return -EINVAL;
1707 }
1708 }
1709
1710 /* Check that we're not already in a download state */
1711 if (hw->dlstate != HFA384x_DLSTATE_DISABLED)
1712 return -EINVAL;
1713
1714 /* Retrieve the buffer loc&size and timeout */
1715 result = hfa384x_drvr_getconfig(hw, HFA384x_RID_DOWNLOADBUFFER,
1716 &hw->bufinfo, sizeof(hw->bufinfo));
1717 if (result)
1718 return result;
1719
1720 le16_to_cpus(&hw->bufinfo.page);
1721 le16_to_cpus(&hw->bufinfo.offset);
1722 le16_to_cpus(&hw->bufinfo.len);
1723 result = hfa384x_drvr_getconfig16(hw, HFA384x_RID_MAXLOADTIME,
1724 &hw->dltimeout);
1725 if (result)
1726 return result;
1727
1728 le16_to_cpus(&hw->dltimeout);
1729
1730 pr_debug("flashdl_enable\n");
1731
1732 hw->dlstate = HFA384x_DLSTATE_FLASHENABLED;
1733
1734 return result;
1735 }
1736
1737 /*----------------------------------------------------------------
1738 * hfa384x_drvr_flashdl_disable
1739 *
1740 * Ends the flash download state. Note that this will cause the MAC
1741 * firmware to restart.
1742 *
1743 * Arguments:
1744 * hw device structure
1745 *
1746 * Returns:
1747 * 0 success
1748 * >0 f/w reported error - f/w status code
1749 * <0 driver reported error
1750 *
1751 * Side effects:
1752 *
1753 * Call context:
1754 * process
1755 *----------------------------------------------------------------
1756 */
hfa384x_drvr_flashdl_disable(struct hfa384x * hw)1757 int hfa384x_drvr_flashdl_disable(struct hfa384x *hw)
1758 {
1759 /* Check that we're already in the download state */
1760 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1761 return -EINVAL;
1762
1763 pr_debug("flashdl_enable\n");
1764
1765 /* There isn't much we can do at this point, so I don't */
1766 /* bother w/ the return value */
1767 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
1768 hw->dlstate = HFA384x_DLSTATE_DISABLED;
1769
1770 return 0;
1771 }
1772
1773 /*----------------------------------------------------------------
1774 * hfa384x_drvr_flashdl_write
1775 *
1776 * Performs a FLASH download of a chunk of data. First checks to see
1777 * that we're in the FLASH download state, then sets the download
1778 * mode, uses the aux functions to 1) copy the data to the flash
1779 * buffer, 2) sets the download 'write flash' mode, 3) readback and
1780 * compare. Lather rinse, repeat as many times an necessary to get
1781 * all the given data into flash.
1782 * When all data has been written using this function (possibly
1783 * repeatedly), call drvr_flashdl_disable() to end the download state
1784 * and restart the MAC.
1785 *
1786 * Arguments:
1787 * hw device structure
1788 * daddr Card address to write to. (host order)
1789 * buf Ptr to data to write.
1790 * len Length of data (host order).
1791 *
1792 * Returns:
1793 * 0 success
1794 * >0 f/w reported error - f/w status code
1795 * <0 driver reported error
1796 *
1797 * Side effects:
1798 *
1799 * Call context:
1800 * process
1801 *----------------------------------------------------------------
1802 */
hfa384x_drvr_flashdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)1803 int hfa384x_drvr_flashdl_write(struct hfa384x *hw, u32 daddr,
1804 void *buf, u32 len)
1805 {
1806 int result = 0;
1807 u32 dlbufaddr;
1808 int nburns;
1809 u32 burnlen;
1810 u32 burndaddr;
1811 u16 burnlo;
1812 u16 burnhi;
1813 int nwrites;
1814 u8 *writebuf;
1815 u16 writepage;
1816 u16 writeoffset;
1817 u32 writelen;
1818 int i;
1819 int j;
1820
1821 pr_debug("daddr=0x%08x len=%d\n", daddr, len);
1822
1823 /* Check that we're in the flash download state */
1824 if (hw->dlstate != HFA384x_DLSTATE_FLASHENABLED)
1825 return -EINVAL;
1826
1827 netdev_info(hw->wlandev->netdev,
1828 "Download %d bytes to flash @0x%06x\n", len, daddr);
1829
1830 /* Convert to flat address for arithmetic */
1831 /* NOTE: dlbuffer RID stores the address in AUX format */
1832 dlbufaddr =
1833 HFA384x_ADDR_AUX_MKFLAT(hw->bufinfo.page, hw->bufinfo.offset);
1834 pr_debug("dlbuf.page=0x%04x dlbuf.offset=0x%04x dlbufaddr=0x%08x\n",
1835 hw->bufinfo.page, hw->bufinfo.offset, dlbufaddr);
1836 /* Calculations to determine how many fills of the dlbuffer to do
1837 * and how many USB wmemreq's to do for each fill. At this point
1838 * in time, the dlbuffer size and the wmemreq size are the same.
1839 * Therefore, nwrites should always be 1. The extra complexity
1840 * here is a hedge against future changes.
1841 */
1842
1843 /* Figure out how many times to do the flash programming */
1844 nburns = len / hw->bufinfo.len;
1845 nburns += (len % hw->bufinfo.len) ? 1 : 0;
1846
1847 /* For each flash program cycle, how many USB wmemreq's are needed? */
1848 nwrites = hw->bufinfo.len / HFA384x_USB_RWMEM_MAXLEN;
1849 nwrites += (hw->bufinfo.len % HFA384x_USB_RWMEM_MAXLEN) ? 1 : 0;
1850
1851 /* For each burn */
1852 for (i = 0; i < nburns; i++) {
1853 /* Get the dest address and len */
1854 burnlen = (len - (hw->bufinfo.len * i)) > hw->bufinfo.len ?
1855 hw->bufinfo.len : (len - (hw->bufinfo.len * i));
1856 burndaddr = daddr + (hw->bufinfo.len * i);
1857 burnlo = HFA384x_ADDR_CMD_MKOFF(burndaddr);
1858 burnhi = HFA384x_ADDR_CMD_MKPAGE(burndaddr);
1859
1860 netdev_info(hw->wlandev->netdev, "Writing %d bytes to flash @0x%06x\n",
1861 burnlen, burndaddr);
1862
1863 /* Set the download mode */
1864 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_NV,
1865 burnlo, burnhi, burnlen);
1866 if (result) {
1867 netdev_err(hw->wlandev->netdev,
1868 "download(NV,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1869 burnlo, burnhi, burnlen, result);
1870 goto exit_proc;
1871 }
1872
1873 /* copy the data to the flash download buffer */
1874 for (j = 0; j < nwrites; j++) {
1875 writebuf = buf +
1876 (i * hw->bufinfo.len) +
1877 (j * HFA384x_USB_RWMEM_MAXLEN);
1878
1879 writepage = HFA384x_ADDR_CMD_MKPAGE(dlbufaddr +
1880 (j * HFA384x_USB_RWMEM_MAXLEN));
1881 writeoffset = HFA384x_ADDR_CMD_MKOFF(dlbufaddr +
1882 (j * HFA384x_USB_RWMEM_MAXLEN));
1883
1884 writelen = burnlen - (j * HFA384x_USB_RWMEM_MAXLEN);
1885 writelen = writelen > HFA384x_USB_RWMEM_MAXLEN ?
1886 HFA384x_USB_RWMEM_MAXLEN : writelen;
1887
1888 result = hfa384x_dowmem(hw,
1889 writepage,
1890 writeoffset,
1891 writebuf, writelen);
1892 }
1893
1894 /* set the download 'write flash' mode */
1895 result = hfa384x_cmd_download(hw,
1896 HFA384x_PROGMODE_NVWRITE,
1897 0, 0, 0);
1898 if (result) {
1899 netdev_err(hw->wlandev->netdev,
1900 "download(NVWRITE,lo=%x,hi=%x,len=%x) cmd failed, result=%d. Aborting d/l\n",
1901 burnlo, burnhi, burnlen, result);
1902 goto exit_proc;
1903 }
1904
1905 /* TODO: We really should do a readback and compare. */
1906 }
1907
1908 exit_proc:
1909
1910 /* Leave the firmware in the 'post-prog' mode. flashdl_disable will */
1911 /* actually disable programming mode. Remember, that will cause the */
1912 /* the firmware to effectively reset itself. */
1913
1914 return result;
1915 }
1916
1917 /*----------------------------------------------------------------
1918 * hfa384x_drvr_getconfig
1919 *
1920 * Performs the sequence necessary to read a config/info item.
1921 *
1922 * Arguments:
1923 * hw device structure
1924 * rid config/info record id (host order)
1925 * buf host side record buffer. Upon return it will
1926 * contain the body portion of the record (minus the
1927 * RID and len).
1928 * len buffer length (in bytes, should match record length)
1929 *
1930 * Returns:
1931 * 0 success
1932 * >0 f/w reported error - f/w status code
1933 * <0 driver reported error
1934 * -ENODATA length mismatch between argument and retrieved
1935 * record.
1936 *
1937 * Side effects:
1938 *
1939 * Call context:
1940 * process
1941 *----------------------------------------------------------------
1942 */
hfa384x_drvr_getconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)1943 int hfa384x_drvr_getconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
1944 {
1945 return hfa384x_dorrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
1946 }
1947
1948 /*----------------------------------------------------------------
1949 * hfa384x_drvr_setconfig_async
1950 *
1951 * Performs the sequence necessary to write a config/info item.
1952 *
1953 * Arguments:
1954 * hw device structure
1955 * rid config/info record id (in host order)
1956 * buf host side record buffer
1957 * len buffer length (in bytes)
1958 * usercb completion callback
1959 * usercb_data completion callback argument
1960 *
1961 * Returns:
1962 * 0 success
1963 * >0 f/w reported error - f/w status code
1964 * <0 driver reported error
1965 *
1966 * Side effects:
1967 *
1968 * Call context:
1969 * process
1970 *----------------------------------------------------------------
1971 */
1972 int
hfa384x_drvr_setconfig_async(struct hfa384x * hw,u16 rid,void * buf,u16 len,ctlx_usercb_t usercb,void * usercb_data)1973 hfa384x_drvr_setconfig_async(struct hfa384x *hw,
1974 u16 rid,
1975 void *buf,
1976 u16 len, ctlx_usercb_t usercb, void *usercb_data)
1977 {
1978 return hfa384x_dowrid(hw, DOASYNC, rid, buf, len, hfa384x_cb_status,
1979 usercb, usercb_data);
1980 }
1981
1982 /*----------------------------------------------------------------
1983 * hfa384x_drvr_ramdl_disable
1984 *
1985 * Ends the ram download state.
1986 *
1987 * Arguments:
1988 * hw device structure
1989 *
1990 * Returns:
1991 * 0 success
1992 * >0 f/w reported error - f/w status code
1993 * <0 driver reported error
1994 *
1995 * Side effects:
1996 *
1997 * Call context:
1998 * process
1999 *----------------------------------------------------------------
2000 */
hfa384x_drvr_ramdl_disable(struct hfa384x * hw)2001 int hfa384x_drvr_ramdl_disable(struct hfa384x *hw)
2002 {
2003 /* Check that we're already in the download state */
2004 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2005 return -EINVAL;
2006
2007 pr_debug("ramdl_disable()\n");
2008
2009 /* There isn't much we can do at this point, so I don't */
2010 /* bother w/ the return value */
2011 hfa384x_cmd_download(hw, HFA384x_PROGMODE_DISABLE, 0, 0, 0);
2012 hw->dlstate = HFA384x_DLSTATE_DISABLED;
2013
2014 return 0;
2015 }
2016
2017 /*----------------------------------------------------------------
2018 * hfa384x_drvr_ramdl_enable
2019 *
2020 * Begins the ram download state. Checks to see that we're not
2021 * already in a download state and that a port isn't enabled.
2022 * Sets the download state and calls cmd_download with the
2023 * ENABLE_VOLATILE subcommand and the exeaddr argument.
2024 *
2025 * Arguments:
2026 * hw device structure
2027 * exeaddr the card execution address that will be
2028 * jumped to when ramdl_disable() is called
2029 * (host order).
2030 *
2031 * Returns:
2032 * 0 success
2033 * >0 f/w reported error - f/w status code
2034 * <0 driver reported error
2035 *
2036 * Side effects:
2037 *
2038 * Call context:
2039 * process
2040 *----------------------------------------------------------------
2041 */
hfa384x_drvr_ramdl_enable(struct hfa384x * hw,u32 exeaddr)2042 int hfa384x_drvr_ramdl_enable(struct hfa384x *hw, u32 exeaddr)
2043 {
2044 int result = 0;
2045 u16 lowaddr;
2046 u16 hiaddr;
2047 int i;
2048
2049 /* Check that a port isn't active */
2050 for (i = 0; i < HFA384x_PORTID_MAX; i++) {
2051 if (hw->port_enabled[i]) {
2052 netdev_err(hw->wlandev->netdev,
2053 "Can't download with a macport enabled.\n");
2054 return -EINVAL;
2055 }
2056 }
2057
2058 /* Check that we're not already in a download state */
2059 if (hw->dlstate != HFA384x_DLSTATE_DISABLED) {
2060 netdev_err(hw->wlandev->netdev,
2061 "Download state not disabled.\n");
2062 return -EINVAL;
2063 }
2064
2065 pr_debug("ramdl_enable, exeaddr=0x%08x\n", exeaddr);
2066
2067 /* Call the download(1,addr) function */
2068 lowaddr = HFA384x_ADDR_CMD_MKOFF(exeaddr);
2069 hiaddr = HFA384x_ADDR_CMD_MKPAGE(exeaddr);
2070
2071 result = hfa384x_cmd_download(hw, HFA384x_PROGMODE_RAM,
2072 lowaddr, hiaddr, 0);
2073
2074 if (result == 0) {
2075 /* Set the download state */
2076 hw->dlstate = HFA384x_DLSTATE_RAMENABLED;
2077 } else {
2078 pr_debug("cmd_download(0x%04x, 0x%04x) failed, result=%d.\n",
2079 lowaddr, hiaddr, result);
2080 }
2081
2082 return result;
2083 }
2084
2085 /*----------------------------------------------------------------
2086 * hfa384x_drvr_ramdl_write
2087 *
2088 * Performs a RAM download of a chunk of data. First checks to see
2089 * that we're in the RAM download state, then uses the [read|write]mem USB
2090 * commands to 1) copy the data, 2) readback and compare. The download
2091 * state is unaffected. When all data has been written using
2092 * this function, call drvr_ramdl_disable() to end the download state
2093 * and restart the MAC.
2094 *
2095 * Arguments:
2096 * hw device structure
2097 * daddr Card address to write to. (host order)
2098 * buf Ptr to data to write.
2099 * len Length of data (host order).
2100 *
2101 * Returns:
2102 * 0 success
2103 * >0 f/w reported error - f/w status code
2104 * <0 driver reported error
2105 *
2106 * Side effects:
2107 *
2108 * Call context:
2109 * process
2110 *----------------------------------------------------------------
2111 */
hfa384x_drvr_ramdl_write(struct hfa384x * hw,u32 daddr,void * buf,u32 len)2112 int hfa384x_drvr_ramdl_write(struct hfa384x *hw, u32 daddr, void *buf, u32 len)
2113 {
2114 int result = 0;
2115 int nwrites;
2116 u8 *data = buf;
2117 int i;
2118 u32 curraddr;
2119 u16 currpage;
2120 u16 curroffset;
2121 u16 currlen;
2122
2123 /* Check that we're in the ram download state */
2124 if (hw->dlstate != HFA384x_DLSTATE_RAMENABLED)
2125 return -EINVAL;
2126
2127 netdev_info(hw->wlandev->netdev, "Writing %d bytes to ram @0x%06x\n",
2128 len, daddr);
2129
2130 /* How many dowmem calls? */
2131 nwrites = len / HFA384x_USB_RWMEM_MAXLEN;
2132 nwrites += len % HFA384x_USB_RWMEM_MAXLEN ? 1 : 0;
2133
2134 /* Do blocking wmem's */
2135 for (i = 0; i < nwrites; i++) {
2136 /* make address args */
2137 curraddr = daddr + (i * HFA384x_USB_RWMEM_MAXLEN);
2138 currpage = HFA384x_ADDR_CMD_MKPAGE(curraddr);
2139 curroffset = HFA384x_ADDR_CMD_MKOFF(curraddr);
2140 currlen = len - (i * HFA384x_USB_RWMEM_MAXLEN);
2141 if (currlen > HFA384x_USB_RWMEM_MAXLEN)
2142 currlen = HFA384x_USB_RWMEM_MAXLEN;
2143
2144 /* Do blocking ctlx */
2145 result = hfa384x_dowmem(hw,
2146 currpage,
2147 curroffset,
2148 data + (i * HFA384x_USB_RWMEM_MAXLEN),
2149 currlen);
2150
2151 if (result)
2152 break;
2153
2154 /* TODO: We really should have a readback. */
2155 }
2156
2157 return result;
2158 }
2159
2160 /*----------------------------------------------------------------
2161 * hfa384x_drvr_readpda
2162 *
2163 * Performs the sequence to read the PDA space. Note there is no
2164 * drvr_writepda() function. Writing a PDA is
2165 * generally implemented by a calling component via calls to
2166 * cmd_download and writing to the flash download buffer via the
2167 * aux regs.
2168 *
2169 * Arguments:
2170 * hw device structure
2171 * buf buffer to store PDA in
2172 * len buffer length
2173 *
2174 * Returns:
2175 * 0 success
2176 * >0 f/w reported error - f/w status code
2177 * <0 driver reported error
2178 * -ETIMEDOUT timeout waiting for the cmd regs to become
2179 * available, or waiting for the control reg
2180 * to indicate the Aux port is enabled.
2181 * -ENODATA the buffer does NOT contain a valid PDA.
2182 * Either the card PDA is bad, or the auxdata
2183 * reads are giving us garbage.
2184 *
2185 *
2186 * Side effects:
2187 *
2188 * Call context:
2189 * process or non-card interrupt.
2190 *----------------------------------------------------------------
2191 */
hfa384x_drvr_readpda(struct hfa384x * hw,void * buf,unsigned int len)2192 int hfa384x_drvr_readpda(struct hfa384x *hw, void *buf, unsigned int len)
2193 {
2194 int result = 0;
2195 __le16 *pda = buf;
2196 int pdaok = 0;
2197 int morepdrs = 1;
2198 int currpdr = 0; /* word offset of the current pdr */
2199 size_t i;
2200 u16 pdrlen; /* pdr length in bytes, host order */
2201 u16 pdrcode; /* pdr code, host order */
2202 u16 currpage;
2203 u16 curroffset;
2204 struct pdaloc {
2205 u32 cardaddr;
2206 u16 auxctl;
2207 } pdaloc[] = {
2208 {
2209 HFA3842_PDA_BASE, 0}, {
2210 HFA3841_PDA_BASE, 0}, {
2211 HFA3841_PDA_BOGUS_BASE, 0}
2212 };
2213
2214 /* Read the pda from each known address. */
2215 for (i = 0; i < ARRAY_SIZE(pdaloc); i++) {
2216 /* Make address */
2217 currpage = HFA384x_ADDR_CMD_MKPAGE(pdaloc[i].cardaddr);
2218 curroffset = HFA384x_ADDR_CMD_MKOFF(pdaloc[i].cardaddr);
2219
2220 /* units of bytes */
2221 result = hfa384x_dormem(hw, currpage, curroffset, buf,
2222 len);
2223
2224 if (result) {
2225 netdev_warn(hw->wlandev->netdev,
2226 "Read from index %zd failed, continuing\n",
2227 i);
2228 continue;
2229 }
2230
2231 /* Test for garbage */
2232 pdaok = 1; /* initially assume good */
2233 morepdrs = 1;
2234 while (pdaok && morepdrs) {
2235 pdrlen = le16_to_cpu(pda[currpdr]) * 2;
2236 pdrcode = le16_to_cpu(pda[currpdr + 1]);
2237 /* Test the record length */
2238 if (pdrlen > HFA384x_PDR_LEN_MAX || pdrlen == 0) {
2239 netdev_err(hw->wlandev->netdev,
2240 "pdrlen invalid=%d\n", pdrlen);
2241 pdaok = 0;
2242 break;
2243 }
2244 /* Test the code */
2245 if (!hfa384x_isgood_pdrcode(pdrcode)) {
2246 netdev_err(hw->wlandev->netdev, "pdrcode invalid=%d\n",
2247 pdrcode);
2248 pdaok = 0;
2249 break;
2250 }
2251 /* Test for completion */
2252 if (pdrcode == HFA384x_PDR_END_OF_PDA)
2253 morepdrs = 0;
2254
2255 /* Move to the next pdr (if necessary) */
2256 if (morepdrs) {
2257 /* note the access to pda[], need words here */
2258 currpdr += le16_to_cpu(pda[currpdr]) + 1;
2259 }
2260 }
2261 if (pdaok) {
2262 netdev_info(hw->wlandev->netdev,
2263 "PDA Read from 0x%08x in %s space.\n",
2264 pdaloc[i].cardaddr,
2265 pdaloc[i].auxctl == 0 ? "EXTDS" :
2266 pdaloc[i].auxctl == 1 ? "NV" :
2267 pdaloc[i].auxctl == 2 ? "PHY" :
2268 pdaloc[i].auxctl == 3 ? "ICSRAM" :
2269 "<bogus auxctl>");
2270 break;
2271 }
2272 }
2273 result = pdaok ? 0 : -ENODATA;
2274
2275 if (result)
2276 pr_debug("Failure: pda is not okay\n");
2277
2278 return result;
2279 }
2280
2281 /*----------------------------------------------------------------
2282 * hfa384x_drvr_setconfig
2283 *
2284 * Performs the sequence necessary to write a config/info item.
2285 *
2286 * Arguments:
2287 * hw device structure
2288 * rid config/info record id (in host order)
2289 * buf host side record buffer
2290 * len buffer length (in bytes)
2291 *
2292 * Returns:
2293 * 0 success
2294 * >0 f/w reported error - f/w status code
2295 * <0 driver reported error
2296 *
2297 * Side effects:
2298 *
2299 * Call context:
2300 * process
2301 *----------------------------------------------------------------
2302 */
hfa384x_drvr_setconfig(struct hfa384x * hw,u16 rid,void * buf,u16 len)2303 int hfa384x_drvr_setconfig(struct hfa384x *hw, u16 rid, void *buf, u16 len)
2304 {
2305 return hfa384x_dowrid(hw, DOWAIT, rid, buf, len, NULL, NULL, NULL);
2306 }
2307
2308 /*----------------------------------------------------------------
2309 * hfa384x_drvr_start
2310 *
2311 * Issues the MAC initialize command, sets up some data structures,
2312 * and enables the interrupts. After this function completes, the
2313 * low-level stuff should be ready for any/all commands.
2314 *
2315 * Arguments:
2316 * hw device structure
2317 * Returns:
2318 * 0 success
2319 * >0 f/w reported error - f/w status code
2320 * <0 driver reported error
2321 *
2322 * Side effects:
2323 *
2324 * Call context:
2325 * process
2326 *----------------------------------------------------------------
2327 */
hfa384x_drvr_start(struct hfa384x * hw)2328 int hfa384x_drvr_start(struct hfa384x *hw)
2329 {
2330 int result, result1, result2;
2331 u16 status;
2332
2333 might_sleep();
2334
2335 /* Clear endpoint stalls - but only do this if the endpoint
2336 * is showing a stall status. Some prism2 cards seem to behave
2337 * badly if a clear_halt is called when the endpoint is already
2338 * ok
2339 */
2340 result =
2341 usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_in,
2342 &status);
2343 if (result < 0) {
2344 netdev_err(hw->wlandev->netdev, "Cannot get bulk in endpoint status.\n");
2345 goto done;
2346 }
2347 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_in))
2348 netdev_err(hw->wlandev->netdev, "Failed to reset bulk in endpoint.\n");
2349
2350 result =
2351 usb_get_std_status(hw->usb, USB_RECIP_ENDPOINT, hw->endp_out,
2352 &status);
2353 if (result < 0) {
2354 netdev_err(hw->wlandev->netdev, "Cannot get bulk out endpoint status.\n");
2355 goto done;
2356 }
2357 if ((status == 1) && usb_clear_halt(hw->usb, hw->endp_out))
2358 netdev_err(hw->wlandev->netdev, "Failed to reset bulk out endpoint.\n");
2359
2360 /* Synchronous unlink, in case we're trying to restart the driver */
2361 usb_kill_urb(&hw->rx_urb);
2362
2363 /* Post the IN urb */
2364 result = submit_rx_urb(hw, GFP_KERNEL);
2365 if (result != 0) {
2366 netdev_err(hw->wlandev->netdev,
2367 "Fatal, failed to submit RX URB, result=%d\n",
2368 result);
2369 goto done;
2370 }
2371
2372 /* Call initialize twice, with a 1 second sleep in between.
2373 * This is a nasty work-around since many prism2 cards seem to
2374 * need time to settle after an init from cold. The second
2375 * call to initialize in theory is not necessary - but we call
2376 * it anyway as a double insurance policy:
2377 * 1) If the first init should fail, the second may well succeed
2378 * and the card can still be used
2379 * 2) It helps ensures all is well with the card after the first
2380 * init and settle time.
2381 */
2382 result1 = hfa384x_cmd_initialize(hw);
2383 msleep(1000);
2384 result = hfa384x_cmd_initialize(hw);
2385 result2 = result;
2386 if (result1 != 0) {
2387 if (result2 != 0) {
2388 netdev_err(hw->wlandev->netdev,
2389 "cmd_initialize() failed on two attempts, results %d and %d\n",
2390 result1, result2);
2391 usb_kill_urb(&hw->rx_urb);
2392 goto done;
2393 } else {
2394 pr_debug("First cmd_initialize() failed (result %d),\n",
2395 result1);
2396 pr_debug("but second attempt succeeded. All should be ok\n");
2397 }
2398 } else if (result2 != 0) {
2399 netdev_warn(hw->wlandev->netdev, "First cmd_initialize() succeeded, but second attempt failed (result=%d)\n",
2400 result2);
2401 netdev_warn(hw->wlandev->netdev,
2402 "Most likely the card will be functional\n");
2403 goto done;
2404 }
2405
2406 hw->state = HFA384x_STATE_RUNNING;
2407
2408 done:
2409 return result;
2410 }
2411
2412 /*----------------------------------------------------------------
2413 * hfa384x_drvr_stop
2414 *
2415 * Shuts down the MAC to the point where it is safe to unload the
2416 * driver. Any subsystem that may be holding a data or function
2417 * ptr into the driver must be cleared/deinitialized.
2418 *
2419 * Arguments:
2420 * hw device structure
2421 * Returns:
2422 * 0 success
2423 * >0 f/w reported error - f/w status code
2424 * <0 driver reported error
2425 *
2426 * Side effects:
2427 *
2428 * Call context:
2429 * process
2430 *----------------------------------------------------------------
2431 */
hfa384x_drvr_stop(struct hfa384x * hw)2432 int hfa384x_drvr_stop(struct hfa384x *hw)
2433 {
2434 int i;
2435
2436 might_sleep();
2437
2438 /* There's no need for spinlocks here. The USB "disconnect"
2439 * function sets this "removed" flag and then calls us.
2440 */
2441 if (!hw->wlandev->hwremoved) {
2442 /* Call initialize to leave the MAC in its 'reset' state */
2443 hfa384x_cmd_initialize(hw);
2444
2445 /* Cancel the rxurb */
2446 usb_kill_urb(&hw->rx_urb);
2447 }
2448
2449 hw->link_status = HFA384x_LINK_NOTCONNECTED;
2450 hw->state = HFA384x_STATE_INIT;
2451
2452 del_timer_sync(&hw->commsqual_timer);
2453
2454 /* Clear all the port status */
2455 for (i = 0; i < HFA384x_NUMPORTS_MAX; i++)
2456 hw->port_enabled[i] = 0;
2457
2458 return 0;
2459 }
2460
2461 /*----------------------------------------------------------------
2462 * hfa384x_drvr_txframe
2463 *
2464 * Takes a frame from prism2sta and queues it for transmission.
2465 *
2466 * Arguments:
2467 * hw device structure
2468 * skb packet buffer struct. Contains an 802.11
2469 * data frame.
2470 * p80211_hdr points to the 802.11 header for the packet.
2471 * Returns:
2472 * 0 Success and more buffs available
2473 * 1 Success but no more buffs
2474 * 2 Allocation failure
2475 * 4 Buffer full or queue busy
2476 *
2477 * Side effects:
2478 *
2479 * Call context:
2480 * interrupt
2481 *----------------------------------------------------------------
2482 */
hfa384x_drvr_txframe(struct hfa384x * hw,struct sk_buff * skb,union p80211_hdr * p80211_hdr,struct p80211_metawep * p80211_wep)2483 int hfa384x_drvr_txframe(struct hfa384x *hw, struct sk_buff *skb,
2484 union p80211_hdr *p80211_hdr,
2485 struct p80211_metawep *p80211_wep)
2486 {
2487 int usbpktlen = sizeof(struct hfa384x_tx_frame);
2488 int result;
2489 int ret;
2490 char *ptr;
2491
2492 if (hw->tx_urb.status == -EINPROGRESS) {
2493 netdev_warn(hw->wlandev->netdev, "TX URB already in use\n");
2494 result = 3;
2495 goto exit;
2496 }
2497
2498 /* Build Tx frame structure */
2499 /* Set up the control field */
2500 memset(&hw->txbuff.txfrm.desc, 0, sizeof(hw->txbuff.txfrm.desc));
2501
2502 /* Setup the usb type field */
2503 hw->txbuff.type = cpu_to_le16(HFA384x_USB_TXFRM);
2504
2505 /* Set up the sw_support field to identify this frame */
2506 hw->txbuff.txfrm.desc.sw_support = 0x0123;
2507
2508 /* Tx complete and Tx exception disable per dleach. Might be causing
2509 * buf depletion
2510 */
2511 /* #define DOEXC SLP -- doboth breaks horribly under load, doexc less so. */
2512 #if defined(DOBOTH)
2513 hw->txbuff.txfrm.desc.tx_control =
2514 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2515 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(1);
2516 #elif defined(DOEXC)
2517 hw->txbuff.txfrm.desc.tx_control =
2518 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2519 HFA384x_TX_TXEX_SET(1) | HFA384x_TX_TXOK_SET(0);
2520 #else
2521 hw->txbuff.txfrm.desc.tx_control =
2522 HFA384x_TX_MACPORT_SET(0) | HFA384x_TX_STRUCTYPE_SET(1) |
2523 HFA384x_TX_TXEX_SET(0) | HFA384x_TX_TXOK_SET(0);
2524 #endif
2525 cpu_to_le16s(&hw->txbuff.txfrm.desc.tx_control);
2526
2527 /* copy the header over to the txdesc */
2528 memcpy(&hw->txbuff.txfrm.desc.frame_control, p80211_hdr,
2529 sizeof(union p80211_hdr));
2530
2531 /* if we're using host WEP, increase size by IV+ICV */
2532 if (p80211_wep->data) {
2533 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len + 8);
2534 usbpktlen += 8;
2535 } else {
2536 hw->txbuff.txfrm.desc.data_len = cpu_to_le16(skb->len);
2537 }
2538
2539 usbpktlen += skb->len;
2540
2541 /* copy over the WEP IV if we are using host WEP */
2542 ptr = hw->txbuff.txfrm.data;
2543 if (p80211_wep->data) {
2544 memcpy(ptr, p80211_wep->iv, sizeof(p80211_wep->iv));
2545 ptr += sizeof(p80211_wep->iv);
2546 memcpy(ptr, p80211_wep->data, skb->len);
2547 } else {
2548 memcpy(ptr, skb->data, skb->len);
2549 }
2550 /* copy over the packet data */
2551 ptr += skb->len;
2552
2553 /* copy over the WEP ICV if we are using host WEP */
2554 if (p80211_wep->data)
2555 memcpy(ptr, p80211_wep->icv, sizeof(p80211_wep->icv));
2556
2557 /* Send the USB packet */
2558 usb_fill_bulk_urb(&hw->tx_urb, hw->usb,
2559 hw->endp_out,
2560 &hw->txbuff, ROUNDUP64(usbpktlen),
2561 hfa384x_usbout_callback, hw->wlandev);
2562 hw->tx_urb.transfer_flags |= USB_QUEUE_BULK;
2563
2564 result = 1;
2565 ret = submit_tx_urb(hw, &hw->tx_urb, GFP_ATOMIC);
2566 if (ret != 0) {
2567 netdev_err(hw->wlandev->netdev,
2568 "submit_tx_urb() failed, error=%d\n", ret);
2569 result = 3;
2570 }
2571
2572 exit:
2573 return result;
2574 }
2575
hfa384x_tx_timeout(struct wlandevice * wlandev)2576 void hfa384x_tx_timeout(struct wlandevice *wlandev)
2577 {
2578 struct hfa384x *hw = wlandev->priv;
2579 unsigned long flags;
2580
2581 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2582
2583 if (!hw->wlandev->hwremoved) {
2584 int sched;
2585
2586 sched = !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags);
2587 sched |= !test_and_set_bit(WORK_RX_HALT, &hw->usb_flags);
2588 if (sched)
2589 schedule_work(&hw->usb_work);
2590 }
2591
2592 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2593 }
2594
2595 /*----------------------------------------------------------------
2596 * hfa384x_usbctlx_reaper_task
2597 *
2598 * Tasklet to delete dead CTLX objects
2599 *
2600 * Arguments:
2601 * data ptr to a struct hfa384x
2602 *
2603 * Returns:
2604 *
2605 * Call context:
2606 * Interrupt
2607 *----------------------------------------------------------------
2608 */
hfa384x_usbctlx_reaper_task(unsigned long data)2609 static void hfa384x_usbctlx_reaper_task(unsigned long data)
2610 {
2611 struct hfa384x *hw = (struct hfa384x *)data;
2612 struct hfa384x_usbctlx *ctlx, *temp;
2613 unsigned long flags;
2614
2615 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2616
2617 /* This list is guaranteed to be empty if someone
2618 * has unplugged the adapter.
2619 */
2620 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.reapable, list) {
2621 list_del(&ctlx->list);
2622 kfree(ctlx);
2623 }
2624
2625 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2626 }
2627
2628 /*----------------------------------------------------------------
2629 * hfa384x_usbctlx_completion_task
2630 *
2631 * Tasklet to call completion handlers for returned CTLXs
2632 *
2633 * Arguments:
2634 * data ptr to struct hfa384x
2635 *
2636 * Returns:
2637 * Nothing
2638 *
2639 * Call context:
2640 * Interrupt
2641 *----------------------------------------------------------------
2642 */
hfa384x_usbctlx_completion_task(unsigned long data)2643 static void hfa384x_usbctlx_completion_task(unsigned long data)
2644 {
2645 struct hfa384x *hw = (struct hfa384x *)data;
2646 struct hfa384x_usbctlx *ctlx, *temp;
2647 unsigned long flags;
2648
2649 int reap = 0;
2650
2651 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2652
2653 /* This list is guaranteed to be empty if someone
2654 * has unplugged the adapter ...
2655 */
2656 list_for_each_entry_safe(ctlx, temp, &hw->ctlxq.completing, list) {
2657 /* Call the completion function that this
2658 * command was assigned, assuming it has one.
2659 */
2660 if (ctlx->cmdcb) {
2661 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2662 ctlx->cmdcb(hw, ctlx);
2663 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2664
2665 /* Make sure we don't try and complete
2666 * this CTLX more than once!
2667 */
2668 ctlx->cmdcb = NULL;
2669
2670 /* Did someone yank the adapter out
2671 * while our list was (briefly) unlocked?
2672 */
2673 if (hw->wlandev->hwremoved) {
2674 reap = 0;
2675 break;
2676 }
2677 }
2678
2679 /*
2680 * "Reapable" CTLXs are ones which don't have any
2681 * threads waiting for them to die. Hence they must
2682 * be delivered to The Reaper!
2683 */
2684 if (ctlx->reapable) {
2685 /* Move the CTLX off the "completing" list (hopefully)
2686 * on to the "reapable" list where the reaper task
2687 * can find it. And "reapable" means that this CTLX
2688 * isn't sitting on a wait-queue somewhere.
2689 */
2690 list_move_tail(&ctlx->list, &hw->ctlxq.reapable);
2691 reap = 1;
2692 }
2693
2694 complete(&ctlx->done);
2695 }
2696 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2697
2698 if (reap)
2699 tasklet_schedule(&hw->reaper_bh);
2700 }
2701
2702 /*----------------------------------------------------------------
2703 * unlocked_usbctlx_cancel_async
2704 *
2705 * Mark the CTLX dead asynchronously, and ensure that the
2706 * next command on the queue is run afterwards.
2707 *
2708 * Arguments:
2709 * hw ptr to the struct hfa384x structure
2710 * ctlx ptr to a CTLX structure
2711 *
2712 * Returns:
2713 * 0 the CTLX's URB is inactive
2714 * -EINPROGRESS the URB is currently being unlinked
2715 *
2716 * Call context:
2717 * Either process or interrupt, but presumably interrupt
2718 *----------------------------------------------------------------
2719 */
unlocked_usbctlx_cancel_async(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2720 static int unlocked_usbctlx_cancel_async(struct hfa384x *hw,
2721 struct hfa384x_usbctlx *ctlx)
2722 {
2723 int ret;
2724
2725 /*
2726 * Try to delete the URB containing our request packet.
2727 * If we succeed, then its completion handler will be
2728 * called with a status of -ECONNRESET.
2729 */
2730 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
2731 ret = usb_unlink_urb(&hw->ctlx_urb);
2732
2733 if (ret != -EINPROGRESS) {
2734 /*
2735 * The OUT URB had either already completed
2736 * or was still in the pending queue, so the
2737 * URB's completion function will not be called.
2738 * We will have to complete the CTLX ourselves.
2739 */
2740 ctlx->state = CTLX_REQ_FAILED;
2741 unlocked_usbctlx_complete(hw, ctlx);
2742 ret = 0;
2743 }
2744
2745 return ret;
2746 }
2747
2748 /*----------------------------------------------------------------
2749 * unlocked_usbctlx_complete
2750 *
2751 * A CTLX has completed. It may have been successful, it may not
2752 * have been. At this point, the CTLX should be quiescent. The URBs
2753 * aren't active and the timers should have been stopped.
2754 *
2755 * The CTLX is migrated to the "completing" queue, and the completing
2756 * tasklet is scheduled.
2757 *
2758 * Arguments:
2759 * hw ptr to a struct hfa384x structure
2760 * ctlx ptr to a ctlx structure
2761 *
2762 * Returns:
2763 * nothing
2764 *
2765 * Side effects:
2766 *
2767 * Call context:
2768 * Either, assume interrupt
2769 *----------------------------------------------------------------
2770 */
unlocked_usbctlx_complete(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)2771 static void unlocked_usbctlx_complete(struct hfa384x *hw,
2772 struct hfa384x_usbctlx *ctlx)
2773 {
2774 /* Timers have been stopped, and ctlx should be in
2775 * a terminal state. Retire it from the "active"
2776 * queue.
2777 */
2778 list_move_tail(&ctlx->list, &hw->ctlxq.completing);
2779 tasklet_schedule(&hw->completion_bh);
2780
2781 switch (ctlx->state) {
2782 case CTLX_COMPLETE:
2783 case CTLX_REQ_FAILED:
2784 /* This are the correct terminating states. */
2785 break;
2786
2787 default:
2788 netdev_err(hw->wlandev->netdev, "CTLX[%d] not in a terminating state(%s)\n",
2789 le16_to_cpu(ctlx->outbuf.type),
2790 ctlxstr(ctlx->state));
2791 break;
2792 } /* switch */
2793 }
2794
2795 /*----------------------------------------------------------------
2796 * hfa384x_usbctlxq_run
2797 *
2798 * Checks to see if the head item is running. If not, starts it.
2799 *
2800 * Arguments:
2801 * hw ptr to struct hfa384x
2802 *
2803 * Returns:
2804 * nothing
2805 *
2806 * Side effects:
2807 *
2808 * Call context:
2809 * any
2810 *----------------------------------------------------------------
2811 */
hfa384x_usbctlxq_run(struct hfa384x * hw)2812 static void hfa384x_usbctlxq_run(struct hfa384x *hw)
2813 {
2814 unsigned long flags;
2815
2816 /* acquire lock */
2817 spin_lock_irqsave(&hw->ctlxq.lock, flags);
2818
2819 /* Only one active CTLX at any one time, because there's no
2820 * other (reliable) way to match the response URB to the
2821 * correct CTLX.
2822 *
2823 * Don't touch any of these CTLXs if the hardware
2824 * has been removed or the USB subsystem is stalled.
2825 */
2826 if (!list_empty(&hw->ctlxq.active) ||
2827 test_bit(WORK_TX_HALT, &hw->usb_flags) || hw->wlandev->hwremoved)
2828 goto unlock;
2829
2830 while (!list_empty(&hw->ctlxq.pending)) {
2831 struct hfa384x_usbctlx *head;
2832 int result;
2833
2834 /* This is the first pending command */
2835 head = list_entry(hw->ctlxq.pending.next,
2836 struct hfa384x_usbctlx, list);
2837
2838 /* We need to split this off to avoid a race condition */
2839 list_move_tail(&head->list, &hw->ctlxq.active);
2840
2841 /* Fill the out packet */
2842 usb_fill_bulk_urb(&hw->ctlx_urb, hw->usb,
2843 hw->endp_out,
2844 &head->outbuf, ROUNDUP64(head->outbufsize),
2845 hfa384x_ctlxout_callback, hw);
2846 hw->ctlx_urb.transfer_flags |= USB_QUEUE_BULK;
2847
2848 /* Now submit the URB and update the CTLX's state */
2849 result = usb_submit_urb(&hw->ctlx_urb, GFP_ATOMIC);
2850 if (result == 0) {
2851 /* This CTLX is now running on the active queue */
2852 head->state = CTLX_REQ_SUBMITTED;
2853
2854 /* Start the OUT wait timer */
2855 hw->req_timer_done = 0;
2856 hw->reqtimer.expires = jiffies + HZ;
2857 add_timer(&hw->reqtimer);
2858
2859 /* Start the IN wait timer */
2860 hw->resp_timer_done = 0;
2861 hw->resptimer.expires = jiffies + 2 * HZ;
2862 add_timer(&hw->resptimer);
2863
2864 break;
2865 }
2866
2867 if (result == -EPIPE) {
2868 /* The OUT pipe needs resetting, so put
2869 * this CTLX back in the "pending" queue
2870 * and schedule a reset ...
2871 */
2872 netdev_warn(hw->wlandev->netdev,
2873 "%s tx pipe stalled: requesting reset\n",
2874 hw->wlandev->netdev->name);
2875 list_move(&head->list, &hw->ctlxq.pending);
2876 set_bit(WORK_TX_HALT, &hw->usb_flags);
2877 schedule_work(&hw->usb_work);
2878 break;
2879 }
2880
2881 if (result == -ESHUTDOWN) {
2882 netdev_warn(hw->wlandev->netdev, "%s urb shutdown!\n",
2883 hw->wlandev->netdev->name);
2884 break;
2885 }
2886
2887 netdev_err(hw->wlandev->netdev, "Failed to submit CTLX[%d]: error=%d\n",
2888 le16_to_cpu(head->outbuf.type), result);
2889 unlocked_usbctlx_complete(hw, head);
2890 } /* while */
2891
2892 unlock:
2893 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
2894 }
2895
2896 /*----------------------------------------------------------------
2897 * hfa384x_usbin_callback
2898 *
2899 * Callback for URBs on the BULKIN endpoint.
2900 *
2901 * Arguments:
2902 * urb ptr to the completed urb
2903 *
2904 * Returns:
2905 * nothing
2906 *
2907 * Side effects:
2908 *
2909 * Call context:
2910 * interrupt
2911 *----------------------------------------------------------------
2912 */
hfa384x_usbin_callback(struct urb * urb)2913 static void hfa384x_usbin_callback(struct urb *urb)
2914 {
2915 struct wlandevice *wlandev = urb->context;
2916 struct hfa384x *hw;
2917 union hfa384x_usbin *usbin;
2918 struct sk_buff *skb = NULL;
2919 int result;
2920 int urb_status;
2921 u16 type;
2922
2923 enum USBIN_ACTION {
2924 HANDLE,
2925 RESUBMIT,
2926 ABORT
2927 } action;
2928
2929 if (!wlandev || !wlandev->netdev || wlandev->hwremoved)
2930 goto exit;
2931
2932 hw = wlandev->priv;
2933 if (!hw)
2934 goto exit;
2935
2936 skb = hw->rx_urb_skb;
2937 if (!skb || (skb->data != urb->transfer_buffer)) {
2938 WARN_ON(1);
2939 return;
2940 }
2941
2942 hw->rx_urb_skb = NULL;
2943
2944 /* Check for error conditions within the URB */
2945 switch (urb->status) {
2946 case 0:
2947 action = HANDLE;
2948
2949 /* Check for short packet */
2950 if (urb->actual_length == 0) {
2951 wlandev->netdev->stats.rx_errors++;
2952 wlandev->netdev->stats.rx_length_errors++;
2953 action = RESUBMIT;
2954 }
2955 break;
2956
2957 case -EPIPE:
2958 netdev_warn(hw->wlandev->netdev, "%s rx pipe stalled: requesting reset\n",
2959 wlandev->netdev->name);
2960 if (!test_and_set_bit(WORK_RX_HALT, &hw->usb_flags))
2961 schedule_work(&hw->usb_work);
2962 wlandev->netdev->stats.rx_errors++;
2963 action = ABORT;
2964 break;
2965
2966 case -EILSEQ:
2967 case -ETIMEDOUT:
2968 case -EPROTO:
2969 if (!test_and_set_bit(THROTTLE_RX, &hw->usb_flags) &&
2970 !timer_pending(&hw->throttle)) {
2971 mod_timer(&hw->throttle, jiffies + THROTTLE_JIFFIES);
2972 }
2973 wlandev->netdev->stats.rx_errors++;
2974 action = ABORT;
2975 break;
2976
2977 case -EOVERFLOW:
2978 wlandev->netdev->stats.rx_over_errors++;
2979 action = RESUBMIT;
2980 break;
2981
2982 case -ENODEV:
2983 case -ESHUTDOWN:
2984 pr_debug("status=%d, device removed.\n", urb->status);
2985 action = ABORT;
2986 break;
2987
2988 case -ENOENT:
2989 case -ECONNRESET:
2990 pr_debug("status=%d, urb explicitly unlinked.\n", urb->status);
2991 action = ABORT;
2992 break;
2993
2994 default:
2995 pr_debug("urb status=%d, transfer flags=0x%x\n",
2996 urb->status, urb->transfer_flags);
2997 wlandev->netdev->stats.rx_errors++;
2998 action = RESUBMIT;
2999 break;
3000 }
3001
3002 /* Save values from the RX URB before reposting overwrites it. */
3003 urb_status = urb->status;
3004 usbin = (union hfa384x_usbin *)urb->transfer_buffer;
3005
3006 if (action != ABORT) {
3007 /* Repost the RX URB */
3008 result = submit_rx_urb(hw, GFP_ATOMIC);
3009
3010 if (result != 0) {
3011 netdev_err(hw->wlandev->netdev,
3012 "Fatal, failed to resubmit rx_urb. error=%d\n",
3013 result);
3014 }
3015 }
3016
3017 /* Handle any USB-IN packet */
3018 /* Note: the check of the sw_support field, the type field doesn't
3019 * have bit 12 set like the docs suggest.
3020 */
3021 type = le16_to_cpu(usbin->type);
3022 if (HFA384x_USB_ISRXFRM(type)) {
3023 if (action == HANDLE) {
3024 if (usbin->txfrm.desc.sw_support == 0x0123) {
3025 hfa384x_usbin_txcompl(wlandev, usbin);
3026 } else {
3027 skb_put(skb, sizeof(*usbin));
3028 hfa384x_usbin_rx(wlandev, skb);
3029 skb = NULL;
3030 }
3031 }
3032 goto exit;
3033 }
3034 if (HFA384x_USB_ISTXFRM(type)) {
3035 if (action == HANDLE)
3036 hfa384x_usbin_txcompl(wlandev, usbin);
3037 goto exit;
3038 }
3039 switch (type) {
3040 case HFA384x_USB_INFOFRM:
3041 if (action == ABORT)
3042 goto exit;
3043 if (action == HANDLE)
3044 hfa384x_usbin_info(wlandev, usbin);
3045 break;
3046
3047 case HFA384x_USB_CMDRESP:
3048 case HFA384x_USB_WRIDRESP:
3049 case HFA384x_USB_RRIDRESP:
3050 case HFA384x_USB_WMEMRESP:
3051 case HFA384x_USB_RMEMRESP:
3052 /* ALWAYS, ALWAYS, ALWAYS handle this CTLX!!!! */
3053 hfa384x_usbin_ctlx(hw, usbin, urb_status);
3054 break;
3055
3056 case HFA384x_USB_BUFAVAIL:
3057 pr_debug("Received BUFAVAIL packet, frmlen=%d\n",
3058 usbin->bufavail.frmlen);
3059 break;
3060
3061 case HFA384x_USB_ERROR:
3062 pr_debug("Received USB_ERROR packet, errortype=%d\n",
3063 usbin->usberror.errortype);
3064 break;
3065
3066 default:
3067 pr_debug("Unrecognized USBIN packet, type=%x, status=%d\n",
3068 usbin->type, urb_status);
3069 break;
3070 } /* switch */
3071
3072 exit:
3073
3074 if (skb)
3075 dev_kfree_skb(skb);
3076 }
3077
3078 /*----------------------------------------------------------------
3079 * hfa384x_usbin_ctlx
3080 *
3081 * We've received a URB containing a Prism2 "response" message.
3082 * This message needs to be matched up with a CTLX on the active
3083 * queue and our state updated accordingly.
3084 *
3085 * Arguments:
3086 * hw ptr to struct hfa384x
3087 * usbin ptr to USB IN packet
3088 * urb_status status of this Bulk-In URB
3089 *
3090 * Returns:
3091 * nothing
3092 *
3093 * Side effects:
3094 *
3095 * Call context:
3096 * interrupt
3097 *----------------------------------------------------------------
3098 */
hfa384x_usbin_ctlx(struct hfa384x * hw,union hfa384x_usbin * usbin,int urb_status)3099 static void hfa384x_usbin_ctlx(struct hfa384x *hw, union hfa384x_usbin *usbin,
3100 int urb_status)
3101 {
3102 struct hfa384x_usbctlx *ctlx;
3103 int run_queue = 0;
3104 unsigned long flags;
3105
3106 retry:
3107 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3108
3109 /* There can be only one CTLX on the active queue
3110 * at any one time, and this is the CTLX that the
3111 * timers are waiting for.
3112 */
3113 if (list_empty(&hw->ctlxq.active))
3114 goto unlock;
3115
3116 /* Remove the "response timeout". It's possible that
3117 * we are already too late, and that the timeout is
3118 * already running. And that's just too bad for us,
3119 * because we could lose our CTLX from the active
3120 * queue here ...
3121 */
3122 if (del_timer(&hw->resptimer) == 0) {
3123 if (hw->resp_timer_done == 0) {
3124 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3125 goto retry;
3126 }
3127 } else {
3128 hw->resp_timer_done = 1;
3129 }
3130
3131 ctlx = get_active_ctlx(hw);
3132
3133 if (urb_status != 0) {
3134 /*
3135 * Bad CTLX, so get rid of it. But we only
3136 * remove it from the active queue if we're no
3137 * longer expecting the OUT URB to complete.
3138 */
3139 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3140 run_queue = 1;
3141 } else {
3142 const __le16 intype = (usbin->type & ~cpu_to_le16(0x8000));
3143
3144 /*
3145 * Check that our message is what we're expecting ...
3146 */
3147 if (ctlx->outbuf.type != intype) {
3148 netdev_warn(hw->wlandev->netdev,
3149 "Expected IN[%d], received IN[%d] - ignored.\n",
3150 le16_to_cpu(ctlx->outbuf.type),
3151 le16_to_cpu(intype));
3152 goto unlock;
3153 }
3154
3155 /* This URB has succeeded, so grab the data ... */
3156 memcpy(&ctlx->inbuf, usbin, sizeof(ctlx->inbuf));
3157
3158 switch (ctlx->state) {
3159 case CTLX_REQ_SUBMITTED:
3160 /*
3161 * We have received our response URB before
3162 * our request has been acknowledged. Odd,
3163 * but our OUT URB is still alive...
3164 */
3165 pr_debug("Causality violation: please reboot Universe\n");
3166 ctlx->state = CTLX_RESP_COMPLETE;
3167 break;
3168
3169 case CTLX_REQ_COMPLETE:
3170 /*
3171 * This is the usual path: our request
3172 * has already been acknowledged, and
3173 * now we have received the reply too.
3174 */
3175 ctlx->state = CTLX_COMPLETE;
3176 unlocked_usbctlx_complete(hw, ctlx);
3177 run_queue = 1;
3178 break;
3179
3180 default:
3181 /*
3182 * Throw this CTLX away ...
3183 */
3184 netdev_err(hw->wlandev->netdev,
3185 "Matched IN URB, CTLX[%d] in invalid state(%s). Discarded.\n",
3186 le16_to_cpu(ctlx->outbuf.type),
3187 ctlxstr(ctlx->state));
3188 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0)
3189 run_queue = 1;
3190 break;
3191 } /* switch */
3192 }
3193
3194 unlock:
3195 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3196
3197 if (run_queue)
3198 hfa384x_usbctlxq_run(hw);
3199 }
3200
3201 /*----------------------------------------------------------------
3202 * hfa384x_usbin_txcompl
3203 *
3204 * At this point we have the results of a previous transmit.
3205 *
3206 * Arguments:
3207 * wlandev wlan device
3208 * usbin ptr to the usb transfer buffer
3209 *
3210 * Returns:
3211 * nothing
3212 *
3213 * Side effects:
3214 *
3215 * Call context:
3216 * interrupt
3217 *----------------------------------------------------------------
3218 */
hfa384x_usbin_txcompl(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3219 static void hfa384x_usbin_txcompl(struct wlandevice *wlandev,
3220 union hfa384x_usbin *usbin)
3221 {
3222 u16 status;
3223
3224 status = le16_to_cpu(usbin->type); /* yeah I know it says type... */
3225
3226 /* Was there an error? */
3227 if (HFA384x_TXSTATUS_ISERROR(status))
3228 prism2sta_ev_txexc(wlandev, status);
3229 else
3230 prism2sta_ev_tx(wlandev, status);
3231 }
3232
3233 /*----------------------------------------------------------------
3234 * hfa384x_usbin_rx
3235 *
3236 * At this point we have a successful received a rx frame packet.
3237 *
3238 * Arguments:
3239 * wlandev wlan device
3240 * usbin ptr to the usb transfer buffer
3241 *
3242 * Returns:
3243 * nothing
3244 *
3245 * Side effects:
3246 *
3247 * Call context:
3248 * interrupt
3249 *----------------------------------------------------------------
3250 */
hfa384x_usbin_rx(struct wlandevice * wlandev,struct sk_buff * skb)3251 static void hfa384x_usbin_rx(struct wlandevice *wlandev, struct sk_buff *skb)
3252 {
3253 union hfa384x_usbin *usbin = (union hfa384x_usbin *)skb->data;
3254 struct hfa384x *hw = wlandev->priv;
3255 int hdrlen;
3256 struct p80211_rxmeta *rxmeta;
3257 u16 data_len;
3258 u16 fc;
3259
3260 /* Byte order convert once up front. */
3261 le16_to_cpus(&usbin->rxfrm.desc.status);
3262 le32_to_cpus(&usbin->rxfrm.desc.time);
3263
3264 /* Now handle frame based on port# */
3265 switch (HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status)) {
3266 case 0:
3267 fc = le16_to_cpu(usbin->rxfrm.desc.frame_control);
3268
3269 /* If exclude and we receive an unencrypted, drop it */
3270 if ((wlandev->hostwep & HOSTWEP_EXCLUDEUNENCRYPTED) &&
3271 !WLAN_GET_FC_ISWEP(fc)) {
3272 break;
3273 }
3274
3275 data_len = le16_to_cpu(usbin->rxfrm.desc.data_len);
3276
3277 /* How much header data do we have? */
3278 hdrlen = p80211_headerlen(fc);
3279
3280 /* Pull off the descriptor */
3281 skb_pull(skb, sizeof(struct hfa384x_rx_frame));
3282
3283 /* Now shunt the header block up against the data block
3284 * with an "overlapping" copy
3285 */
3286 memmove(skb_push(skb, hdrlen),
3287 &usbin->rxfrm.desc.frame_control, hdrlen);
3288
3289 skb->dev = wlandev->netdev;
3290
3291 /* And set the frame length properly */
3292 skb_trim(skb, data_len + hdrlen);
3293
3294 /* The prism2 series does not return the CRC */
3295 memset(skb_put(skb, WLAN_CRC_LEN), 0xff, WLAN_CRC_LEN);
3296
3297 skb_reset_mac_header(skb);
3298
3299 /* Attach the rxmeta, set some stuff */
3300 p80211skb_rxmeta_attach(wlandev, skb);
3301 rxmeta = p80211skb_rxmeta(skb);
3302 rxmeta->mactime = usbin->rxfrm.desc.time;
3303 rxmeta->rxrate = usbin->rxfrm.desc.rate;
3304 rxmeta->signal = usbin->rxfrm.desc.signal - hw->dbmadjust;
3305 rxmeta->noise = usbin->rxfrm.desc.silence - hw->dbmadjust;
3306
3307 p80211netdev_rx(wlandev, skb);
3308
3309 break;
3310
3311 case 7:
3312 if (!HFA384x_RXSTATUS_ISFCSERR(usbin->rxfrm.desc.status)) {
3313 /* Copy to wlansnif skb */
3314 hfa384x_int_rxmonitor(wlandev, &usbin->rxfrm);
3315 dev_kfree_skb(skb);
3316 } else {
3317 pr_debug("Received monitor frame: FCSerr set\n");
3318 }
3319 break;
3320
3321 default:
3322 netdev_warn(hw->wlandev->netdev, "Received frame on unsupported port=%d\n",
3323 HFA384x_RXSTATUS_MACPORT_GET(usbin->rxfrm.desc.status));
3324 break;
3325 }
3326 }
3327
3328 /*----------------------------------------------------------------
3329 * hfa384x_int_rxmonitor
3330 *
3331 * Helper function for int_rx. Handles monitor frames.
3332 * Note that this function allocates space for the FCS and sets it
3333 * to 0xffffffff. The hfa384x doesn't give us the FCS value but the
3334 * higher layers expect it. 0xffffffff is used as a flag to indicate
3335 * the FCS is bogus.
3336 *
3337 * Arguments:
3338 * wlandev wlan device structure
3339 * rxfrm rx descriptor read from card in int_rx
3340 *
3341 * Returns:
3342 * nothing
3343 *
3344 * Side effects:
3345 * Allocates an skb and passes it up via the PF_PACKET interface.
3346 * Call context:
3347 * interrupt
3348 *----------------------------------------------------------------
3349 */
hfa384x_int_rxmonitor(struct wlandevice * wlandev,struct hfa384x_usb_rxfrm * rxfrm)3350 static void hfa384x_int_rxmonitor(struct wlandevice *wlandev,
3351 struct hfa384x_usb_rxfrm *rxfrm)
3352 {
3353 struct hfa384x_rx_frame *rxdesc = &rxfrm->desc;
3354 unsigned int hdrlen = 0;
3355 unsigned int datalen = 0;
3356 unsigned int skblen = 0;
3357 u8 *datap;
3358 u16 fc;
3359 struct sk_buff *skb;
3360 struct hfa384x *hw = wlandev->priv;
3361
3362 /* Remember the status, time, and data_len fields are in host order */
3363 /* Figure out how big the frame is */
3364 fc = le16_to_cpu(rxdesc->frame_control);
3365 hdrlen = p80211_headerlen(fc);
3366 datalen = le16_to_cpu(rxdesc->data_len);
3367
3368 /* Allocate an ind message+framesize skb */
3369 skblen = sizeof(struct p80211_caphdr) + hdrlen + datalen + WLAN_CRC_LEN;
3370
3371 /* sanity check the length */
3372 if (skblen >
3373 (sizeof(struct p80211_caphdr) +
3374 WLAN_HDR_A4_LEN + WLAN_DATA_MAXLEN + WLAN_CRC_LEN)) {
3375 pr_debug("overlen frm: len=%zd\n",
3376 skblen - sizeof(struct p80211_caphdr));
3377 }
3378
3379 skb = dev_alloc_skb(skblen);
3380 if (!skb)
3381 return;
3382
3383 /* only prepend the prism header if in the right mode */
3384 if ((wlandev->netdev->type == ARPHRD_IEEE80211_PRISM) &&
3385 (hw->sniffhdr != 0)) {
3386 struct p80211_caphdr *caphdr;
3387 /* The NEW header format! */
3388 datap = skb_put(skb, sizeof(struct p80211_caphdr));
3389 caphdr = (struct p80211_caphdr *)datap;
3390
3391 caphdr->version = htonl(P80211CAPTURE_VERSION);
3392 caphdr->length = htonl(sizeof(struct p80211_caphdr));
3393 caphdr->mactime = __cpu_to_be64(rxdesc->time * 1000);
3394 caphdr->hosttime = __cpu_to_be64(jiffies);
3395 caphdr->phytype = htonl(4); /* dss_dot11_b */
3396 caphdr->channel = htonl(hw->sniff_channel);
3397 caphdr->datarate = htonl(rxdesc->rate);
3398 caphdr->antenna = htonl(0); /* unknown */
3399 caphdr->priority = htonl(0); /* unknown */
3400 caphdr->ssi_type = htonl(3); /* rssi_raw */
3401 caphdr->ssi_signal = htonl(rxdesc->signal);
3402 caphdr->ssi_noise = htonl(rxdesc->silence);
3403 caphdr->preamble = htonl(0); /* unknown */
3404 caphdr->encoding = htonl(1); /* cck */
3405 }
3406
3407 /* Copy the 802.11 header to the skb
3408 * (ctl frames may be less than a full header)
3409 */
3410 skb_put_data(skb, &rxdesc->frame_control, hdrlen);
3411
3412 /* If any, copy the data from the card to the skb */
3413 if (datalen > 0) {
3414 datap = skb_put_data(skb, rxfrm->data, datalen);
3415
3416 /* check for unencrypted stuff if WEP bit set. */
3417 if (*(datap - hdrlen + 1) & 0x40) /* wep set */
3418 if ((*(datap) == 0xaa) && (*(datap + 1) == 0xaa))
3419 /* clear wep; it's the 802.2 header! */
3420 *(datap - hdrlen + 1) &= 0xbf;
3421 }
3422
3423 if (hw->sniff_fcs) {
3424 /* Set the FCS */
3425 datap = skb_put(skb, WLAN_CRC_LEN);
3426 memset(datap, 0xff, WLAN_CRC_LEN);
3427 }
3428
3429 /* pass it back up */
3430 p80211netdev_rx(wlandev, skb);
3431 }
3432
3433 /*----------------------------------------------------------------
3434 * hfa384x_usbin_info
3435 *
3436 * At this point we have a successful received a Prism2 info frame.
3437 *
3438 * Arguments:
3439 * wlandev wlan device
3440 * usbin ptr to the usb transfer buffer
3441 *
3442 * Returns:
3443 * nothing
3444 *
3445 * Side effects:
3446 *
3447 * Call context:
3448 * interrupt
3449 *----------------------------------------------------------------
3450 */
hfa384x_usbin_info(struct wlandevice * wlandev,union hfa384x_usbin * usbin)3451 static void hfa384x_usbin_info(struct wlandevice *wlandev,
3452 union hfa384x_usbin *usbin)
3453 {
3454 le16_to_cpus(&usbin->infofrm.info.framelen);
3455 prism2sta_ev_info(wlandev, &usbin->infofrm.info);
3456 }
3457
3458 /*----------------------------------------------------------------
3459 * hfa384x_usbout_callback
3460 *
3461 * Callback for URBs on the BULKOUT endpoint.
3462 *
3463 * Arguments:
3464 * urb ptr to the completed urb
3465 *
3466 * Returns:
3467 * nothing
3468 *
3469 * Side effects:
3470 *
3471 * Call context:
3472 * interrupt
3473 *----------------------------------------------------------------
3474 */
hfa384x_usbout_callback(struct urb * urb)3475 static void hfa384x_usbout_callback(struct urb *urb)
3476 {
3477 struct wlandevice *wlandev = urb->context;
3478
3479 #ifdef DEBUG_USB
3480 dbprint_urb(urb);
3481 #endif
3482
3483 if (wlandev && wlandev->netdev) {
3484 switch (urb->status) {
3485 case 0:
3486 prism2sta_ev_alloc(wlandev);
3487 break;
3488
3489 case -EPIPE: {
3490 struct hfa384x *hw = wlandev->priv;
3491
3492 netdev_warn(hw->wlandev->netdev,
3493 "%s tx pipe stalled: requesting reset\n",
3494 wlandev->netdev->name);
3495 if (!test_and_set_bit(WORK_TX_HALT, &hw->usb_flags))
3496 schedule_work(&hw->usb_work);
3497 wlandev->netdev->stats.tx_errors++;
3498 break;
3499 }
3500
3501 case -EPROTO:
3502 case -ETIMEDOUT:
3503 case -EILSEQ: {
3504 struct hfa384x *hw = wlandev->priv;
3505
3506 if (!test_and_set_bit(THROTTLE_TX, &hw->usb_flags) &&
3507 !timer_pending(&hw->throttle)) {
3508 mod_timer(&hw->throttle,
3509 jiffies + THROTTLE_JIFFIES);
3510 }
3511 wlandev->netdev->stats.tx_errors++;
3512 netif_stop_queue(wlandev->netdev);
3513 break;
3514 }
3515
3516 case -ENOENT:
3517 case -ESHUTDOWN:
3518 /* Ignorable errors */
3519 break;
3520
3521 default:
3522 netdev_info(wlandev->netdev, "unknown urb->status=%d\n",
3523 urb->status);
3524 wlandev->netdev->stats.tx_errors++;
3525 break;
3526 } /* switch */
3527 }
3528 }
3529
3530 /*----------------------------------------------------------------
3531 * hfa384x_ctlxout_callback
3532 *
3533 * Callback for control data on the BULKOUT endpoint.
3534 *
3535 * Arguments:
3536 * urb ptr to the completed urb
3537 *
3538 * Returns:
3539 * nothing
3540 *
3541 * Side effects:
3542 *
3543 * Call context:
3544 * interrupt
3545 *----------------------------------------------------------------
3546 */
hfa384x_ctlxout_callback(struct urb * urb)3547 static void hfa384x_ctlxout_callback(struct urb *urb)
3548 {
3549 struct hfa384x *hw = urb->context;
3550 int delete_resptimer = 0;
3551 int timer_ok = 1;
3552 int run_queue = 0;
3553 struct hfa384x_usbctlx *ctlx;
3554 unsigned long flags;
3555
3556 pr_debug("urb->status=%d\n", urb->status);
3557 #ifdef DEBUG_USB
3558 dbprint_urb(urb);
3559 #endif
3560 if ((urb->status == -ESHUTDOWN) ||
3561 (urb->status == -ENODEV) || !hw)
3562 return;
3563
3564 retry:
3565 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3566
3567 /*
3568 * Only one CTLX at a time on the "active" list, and
3569 * none at all if we are unplugged. However, we can
3570 * rely on the disconnect function to clean everything
3571 * up if someone unplugged the adapter.
3572 */
3573 if (list_empty(&hw->ctlxq.active)) {
3574 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3575 return;
3576 }
3577
3578 /*
3579 * Having something on the "active" queue means
3580 * that we have timers to worry about ...
3581 */
3582 if (del_timer(&hw->reqtimer) == 0) {
3583 if (hw->req_timer_done == 0) {
3584 /*
3585 * This timer was actually running while we
3586 * were trying to delete it. Let it terminate
3587 * gracefully instead.
3588 */
3589 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3590 goto retry;
3591 }
3592 } else {
3593 hw->req_timer_done = 1;
3594 }
3595
3596 ctlx = get_active_ctlx(hw);
3597
3598 if (urb->status == 0) {
3599 /* Request portion of a CTLX is successful */
3600 switch (ctlx->state) {
3601 case CTLX_REQ_SUBMITTED:
3602 /* This OUT-ACK received before IN */
3603 ctlx->state = CTLX_REQ_COMPLETE;
3604 break;
3605
3606 case CTLX_RESP_COMPLETE:
3607 /* IN already received before this OUT-ACK,
3608 * so this command must now be complete.
3609 */
3610 ctlx->state = CTLX_COMPLETE;
3611 unlocked_usbctlx_complete(hw, ctlx);
3612 run_queue = 1;
3613 break;
3614
3615 default:
3616 /* This is NOT a valid CTLX "success" state! */
3617 netdev_err(hw->wlandev->netdev,
3618 "Illegal CTLX[%d] success state(%s, %d) in OUT URB\n",
3619 le16_to_cpu(ctlx->outbuf.type),
3620 ctlxstr(ctlx->state), urb->status);
3621 break;
3622 } /* switch */
3623 } else {
3624 /* If the pipe has stalled then we need to reset it */
3625 if ((urb->status == -EPIPE) &&
3626 !test_and_set_bit(WORK_TX_HALT, &hw->usb_flags)) {
3627 netdev_warn(hw->wlandev->netdev,
3628 "%s tx pipe stalled: requesting reset\n",
3629 hw->wlandev->netdev->name);
3630 schedule_work(&hw->usb_work);
3631 }
3632
3633 /* If someone cancels the OUT URB then its status
3634 * should be either -ECONNRESET or -ENOENT.
3635 */
3636 ctlx->state = CTLX_REQ_FAILED;
3637 unlocked_usbctlx_complete(hw, ctlx);
3638 delete_resptimer = 1;
3639 run_queue = 1;
3640 }
3641
3642 delresp:
3643 if (delete_resptimer) {
3644 timer_ok = del_timer(&hw->resptimer);
3645 if (timer_ok != 0)
3646 hw->resp_timer_done = 1;
3647 }
3648
3649 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3650
3651 if (!timer_ok && (hw->resp_timer_done == 0)) {
3652 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3653 goto delresp;
3654 }
3655
3656 if (run_queue)
3657 hfa384x_usbctlxq_run(hw);
3658 }
3659
3660 /*----------------------------------------------------------------
3661 * hfa384x_usbctlx_reqtimerfn
3662 *
3663 * Timer response function for CTLX request timeouts. If this
3664 * function is called, it means that the callback for the OUT
3665 * URB containing a Prism2.x XXX_Request was never called.
3666 *
3667 * Arguments:
3668 * data a ptr to the struct hfa384x
3669 *
3670 * Returns:
3671 * nothing
3672 *
3673 * Side effects:
3674 *
3675 * Call context:
3676 * interrupt
3677 *----------------------------------------------------------------
3678 */
hfa384x_usbctlx_reqtimerfn(struct timer_list * t)3679 static void hfa384x_usbctlx_reqtimerfn(struct timer_list *t)
3680 {
3681 struct hfa384x *hw = from_timer(hw, t, reqtimer);
3682 unsigned long flags;
3683
3684 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3685
3686 hw->req_timer_done = 1;
3687
3688 /* Removing the hardware automatically empties
3689 * the active list ...
3690 */
3691 if (!list_empty(&hw->ctlxq.active)) {
3692 /*
3693 * We must ensure that our URB is removed from
3694 * the system, if it hasn't already expired.
3695 */
3696 hw->ctlx_urb.transfer_flags |= URB_ASYNC_UNLINK;
3697 if (usb_unlink_urb(&hw->ctlx_urb) == -EINPROGRESS) {
3698 struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3699
3700 ctlx->state = CTLX_REQ_FAILED;
3701
3702 /* This URB was active, but has now been
3703 * cancelled. It will now have a status of
3704 * -ECONNRESET in the callback function.
3705 *
3706 * We are cancelling this CTLX, so we're
3707 * not going to need to wait for a response.
3708 * The URB's callback function will check
3709 * that this timer is truly dead.
3710 */
3711 if (del_timer(&hw->resptimer) != 0)
3712 hw->resp_timer_done = 1;
3713 }
3714 }
3715
3716 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3717 }
3718
3719 /*----------------------------------------------------------------
3720 * hfa384x_usbctlx_resptimerfn
3721 *
3722 * Timer response function for CTLX response timeouts. If this
3723 * function is called, it means that the callback for the IN
3724 * URB containing a Prism2.x XXX_Response was never called.
3725 *
3726 * Arguments:
3727 * data a ptr to the struct hfa384x
3728 *
3729 * Returns:
3730 * nothing
3731 *
3732 * Side effects:
3733 *
3734 * Call context:
3735 * interrupt
3736 *----------------------------------------------------------------
3737 */
hfa384x_usbctlx_resptimerfn(struct timer_list * t)3738 static void hfa384x_usbctlx_resptimerfn(struct timer_list *t)
3739 {
3740 struct hfa384x *hw = from_timer(hw, t, resptimer);
3741 unsigned long flags;
3742
3743 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3744
3745 hw->resp_timer_done = 1;
3746
3747 /* The active list will be empty if the
3748 * adapter has been unplugged ...
3749 */
3750 if (!list_empty(&hw->ctlxq.active)) {
3751 struct hfa384x_usbctlx *ctlx = get_active_ctlx(hw);
3752
3753 if (unlocked_usbctlx_cancel_async(hw, ctlx) == 0) {
3754 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3755 hfa384x_usbctlxq_run(hw);
3756 return;
3757 }
3758 }
3759 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3760 }
3761
3762 /*----------------------------------------------------------------
3763 * hfa384x_usb_throttlefn
3764 *
3765 *
3766 * Arguments:
3767 * data ptr to hw
3768 *
3769 * Returns:
3770 * Nothing
3771 *
3772 * Side effects:
3773 *
3774 * Call context:
3775 * Interrupt
3776 *----------------------------------------------------------------
3777 */
hfa384x_usb_throttlefn(struct timer_list * t)3778 static void hfa384x_usb_throttlefn(struct timer_list *t)
3779 {
3780 struct hfa384x *hw = from_timer(hw, t, throttle);
3781 unsigned long flags;
3782
3783 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3784
3785 /*
3786 * We need to check BOTH the RX and the TX throttle controls,
3787 * so we use the bitwise OR instead of the logical OR.
3788 */
3789 pr_debug("flags=0x%lx\n", hw->usb_flags);
3790 if (!hw->wlandev->hwremoved &&
3791 ((test_and_clear_bit(THROTTLE_RX, &hw->usb_flags) &&
3792 !test_and_set_bit(WORK_RX_RESUME, &hw->usb_flags)) |
3793 (test_and_clear_bit(THROTTLE_TX, &hw->usb_flags) &&
3794 !test_and_set_bit(WORK_TX_RESUME, &hw->usb_flags))
3795 )) {
3796 schedule_work(&hw->usb_work);
3797 }
3798
3799 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3800 }
3801
3802 /*----------------------------------------------------------------
3803 * hfa384x_usbctlx_submit
3804 *
3805 * Called from the doxxx functions to submit a CTLX to the queue
3806 *
3807 * Arguments:
3808 * hw ptr to the hw struct
3809 * ctlx ctlx structure to enqueue
3810 *
3811 * Returns:
3812 * -ENODEV if the adapter is unplugged
3813 * 0
3814 *
3815 * Side effects:
3816 *
3817 * Call context:
3818 * process or interrupt
3819 *----------------------------------------------------------------
3820 */
hfa384x_usbctlx_submit(struct hfa384x * hw,struct hfa384x_usbctlx * ctlx)3821 static int hfa384x_usbctlx_submit(struct hfa384x *hw,
3822 struct hfa384x_usbctlx *ctlx)
3823 {
3824 unsigned long flags;
3825
3826 spin_lock_irqsave(&hw->ctlxq.lock, flags);
3827
3828 if (hw->wlandev->hwremoved) {
3829 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3830 return -ENODEV;
3831 }
3832
3833 ctlx->state = CTLX_PENDING;
3834 list_add_tail(&ctlx->list, &hw->ctlxq.pending);
3835 spin_unlock_irqrestore(&hw->ctlxq.lock, flags);
3836 hfa384x_usbctlxq_run(hw);
3837
3838 return 0;
3839 }
3840
3841 /*----------------------------------------------------------------
3842 * hfa384x_isgood_pdrcore
3843 *
3844 * Quick check of PDR codes.
3845 *
3846 * Arguments:
3847 * pdrcode PDR code number (host order)
3848 *
3849 * Returns:
3850 * zero not good.
3851 * one is good.
3852 *
3853 * Side effects:
3854 *
3855 * Call context:
3856 *----------------------------------------------------------------
3857 */
hfa384x_isgood_pdrcode(u16 pdrcode)3858 static int hfa384x_isgood_pdrcode(u16 pdrcode)
3859 {
3860 switch (pdrcode) {
3861 case HFA384x_PDR_END_OF_PDA:
3862 case HFA384x_PDR_PCB_PARTNUM:
3863 case HFA384x_PDR_PDAVER:
3864 case HFA384x_PDR_NIC_SERIAL:
3865 case HFA384x_PDR_MKK_MEASUREMENTS:
3866 case HFA384x_PDR_NIC_RAMSIZE:
3867 case HFA384x_PDR_MFISUPRANGE:
3868 case HFA384x_PDR_CFISUPRANGE:
3869 case HFA384x_PDR_NICID:
3870 case HFA384x_PDR_MAC_ADDRESS:
3871 case HFA384x_PDR_REGDOMAIN:
3872 case HFA384x_PDR_ALLOWED_CHANNEL:
3873 case HFA384x_PDR_DEFAULT_CHANNEL:
3874 case HFA384x_PDR_TEMPTYPE:
3875 case HFA384x_PDR_IFR_SETTING:
3876 case HFA384x_PDR_RFR_SETTING:
3877 case HFA384x_PDR_HFA3861_BASELINE:
3878 case HFA384x_PDR_HFA3861_SHADOW:
3879 case HFA384x_PDR_HFA3861_IFRF:
3880 case HFA384x_PDR_HFA3861_CHCALSP:
3881 case HFA384x_PDR_HFA3861_CHCALI:
3882 case HFA384x_PDR_3842_NIC_CONFIG:
3883 case HFA384x_PDR_USB_ID:
3884 case HFA384x_PDR_PCI_ID:
3885 case HFA384x_PDR_PCI_IFCONF:
3886 case HFA384x_PDR_PCI_PMCONF:
3887 case HFA384x_PDR_RFENRGY:
3888 case HFA384x_PDR_HFA3861_MANF_TESTSP:
3889 case HFA384x_PDR_HFA3861_MANF_TESTI:
3890 /* code is OK */
3891 return 1;
3892 default:
3893 if (pdrcode < 0x1000) {
3894 /* code is OK, but we don't know exactly what it is */
3895 pr_debug("Encountered unknown PDR#=0x%04x, assuming it's ok.\n",
3896 pdrcode);
3897 return 1;
3898 }
3899 break;
3900 }
3901 /* bad code */
3902 pr_debug("Encountered unknown PDR#=0x%04x, (>=0x1000), assuming it's bad.\n",
3903 pdrcode);
3904 return 0;
3905 }
3906