1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81
82 #include "datagram.h"
83 #include "sock_destructor.h"
84
85 struct kmem_cache *skbuff_head_cache __ro_after_init;
86 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
87 #ifdef CONFIG_SKB_EXTENSIONS
88 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
89 #endif
90 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
91 EXPORT_SYMBOL(sysctl_max_skb_frags);
92
93 /**
94 * skb_panic - private function for out-of-line support
95 * @skb: buffer
96 * @sz: size
97 * @addr: address
98 * @msg: skb_over_panic or skb_under_panic
99 *
100 * Out-of-line support for skb_put() and skb_push().
101 * Called via the wrapper skb_over_panic() or skb_under_panic().
102 * Keep out of line to prevent kernel bloat.
103 * __builtin_return_address is not used because it is not always reliable.
104 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])105 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
106 const char msg[])
107 {
108 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
109 msg, addr, skb->len, sz, skb->head, skb->data,
110 (unsigned long)skb->tail, (unsigned long)skb->end,
111 skb->dev ? skb->dev->name : "<NULL>");
112 BUG();
113 }
114
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)115 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
116 {
117 skb_panic(skb, sz, addr, __func__);
118 }
119
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)120 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
121 {
122 skb_panic(skb, sz, addr, __func__);
123 }
124
125 #define NAPI_SKB_CACHE_SIZE 64
126 #define NAPI_SKB_CACHE_BULK 16
127 #define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
128
129 struct napi_alloc_cache {
130 struct page_frag_cache page;
131 unsigned int skb_count;
132 void *skb_cache[NAPI_SKB_CACHE_SIZE];
133 };
134
135 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
136 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
137
__alloc_frag_align(unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)138 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
139 unsigned int align_mask)
140 {
141 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
142
143 return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
144 }
145
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)146 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
147 {
148 fragsz = SKB_DATA_ALIGN(fragsz);
149
150 return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
151 }
152 EXPORT_SYMBOL(__napi_alloc_frag_align);
153
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)154 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
155 {
156 struct page_frag_cache *nc;
157 void *data;
158
159 fragsz = SKB_DATA_ALIGN(fragsz);
160 if (in_hardirq() || irqs_disabled()) {
161 nc = this_cpu_ptr(&netdev_alloc_cache);
162 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
163 } else {
164 local_bh_disable();
165 data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
166 local_bh_enable();
167 }
168 return data;
169 }
170 EXPORT_SYMBOL(__netdev_alloc_frag_align);
171
napi_skb_cache_get(void)172 static struct sk_buff *napi_skb_cache_get(void)
173 {
174 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
175 struct sk_buff *skb;
176
177 if (unlikely(!nc->skb_count))
178 nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
179 GFP_ATOMIC,
180 NAPI_SKB_CACHE_BULK,
181 nc->skb_cache);
182 if (unlikely(!nc->skb_count))
183 return NULL;
184
185 skb = nc->skb_cache[--nc->skb_count];
186 kasan_unpoison_object_data(skbuff_head_cache, skb);
187
188 return skb;
189 }
190
191 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)192 static void __build_skb_around(struct sk_buff *skb, void *data,
193 unsigned int frag_size)
194 {
195 struct skb_shared_info *shinfo;
196 unsigned int size = frag_size ? : ksize(data);
197
198 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
199
200 /* Assumes caller memset cleared SKB */
201 skb->truesize = SKB_TRUESIZE(size);
202 refcount_set(&skb->users, 1);
203 skb->head = data;
204 skb->data = data;
205 skb_reset_tail_pointer(skb);
206 skb->end = skb->tail + size;
207 skb->mac_header = (typeof(skb->mac_header))~0U;
208 skb->transport_header = (typeof(skb->transport_header))~0U;
209
210 /* make sure we initialize shinfo sequentially */
211 shinfo = skb_shinfo(skb);
212 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
213 atomic_set(&shinfo->dataref, 1);
214
215 skb_set_kcov_handle(skb, kcov_common_handle());
216 }
217
218 /**
219 * __build_skb - build a network buffer
220 * @data: data buffer provided by caller
221 * @frag_size: size of data, or 0 if head was kmalloced
222 *
223 * Allocate a new &sk_buff. Caller provides space holding head and
224 * skb_shared_info. @data must have been allocated by kmalloc() only if
225 * @frag_size is 0, otherwise data should come from the page allocator
226 * or vmalloc()
227 * The return is the new skb buffer.
228 * On a failure the return is %NULL, and @data is not freed.
229 * Notes :
230 * Before IO, driver allocates only data buffer where NIC put incoming frame
231 * Driver should add room at head (NET_SKB_PAD) and
232 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
233 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
234 * before giving packet to stack.
235 * RX rings only contains data buffers, not full skbs.
236 */
__build_skb(void * data,unsigned int frag_size)237 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
238 {
239 struct sk_buff *skb;
240
241 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
242 if (unlikely(!skb))
243 return NULL;
244
245 memset(skb, 0, offsetof(struct sk_buff, tail));
246 __build_skb_around(skb, data, frag_size);
247
248 return skb;
249 }
250
251 /* build_skb() is wrapper over __build_skb(), that specifically
252 * takes care of skb->head and skb->pfmemalloc
253 * This means that if @frag_size is not zero, then @data must be backed
254 * by a page fragment, not kmalloc() or vmalloc()
255 */
build_skb(void * data,unsigned int frag_size)256 struct sk_buff *build_skb(void *data, unsigned int frag_size)
257 {
258 struct sk_buff *skb = __build_skb(data, frag_size);
259
260 if (skb && frag_size) {
261 skb->head_frag = 1;
262 if (page_is_pfmemalloc(virt_to_head_page(data)))
263 skb->pfmemalloc = 1;
264 }
265 return skb;
266 }
267 EXPORT_SYMBOL(build_skb);
268
269 /**
270 * build_skb_around - build a network buffer around provided skb
271 * @skb: sk_buff provide by caller, must be memset cleared
272 * @data: data buffer provided by caller
273 * @frag_size: size of data, or 0 if head was kmalloced
274 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)275 struct sk_buff *build_skb_around(struct sk_buff *skb,
276 void *data, unsigned int frag_size)
277 {
278 if (unlikely(!skb))
279 return NULL;
280
281 __build_skb_around(skb, data, frag_size);
282
283 if (frag_size) {
284 skb->head_frag = 1;
285 if (page_is_pfmemalloc(virt_to_head_page(data)))
286 skb->pfmemalloc = 1;
287 }
288 return skb;
289 }
290 EXPORT_SYMBOL(build_skb_around);
291
292 /**
293 * __napi_build_skb - build a network buffer
294 * @data: data buffer provided by caller
295 * @frag_size: size of data, or 0 if head was kmalloced
296 *
297 * Version of __build_skb() that uses NAPI percpu caches to obtain
298 * skbuff_head instead of inplace allocation.
299 *
300 * Returns a new &sk_buff on success, %NULL on allocation failure.
301 */
__napi_build_skb(void * data,unsigned int frag_size)302 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
303 {
304 struct sk_buff *skb;
305
306 skb = napi_skb_cache_get();
307 if (unlikely(!skb))
308 return NULL;
309
310 memset(skb, 0, offsetof(struct sk_buff, tail));
311 __build_skb_around(skb, data, frag_size);
312
313 return skb;
314 }
315
316 /**
317 * napi_build_skb - build a network buffer
318 * @data: data buffer provided by caller
319 * @frag_size: size of data, or 0 if head was kmalloced
320 *
321 * Version of __napi_build_skb() that takes care of skb->head_frag
322 * and skb->pfmemalloc when the data is a page or page fragment.
323 *
324 * Returns a new &sk_buff on success, %NULL on allocation failure.
325 */
napi_build_skb(void * data,unsigned int frag_size)326 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
327 {
328 struct sk_buff *skb = __napi_build_skb(data, frag_size);
329
330 if (likely(skb) && frag_size) {
331 skb->head_frag = 1;
332 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
333 }
334
335 return skb;
336 }
337 EXPORT_SYMBOL(napi_build_skb);
338
339 /*
340 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
341 * the caller if emergency pfmemalloc reserves are being used. If it is and
342 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
343 * may be used. Otherwise, the packet data may be discarded until enough
344 * memory is free
345 */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)346 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
347 bool *pfmemalloc)
348 {
349 void *obj;
350 bool ret_pfmemalloc = false;
351
352 /*
353 * Try a regular allocation, when that fails and we're not entitled
354 * to the reserves, fail.
355 */
356 obj = kmalloc_node_track_caller(size,
357 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
358 node);
359 if (obj || !(gfp_pfmemalloc_allowed(flags)))
360 goto out;
361
362 /* Try again but now we are using pfmemalloc reserves */
363 ret_pfmemalloc = true;
364 obj = kmalloc_node_track_caller(size, flags, node);
365
366 out:
367 if (pfmemalloc)
368 *pfmemalloc = ret_pfmemalloc;
369
370 return obj;
371 }
372
373 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
374 * 'private' fields and also do memory statistics to find all the
375 * [BEEP] leaks.
376 *
377 */
378
379 /**
380 * __alloc_skb - allocate a network buffer
381 * @size: size to allocate
382 * @gfp_mask: allocation mask
383 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
384 * instead of head cache and allocate a cloned (child) skb.
385 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
386 * allocations in case the data is required for writeback
387 * @node: numa node to allocate memory on
388 *
389 * Allocate a new &sk_buff. The returned buffer has no headroom and a
390 * tail room of at least size bytes. The object has a reference count
391 * of one. The return is the buffer. On a failure the return is %NULL.
392 *
393 * Buffers may only be allocated from interrupts using a @gfp_mask of
394 * %GFP_ATOMIC.
395 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)396 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
397 int flags, int node)
398 {
399 struct kmem_cache *cache;
400 struct sk_buff *skb;
401 u8 *data;
402 bool pfmemalloc;
403
404 cache = (flags & SKB_ALLOC_FCLONE)
405 ? skbuff_fclone_cache : skbuff_head_cache;
406
407 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
408 gfp_mask |= __GFP_MEMALLOC;
409
410 /* Get the HEAD */
411 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
412 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
413 skb = napi_skb_cache_get();
414 else
415 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
416 if (unlikely(!skb))
417 return NULL;
418 prefetchw(skb);
419
420 /* We do our best to align skb_shared_info on a separate cache
421 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
422 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
423 * Both skb->head and skb_shared_info are cache line aligned.
424 */
425 size = SKB_DATA_ALIGN(size);
426 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
427 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
428 if (unlikely(!data))
429 goto nodata;
430 /* kmalloc(size) might give us more room than requested.
431 * Put skb_shared_info exactly at the end of allocated zone,
432 * to allow max possible filling before reallocation.
433 */
434 size = SKB_WITH_OVERHEAD(ksize(data));
435 prefetchw(data + size);
436
437 /*
438 * Only clear those fields we need to clear, not those that we will
439 * actually initialise below. Hence, don't put any more fields after
440 * the tail pointer in struct sk_buff!
441 */
442 memset(skb, 0, offsetof(struct sk_buff, tail));
443 __build_skb_around(skb, data, 0);
444 skb->pfmemalloc = pfmemalloc;
445
446 if (flags & SKB_ALLOC_FCLONE) {
447 struct sk_buff_fclones *fclones;
448
449 fclones = container_of(skb, struct sk_buff_fclones, skb1);
450
451 skb->fclone = SKB_FCLONE_ORIG;
452 refcount_set(&fclones->fclone_ref, 1);
453
454 fclones->skb2.fclone = SKB_FCLONE_CLONE;
455 }
456
457 return skb;
458
459 nodata:
460 kmem_cache_free(cache, skb);
461 return NULL;
462 }
463 EXPORT_SYMBOL(__alloc_skb);
464
465 /**
466 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
467 * @dev: network device to receive on
468 * @len: length to allocate
469 * @gfp_mask: get_free_pages mask, passed to alloc_skb
470 *
471 * Allocate a new &sk_buff and assign it a usage count of one. The
472 * buffer has NET_SKB_PAD headroom built in. Users should allocate
473 * the headroom they think they need without accounting for the
474 * built in space. The built in space is used for optimisations.
475 *
476 * %NULL is returned if there is no free memory.
477 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)478 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
479 gfp_t gfp_mask)
480 {
481 struct page_frag_cache *nc;
482 struct sk_buff *skb;
483 bool pfmemalloc;
484 void *data;
485
486 len += NET_SKB_PAD;
487
488 /* If requested length is either too small or too big,
489 * we use kmalloc() for skb->head allocation.
490 */
491 if (len <= SKB_WITH_OVERHEAD(1024) ||
492 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
493 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
494 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
495 if (!skb)
496 goto skb_fail;
497 goto skb_success;
498 }
499
500 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
501 len = SKB_DATA_ALIGN(len);
502
503 if (sk_memalloc_socks())
504 gfp_mask |= __GFP_MEMALLOC;
505
506 if (in_hardirq() || irqs_disabled()) {
507 nc = this_cpu_ptr(&netdev_alloc_cache);
508 data = page_frag_alloc(nc, len, gfp_mask);
509 pfmemalloc = nc->pfmemalloc;
510 } else {
511 local_bh_disable();
512 nc = this_cpu_ptr(&napi_alloc_cache.page);
513 data = page_frag_alloc(nc, len, gfp_mask);
514 pfmemalloc = nc->pfmemalloc;
515 local_bh_enable();
516 }
517
518 if (unlikely(!data))
519 return NULL;
520
521 skb = __build_skb(data, len);
522 if (unlikely(!skb)) {
523 skb_free_frag(data);
524 return NULL;
525 }
526
527 if (pfmemalloc)
528 skb->pfmemalloc = 1;
529 skb->head_frag = 1;
530
531 skb_success:
532 skb_reserve(skb, NET_SKB_PAD);
533 skb->dev = dev;
534
535 skb_fail:
536 return skb;
537 }
538 EXPORT_SYMBOL(__netdev_alloc_skb);
539
540 /**
541 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
542 * @napi: napi instance this buffer was allocated for
543 * @len: length to allocate
544 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
545 *
546 * Allocate a new sk_buff for use in NAPI receive. This buffer will
547 * attempt to allocate the head from a special reserved region used
548 * only for NAPI Rx allocation. By doing this we can save several
549 * CPU cycles by avoiding having to disable and re-enable IRQs.
550 *
551 * %NULL is returned if there is no free memory.
552 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)553 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
554 gfp_t gfp_mask)
555 {
556 struct napi_alloc_cache *nc;
557 struct sk_buff *skb;
558 void *data;
559
560 len += NET_SKB_PAD + NET_IP_ALIGN;
561
562 /* If requested length is either too small or too big,
563 * we use kmalloc() for skb->head allocation.
564 */
565 if (len <= SKB_WITH_OVERHEAD(1024) ||
566 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
567 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
568 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
569 NUMA_NO_NODE);
570 if (!skb)
571 goto skb_fail;
572 goto skb_success;
573 }
574
575 nc = this_cpu_ptr(&napi_alloc_cache);
576 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
577 len = SKB_DATA_ALIGN(len);
578
579 if (sk_memalloc_socks())
580 gfp_mask |= __GFP_MEMALLOC;
581
582 data = page_frag_alloc(&nc->page, len, gfp_mask);
583 if (unlikely(!data))
584 return NULL;
585
586 skb = __napi_build_skb(data, len);
587 if (unlikely(!skb)) {
588 skb_free_frag(data);
589 return NULL;
590 }
591
592 if (nc->page.pfmemalloc)
593 skb->pfmemalloc = 1;
594 skb->head_frag = 1;
595
596 skb_success:
597 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
598 skb->dev = napi->dev;
599
600 skb_fail:
601 return skb;
602 }
603 EXPORT_SYMBOL(__napi_alloc_skb);
604
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)605 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
606 int size, unsigned int truesize)
607 {
608 skb_fill_page_desc(skb, i, page, off, size);
609 skb->len += size;
610 skb->data_len += size;
611 skb->truesize += truesize;
612 }
613 EXPORT_SYMBOL(skb_add_rx_frag);
614
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)615 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
616 unsigned int truesize)
617 {
618 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
619
620 skb_frag_size_add(frag, size);
621 skb->len += size;
622 skb->data_len += size;
623 skb->truesize += truesize;
624 }
625 EXPORT_SYMBOL(skb_coalesce_rx_frag);
626
skb_drop_list(struct sk_buff ** listp)627 static void skb_drop_list(struct sk_buff **listp)
628 {
629 kfree_skb_list(*listp);
630 *listp = NULL;
631 }
632
skb_drop_fraglist(struct sk_buff * skb)633 static inline void skb_drop_fraglist(struct sk_buff *skb)
634 {
635 skb_drop_list(&skb_shinfo(skb)->frag_list);
636 }
637
skb_clone_fraglist(struct sk_buff * skb)638 static void skb_clone_fraglist(struct sk_buff *skb)
639 {
640 struct sk_buff *list;
641
642 skb_walk_frags(skb, list)
643 skb_get(list);
644 }
645
skb_free_head(struct sk_buff * skb)646 static void skb_free_head(struct sk_buff *skb)
647 {
648 unsigned char *head = skb->head;
649
650 if (skb->head_frag) {
651 if (skb_pp_recycle(skb, head))
652 return;
653 skb_free_frag(head);
654 } else {
655 kfree(head);
656 }
657 }
658
skb_release_data(struct sk_buff * skb)659 static void skb_release_data(struct sk_buff *skb)
660 {
661 struct skb_shared_info *shinfo = skb_shinfo(skb);
662 int i;
663
664 if (skb->cloned &&
665 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
666 &shinfo->dataref))
667 goto exit;
668
669 skb_zcopy_clear(skb, true);
670
671 for (i = 0; i < shinfo->nr_frags; i++)
672 __skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
673
674 if (shinfo->frag_list)
675 kfree_skb_list(shinfo->frag_list);
676
677 skb_free_head(skb);
678 exit:
679 /* When we clone an SKB we copy the reycling bit. The pp_recycle
680 * bit is only set on the head though, so in order to avoid races
681 * while trying to recycle fragments on __skb_frag_unref() we need
682 * to make one SKB responsible for triggering the recycle path.
683 * So disable the recycling bit if an SKB is cloned and we have
684 * additional references to to the fragmented part of the SKB.
685 * Eventually the last SKB will have the recycling bit set and it's
686 * dataref set to 0, which will trigger the recycling
687 */
688 skb->pp_recycle = 0;
689 }
690
691 /*
692 * Free an skbuff by memory without cleaning the state.
693 */
kfree_skbmem(struct sk_buff * skb)694 static void kfree_skbmem(struct sk_buff *skb)
695 {
696 struct sk_buff_fclones *fclones;
697
698 switch (skb->fclone) {
699 case SKB_FCLONE_UNAVAILABLE:
700 kmem_cache_free(skbuff_head_cache, skb);
701 return;
702
703 case SKB_FCLONE_ORIG:
704 fclones = container_of(skb, struct sk_buff_fclones, skb1);
705
706 /* We usually free the clone (TX completion) before original skb
707 * This test would have no chance to be true for the clone,
708 * while here, branch prediction will be good.
709 */
710 if (refcount_read(&fclones->fclone_ref) == 1)
711 goto fastpath;
712 break;
713
714 default: /* SKB_FCLONE_CLONE */
715 fclones = container_of(skb, struct sk_buff_fclones, skb2);
716 break;
717 }
718 if (!refcount_dec_and_test(&fclones->fclone_ref))
719 return;
720 fastpath:
721 kmem_cache_free(skbuff_fclone_cache, fclones);
722 }
723
skb_release_head_state(struct sk_buff * skb)724 void skb_release_head_state(struct sk_buff *skb)
725 {
726 skb_dst_drop(skb);
727 if (skb->destructor) {
728 WARN_ON(in_hardirq());
729 skb->destructor(skb);
730 }
731 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
732 nf_conntrack_put(skb_nfct(skb));
733 #endif
734 skb_ext_put(skb);
735 }
736
737 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)738 static void skb_release_all(struct sk_buff *skb)
739 {
740 skb_release_head_state(skb);
741 if (likely(skb->head))
742 skb_release_data(skb);
743 }
744
745 /**
746 * __kfree_skb - private function
747 * @skb: buffer
748 *
749 * Free an sk_buff. Release anything attached to the buffer.
750 * Clean the state. This is an internal helper function. Users should
751 * always call kfree_skb
752 */
753
__kfree_skb(struct sk_buff * skb)754 void __kfree_skb(struct sk_buff *skb)
755 {
756 skb_release_all(skb);
757 kfree_skbmem(skb);
758 }
759 EXPORT_SYMBOL(__kfree_skb);
760
761 /**
762 * kfree_skb - free an sk_buff
763 * @skb: buffer to free
764 *
765 * Drop a reference to the buffer and free it if the usage count has
766 * hit zero.
767 */
kfree_skb(struct sk_buff * skb)768 void kfree_skb(struct sk_buff *skb)
769 {
770 if (!skb_unref(skb))
771 return;
772
773 trace_kfree_skb(skb, __builtin_return_address(0));
774 __kfree_skb(skb);
775 }
776 EXPORT_SYMBOL(kfree_skb);
777
kfree_skb_list(struct sk_buff * segs)778 void kfree_skb_list(struct sk_buff *segs)
779 {
780 while (segs) {
781 struct sk_buff *next = segs->next;
782
783 kfree_skb(segs);
784 segs = next;
785 }
786 }
787 EXPORT_SYMBOL(kfree_skb_list);
788
789 /* Dump skb information and contents.
790 *
791 * Must only be called from net_ratelimit()-ed paths.
792 *
793 * Dumps whole packets if full_pkt, only headers otherwise.
794 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)795 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
796 {
797 struct skb_shared_info *sh = skb_shinfo(skb);
798 struct net_device *dev = skb->dev;
799 struct sock *sk = skb->sk;
800 struct sk_buff *list_skb;
801 bool has_mac, has_trans;
802 int headroom, tailroom;
803 int i, len, seg_len;
804
805 if (full_pkt)
806 len = skb->len;
807 else
808 len = min_t(int, skb->len, MAX_HEADER + 128);
809
810 headroom = skb_headroom(skb);
811 tailroom = skb_tailroom(skb);
812
813 has_mac = skb_mac_header_was_set(skb);
814 has_trans = skb_transport_header_was_set(skb);
815
816 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
817 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
818 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
819 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
820 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
821 level, skb->len, headroom, skb_headlen(skb), tailroom,
822 has_mac ? skb->mac_header : -1,
823 has_mac ? skb_mac_header_len(skb) : -1,
824 skb->network_header,
825 has_trans ? skb_network_header_len(skb) : -1,
826 has_trans ? skb->transport_header : -1,
827 sh->tx_flags, sh->nr_frags,
828 sh->gso_size, sh->gso_type, sh->gso_segs,
829 skb->csum, skb->ip_summed, skb->csum_complete_sw,
830 skb->csum_valid, skb->csum_level,
831 skb->hash, skb->sw_hash, skb->l4_hash,
832 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
833
834 if (dev)
835 printk("%sdev name=%s feat=0x%pNF\n",
836 level, dev->name, &dev->features);
837 if (sk)
838 printk("%ssk family=%hu type=%u proto=%u\n",
839 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
840
841 if (full_pkt && headroom)
842 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
843 16, 1, skb->head, headroom, false);
844
845 seg_len = min_t(int, skb_headlen(skb), len);
846 if (seg_len)
847 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
848 16, 1, skb->data, seg_len, false);
849 len -= seg_len;
850
851 if (full_pkt && tailroom)
852 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
853 16, 1, skb_tail_pointer(skb), tailroom, false);
854
855 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
856 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
857 u32 p_off, p_len, copied;
858 struct page *p;
859 u8 *vaddr;
860
861 skb_frag_foreach_page(frag, skb_frag_off(frag),
862 skb_frag_size(frag), p, p_off, p_len,
863 copied) {
864 seg_len = min_t(int, p_len, len);
865 vaddr = kmap_atomic(p);
866 print_hex_dump(level, "skb frag: ",
867 DUMP_PREFIX_OFFSET,
868 16, 1, vaddr + p_off, seg_len, false);
869 kunmap_atomic(vaddr);
870 len -= seg_len;
871 if (!len)
872 break;
873 }
874 }
875
876 if (full_pkt && skb_has_frag_list(skb)) {
877 printk("skb fraglist:\n");
878 skb_walk_frags(skb, list_skb)
879 skb_dump(level, list_skb, true);
880 }
881 }
882 EXPORT_SYMBOL(skb_dump);
883
884 /**
885 * skb_tx_error - report an sk_buff xmit error
886 * @skb: buffer that triggered an error
887 *
888 * Report xmit error if a device callback is tracking this skb.
889 * skb must be freed afterwards.
890 */
skb_tx_error(struct sk_buff * skb)891 void skb_tx_error(struct sk_buff *skb)
892 {
893 skb_zcopy_clear(skb, true);
894 }
895 EXPORT_SYMBOL(skb_tx_error);
896
897 #ifdef CONFIG_TRACEPOINTS
898 /**
899 * consume_skb - free an skbuff
900 * @skb: buffer to free
901 *
902 * Drop a ref to the buffer and free it if the usage count has hit zero
903 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
904 * is being dropped after a failure and notes that
905 */
consume_skb(struct sk_buff * skb)906 void consume_skb(struct sk_buff *skb)
907 {
908 if (!skb_unref(skb))
909 return;
910
911 trace_consume_skb(skb);
912 __kfree_skb(skb);
913 }
914 EXPORT_SYMBOL(consume_skb);
915 #endif
916
917 /**
918 * __consume_stateless_skb - free an skbuff, assuming it is stateless
919 * @skb: buffer to free
920 *
921 * Alike consume_skb(), but this variant assumes that this is the last
922 * skb reference and all the head states have been already dropped
923 */
__consume_stateless_skb(struct sk_buff * skb)924 void __consume_stateless_skb(struct sk_buff *skb)
925 {
926 trace_consume_skb(skb);
927 skb_release_data(skb);
928 kfree_skbmem(skb);
929 }
930
napi_skb_cache_put(struct sk_buff * skb)931 static void napi_skb_cache_put(struct sk_buff *skb)
932 {
933 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
934 u32 i;
935
936 kasan_poison_object_data(skbuff_head_cache, skb);
937 nc->skb_cache[nc->skb_count++] = skb;
938
939 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
940 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
941 kasan_unpoison_object_data(skbuff_head_cache,
942 nc->skb_cache[i]);
943
944 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
945 nc->skb_cache + NAPI_SKB_CACHE_HALF);
946 nc->skb_count = NAPI_SKB_CACHE_HALF;
947 }
948 }
949
__kfree_skb_defer(struct sk_buff * skb)950 void __kfree_skb_defer(struct sk_buff *skb)
951 {
952 skb_release_all(skb);
953 napi_skb_cache_put(skb);
954 }
955
napi_skb_free_stolen_head(struct sk_buff * skb)956 void napi_skb_free_stolen_head(struct sk_buff *skb)
957 {
958 if (unlikely(skb->slow_gro)) {
959 nf_reset_ct(skb);
960 skb_dst_drop(skb);
961 skb_ext_put(skb);
962 skb_orphan(skb);
963 skb->slow_gro = 0;
964 }
965 napi_skb_cache_put(skb);
966 }
967
napi_consume_skb(struct sk_buff * skb,int budget)968 void napi_consume_skb(struct sk_buff *skb, int budget)
969 {
970 /* Zero budget indicate non-NAPI context called us, like netpoll */
971 if (unlikely(!budget)) {
972 dev_consume_skb_any(skb);
973 return;
974 }
975
976 lockdep_assert_in_softirq();
977
978 if (!skb_unref(skb))
979 return;
980
981 /* if reaching here SKB is ready to free */
982 trace_consume_skb(skb);
983
984 /* if SKB is a clone, don't handle this case */
985 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
986 __kfree_skb(skb);
987 return;
988 }
989
990 skb_release_all(skb);
991 napi_skb_cache_put(skb);
992 }
993 EXPORT_SYMBOL(napi_consume_skb);
994
995 /* Make sure a field is enclosed inside headers_start/headers_end section */
996 #define CHECK_SKB_FIELD(field) \
997 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
998 offsetof(struct sk_buff, headers_start)); \
999 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
1000 offsetof(struct sk_buff, headers_end)); \
1001
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1002 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1003 {
1004 new->tstamp = old->tstamp;
1005 /* We do not copy old->sk */
1006 new->dev = old->dev;
1007 memcpy(new->cb, old->cb, sizeof(old->cb));
1008 skb_dst_copy(new, old);
1009 __skb_ext_copy(new, old);
1010 __nf_copy(new, old, false);
1011
1012 /* Note : this field could be in headers_start/headers_end section
1013 * It is not yet because we do not want to have a 16 bit hole
1014 */
1015 new->queue_mapping = old->queue_mapping;
1016
1017 memcpy(&new->headers_start, &old->headers_start,
1018 offsetof(struct sk_buff, headers_end) -
1019 offsetof(struct sk_buff, headers_start));
1020 CHECK_SKB_FIELD(protocol);
1021 CHECK_SKB_FIELD(csum);
1022 CHECK_SKB_FIELD(hash);
1023 CHECK_SKB_FIELD(priority);
1024 CHECK_SKB_FIELD(skb_iif);
1025 CHECK_SKB_FIELD(vlan_proto);
1026 CHECK_SKB_FIELD(vlan_tci);
1027 CHECK_SKB_FIELD(transport_header);
1028 CHECK_SKB_FIELD(network_header);
1029 CHECK_SKB_FIELD(mac_header);
1030 CHECK_SKB_FIELD(inner_protocol);
1031 CHECK_SKB_FIELD(inner_transport_header);
1032 CHECK_SKB_FIELD(inner_network_header);
1033 CHECK_SKB_FIELD(inner_mac_header);
1034 CHECK_SKB_FIELD(mark);
1035 #ifdef CONFIG_NETWORK_SECMARK
1036 CHECK_SKB_FIELD(secmark);
1037 #endif
1038 #ifdef CONFIG_NET_RX_BUSY_POLL
1039 CHECK_SKB_FIELD(napi_id);
1040 #endif
1041 #ifdef CONFIG_XPS
1042 CHECK_SKB_FIELD(sender_cpu);
1043 #endif
1044 #ifdef CONFIG_NET_SCHED
1045 CHECK_SKB_FIELD(tc_index);
1046 #endif
1047
1048 }
1049
1050 /*
1051 * You should not add any new code to this function. Add it to
1052 * __copy_skb_header above instead.
1053 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1054 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1055 {
1056 #define C(x) n->x = skb->x
1057
1058 n->next = n->prev = NULL;
1059 n->sk = NULL;
1060 __copy_skb_header(n, skb);
1061
1062 C(len);
1063 C(data_len);
1064 C(mac_len);
1065 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1066 n->cloned = 1;
1067 n->nohdr = 0;
1068 n->peeked = 0;
1069 C(pfmemalloc);
1070 C(pp_recycle);
1071 n->destructor = NULL;
1072 C(tail);
1073 C(end);
1074 C(head);
1075 C(head_frag);
1076 C(data);
1077 C(truesize);
1078 refcount_set(&n->users, 1);
1079
1080 atomic_inc(&(skb_shinfo(skb)->dataref));
1081 skb->cloned = 1;
1082
1083 return n;
1084 #undef C
1085 }
1086
1087 /**
1088 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1089 * @first: first sk_buff of the msg
1090 */
alloc_skb_for_msg(struct sk_buff * first)1091 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1092 {
1093 struct sk_buff *n;
1094
1095 n = alloc_skb(0, GFP_ATOMIC);
1096 if (!n)
1097 return NULL;
1098
1099 n->len = first->len;
1100 n->data_len = first->len;
1101 n->truesize = first->truesize;
1102
1103 skb_shinfo(n)->frag_list = first;
1104
1105 __copy_skb_header(n, first);
1106 n->destructor = NULL;
1107
1108 return n;
1109 }
1110 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1111
1112 /**
1113 * skb_morph - morph one skb into another
1114 * @dst: the skb to receive the contents
1115 * @src: the skb to supply the contents
1116 *
1117 * This is identical to skb_clone except that the target skb is
1118 * supplied by the user.
1119 *
1120 * The target skb is returned upon exit.
1121 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1122 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1123 {
1124 skb_release_all(dst);
1125 return __skb_clone(dst, src);
1126 }
1127 EXPORT_SYMBOL_GPL(skb_morph);
1128
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1129 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1130 {
1131 unsigned long max_pg, num_pg, new_pg, old_pg;
1132 struct user_struct *user;
1133
1134 if (capable(CAP_IPC_LOCK) || !size)
1135 return 0;
1136
1137 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1138 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1139 user = mmp->user ? : current_user();
1140
1141 do {
1142 old_pg = atomic_long_read(&user->locked_vm);
1143 new_pg = old_pg + num_pg;
1144 if (new_pg > max_pg)
1145 return -ENOBUFS;
1146 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1147 old_pg);
1148
1149 if (!mmp->user) {
1150 mmp->user = get_uid(user);
1151 mmp->num_pg = num_pg;
1152 } else {
1153 mmp->num_pg += num_pg;
1154 }
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1159
mm_unaccount_pinned_pages(struct mmpin * mmp)1160 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1161 {
1162 if (mmp->user) {
1163 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1164 free_uid(mmp->user);
1165 }
1166 }
1167 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1168
msg_zerocopy_alloc(struct sock * sk,size_t size)1169 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1170 {
1171 struct ubuf_info *uarg;
1172 struct sk_buff *skb;
1173
1174 WARN_ON_ONCE(!in_task());
1175
1176 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1177 if (!skb)
1178 return NULL;
1179
1180 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1181 uarg = (void *)skb->cb;
1182 uarg->mmp.user = NULL;
1183
1184 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1185 kfree_skb(skb);
1186 return NULL;
1187 }
1188
1189 uarg->callback = msg_zerocopy_callback;
1190 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1191 uarg->len = 1;
1192 uarg->bytelen = size;
1193 uarg->zerocopy = 1;
1194 uarg->flags = SKBFL_ZEROCOPY_FRAG;
1195 refcount_set(&uarg->refcnt, 1);
1196 sock_hold(sk);
1197
1198 return uarg;
1199 }
1200 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1201
skb_from_uarg(struct ubuf_info * uarg)1202 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1203 {
1204 return container_of((void *)uarg, struct sk_buff, cb);
1205 }
1206
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1207 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1208 struct ubuf_info *uarg)
1209 {
1210 if (uarg) {
1211 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1212 u32 bytelen, next;
1213
1214 /* realloc only when socket is locked (TCP, UDP cork),
1215 * so uarg->len and sk_zckey access is serialized
1216 */
1217 if (!sock_owned_by_user(sk)) {
1218 WARN_ON_ONCE(1);
1219 return NULL;
1220 }
1221
1222 bytelen = uarg->bytelen + size;
1223 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1224 /* TCP can create new skb to attach new uarg */
1225 if (sk->sk_type == SOCK_STREAM)
1226 goto new_alloc;
1227 return NULL;
1228 }
1229
1230 next = (u32)atomic_read(&sk->sk_zckey);
1231 if ((u32)(uarg->id + uarg->len) == next) {
1232 if (mm_account_pinned_pages(&uarg->mmp, size))
1233 return NULL;
1234 uarg->len++;
1235 uarg->bytelen = bytelen;
1236 atomic_set(&sk->sk_zckey, ++next);
1237
1238 /* no extra ref when appending to datagram (MSG_MORE) */
1239 if (sk->sk_type == SOCK_STREAM)
1240 net_zcopy_get(uarg);
1241
1242 return uarg;
1243 }
1244 }
1245
1246 new_alloc:
1247 return msg_zerocopy_alloc(sk, size);
1248 }
1249 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1250
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1251 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1252 {
1253 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1254 u32 old_lo, old_hi;
1255 u64 sum_len;
1256
1257 old_lo = serr->ee.ee_info;
1258 old_hi = serr->ee.ee_data;
1259 sum_len = old_hi - old_lo + 1ULL + len;
1260
1261 if (sum_len >= (1ULL << 32))
1262 return false;
1263
1264 if (lo != old_hi + 1)
1265 return false;
1266
1267 serr->ee.ee_data += len;
1268 return true;
1269 }
1270
__msg_zerocopy_callback(struct ubuf_info * uarg)1271 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1272 {
1273 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1274 struct sock_exterr_skb *serr;
1275 struct sock *sk = skb->sk;
1276 struct sk_buff_head *q;
1277 unsigned long flags;
1278 bool is_zerocopy;
1279 u32 lo, hi;
1280 u16 len;
1281
1282 mm_unaccount_pinned_pages(&uarg->mmp);
1283
1284 /* if !len, there was only 1 call, and it was aborted
1285 * so do not queue a completion notification
1286 */
1287 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1288 goto release;
1289
1290 len = uarg->len;
1291 lo = uarg->id;
1292 hi = uarg->id + len - 1;
1293 is_zerocopy = uarg->zerocopy;
1294
1295 serr = SKB_EXT_ERR(skb);
1296 memset(serr, 0, sizeof(*serr));
1297 serr->ee.ee_errno = 0;
1298 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1299 serr->ee.ee_data = hi;
1300 serr->ee.ee_info = lo;
1301 if (!is_zerocopy)
1302 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1303
1304 q = &sk->sk_error_queue;
1305 spin_lock_irqsave(&q->lock, flags);
1306 tail = skb_peek_tail(q);
1307 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1308 !skb_zerocopy_notify_extend(tail, lo, len)) {
1309 __skb_queue_tail(q, skb);
1310 skb = NULL;
1311 }
1312 spin_unlock_irqrestore(&q->lock, flags);
1313
1314 sk_error_report(sk);
1315
1316 release:
1317 consume_skb(skb);
1318 sock_put(sk);
1319 }
1320
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1321 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1322 bool success)
1323 {
1324 uarg->zerocopy = uarg->zerocopy & success;
1325
1326 if (refcount_dec_and_test(&uarg->refcnt))
1327 __msg_zerocopy_callback(uarg);
1328 }
1329 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1330
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1331 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1332 {
1333 struct sock *sk = skb_from_uarg(uarg)->sk;
1334
1335 atomic_dec(&sk->sk_zckey);
1336 uarg->len--;
1337
1338 if (have_uref)
1339 msg_zerocopy_callback(NULL, uarg, true);
1340 }
1341 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1342
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1343 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1344 {
1345 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1346 }
1347 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1348
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1349 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1350 struct msghdr *msg, int len,
1351 struct ubuf_info *uarg)
1352 {
1353 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1354 struct iov_iter orig_iter = msg->msg_iter;
1355 int err, orig_len = skb->len;
1356
1357 /* An skb can only point to one uarg. This edge case happens when
1358 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1359 */
1360 if (orig_uarg && uarg != orig_uarg)
1361 return -EEXIST;
1362
1363 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1364 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1365 struct sock *save_sk = skb->sk;
1366
1367 /* Streams do not free skb on error. Reset to prev state. */
1368 msg->msg_iter = orig_iter;
1369 skb->sk = sk;
1370 ___pskb_trim(skb, orig_len);
1371 skb->sk = save_sk;
1372 return err;
1373 }
1374
1375 skb_zcopy_set(skb, uarg, NULL);
1376 return skb->len - orig_len;
1377 }
1378 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1379
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1380 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1381 gfp_t gfp_mask)
1382 {
1383 if (skb_zcopy(orig)) {
1384 if (skb_zcopy(nskb)) {
1385 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1386 if (!gfp_mask) {
1387 WARN_ON_ONCE(1);
1388 return -ENOMEM;
1389 }
1390 if (skb_uarg(nskb) == skb_uarg(orig))
1391 return 0;
1392 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1393 return -EIO;
1394 }
1395 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1396 }
1397 return 0;
1398 }
1399
1400 /**
1401 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1402 * @skb: the skb to modify
1403 * @gfp_mask: allocation priority
1404 *
1405 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1406 * It will copy all frags into kernel and drop the reference
1407 * to userspace pages.
1408 *
1409 * If this function is called from an interrupt gfp_mask() must be
1410 * %GFP_ATOMIC.
1411 *
1412 * Returns 0 on success or a negative error code on failure
1413 * to allocate kernel memory to copy to.
1414 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1415 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1416 {
1417 int num_frags = skb_shinfo(skb)->nr_frags;
1418 struct page *page, *head = NULL;
1419 int i, new_frags;
1420 u32 d_off;
1421
1422 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1423 return -EINVAL;
1424
1425 if (!num_frags)
1426 goto release;
1427
1428 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1429 for (i = 0; i < new_frags; i++) {
1430 page = alloc_page(gfp_mask);
1431 if (!page) {
1432 while (head) {
1433 struct page *next = (struct page *)page_private(head);
1434 put_page(head);
1435 head = next;
1436 }
1437 return -ENOMEM;
1438 }
1439 set_page_private(page, (unsigned long)head);
1440 head = page;
1441 }
1442
1443 page = head;
1444 d_off = 0;
1445 for (i = 0; i < num_frags; i++) {
1446 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1447 u32 p_off, p_len, copied;
1448 struct page *p;
1449 u8 *vaddr;
1450
1451 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1452 p, p_off, p_len, copied) {
1453 u32 copy, done = 0;
1454 vaddr = kmap_atomic(p);
1455
1456 while (done < p_len) {
1457 if (d_off == PAGE_SIZE) {
1458 d_off = 0;
1459 page = (struct page *)page_private(page);
1460 }
1461 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1462 memcpy(page_address(page) + d_off,
1463 vaddr + p_off + done, copy);
1464 done += copy;
1465 d_off += copy;
1466 }
1467 kunmap_atomic(vaddr);
1468 }
1469 }
1470
1471 /* skb frags release userspace buffers */
1472 for (i = 0; i < num_frags; i++)
1473 skb_frag_unref(skb, i);
1474
1475 /* skb frags point to kernel buffers */
1476 for (i = 0; i < new_frags - 1; i++) {
1477 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1478 head = (struct page *)page_private(head);
1479 }
1480 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1481 skb_shinfo(skb)->nr_frags = new_frags;
1482
1483 release:
1484 skb_zcopy_clear(skb, false);
1485 return 0;
1486 }
1487 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1488
1489 /**
1490 * skb_clone - duplicate an sk_buff
1491 * @skb: buffer to clone
1492 * @gfp_mask: allocation priority
1493 *
1494 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1495 * copies share the same packet data but not structure. The new
1496 * buffer has a reference count of 1. If the allocation fails the
1497 * function returns %NULL otherwise the new buffer is returned.
1498 *
1499 * If this function is called from an interrupt gfp_mask() must be
1500 * %GFP_ATOMIC.
1501 */
1502
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1503 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1504 {
1505 struct sk_buff_fclones *fclones = container_of(skb,
1506 struct sk_buff_fclones,
1507 skb1);
1508 struct sk_buff *n;
1509
1510 if (skb_orphan_frags(skb, gfp_mask))
1511 return NULL;
1512
1513 if (skb->fclone == SKB_FCLONE_ORIG &&
1514 refcount_read(&fclones->fclone_ref) == 1) {
1515 n = &fclones->skb2;
1516 refcount_set(&fclones->fclone_ref, 2);
1517 } else {
1518 if (skb_pfmemalloc(skb))
1519 gfp_mask |= __GFP_MEMALLOC;
1520
1521 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1522 if (!n)
1523 return NULL;
1524
1525 n->fclone = SKB_FCLONE_UNAVAILABLE;
1526 }
1527
1528 return __skb_clone(n, skb);
1529 }
1530 EXPORT_SYMBOL(skb_clone);
1531
skb_headers_offset_update(struct sk_buff * skb,int off)1532 void skb_headers_offset_update(struct sk_buff *skb, int off)
1533 {
1534 /* Only adjust this if it actually is csum_start rather than csum */
1535 if (skb->ip_summed == CHECKSUM_PARTIAL)
1536 skb->csum_start += off;
1537 /* {transport,network,mac}_header and tail are relative to skb->head */
1538 skb->transport_header += off;
1539 skb->network_header += off;
1540 if (skb_mac_header_was_set(skb))
1541 skb->mac_header += off;
1542 skb->inner_transport_header += off;
1543 skb->inner_network_header += off;
1544 skb->inner_mac_header += off;
1545 }
1546 EXPORT_SYMBOL(skb_headers_offset_update);
1547
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1548 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1549 {
1550 __copy_skb_header(new, old);
1551
1552 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1553 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1554 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1555 }
1556 EXPORT_SYMBOL(skb_copy_header);
1557
skb_alloc_rx_flag(const struct sk_buff * skb)1558 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1559 {
1560 if (skb_pfmemalloc(skb))
1561 return SKB_ALLOC_RX;
1562 return 0;
1563 }
1564
1565 /**
1566 * skb_copy - create private copy of an sk_buff
1567 * @skb: buffer to copy
1568 * @gfp_mask: allocation priority
1569 *
1570 * Make a copy of both an &sk_buff and its data. This is used when the
1571 * caller wishes to modify the data and needs a private copy of the
1572 * data to alter. Returns %NULL on failure or the pointer to the buffer
1573 * on success. The returned buffer has a reference count of 1.
1574 *
1575 * As by-product this function converts non-linear &sk_buff to linear
1576 * one, so that &sk_buff becomes completely private and caller is allowed
1577 * to modify all the data of returned buffer. This means that this
1578 * function is not recommended for use in circumstances when only
1579 * header is going to be modified. Use pskb_copy() instead.
1580 */
1581
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1582 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1583 {
1584 int headerlen = skb_headroom(skb);
1585 unsigned int size = skb_end_offset(skb) + skb->data_len;
1586 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1587 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1588
1589 if (!n)
1590 return NULL;
1591
1592 /* Set the data pointer */
1593 skb_reserve(n, headerlen);
1594 /* Set the tail pointer and length */
1595 skb_put(n, skb->len);
1596
1597 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1598
1599 skb_copy_header(n, skb);
1600 return n;
1601 }
1602 EXPORT_SYMBOL(skb_copy);
1603
1604 /**
1605 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1606 * @skb: buffer to copy
1607 * @headroom: headroom of new skb
1608 * @gfp_mask: allocation priority
1609 * @fclone: if true allocate the copy of the skb from the fclone
1610 * cache instead of the head cache; it is recommended to set this
1611 * to true for the cases where the copy will likely be cloned
1612 *
1613 * Make a copy of both an &sk_buff and part of its data, located
1614 * in header. Fragmented data remain shared. This is used when
1615 * the caller wishes to modify only header of &sk_buff and needs
1616 * private copy of the header to alter. Returns %NULL on failure
1617 * or the pointer to the buffer on success.
1618 * The returned buffer has a reference count of 1.
1619 */
1620
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1621 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1622 gfp_t gfp_mask, bool fclone)
1623 {
1624 unsigned int size = skb_headlen(skb) + headroom;
1625 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1626 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1627
1628 if (!n)
1629 goto out;
1630
1631 /* Set the data pointer */
1632 skb_reserve(n, headroom);
1633 /* Set the tail pointer and length */
1634 skb_put(n, skb_headlen(skb));
1635 /* Copy the bytes */
1636 skb_copy_from_linear_data(skb, n->data, n->len);
1637
1638 n->truesize += skb->data_len;
1639 n->data_len = skb->data_len;
1640 n->len = skb->len;
1641
1642 if (skb_shinfo(skb)->nr_frags) {
1643 int i;
1644
1645 if (skb_orphan_frags(skb, gfp_mask) ||
1646 skb_zerocopy_clone(n, skb, gfp_mask)) {
1647 kfree_skb(n);
1648 n = NULL;
1649 goto out;
1650 }
1651 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1652 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1653 skb_frag_ref(skb, i);
1654 }
1655 skb_shinfo(n)->nr_frags = i;
1656 }
1657
1658 if (skb_has_frag_list(skb)) {
1659 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1660 skb_clone_fraglist(n);
1661 }
1662
1663 skb_copy_header(n, skb);
1664 out:
1665 return n;
1666 }
1667 EXPORT_SYMBOL(__pskb_copy_fclone);
1668
1669 /**
1670 * pskb_expand_head - reallocate header of &sk_buff
1671 * @skb: buffer to reallocate
1672 * @nhead: room to add at head
1673 * @ntail: room to add at tail
1674 * @gfp_mask: allocation priority
1675 *
1676 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1677 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1678 * reference count of 1. Returns zero in the case of success or error,
1679 * if expansion failed. In the last case, &sk_buff is not changed.
1680 *
1681 * All the pointers pointing into skb header may change and must be
1682 * reloaded after call to this function.
1683 */
1684
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1685 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1686 gfp_t gfp_mask)
1687 {
1688 int i, osize = skb_end_offset(skb);
1689 int size = osize + nhead + ntail;
1690 long off;
1691 u8 *data;
1692
1693 BUG_ON(nhead < 0);
1694
1695 BUG_ON(skb_shared(skb));
1696
1697 size = SKB_DATA_ALIGN(size);
1698
1699 if (skb_pfmemalloc(skb))
1700 gfp_mask |= __GFP_MEMALLOC;
1701 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1702 gfp_mask, NUMA_NO_NODE, NULL);
1703 if (!data)
1704 goto nodata;
1705 size = SKB_WITH_OVERHEAD(ksize(data));
1706
1707 /* Copy only real data... and, alas, header. This should be
1708 * optimized for the cases when header is void.
1709 */
1710 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1711
1712 memcpy((struct skb_shared_info *)(data + size),
1713 skb_shinfo(skb),
1714 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1715
1716 /*
1717 * if shinfo is shared we must drop the old head gracefully, but if it
1718 * is not we can just drop the old head and let the existing refcount
1719 * be since all we did is relocate the values
1720 */
1721 if (skb_cloned(skb)) {
1722 if (skb_orphan_frags(skb, gfp_mask))
1723 goto nofrags;
1724 if (skb_zcopy(skb))
1725 refcount_inc(&skb_uarg(skb)->refcnt);
1726 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1727 skb_frag_ref(skb, i);
1728
1729 if (skb_has_frag_list(skb))
1730 skb_clone_fraglist(skb);
1731
1732 skb_release_data(skb);
1733 } else {
1734 skb_free_head(skb);
1735 }
1736 off = (data + nhead) - skb->head;
1737
1738 skb->head = data;
1739 skb->head_frag = 0;
1740 skb->data += off;
1741 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1742 skb->end = size;
1743 off = nhead;
1744 #else
1745 skb->end = skb->head + size;
1746 #endif
1747 skb->tail += off;
1748 skb_headers_offset_update(skb, nhead);
1749 skb->cloned = 0;
1750 skb->hdr_len = 0;
1751 skb->nohdr = 0;
1752 atomic_set(&skb_shinfo(skb)->dataref, 1);
1753
1754 skb_metadata_clear(skb);
1755
1756 /* It is not generally safe to change skb->truesize.
1757 * For the moment, we really care of rx path, or
1758 * when skb is orphaned (not attached to a socket).
1759 */
1760 if (!skb->sk || skb->destructor == sock_edemux)
1761 skb->truesize += size - osize;
1762
1763 return 0;
1764
1765 nofrags:
1766 kfree(data);
1767 nodata:
1768 return -ENOMEM;
1769 }
1770 EXPORT_SYMBOL(pskb_expand_head);
1771
1772 /* Make private copy of skb with writable head and some headroom */
1773
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1774 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1775 {
1776 struct sk_buff *skb2;
1777 int delta = headroom - skb_headroom(skb);
1778
1779 if (delta <= 0)
1780 skb2 = pskb_copy(skb, GFP_ATOMIC);
1781 else {
1782 skb2 = skb_clone(skb, GFP_ATOMIC);
1783 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1784 GFP_ATOMIC)) {
1785 kfree_skb(skb2);
1786 skb2 = NULL;
1787 }
1788 }
1789 return skb2;
1790 }
1791 EXPORT_SYMBOL(skb_realloc_headroom);
1792
1793 /**
1794 * skb_expand_head - reallocate header of &sk_buff
1795 * @skb: buffer to reallocate
1796 * @headroom: needed headroom
1797 *
1798 * Unlike skb_realloc_headroom, this one does not allocate a new skb
1799 * if possible; copies skb->sk to new skb as needed
1800 * and frees original skb in case of failures.
1801 *
1802 * It expect increased headroom and generates warning otherwise.
1803 */
1804
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1805 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1806 {
1807 int delta = headroom - skb_headroom(skb);
1808 int osize = skb_end_offset(skb);
1809 struct sock *sk = skb->sk;
1810
1811 if (WARN_ONCE(delta <= 0,
1812 "%s is expecting an increase in the headroom", __func__))
1813 return skb;
1814
1815 delta = SKB_DATA_ALIGN(delta);
1816 /* pskb_expand_head() might crash, if skb is shared. */
1817 if (skb_shared(skb) || !is_skb_wmem(skb)) {
1818 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1819
1820 if (unlikely(!nskb))
1821 goto fail;
1822
1823 if (sk)
1824 skb_set_owner_w(nskb, sk);
1825 consume_skb(skb);
1826 skb = nskb;
1827 }
1828 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1829 goto fail;
1830
1831 if (sk && is_skb_wmem(skb)) {
1832 delta = skb_end_offset(skb) - osize;
1833 refcount_add(delta, &sk->sk_wmem_alloc);
1834 skb->truesize += delta;
1835 }
1836 return skb;
1837
1838 fail:
1839 kfree_skb(skb);
1840 return NULL;
1841 }
1842 EXPORT_SYMBOL(skb_expand_head);
1843
1844 /**
1845 * skb_copy_expand - copy and expand sk_buff
1846 * @skb: buffer to copy
1847 * @newheadroom: new free bytes at head
1848 * @newtailroom: new free bytes at tail
1849 * @gfp_mask: allocation priority
1850 *
1851 * Make a copy of both an &sk_buff and its data and while doing so
1852 * allocate additional space.
1853 *
1854 * This is used when the caller wishes to modify the data and needs a
1855 * private copy of the data to alter as well as more space for new fields.
1856 * Returns %NULL on failure or the pointer to the buffer
1857 * on success. The returned buffer has a reference count of 1.
1858 *
1859 * You must pass %GFP_ATOMIC as the allocation priority if this function
1860 * is called from an interrupt.
1861 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1862 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1863 int newheadroom, int newtailroom,
1864 gfp_t gfp_mask)
1865 {
1866 /*
1867 * Allocate the copy buffer
1868 */
1869 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1870 gfp_mask, skb_alloc_rx_flag(skb),
1871 NUMA_NO_NODE);
1872 int oldheadroom = skb_headroom(skb);
1873 int head_copy_len, head_copy_off;
1874
1875 if (!n)
1876 return NULL;
1877
1878 skb_reserve(n, newheadroom);
1879
1880 /* Set the tail pointer and length */
1881 skb_put(n, skb->len);
1882
1883 head_copy_len = oldheadroom;
1884 head_copy_off = 0;
1885 if (newheadroom <= head_copy_len)
1886 head_copy_len = newheadroom;
1887 else
1888 head_copy_off = newheadroom - head_copy_len;
1889
1890 /* Copy the linear header and data. */
1891 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1892 skb->len + head_copy_len));
1893
1894 skb_copy_header(n, skb);
1895
1896 skb_headers_offset_update(n, newheadroom - oldheadroom);
1897
1898 return n;
1899 }
1900 EXPORT_SYMBOL(skb_copy_expand);
1901
1902 /**
1903 * __skb_pad - zero pad the tail of an skb
1904 * @skb: buffer to pad
1905 * @pad: space to pad
1906 * @free_on_error: free buffer on error
1907 *
1908 * Ensure that a buffer is followed by a padding area that is zero
1909 * filled. Used by network drivers which may DMA or transfer data
1910 * beyond the buffer end onto the wire.
1911 *
1912 * May return error in out of memory cases. The skb is freed on error
1913 * if @free_on_error is true.
1914 */
1915
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1916 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1917 {
1918 int err;
1919 int ntail;
1920
1921 /* If the skbuff is non linear tailroom is always zero.. */
1922 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1923 memset(skb->data+skb->len, 0, pad);
1924 return 0;
1925 }
1926
1927 ntail = skb->data_len + pad - (skb->end - skb->tail);
1928 if (likely(skb_cloned(skb) || ntail > 0)) {
1929 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1930 if (unlikely(err))
1931 goto free_skb;
1932 }
1933
1934 /* FIXME: The use of this function with non-linear skb's really needs
1935 * to be audited.
1936 */
1937 err = skb_linearize(skb);
1938 if (unlikely(err))
1939 goto free_skb;
1940
1941 memset(skb->data + skb->len, 0, pad);
1942 return 0;
1943
1944 free_skb:
1945 if (free_on_error)
1946 kfree_skb(skb);
1947 return err;
1948 }
1949 EXPORT_SYMBOL(__skb_pad);
1950
1951 /**
1952 * pskb_put - add data to the tail of a potentially fragmented buffer
1953 * @skb: start of the buffer to use
1954 * @tail: tail fragment of the buffer to use
1955 * @len: amount of data to add
1956 *
1957 * This function extends the used data area of the potentially
1958 * fragmented buffer. @tail must be the last fragment of @skb -- or
1959 * @skb itself. If this would exceed the total buffer size the kernel
1960 * will panic. A pointer to the first byte of the extra data is
1961 * returned.
1962 */
1963
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1964 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1965 {
1966 if (tail != skb) {
1967 skb->data_len += len;
1968 skb->len += len;
1969 }
1970 return skb_put(tail, len);
1971 }
1972 EXPORT_SYMBOL_GPL(pskb_put);
1973
1974 /**
1975 * skb_put - add data to a buffer
1976 * @skb: buffer to use
1977 * @len: amount of data to add
1978 *
1979 * This function extends the used data area of the buffer. If this would
1980 * exceed the total buffer size the kernel will panic. A pointer to the
1981 * first byte of the extra data is returned.
1982 */
skb_put(struct sk_buff * skb,unsigned int len)1983 void *skb_put(struct sk_buff *skb, unsigned int len)
1984 {
1985 void *tmp = skb_tail_pointer(skb);
1986 SKB_LINEAR_ASSERT(skb);
1987 skb->tail += len;
1988 skb->len += len;
1989 if (unlikely(skb->tail > skb->end))
1990 skb_over_panic(skb, len, __builtin_return_address(0));
1991 return tmp;
1992 }
1993 EXPORT_SYMBOL(skb_put);
1994
1995 /**
1996 * skb_push - add data to the start of a buffer
1997 * @skb: buffer to use
1998 * @len: amount of data to add
1999 *
2000 * This function extends the used data area of the buffer at the buffer
2001 * start. If this would exceed the total buffer headroom the kernel will
2002 * panic. A pointer to the first byte of the extra data is returned.
2003 */
skb_push(struct sk_buff * skb,unsigned int len)2004 void *skb_push(struct sk_buff *skb, unsigned int len)
2005 {
2006 skb->data -= len;
2007 skb->len += len;
2008 if (unlikely(skb->data < skb->head))
2009 skb_under_panic(skb, len, __builtin_return_address(0));
2010 return skb->data;
2011 }
2012 EXPORT_SYMBOL(skb_push);
2013
2014 /**
2015 * skb_pull - remove data from the start of a buffer
2016 * @skb: buffer to use
2017 * @len: amount of data to remove
2018 *
2019 * This function removes data from the start of a buffer, returning
2020 * the memory to the headroom. A pointer to the next data in the buffer
2021 * is returned. Once the data has been pulled future pushes will overwrite
2022 * the old data.
2023 */
skb_pull(struct sk_buff * skb,unsigned int len)2024 void *skb_pull(struct sk_buff *skb, unsigned int len)
2025 {
2026 return skb_pull_inline(skb, len);
2027 }
2028 EXPORT_SYMBOL(skb_pull);
2029
2030 /**
2031 * skb_trim - remove end from a buffer
2032 * @skb: buffer to alter
2033 * @len: new length
2034 *
2035 * Cut the length of a buffer down by removing data from the tail. If
2036 * the buffer is already under the length specified it is not modified.
2037 * The skb must be linear.
2038 */
skb_trim(struct sk_buff * skb,unsigned int len)2039 void skb_trim(struct sk_buff *skb, unsigned int len)
2040 {
2041 if (skb->len > len)
2042 __skb_trim(skb, len);
2043 }
2044 EXPORT_SYMBOL(skb_trim);
2045
2046 /* Trims skb to length len. It can change skb pointers.
2047 */
2048
___pskb_trim(struct sk_buff * skb,unsigned int len)2049 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2050 {
2051 struct sk_buff **fragp;
2052 struct sk_buff *frag;
2053 int offset = skb_headlen(skb);
2054 int nfrags = skb_shinfo(skb)->nr_frags;
2055 int i;
2056 int err;
2057
2058 if (skb_cloned(skb) &&
2059 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2060 return err;
2061
2062 i = 0;
2063 if (offset >= len)
2064 goto drop_pages;
2065
2066 for (; i < nfrags; i++) {
2067 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2068
2069 if (end < len) {
2070 offset = end;
2071 continue;
2072 }
2073
2074 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2075
2076 drop_pages:
2077 skb_shinfo(skb)->nr_frags = i;
2078
2079 for (; i < nfrags; i++)
2080 skb_frag_unref(skb, i);
2081
2082 if (skb_has_frag_list(skb))
2083 skb_drop_fraglist(skb);
2084 goto done;
2085 }
2086
2087 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2088 fragp = &frag->next) {
2089 int end = offset + frag->len;
2090
2091 if (skb_shared(frag)) {
2092 struct sk_buff *nfrag;
2093
2094 nfrag = skb_clone(frag, GFP_ATOMIC);
2095 if (unlikely(!nfrag))
2096 return -ENOMEM;
2097
2098 nfrag->next = frag->next;
2099 consume_skb(frag);
2100 frag = nfrag;
2101 *fragp = frag;
2102 }
2103
2104 if (end < len) {
2105 offset = end;
2106 continue;
2107 }
2108
2109 if (end > len &&
2110 unlikely((err = pskb_trim(frag, len - offset))))
2111 return err;
2112
2113 if (frag->next)
2114 skb_drop_list(&frag->next);
2115 break;
2116 }
2117
2118 done:
2119 if (len > skb_headlen(skb)) {
2120 skb->data_len -= skb->len - len;
2121 skb->len = len;
2122 } else {
2123 skb->len = len;
2124 skb->data_len = 0;
2125 skb_set_tail_pointer(skb, len);
2126 }
2127
2128 if (!skb->sk || skb->destructor == sock_edemux)
2129 skb_condense(skb);
2130 return 0;
2131 }
2132 EXPORT_SYMBOL(___pskb_trim);
2133
2134 /* Note : use pskb_trim_rcsum() instead of calling this directly
2135 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2136 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2137 {
2138 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2139 int delta = skb->len - len;
2140
2141 skb->csum = csum_block_sub(skb->csum,
2142 skb_checksum(skb, len, delta, 0),
2143 len);
2144 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2145 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2146 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2147
2148 if (offset + sizeof(__sum16) > hdlen)
2149 return -EINVAL;
2150 }
2151 return __pskb_trim(skb, len);
2152 }
2153 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2154
2155 /**
2156 * __pskb_pull_tail - advance tail of skb header
2157 * @skb: buffer to reallocate
2158 * @delta: number of bytes to advance tail
2159 *
2160 * The function makes a sense only on a fragmented &sk_buff,
2161 * it expands header moving its tail forward and copying necessary
2162 * data from fragmented part.
2163 *
2164 * &sk_buff MUST have reference count of 1.
2165 *
2166 * Returns %NULL (and &sk_buff does not change) if pull failed
2167 * or value of new tail of skb in the case of success.
2168 *
2169 * All the pointers pointing into skb header may change and must be
2170 * reloaded after call to this function.
2171 */
2172
2173 /* Moves tail of skb head forward, copying data from fragmented part,
2174 * when it is necessary.
2175 * 1. It may fail due to malloc failure.
2176 * 2. It may change skb pointers.
2177 *
2178 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2179 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2180 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2181 {
2182 /* If skb has not enough free space at tail, get new one
2183 * plus 128 bytes for future expansions. If we have enough
2184 * room at tail, reallocate without expansion only if skb is cloned.
2185 */
2186 int i, k, eat = (skb->tail + delta) - skb->end;
2187
2188 if (eat > 0 || skb_cloned(skb)) {
2189 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2190 GFP_ATOMIC))
2191 return NULL;
2192 }
2193
2194 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2195 skb_tail_pointer(skb), delta));
2196
2197 /* Optimization: no fragments, no reasons to preestimate
2198 * size of pulled pages. Superb.
2199 */
2200 if (!skb_has_frag_list(skb))
2201 goto pull_pages;
2202
2203 /* Estimate size of pulled pages. */
2204 eat = delta;
2205 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2206 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2207
2208 if (size >= eat)
2209 goto pull_pages;
2210 eat -= size;
2211 }
2212
2213 /* If we need update frag list, we are in troubles.
2214 * Certainly, it is possible to add an offset to skb data,
2215 * but taking into account that pulling is expected to
2216 * be very rare operation, it is worth to fight against
2217 * further bloating skb head and crucify ourselves here instead.
2218 * Pure masohism, indeed. 8)8)
2219 */
2220 if (eat) {
2221 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2222 struct sk_buff *clone = NULL;
2223 struct sk_buff *insp = NULL;
2224
2225 do {
2226 if (list->len <= eat) {
2227 /* Eaten as whole. */
2228 eat -= list->len;
2229 list = list->next;
2230 insp = list;
2231 } else {
2232 /* Eaten partially. */
2233
2234 if (skb_shared(list)) {
2235 /* Sucks! We need to fork list. :-( */
2236 clone = skb_clone(list, GFP_ATOMIC);
2237 if (!clone)
2238 return NULL;
2239 insp = list->next;
2240 list = clone;
2241 } else {
2242 /* This may be pulled without
2243 * problems. */
2244 insp = list;
2245 }
2246 if (!pskb_pull(list, eat)) {
2247 kfree_skb(clone);
2248 return NULL;
2249 }
2250 break;
2251 }
2252 } while (eat);
2253
2254 /* Free pulled out fragments. */
2255 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2256 skb_shinfo(skb)->frag_list = list->next;
2257 kfree_skb(list);
2258 }
2259 /* And insert new clone at head. */
2260 if (clone) {
2261 clone->next = list;
2262 skb_shinfo(skb)->frag_list = clone;
2263 }
2264 }
2265 /* Success! Now we may commit changes to skb data. */
2266
2267 pull_pages:
2268 eat = delta;
2269 k = 0;
2270 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2271 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2272
2273 if (size <= eat) {
2274 skb_frag_unref(skb, i);
2275 eat -= size;
2276 } else {
2277 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2278
2279 *frag = skb_shinfo(skb)->frags[i];
2280 if (eat) {
2281 skb_frag_off_add(frag, eat);
2282 skb_frag_size_sub(frag, eat);
2283 if (!i)
2284 goto end;
2285 eat = 0;
2286 }
2287 k++;
2288 }
2289 }
2290 skb_shinfo(skb)->nr_frags = k;
2291
2292 end:
2293 skb->tail += delta;
2294 skb->data_len -= delta;
2295
2296 if (!skb->data_len)
2297 skb_zcopy_clear(skb, false);
2298
2299 return skb_tail_pointer(skb);
2300 }
2301 EXPORT_SYMBOL(__pskb_pull_tail);
2302
2303 /**
2304 * skb_copy_bits - copy bits from skb to kernel buffer
2305 * @skb: source skb
2306 * @offset: offset in source
2307 * @to: destination buffer
2308 * @len: number of bytes to copy
2309 *
2310 * Copy the specified number of bytes from the source skb to the
2311 * destination buffer.
2312 *
2313 * CAUTION ! :
2314 * If its prototype is ever changed,
2315 * check arch/{*}/net/{*}.S files,
2316 * since it is called from BPF assembly code.
2317 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2318 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2319 {
2320 int start = skb_headlen(skb);
2321 struct sk_buff *frag_iter;
2322 int i, copy;
2323
2324 if (offset > (int)skb->len - len)
2325 goto fault;
2326
2327 /* Copy header. */
2328 if ((copy = start - offset) > 0) {
2329 if (copy > len)
2330 copy = len;
2331 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2332 if ((len -= copy) == 0)
2333 return 0;
2334 offset += copy;
2335 to += copy;
2336 }
2337
2338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2339 int end;
2340 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2341
2342 WARN_ON(start > offset + len);
2343
2344 end = start + skb_frag_size(f);
2345 if ((copy = end - offset) > 0) {
2346 u32 p_off, p_len, copied;
2347 struct page *p;
2348 u8 *vaddr;
2349
2350 if (copy > len)
2351 copy = len;
2352
2353 skb_frag_foreach_page(f,
2354 skb_frag_off(f) + offset - start,
2355 copy, p, p_off, p_len, copied) {
2356 vaddr = kmap_atomic(p);
2357 memcpy(to + copied, vaddr + p_off, p_len);
2358 kunmap_atomic(vaddr);
2359 }
2360
2361 if ((len -= copy) == 0)
2362 return 0;
2363 offset += copy;
2364 to += copy;
2365 }
2366 start = end;
2367 }
2368
2369 skb_walk_frags(skb, frag_iter) {
2370 int end;
2371
2372 WARN_ON(start > offset + len);
2373
2374 end = start + frag_iter->len;
2375 if ((copy = end - offset) > 0) {
2376 if (copy > len)
2377 copy = len;
2378 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2379 goto fault;
2380 if ((len -= copy) == 0)
2381 return 0;
2382 offset += copy;
2383 to += copy;
2384 }
2385 start = end;
2386 }
2387
2388 if (!len)
2389 return 0;
2390
2391 fault:
2392 return -EFAULT;
2393 }
2394 EXPORT_SYMBOL(skb_copy_bits);
2395
2396 /*
2397 * Callback from splice_to_pipe(), if we need to release some pages
2398 * at the end of the spd in case we error'ed out in filling the pipe.
2399 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2400 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2401 {
2402 put_page(spd->pages[i]);
2403 }
2404
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2405 static struct page *linear_to_page(struct page *page, unsigned int *len,
2406 unsigned int *offset,
2407 struct sock *sk)
2408 {
2409 struct page_frag *pfrag = sk_page_frag(sk);
2410
2411 if (!sk_page_frag_refill(sk, pfrag))
2412 return NULL;
2413
2414 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2415
2416 memcpy(page_address(pfrag->page) + pfrag->offset,
2417 page_address(page) + *offset, *len);
2418 *offset = pfrag->offset;
2419 pfrag->offset += *len;
2420
2421 return pfrag->page;
2422 }
2423
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2424 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2425 struct page *page,
2426 unsigned int offset)
2427 {
2428 return spd->nr_pages &&
2429 spd->pages[spd->nr_pages - 1] == page &&
2430 (spd->partial[spd->nr_pages - 1].offset +
2431 spd->partial[spd->nr_pages - 1].len == offset);
2432 }
2433
2434 /*
2435 * Fill page/offset/length into spd, if it can hold more pages.
2436 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2437 static bool spd_fill_page(struct splice_pipe_desc *spd,
2438 struct pipe_inode_info *pipe, struct page *page,
2439 unsigned int *len, unsigned int offset,
2440 bool linear,
2441 struct sock *sk)
2442 {
2443 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2444 return true;
2445
2446 if (linear) {
2447 page = linear_to_page(page, len, &offset, sk);
2448 if (!page)
2449 return true;
2450 }
2451 if (spd_can_coalesce(spd, page, offset)) {
2452 spd->partial[spd->nr_pages - 1].len += *len;
2453 return false;
2454 }
2455 get_page(page);
2456 spd->pages[spd->nr_pages] = page;
2457 spd->partial[spd->nr_pages].len = *len;
2458 spd->partial[spd->nr_pages].offset = offset;
2459 spd->nr_pages++;
2460
2461 return false;
2462 }
2463
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2464 static bool __splice_segment(struct page *page, unsigned int poff,
2465 unsigned int plen, unsigned int *off,
2466 unsigned int *len,
2467 struct splice_pipe_desc *spd, bool linear,
2468 struct sock *sk,
2469 struct pipe_inode_info *pipe)
2470 {
2471 if (!*len)
2472 return true;
2473
2474 /* skip this segment if already processed */
2475 if (*off >= plen) {
2476 *off -= plen;
2477 return false;
2478 }
2479
2480 /* ignore any bits we already processed */
2481 poff += *off;
2482 plen -= *off;
2483 *off = 0;
2484
2485 do {
2486 unsigned int flen = min(*len, plen);
2487
2488 if (spd_fill_page(spd, pipe, page, &flen, poff,
2489 linear, sk))
2490 return true;
2491 poff += flen;
2492 plen -= flen;
2493 *len -= flen;
2494 } while (*len && plen);
2495
2496 return false;
2497 }
2498
2499 /*
2500 * Map linear and fragment data from the skb to spd. It reports true if the
2501 * pipe is full or if we already spliced the requested length.
2502 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2503 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2504 unsigned int *offset, unsigned int *len,
2505 struct splice_pipe_desc *spd, struct sock *sk)
2506 {
2507 int seg;
2508 struct sk_buff *iter;
2509
2510 /* map the linear part :
2511 * If skb->head_frag is set, this 'linear' part is backed by a
2512 * fragment, and if the head is not shared with any clones then
2513 * we can avoid a copy since we own the head portion of this page.
2514 */
2515 if (__splice_segment(virt_to_page(skb->data),
2516 (unsigned long) skb->data & (PAGE_SIZE - 1),
2517 skb_headlen(skb),
2518 offset, len, spd,
2519 skb_head_is_locked(skb),
2520 sk, pipe))
2521 return true;
2522
2523 /*
2524 * then map the fragments
2525 */
2526 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2527 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2528
2529 if (__splice_segment(skb_frag_page(f),
2530 skb_frag_off(f), skb_frag_size(f),
2531 offset, len, spd, false, sk, pipe))
2532 return true;
2533 }
2534
2535 skb_walk_frags(skb, iter) {
2536 if (*offset >= iter->len) {
2537 *offset -= iter->len;
2538 continue;
2539 }
2540 /* __skb_splice_bits() only fails if the output has no room
2541 * left, so no point in going over the frag_list for the error
2542 * case.
2543 */
2544 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2545 return true;
2546 }
2547
2548 return false;
2549 }
2550
2551 /*
2552 * Map data from the skb to a pipe. Should handle both the linear part,
2553 * the fragments, and the frag list.
2554 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2555 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2556 struct pipe_inode_info *pipe, unsigned int tlen,
2557 unsigned int flags)
2558 {
2559 struct partial_page partial[MAX_SKB_FRAGS];
2560 struct page *pages[MAX_SKB_FRAGS];
2561 struct splice_pipe_desc spd = {
2562 .pages = pages,
2563 .partial = partial,
2564 .nr_pages_max = MAX_SKB_FRAGS,
2565 .ops = &nosteal_pipe_buf_ops,
2566 .spd_release = sock_spd_release,
2567 };
2568 int ret = 0;
2569
2570 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2571
2572 if (spd.nr_pages)
2573 ret = splice_to_pipe(pipe, &spd);
2574
2575 return ret;
2576 }
2577 EXPORT_SYMBOL_GPL(skb_splice_bits);
2578
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2579 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2580 struct kvec *vec, size_t num, size_t size)
2581 {
2582 struct socket *sock = sk->sk_socket;
2583
2584 if (!sock)
2585 return -EINVAL;
2586 return kernel_sendmsg(sock, msg, vec, num, size);
2587 }
2588
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2589 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2590 size_t size, int flags)
2591 {
2592 struct socket *sock = sk->sk_socket;
2593
2594 if (!sock)
2595 return -EINVAL;
2596 return kernel_sendpage(sock, page, offset, size, flags);
2597 }
2598
2599 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2600 struct kvec *vec, size_t num, size_t size);
2601 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2602 size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2603 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2604 int len, sendmsg_func sendmsg, sendpage_func sendpage)
2605 {
2606 unsigned int orig_len = len;
2607 struct sk_buff *head = skb;
2608 unsigned short fragidx;
2609 int slen, ret;
2610
2611 do_frag_list:
2612
2613 /* Deal with head data */
2614 while (offset < skb_headlen(skb) && len) {
2615 struct kvec kv;
2616 struct msghdr msg;
2617
2618 slen = min_t(int, len, skb_headlen(skb) - offset);
2619 kv.iov_base = skb->data + offset;
2620 kv.iov_len = slen;
2621 memset(&msg, 0, sizeof(msg));
2622 msg.msg_flags = MSG_DONTWAIT;
2623
2624 ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2625 sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2626 if (ret <= 0)
2627 goto error;
2628
2629 offset += ret;
2630 len -= ret;
2631 }
2632
2633 /* All the data was skb head? */
2634 if (!len)
2635 goto out;
2636
2637 /* Make offset relative to start of frags */
2638 offset -= skb_headlen(skb);
2639
2640 /* Find where we are in frag list */
2641 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2642 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2643
2644 if (offset < skb_frag_size(frag))
2645 break;
2646
2647 offset -= skb_frag_size(frag);
2648 }
2649
2650 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2651 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2652
2653 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2654
2655 while (slen) {
2656 ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2657 sendpage_unlocked, sk,
2658 skb_frag_page(frag),
2659 skb_frag_off(frag) + offset,
2660 slen, MSG_DONTWAIT);
2661 if (ret <= 0)
2662 goto error;
2663
2664 len -= ret;
2665 offset += ret;
2666 slen -= ret;
2667 }
2668
2669 offset = 0;
2670 }
2671
2672 if (len) {
2673 /* Process any frag lists */
2674
2675 if (skb == head) {
2676 if (skb_has_frag_list(skb)) {
2677 skb = skb_shinfo(skb)->frag_list;
2678 goto do_frag_list;
2679 }
2680 } else if (skb->next) {
2681 skb = skb->next;
2682 goto do_frag_list;
2683 }
2684 }
2685
2686 out:
2687 return orig_len - len;
2688
2689 error:
2690 return orig_len == len ? ret : orig_len - len;
2691 }
2692
2693 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2694 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2695 int len)
2696 {
2697 return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2698 kernel_sendpage_locked);
2699 }
2700 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2701
2702 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2703 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2704 {
2705 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2706 sendpage_unlocked);
2707 }
2708
2709 /**
2710 * skb_store_bits - store bits from kernel buffer to skb
2711 * @skb: destination buffer
2712 * @offset: offset in destination
2713 * @from: source buffer
2714 * @len: number of bytes to copy
2715 *
2716 * Copy the specified number of bytes from the source buffer to the
2717 * destination skb. This function handles all the messy bits of
2718 * traversing fragment lists and such.
2719 */
2720
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2721 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2722 {
2723 int start = skb_headlen(skb);
2724 struct sk_buff *frag_iter;
2725 int i, copy;
2726
2727 if (offset > (int)skb->len - len)
2728 goto fault;
2729
2730 if ((copy = start - offset) > 0) {
2731 if (copy > len)
2732 copy = len;
2733 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2734 if ((len -= copy) == 0)
2735 return 0;
2736 offset += copy;
2737 from += copy;
2738 }
2739
2740 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2741 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2742 int end;
2743
2744 WARN_ON(start > offset + len);
2745
2746 end = start + skb_frag_size(frag);
2747 if ((copy = end - offset) > 0) {
2748 u32 p_off, p_len, copied;
2749 struct page *p;
2750 u8 *vaddr;
2751
2752 if (copy > len)
2753 copy = len;
2754
2755 skb_frag_foreach_page(frag,
2756 skb_frag_off(frag) + offset - start,
2757 copy, p, p_off, p_len, copied) {
2758 vaddr = kmap_atomic(p);
2759 memcpy(vaddr + p_off, from + copied, p_len);
2760 kunmap_atomic(vaddr);
2761 }
2762
2763 if ((len -= copy) == 0)
2764 return 0;
2765 offset += copy;
2766 from += copy;
2767 }
2768 start = end;
2769 }
2770
2771 skb_walk_frags(skb, frag_iter) {
2772 int end;
2773
2774 WARN_ON(start > offset + len);
2775
2776 end = start + frag_iter->len;
2777 if ((copy = end - offset) > 0) {
2778 if (copy > len)
2779 copy = len;
2780 if (skb_store_bits(frag_iter, offset - start,
2781 from, copy))
2782 goto fault;
2783 if ((len -= copy) == 0)
2784 return 0;
2785 offset += copy;
2786 from += copy;
2787 }
2788 start = end;
2789 }
2790 if (!len)
2791 return 0;
2792
2793 fault:
2794 return -EFAULT;
2795 }
2796 EXPORT_SYMBOL(skb_store_bits);
2797
2798 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2799 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2800 __wsum csum, const struct skb_checksum_ops *ops)
2801 {
2802 int start = skb_headlen(skb);
2803 int i, copy = start - offset;
2804 struct sk_buff *frag_iter;
2805 int pos = 0;
2806
2807 /* Checksum header. */
2808 if (copy > 0) {
2809 if (copy > len)
2810 copy = len;
2811 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2812 skb->data + offset, copy, csum);
2813 if ((len -= copy) == 0)
2814 return csum;
2815 offset += copy;
2816 pos = copy;
2817 }
2818
2819 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2820 int end;
2821 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2822
2823 WARN_ON(start > offset + len);
2824
2825 end = start + skb_frag_size(frag);
2826 if ((copy = end - offset) > 0) {
2827 u32 p_off, p_len, copied;
2828 struct page *p;
2829 __wsum csum2;
2830 u8 *vaddr;
2831
2832 if (copy > len)
2833 copy = len;
2834
2835 skb_frag_foreach_page(frag,
2836 skb_frag_off(frag) + offset - start,
2837 copy, p, p_off, p_len, copied) {
2838 vaddr = kmap_atomic(p);
2839 csum2 = INDIRECT_CALL_1(ops->update,
2840 csum_partial_ext,
2841 vaddr + p_off, p_len, 0);
2842 kunmap_atomic(vaddr);
2843 csum = INDIRECT_CALL_1(ops->combine,
2844 csum_block_add_ext, csum,
2845 csum2, pos, p_len);
2846 pos += p_len;
2847 }
2848
2849 if (!(len -= copy))
2850 return csum;
2851 offset += copy;
2852 }
2853 start = end;
2854 }
2855
2856 skb_walk_frags(skb, frag_iter) {
2857 int end;
2858
2859 WARN_ON(start > offset + len);
2860
2861 end = start + frag_iter->len;
2862 if ((copy = end - offset) > 0) {
2863 __wsum csum2;
2864 if (copy > len)
2865 copy = len;
2866 csum2 = __skb_checksum(frag_iter, offset - start,
2867 copy, 0, ops);
2868 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2869 csum, csum2, pos, copy);
2870 if ((len -= copy) == 0)
2871 return csum;
2872 offset += copy;
2873 pos += copy;
2874 }
2875 start = end;
2876 }
2877 BUG_ON(len);
2878
2879 return csum;
2880 }
2881 EXPORT_SYMBOL(__skb_checksum);
2882
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2883 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2884 int len, __wsum csum)
2885 {
2886 const struct skb_checksum_ops ops = {
2887 .update = csum_partial_ext,
2888 .combine = csum_block_add_ext,
2889 };
2890
2891 return __skb_checksum(skb, offset, len, csum, &ops);
2892 }
2893 EXPORT_SYMBOL(skb_checksum);
2894
2895 /* Both of above in one bottle. */
2896
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2897 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2898 u8 *to, int len)
2899 {
2900 int start = skb_headlen(skb);
2901 int i, copy = start - offset;
2902 struct sk_buff *frag_iter;
2903 int pos = 0;
2904 __wsum csum = 0;
2905
2906 /* Copy header. */
2907 if (copy > 0) {
2908 if (copy > len)
2909 copy = len;
2910 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2911 copy);
2912 if ((len -= copy) == 0)
2913 return csum;
2914 offset += copy;
2915 to += copy;
2916 pos = copy;
2917 }
2918
2919 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2920 int end;
2921
2922 WARN_ON(start > offset + len);
2923
2924 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2925 if ((copy = end - offset) > 0) {
2926 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2927 u32 p_off, p_len, copied;
2928 struct page *p;
2929 __wsum csum2;
2930 u8 *vaddr;
2931
2932 if (copy > len)
2933 copy = len;
2934
2935 skb_frag_foreach_page(frag,
2936 skb_frag_off(frag) + offset - start,
2937 copy, p, p_off, p_len, copied) {
2938 vaddr = kmap_atomic(p);
2939 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2940 to + copied,
2941 p_len);
2942 kunmap_atomic(vaddr);
2943 csum = csum_block_add(csum, csum2, pos);
2944 pos += p_len;
2945 }
2946
2947 if (!(len -= copy))
2948 return csum;
2949 offset += copy;
2950 to += copy;
2951 }
2952 start = end;
2953 }
2954
2955 skb_walk_frags(skb, frag_iter) {
2956 __wsum csum2;
2957 int end;
2958
2959 WARN_ON(start > offset + len);
2960
2961 end = start + frag_iter->len;
2962 if ((copy = end - offset) > 0) {
2963 if (copy > len)
2964 copy = len;
2965 csum2 = skb_copy_and_csum_bits(frag_iter,
2966 offset - start,
2967 to, copy);
2968 csum = csum_block_add(csum, csum2, pos);
2969 if ((len -= copy) == 0)
2970 return csum;
2971 offset += copy;
2972 to += copy;
2973 pos += copy;
2974 }
2975 start = end;
2976 }
2977 BUG_ON(len);
2978 return csum;
2979 }
2980 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2981
__skb_checksum_complete_head(struct sk_buff * skb,int len)2982 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2983 {
2984 __sum16 sum;
2985
2986 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2987 /* See comments in __skb_checksum_complete(). */
2988 if (likely(!sum)) {
2989 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2990 !skb->csum_complete_sw)
2991 netdev_rx_csum_fault(skb->dev, skb);
2992 }
2993 if (!skb_shared(skb))
2994 skb->csum_valid = !sum;
2995 return sum;
2996 }
2997 EXPORT_SYMBOL(__skb_checksum_complete_head);
2998
2999 /* This function assumes skb->csum already holds pseudo header's checksum,
3000 * which has been changed from the hardware checksum, for example, by
3001 * __skb_checksum_validate_complete(). And, the original skb->csum must
3002 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3003 *
3004 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3005 * zero. The new checksum is stored back into skb->csum unless the skb is
3006 * shared.
3007 */
__skb_checksum_complete(struct sk_buff * skb)3008 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3009 {
3010 __wsum csum;
3011 __sum16 sum;
3012
3013 csum = skb_checksum(skb, 0, skb->len, 0);
3014
3015 sum = csum_fold(csum_add(skb->csum, csum));
3016 /* This check is inverted, because we already knew the hardware
3017 * checksum is invalid before calling this function. So, if the
3018 * re-computed checksum is valid instead, then we have a mismatch
3019 * between the original skb->csum and skb_checksum(). This means either
3020 * the original hardware checksum is incorrect or we screw up skb->csum
3021 * when moving skb->data around.
3022 */
3023 if (likely(!sum)) {
3024 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3025 !skb->csum_complete_sw)
3026 netdev_rx_csum_fault(skb->dev, skb);
3027 }
3028
3029 if (!skb_shared(skb)) {
3030 /* Save full packet checksum */
3031 skb->csum = csum;
3032 skb->ip_summed = CHECKSUM_COMPLETE;
3033 skb->csum_complete_sw = 1;
3034 skb->csum_valid = !sum;
3035 }
3036
3037 return sum;
3038 }
3039 EXPORT_SYMBOL(__skb_checksum_complete);
3040
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3041 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3042 {
3043 net_warn_ratelimited(
3044 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3045 __func__);
3046 return 0;
3047 }
3048
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3049 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3050 int offset, int len)
3051 {
3052 net_warn_ratelimited(
3053 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3054 __func__);
3055 return 0;
3056 }
3057
3058 static const struct skb_checksum_ops default_crc32c_ops = {
3059 .update = warn_crc32c_csum_update,
3060 .combine = warn_crc32c_csum_combine,
3061 };
3062
3063 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3064 &default_crc32c_ops;
3065 EXPORT_SYMBOL(crc32c_csum_stub);
3066
3067 /**
3068 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3069 * @from: source buffer
3070 *
3071 * Calculates the amount of linear headroom needed in the 'to' skb passed
3072 * into skb_zerocopy().
3073 */
3074 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3075 skb_zerocopy_headlen(const struct sk_buff *from)
3076 {
3077 unsigned int hlen = 0;
3078
3079 if (!from->head_frag ||
3080 skb_headlen(from) < L1_CACHE_BYTES ||
3081 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3082 hlen = skb_headlen(from);
3083 if (!hlen)
3084 hlen = from->len;
3085 }
3086
3087 if (skb_has_frag_list(from))
3088 hlen = from->len;
3089
3090 return hlen;
3091 }
3092 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3093
3094 /**
3095 * skb_zerocopy - Zero copy skb to skb
3096 * @to: destination buffer
3097 * @from: source buffer
3098 * @len: number of bytes to copy from source buffer
3099 * @hlen: size of linear headroom in destination buffer
3100 *
3101 * Copies up to `len` bytes from `from` to `to` by creating references
3102 * to the frags in the source buffer.
3103 *
3104 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3105 * headroom in the `to` buffer.
3106 *
3107 * Return value:
3108 * 0: everything is OK
3109 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3110 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3111 */
3112 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3113 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3114 {
3115 int i, j = 0;
3116 int plen = 0; /* length of skb->head fragment */
3117 int ret;
3118 struct page *page;
3119 unsigned int offset;
3120
3121 BUG_ON(!from->head_frag && !hlen);
3122
3123 /* dont bother with small payloads */
3124 if (len <= skb_tailroom(to))
3125 return skb_copy_bits(from, 0, skb_put(to, len), len);
3126
3127 if (hlen) {
3128 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3129 if (unlikely(ret))
3130 return ret;
3131 len -= hlen;
3132 } else {
3133 plen = min_t(int, skb_headlen(from), len);
3134 if (plen) {
3135 page = virt_to_head_page(from->head);
3136 offset = from->data - (unsigned char *)page_address(page);
3137 __skb_fill_page_desc(to, 0, page, offset, plen);
3138 get_page(page);
3139 j = 1;
3140 len -= plen;
3141 }
3142 }
3143
3144 to->truesize += len + plen;
3145 to->len += len + plen;
3146 to->data_len += len + plen;
3147
3148 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3149 skb_tx_error(from);
3150 return -ENOMEM;
3151 }
3152 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3153
3154 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3155 int size;
3156
3157 if (!len)
3158 break;
3159 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3160 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3161 len);
3162 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3163 len -= size;
3164 skb_frag_ref(to, j);
3165 j++;
3166 }
3167 skb_shinfo(to)->nr_frags = j;
3168
3169 return 0;
3170 }
3171 EXPORT_SYMBOL_GPL(skb_zerocopy);
3172
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3173 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3174 {
3175 __wsum csum;
3176 long csstart;
3177
3178 if (skb->ip_summed == CHECKSUM_PARTIAL)
3179 csstart = skb_checksum_start_offset(skb);
3180 else
3181 csstart = skb_headlen(skb);
3182
3183 BUG_ON(csstart > skb_headlen(skb));
3184
3185 skb_copy_from_linear_data(skb, to, csstart);
3186
3187 csum = 0;
3188 if (csstart != skb->len)
3189 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3190 skb->len - csstart);
3191
3192 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3193 long csstuff = csstart + skb->csum_offset;
3194
3195 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3196 }
3197 }
3198 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3199
3200 /**
3201 * skb_dequeue - remove from the head of the queue
3202 * @list: list to dequeue from
3203 *
3204 * Remove the head of the list. The list lock is taken so the function
3205 * may be used safely with other locking list functions. The head item is
3206 * returned or %NULL if the list is empty.
3207 */
3208
skb_dequeue(struct sk_buff_head * list)3209 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3210 {
3211 unsigned long flags;
3212 struct sk_buff *result;
3213
3214 spin_lock_irqsave(&list->lock, flags);
3215 result = __skb_dequeue(list);
3216 spin_unlock_irqrestore(&list->lock, flags);
3217 return result;
3218 }
3219 EXPORT_SYMBOL(skb_dequeue);
3220
3221 /**
3222 * skb_dequeue_tail - remove from the tail of the queue
3223 * @list: list to dequeue from
3224 *
3225 * Remove the tail of the list. The list lock is taken so the function
3226 * may be used safely with other locking list functions. The tail item is
3227 * returned or %NULL if the list is empty.
3228 */
skb_dequeue_tail(struct sk_buff_head * list)3229 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3230 {
3231 unsigned long flags;
3232 struct sk_buff *result;
3233
3234 spin_lock_irqsave(&list->lock, flags);
3235 result = __skb_dequeue_tail(list);
3236 spin_unlock_irqrestore(&list->lock, flags);
3237 return result;
3238 }
3239 EXPORT_SYMBOL(skb_dequeue_tail);
3240
3241 /**
3242 * skb_queue_purge - empty a list
3243 * @list: list to empty
3244 *
3245 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3246 * the list and one reference dropped. This function takes the list
3247 * lock and is atomic with respect to other list locking functions.
3248 */
skb_queue_purge(struct sk_buff_head * list)3249 void skb_queue_purge(struct sk_buff_head *list)
3250 {
3251 struct sk_buff *skb;
3252 while ((skb = skb_dequeue(list)) != NULL)
3253 kfree_skb(skb);
3254 }
3255 EXPORT_SYMBOL(skb_queue_purge);
3256
3257 /**
3258 * skb_rbtree_purge - empty a skb rbtree
3259 * @root: root of the rbtree to empty
3260 * Return value: the sum of truesizes of all purged skbs.
3261 *
3262 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3263 * the list and one reference dropped. This function does not take
3264 * any lock. Synchronization should be handled by the caller (e.g., TCP
3265 * out-of-order queue is protected by the socket lock).
3266 */
skb_rbtree_purge(struct rb_root * root)3267 unsigned int skb_rbtree_purge(struct rb_root *root)
3268 {
3269 struct rb_node *p = rb_first(root);
3270 unsigned int sum = 0;
3271
3272 while (p) {
3273 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3274
3275 p = rb_next(p);
3276 rb_erase(&skb->rbnode, root);
3277 sum += skb->truesize;
3278 kfree_skb(skb);
3279 }
3280 return sum;
3281 }
3282
3283 /**
3284 * skb_queue_head - queue a buffer at the list head
3285 * @list: list to use
3286 * @newsk: buffer to queue
3287 *
3288 * Queue a buffer at the start of the list. This function takes the
3289 * list lock and can be used safely with other locking &sk_buff functions
3290 * safely.
3291 *
3292 * A buffer cannot be placed on two lists at the same time.
3293 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3295 {
3296 unsigned long flags;
3297
3298 spin_lock_irqsave(&list->lock, flags);
3299 __skb_queue_head(list, newsk);
3300 spin_unlock_irqrestore(&list->lock, flags);
3301 }
3302 EXPORT_SYMBOL(skb_queue_head);
3303
3304 /**
3305 * skb_queue_tail - queue a buffer at the list tail
3306 * @list: list to use
3307 * @newsk: buffer to queue
3308 *
3309 * Queue a buffer at the tail of the list. This function takes the
3310 * list lock and can be used safely with other locking &sk_buff functions
3311 * safely.
3312 *
3313 * A buffer cannot be placed on two lists at the same time.
3314 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3315 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3316 {
3317 unsigned long flags;
3318
3319 spin_lock_irqsave(&list->lock, flags);
3320 __skb_queue_tail(list, newsk);
3321 spin_unlock_irqrestore(&list->lock, flags);
3322 }
3323 EXPORT_SYMBOL(skb_queue_tail);
3324
3325 /**
3326 * skb_unlink - remove a buffer from a list
3327 * @skb: buffer to remove
3328 * @list: list to use
3329 *
3330 * Remove a packet from a list. The list locks are taken and this
3331 * function is atomic with respect to other list locked calls
3332 *
3333 * You must know what list the SKB is on.
3334 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3335 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3336 {
3337 unsigned long flags;
3338
3339 spin_lock_irqsave(&list->lock, flags);
3340 __skb_unlink(skb, list);
3341 spin_unlock_irqrestore(&list->lock, flags);
3342 }
3343 EXPORT_SYMBOL(skb_unlink);
3344
3345 /**
3346 * skb_append - append a buffer
3347 * @old: buffer to insert after
3348 * @newsk: buffer to insert
3349 * @list: list to use
3350 *
3351 * Place a packet after a given packet in a list. The list locks are taken
3352 * and this function is atomic with respect to other list locked calls.
3353 * A buffer cannot be placed on two lists at the same time.
3354 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3355 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3356 {
3357 unsigned long flags;
3358
3359 spin_lock_irqsave(&list->lock, flags);
3360 __skb_queue_after(list, old, newsk);
3361 spin_unlock_irqrestore(&list->lock, flags);
3362 }
3363 EXPORT_SYMBOL(skb_append);
3364
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3365 static inline void skb_split_inside_header(struct sk_buff *skb,
3366 struct sk_buff* skb1,
3367 const u32 len, const int pos)
3368 {
3369 int i;
3370
3371 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3372 pos - len);
3373 /* And move data appendix as is. */
3374 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3375 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3376
3377 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3378 skb_shinfo(skb)->nr_frags = 0;
3379 skb1->data_len = skb->data_len;
3380 skb1->len += skb1->data_len;
3381 skb->data_len = 0;
3382 skb->len = len;
3383 skb_set_tail_pointer(skb, len);
3384 }
3385
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3386 static inline void skb_split_no_header(struct sk_buff *skb,
3387 struct sk_buff* skb1,
3388 const u32 len, int pos)
3389 {
3390 int i, k = 0;
3391 const int nfrags = skb_shinfo(skb)->nr_frags;
3392
3393 skb_shinfo(skb)->nr_frags = 0;
3394 skb1->len = skb1->data_len = skb->len - len;
3395 skb->len = len;
3396 skb->data_len = len - pos;
3397
3398 for (i = 0; i < nfrags; i++) {
3399 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3400
3401 if (pos + size > len) {
3402 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3403
3404 if (pos < len) {
3405 /* Split frag.
3406 * We have two variants in this case:
3407 * 1. Move all the frag to the second
3408 * part, if it is possible. F.e.
3409 * this approach is mandatory for TUX,
3410 * where splitting is expensive.
3411 * 2. Split is accurately. We make this.
3412 */
3413 skb_frag_ref(skb, i);
3414 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3415 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3416 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3417 skb_shinfo(skb)->nr_frags++;
3418 }
3419 k++;
3420 } else
3421 skb_shinfo(skb)->nr_frags++;
3422 pos += size;
3423 }
3424 skb_shinfo(skb1)->nr_frags = k;
3425 }
3426
3427 /**
3428 * skb_split - Split fragmented skb to two parts at length len.
3429 * @skb: the buffer to split
3430 * @skb1: the buffer to receive the second part
3431 * @len: new length for skb
3432 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3433 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3434 {
3435 int pos = skb_headlen(skb);
3436
3437 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3438 skb_zerocopy_clone(skb1, skb, 0);
3439 if (len < pos) /* Split line is inside header. */
3440 skb_split_inside_header(skb, skb1, len, pos);
3441 else /* Second chunk has no header, nothing to copy. */
3442 skb_split_no_header(skb, skb1, len, pos);
3443 }
3444 EXPORT_SYMBOL(skb_split);
3445
3446 /* Shifting from/to a cloned skb is a no-go.
3447 *
3448 * Caller cannot keep skb_shinfo related pointers past calling here!
3449 */
skb_prepare_for_shift(struct sk_buff * skb)3450 static int skb_prepare_for_shift(struct sk_buff *skb)
3451 {
3452 int ret = 0;
3453
3454 if (skb_cloned(skb)) {
3455 /* Save and restore truesize: pskb_expand_head() may reallocate
3456 * memory where ksize(kmalloc(S)) != ksize(kmalloc(S)), but we
3457 * cannot change truesize at this point.
3458 */
3459 unsigned int save_truesize = skb->truesize;
3460
3461 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3462 skb->truesize = save_truesize;
3463 }
3464 return ret;
3465 }
3466
3467 /**
3468 * skb_shift - Shifts paged data partially from skb to another
3469 * @tgt: buffer into which tail data gets added
3470 * @skb: buffer from which the paged data comes from
3471 * @shiftlen: shift up to this many bytes
3472 *
3473 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3474 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3475 * It's up to caller to free skb if everything was shifted.
3476 *
3477 * If @tgt runs out of frags, the whole operation is aborted.
3478 *
3479 * Skb cannot include anything else but paged data while tgt is allowed
3480 * to have non-paged data as well.
3481 *
3482 * TODO: full sized shift could be optimized but that would need
3483 * specialized skb free'er to handle frags without up-to-date nr_frags.
3484 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3485 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3486 {
3487 int from, to, merge, todo;
3488 skb_frag_t *fragfrom, *fragto;
3489
3490 BUG_ON(shiftlen > skb->len);
3491
3492 if (skb_headlen(skb))
3493 return 0;
3494 if (skb_zcopy(tgt) || skb_zcopy(skb))
3495 return 0;
3496
3497 todo = shiftlen;
3498 from = 0;
3499 to = skb_shinfo(tgt)->nr_frags;
3500 fragfrom = &skb_shinfo(skb)->frags[from];
3501
3502 /* Actual merge is delayed until the point when we know we can
3503 * commit all, so that we don't have to undo partial changes
3504 */
3505 if (!to ||
3506 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3507 skb_frag_off(fragfrom))) {
3508 merge = -1;
3509 } else {
3510 merge = to - 1;
3511
3512 todo -= skb_frag_size(fragfrom);
3513 if (todo < 0) {
3514 if (skb_prepare_for_shift(skb) ||
3515 skb_prepare_for_shift(tgt))
3516 return 0;
3517
3518 /* All previous frag pointers might be stale! */
3519 fragfrom = &skb_shinfo(skb)->frags[from];
3520 fragto = &skb_shinfo(tgt)->frags[merge];
3521
3522 skb_frag_size_add(fragto, shiftlen);
3523 skb_frag_size_sub(fragfrom, shiftlen);
3524 skb_frag_off_add(fragfrom, shiftlen);
3525
3526 goto onlymerged;
3527 }
3528
3529 from++;
3530 }
3531
3532 /* Skip full, not-fitting skb to avoid expensive operations */
3533 if ((shiftlen == skb->len) &&
3534 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3535 return 0;
3536
3537 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3538 return 0;
3539
3540 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3541 if (to == MAX_SKB_FRAGS)
3542 return 0;
3543
3544 fragfrom = &skb_shinfo(skb)->frags[from];
3545 fragto = &skb_shinfo(tgt)->frags[to];
3546
3547 if (todo >= skb_frag_size(fragfrom)) {
3548 *fragto = *fragfrom;
3549 todo -= skb_frag_size(fragfrom);
3550 from++;
3551 to++;
3552
3553 } else {
3554 __skb_frag_ref(fragfrom);
3555 skb_frag_page_copy(fragto, fragfrom);
3556 skb_frag_off_copy(fragto, fragfrom);
3557 skb_frag_size_set(fragto, todo);
3558
3559 skb_frag_off_add(fragfrom, todo);
3560 skb_frag_size_sub(fragfrom, todo);
3561 todo = 0;
3562
3563 to++;
3564 break;
3565 }
3566 }
3567
3568 /* Ready to "commit" this state change to tgt */
3569 skb_shinfo(tgt)->nr_frags = to;
3570
3571 if (merge >= 0) {
3572 fragfrom = &skb_shinfo(skb)->frags[0];
3573 fragto = &skb_shinfo(tgt)->frags[merge];
3574
3575 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3576 __skb_frag_unref(fragfrom, skb->pp_recycle);
3577 }
3578
3579 /* Reposition in the original skb */
3580 to = 0;
3581 while (from < skb_shinfo(skb)->nr_frags)
3582 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3583 skb_shinfo(skb)->nr_frags = to;
3584
3585 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3586
3587 onlymerged:
3588 /* Most likely the tgt won't ever need its checksum anymore, skb on
3589 * the other hand might need it if it needs to be resent
3590 */
3591 tgt->ip_summed = CHECKSUM_PARTIAL;
3592 skb->ip_summed = CHECKSUM_PARTIAL;
3593
3594 /* Yak, is it really working this way? Some helper please? */
3595 skb->len -= shiftlen;
3596 skb->data_len -= shiftlen;
3597 skb->truesize -= shiftlen;
3598 tgt->len += shiftlen;
3599 tgt->data_len += shiftlen;
3600 tgt->truesize += shiftlen;
3601
3602 return shiftlen;
3603 }
3604
3605 /**
3606 * skb_prepare_seq_read - Prepare a sequential read of skb data
3607 * @skb: the buffer to read
3608 * @from: lower offset of data to be read
3609 * @to: upper offset of data to be read
3610 * @st: state variable
3611 *
3612 * Initializes the specified state variable. Must be called before
3613 * invoking skb_seq_read() for the first time.
3614 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3615 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3616 unsigned int to, struct skb_seq_state *st)
3617 {
3618 st->lower_offset = from;
3619 st->upper_offset = to;
3620 st->root_skb = st->cur_skb = skb;
3621 st->frag_idx = st->stepped_offset = 0;
3622 st->frag_data = NULL;
3623 st->frag_off = 0;
3624 }
3625 EXPORT_SYMBOL(skb_prepare_seq_read);
3626
3627 /**
3628 * skb_seq_read - Sequentially read skb data
3629 * @consumed: number of bytes consumed by the caller so far
3630 * @data: destination pointer for data to be returned
3631 * @st: state variable
3632 *
3633 * Reads a block of skb data at @consumed relative to the
3634 * lower offset specified to skb_prepare_seq_read(). Assigns
3635 * the head of the data block to @data and returns the length
3636 * of the block or 0 if the end of the skb data or the upper
3637 * offset has been reached.
3638 *
3639 * The caller is not required to consume all of the data
3640 * returned, i.e. @consumed is typically set to the number
3641 * of bytes already consumed and the next call to
3642 * skb_seq_read() will return the remaining part of the block.
3643 *
3644 * Note 1: The size of each block of data returned can be arbitrary,
3645 * this limitation is the cost for zerocopy sequential
3646 * reads of potentially non linear data.
3647 *
3648 * Note 2: Fragment lists within fragments are not implemented
3649 * at the moment, state->root_skb could be replaced with
3650 * a stack for this purpose.
3651 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3652 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3653 struct skb_seq_state *st)
3654 {
3655 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3656 skb_frag_t *frag;
3657
3658 if (unlikely(abs_offset >= st->upper_offset)) {
3659 if (st->frag_data) {
3660 kunmap_atomic(st->frag_data);
3661 st->frag_data = NULL;
3662 }
3663 return 0;
3664 }
3665
3666 next_skb:
3667 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3668
3669 if (abs_offset < block_limit && !st->frag_data) {
3670 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3671 return block_limit - abs_offset;
3672 }
3673
3674 if (st->frag_idx == 0 && !st->frag_data)
3675 st->stepped_offset += skb_headlen(st->cur_skb);
3676
3677 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3678 unsigned int pg_idx, pg_off, pg_sz;
3679
3680 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3681
3682 pg_idx = 0;
3683 pg_off = skb_frag_off(frag);
3684 pg_sz = skb_frag_size(frag);
3685
3686 if (skb_frag_must_loop(skb_frag_page(frag))) {
3687 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3688 pg_off = offset_in_page(pg_off + st->frag_off);
3689 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3690 PAGE_SIZE - pg_off);
3691 }
3692
3693 block_limit = pg_sz + st->stepped_offset;
3694 if (abs_offset < block_limit) {
3695 if (!st->frag_data)
3696 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3697
3698 *data = (u8 *)st->frag_data + pg_off +
3699 (abs_offset - st->stepped_offset);
3700
3701 return block_limit - abs_offset;
3702 }
3703
3704 if (st->frag_data) {
3705 kunmap_atomic(st->frag_data);
3706 st->frag_data = NULL;
3707 }
3708
3709 st->stepped_offset += pg_sz;
3710 st->frag_off += pg_sz;
3711 if (st->frag_off == skb_frag_size(frag)) {
3712 st->frag_off = 0;
3713 st->frag_idx++;
3714 }
3715 }
3716
3717 if (st->frag_data) {
3718 kunmap_atomic(st->frag_data);
3719 st->frag_data = NULL;
3720 }
3721
3722 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3723 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3724 st->frag_idx = 0;
3725 goto next_skb;
3726 } else if (st->cur_skb->next) {
3727 st->cur_skb = st->cur_skb->next;
3728 st->frag_idx = 0;
3729 goto next_skb;
3730 }
3731
3732 return 0;
3733 }
3734 EXPORT_SYMBOL(skb_seq_read);
3735
3736 /**
3737 * skb_abort_seq_read - Abort a sequential read of skb data
3738 * @st: state variable
3739 *
3740 * Must be called if skb_seq_read() was not called until it
3741 * returned 0.
3742 */
skb_abort_seq_read(struct skb_seq_state * st)3743 void skb_abort_seq_read(struct skb_seq_state *st)
3744 {
3745 if (st->frag_data)
3746 kunmap_atomic(st->frag_data);
3747 }
3748 EXPORT_SYMBOL(skb_abort_seq_read);
3749
3750 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3751
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3752 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3753 struct ts_config *conf,
3754 struct ts_state *state)
3755 {
3756 return skb_seq_read(offset, text, TS_SKB_CB(state));
3757 }
3758
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3759 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3760 {
3761 skb_abort_seq_read(TS_SKB_CB(state));
3762 }
3763
3764 /**
3765 * skb_find_text - Find a text pattern in skb data
3766 * @skb: the buffer to look in
3767 * @from: search offset
3768 * @to: search limit
3769 * @config: textsearch configuration
3770 *
3771 * Finds a pattern in the skb data according to the specified
3772 * textsearch configuration. Use textsearch_next() to retrieve
3773 * subsequent occurrences of the pattern. Returns the offset
3774 * to the first occurrence or UINT_MAX if no match was found.
3775 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3776 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3777 unsigned int to, struct ts_config *config)
3778 {
3779 struct ts_state state;
3780 unsigned int ret;
3781
3782 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3783
3784 config->get_next_block = skb_ts_get_next_block;
3785 config->finish = skb_ts_finish;
3786
3787 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3788
3789 ret = textsearch_find(config, &state);
3790 return (ret <= to - from ? ret : UINT_MAX);
3791 }
3792 EXPORT_SYMBOL(skb_find_text);
3793
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3794 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3795 int offset, size_t size)
3796 {
3797 int i = skb_shinfo(skb)->nr_frags;
3798
3799 if (skb_can_coalesce(skb, i, page, offset)) {
3800 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3801 } else if (i < MAX_SKB_FRAGS) {
3802 get_page(page);
3803 skb_fill_page_desc(skb, i, page, offset, size);
3804 } else {
3805 return -EMSGSIZE;
3806 }
3807
3808 return 0;
3809 }
3810 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3811
3812 /**
3813 * skb_pull_rcsum - pull skb and update receive checksum
3814 * @skb: buffer to update
3815 * @len: length of data pulled
3816 *
3817 * This function performs an skb_pull on the packet and updates
3818 * the CHECKSUM_COMPLETE checksum. It should be used on
3819 * receive path processing instead of skb_pull unless you know
3820 * that the checksum difference is zero (e.g., a valid IP header)
3821 * or you are setting ip_summed to CHECKSUM_NONE.
3822 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3823 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3824 {
3825 unsigned char *data = skb->data;
3826
3827 BUG_ON(len > skb->len);
3828 __skb_pull(skb, len);
3829 skb_postpull_rcsum(skb, data, len);
3830 return skb->data;
3831 }
3832 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3833
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3834 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3835 {
3836 skb_frag_t head_frag;
3837 struct page *page;
3838
3839 page = virt_to_head_page(frag_skb->head);
3840 __skb_frag_set_page(&head_frag, page);
3841 skb_frag_off_set(&head_frag, frag_skb->data -
3842 (unsigned char *)page_address(page));
3843 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3844 return head_frag;
3845 }
3846
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3847 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3848 netdev_features_t features,
3849 unsigned int offset)
3850 {
3851 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3852 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3853 unsigned int delta_truesize = 0;
3854 unsigned int delta_len = 0;
3855 struct sk_buff *tail = NULL;
3856 struct sk_buff *nskb, *tmp;
3857 int err;
3858
3859 skb_push(skb, -skb_network_offset(skb) + offset);
3860
3861 skb_shinfo(skb)->frag_list = NULL;
3862
3863 do {
3864 nskb = list_skb;
3865 list_skb = list_skb->next;
3866
3867 err = 0;
3868 if (skb_shared(nskb)) {
3869 tmp = skb_clone(nskb, GFP_ATOMIC);
3870 if (tmp) {
3871 consume_skb(nskb);
3872 nskb = tmp;
3873 err = skb_unclone(nskb, GFP_ATOMIC);
3874 } else {
3875 err = -ENOMEM;
3876 }
3877 }
3878
3879 if (!tail)
3880 skb->next = nskb;
3881 else
3882 tail->next = nskb;
3883
3884 if (unlikely(err)) {
3885 nskb->next = list_skb;
3886 goto err_linearize;
3887 }
3888
3889 tail = nskb;
3890
3891 delta_len += nskb->len;
3892 delta_truesize += nskb->truesize;
3893
3894 skb_push(nskb, -skb_network_offset(nskb) + offset);
3895
3896 skb_release_head_state(nskb);
3897 __copy_skb_header(nskb, skb);
3898
3899 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3900 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3901 nskb->data - tnl_hlen,
3902 offset + tnl_hlen);
3903
3904 if (skb_needs_linearize(nskb, features) &&
3905 __skb_linearize(nskb))
3906 goto err_linearize;
3907
3908 } while (list_skb);
3909
3910 skb->truesize = skb->truesize - delta_truesize;
3911 skb->data_len = skb->data_len - delta_len;
3912 skb->len = skb->len - delta_len;
3913
3914 skb_gso_reset(skb);
3915
3916 skb->prev = tail;
3917
3918 if (skb_needs_linearize(skb, features) &&
3919 __skb_linearize(skb))
3920 goto err_linearize;
3921
3922 skb_get(skb);
3923
3924 return skb;
3925
3926 err_linearize:
3927 kfree_skb_list(skb->next);
3928 skb->next = NULL;
3929 return ERR_PTR(-ENOMEM);
3930 }
3931 EXPORT_SYMBOL_GPL(skb_segment_list);
3932
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3933 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3934 {
3935 if (unlikely(p->len + skb->len >= 65536))
3936 return -E2BIG;
3937
3938 if (NAPI_GRO_CB(p)->last == p)
3939 skb_shinfo(p)->frag_list = skb;
3940 else
3941 NAPI_GRO_CB(p)->last->next = skb;
3942
3943 skb_pull(skb, skb_gro_offset(skb));
3944
3945 NAPI_GRO_CB(p)->last = skb;
3946 NAPI_GRO_CB(p)->count++;
3947 p->data_len += skb->len;
3948
3949 /* sk owenrship - if any - completely transferred to the aggregated packet */
3950 skb->destructor = NULL;
3951 p->truesize += skb->truesize;
3952 p->len += skb->len;
3953
3954 NAPI_GRO_CB(skb)->same_flow = 1;
3955
3956 return 0;
3957 }
3958
3959 /**
3960 * skb_segment - Perform protocol segmentation on skb.
3961 * @head_skb: buffer to segment
3962 * @features: features for the output path (see dev->features)
3963 *
3964 * This function performs segmentation on the given skb. It returns
3965 * a pointer to the first in a list of new skbs for the segments.
3966 * In case of error it returns ERR_PTR(err).
3967 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3968 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3969 netdev_features_t features)
3970 {
3971 struct sk_buff *segs = NULL;
3972 struct sk_buff *tail = NULL;
3973 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3974 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3975 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3976 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3977 struct sk_buff *frag_skb = head_skb;
3978 unsigned int offset = doffset;
3979 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3980 unsigned int partial_segs = 0;
3981 unsigned int headroom;
3982 unsigned int len = head_skb->len;
3983 __be16 proto;
3984 bool csum, sg;
3985 int nfrags = skb_shinfo(head_skb)->nr_frags;
3986 int err = -ENOMEM;
3987 int i = 0;
3988 int pos;
3989
3990 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3991 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3992 /* gso_size is untrusted, and we have a frag_list with a linear
3993 * non head_frag head.
3994 *
3995 * (we assume checking the first list_skb member suffices;
3996 * i.e if either of the list_skb members have non head_frag
3997 * head, then the first one has too).
3998 *
3999 * If head_skb's headlen does not fit requested gso_size, it
4000 * means that the frag_list members do NOT terminate on exact
4001 * gso_size boundaries. Hence we cannot perform skb_frag_t page
4002 * sharing. Therefore we must fallback to copying the frag_list
4003 * skbs; we do so by disabling SG.
4004 */
4005 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
4006 features &= ~NETIF_F_SG;
4007 }
4008
4009 __skb_push(head_skb, doffset);
4010 proto = skb_network_protocol(head_skb, NULL);
4011 if (unlikely(!proto))
4012 return ERR_PTR(-EINVAL);
4013
4014 sg = !!(features & NETIF_F_SG);
4015 csum = !!can_checksum_protocol(features, proto);
4016
4017 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4018 if (!(features & NETIF_F_GSO_PARTIAL)) {
4019 struct sk_buff *iter;
4020 unsigned int frag_len;
4021
4022 if (!list_skb ||
4023 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4024 goto normal;
4025
4026 /* If we get here then all the required
4027 * GSO features except frag_list are supported.
4028 * Try to split the SKB to multiple GSO SKBs
4029 * with no frag_list.
4030 * Currently we can do that only when the buffers don't
4031 * have a linear part and all the buffers except
4032 * the last are of the same length.
4033 */
4034 frag_len = list_skb->len;
4035 skb_walk_frags(head_skb, iter) {
4036 if (frag_len != iter->len && iter->next)
4037 goto normal;
4038 if (skb_headlen(iter) && !iter->head_frag)
4039 goto normal;
4040
4041 len -= iter->len;
4042 }
4043
4044 if (len != frag_len)
4045 goto normal;
4046 }
4047
4048 /* GSO partial only requires that we trim off any excess that
4049 * doesn't fit into an MSS sized block, so take care of that
4050 * now.
4051 */
4052 partial_segs = len / mss;
4053 if (partial_segs > 1)
4054 mss *= partial_segs;
4055 else
4056 partial_segs = 0;
4057 }
4058
4059 normal:
4060 headroom = skb_headroom(head_skb);
4061 pos = skb_headlen(head_skb);
4062
4063 do {
4064 struct sk_buff *nskb;
4065 skb_frag_t *nskb_frag;
4066 int hsize;
4067 int size;
4068
4069 if (unlikely(mss == GSO_BY_FRAGS)) {
4070 len = list_skb->len;
4071 } else {
4072 len = head_skb->len - offset;
4073 if (len > mss)
4074 len = mss;
4075 }
4076
4077 hsize = skb_headlen(head_skb) - offset;
4078
4079 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4080 (skb_headlen(list_skb) == len || sg)) {
4081 BUG_ON(skb_headlen(list_skb) > len);
4082
4083 i = 0;
4084 nfrags = skb_shinfo(list_skb)->nr_frags;
4085 frag = skb_shinfo(list_skb)->frags;
4086 frag_skb = list_skb;
4087 pos += skb_headlen(list_skb);
4088
4089 while (pos < offset + len) {
4090 BUG_ON(i >= nfrags);
4091
4092 size = skb_frag_size(frag);
4093 if (pos + size > offset + len)
4094 break;
4095
4096 i++;
4097 pos += size;
4098 frag++;
4099 }
4100
4101 nskb = skb_clone(list_skb, GFP_ATOMIC);
4102 list_skb = list_skb->next;
4103
4104 if (unlikely(!nskb))
4105 goto err;
4106
4107 if (unlikely(pskb_trim(nskb, len))) {
4108 kfree_skb(nskb);
4109 goto err;
4110 }
4111
4112 hsize = skb_end_offset(nskb);
4113 if (skb_cow_head(nskb, doffset + headroom)) {
4114 kfree_skb(nskb);
4115 goto err;
4116 }
4117
4118 nskb->truesize += skb_end_offset(nskb) - hsize;
4119 skb_release_head_state(nskb);
4120 __skb_push(nskb, doffset);
4121 } else {
4122 if (hsize < 0)
4123 hsize = 0;
4124 if (hsize > len || !sg)
4125 hsize = len;
4126
4127 nskb = __alloc_skb(hsize + doffset + headroom,
4128 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4129 NUMA_NO_NODE);
4130
4131 if (unlikely(!nskb))
4132 goto err;
4133
4134 skb_reserve(nskb, headroom);
4135 __skb_put(nskb, doffset);
4136 }
4137
4138 if (segs)
4139 tail->next = nskb;
4140 else
4141 segs = nskb;
4142 tail = nskb;
4143
4144 __copy_skb_header(nskb, head_skb);
4145
4146 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4147 skb_reset_mac_len(nskb);
4148
4149 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4150 nskb->data - tnl_hlen,
4151 doffset + tnl_hlen);
4152
4153 if (nskb->len == len + doffset)
4154 goto perform_csum_check;
4155
4156 if (!sg) {
4157 if (!csum) {
4158 if (!nskb->remcsum_offload)
4159 nskb->ip_summed = CHECKSUM_NONE;
4160 SKB_GSO_CB(nskb)->csum =
4161 skb_copy_and_csum_bits(head_skb, offset,
4162 skb_put(nskb,
4163 len),
4164 len);
4165 SKB_GSO_CB(nskb)->csum_start =
4166 skb_headroom(nskb) + doffset;
4167 } else {
4168 skb_copy_bits(head_skb, offset,
4169 skb_put(nskb, len),
4170 len);
4171 }
4172 continue;
4173 }
4174
4175 nskb_frag = skb_shinfo(nskb)->frags;
4176
4177 skb_copy_from_linear_data_offset(head_skb, offset,
4178 skb_put(nskb, hsize), hsize);
4179
4180 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4181 SKBFL_SHARED_FRAG;
4182
4183 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4184 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4185 goto err;
4186
4187 while (pos < offset + len) {
4188 if (i >= nfrags) {
4189 i = 0;
4190 nfrags = skb_shinfo(list_skb)->nr_frags;
4191 frag = skb_shinfo(list_skb)->frags;
4192 frag_skb = list_skb;
4193 if (!skb_headlen(list_skb)) {
4194 BUG_ON(!nfrags);
4195 } else {
4196 BUG_ON(!list_skb->head_frag);
4197
4198 /* to make room for head_frag. */
4199 i--;
4200 frag--;
4201 }
4202 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4203 skb_zerocopy_clone(nskb, frag_skb,
4204 GFP_ATOMIC))
4205 goto err;
4206
4207 list_skb = list_skb->next;
4208 }
4209
4210 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4211 MAX_SKB_FRAGS)) {
4212 net_warn_ratelimited(
4213 "skb_segment: too many frags: %u %u\n",
4214 pos, mss);
4215 err = -EINVAL;
4216 goto err;
4217 }
4218
4219 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4220 __skb_frag_ref(nskb_frag);
4221 size = skb_frag_size(nskb_frag);
4222
4223 if (pos < offset) {
4224 skb_frag_off_add(nskb_frag, offset - pos);
4225 skb_frag_size_sub(nskb_frag, offset - pos);
4226 }
4227
4228 skb_shinfo(nskb)->nr_frags++;
4229
4230 if (pos + size <= offset + len) {
4231 i++;
4232 frag++;
4233 pos += size;
4234 } else {
4235 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4236 goto skip_fraglist;
4237 }
4238
4239 nskb_frag++;
4240 }
4241
4242 skip_fraglist:
4243 nskb->data_len = len - hsize;
4244 nskb->len += nskb->data_len;
4245 nskb->truesize += nskb->data_len;
4246
4247 perform_csum_check:
4248 if (!csum) {
4249 if (skb_has_shared_frag(nskb) &&
4250 __skb_linearize(nskb))
4251 goto err;
4252
4253 if (!nskb->remcsum_offload)
4254 nskb->ip_summed = CHECKSUM_NONE;
4255 SKB_GSO_CB(nskb)->csum =
4256 skb_checksum(nskb, doffset,
4257 nskb->len - doffset, 0);
4258 SKB_GSO_CB(nskb)->csum_start =
4259 skb_headroom(nskb) + doffset;
4260 }
4261 } while ((offset += len) < head_skb->len);
4262
4263 /* Some callers want to get the end of the list.
4264 * Put it in segs->prev to avoid walking the list.
4265 * (see validate_xmit_skb_list() for example)
4266 */
4267 segs->prev = tail;
4268
4269 if (partial_segs) {
4270 struct sk_buff *iter;
4271 int type = skb_shinfo(head_skb)->gso_type;
4272 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4273
4274 /* Update type to add partial and then remove dodgy if set */
4275 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4276 type &= ~SKB_GSO_DODGY;
4277
4278 /* Update GSO info and prepare to start updating headers on
4279 * our way back down the stack of protocols.
4280 */
4281 for (iter = segs; iter; iter = iter->next) {
4282 skb_shinfo(iter)->gso_size = gso_size;
4283 skb_shinfo(iter)->gso_segs = partial_segs;
4284 skb_shinfo(iter)->gso_type = type;
4285 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4286 }
4287
4288 if (tail->len - doffset <= gso_size)
4289 skb_shinfo(tail)->gso_size = 0;
4290 else if (tail != segs)
4291 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4292 }
4293
4294 /* Following permits correct backpressure, for protocols
4295 * using skb_set_owner_w().
4296 * Idea is to tranfert ownership from head_skb to last segment.
4297 */
4298 if (head_skb->destructor == sock_wfree) {
4299 swap(tail->truesize, head_skb->truesize);
4300 swap(tail->destructor, head_skb->destructor);
4301 swap(tail->sk, head_skb->sk);
4302 }
4303 return segs;
4304
4305 err:
4306 kfree_skb_list(segs);
4307 return ERR_PTR(err);
4308 }
4309 EXPORT_SYMBOL_GPL(skb_segment);
4310
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4311 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4312 {
4313 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4314 unsigned int offset = skb_gro_offset(skb);
4315 unsigned int headlen = skb_headlen(skb);
4316 unsigned int len = skb_gro_len(skb);
4317 unsigned int delta_truesize;
4318 unsigned int new_truesize;
4319 struct sk_buff *lp;
4320
4321 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4322 return -E2BIG;
4323
4324 lp = NAPI_GRO_CB(p)->last;
4325 pinfo = skb_shinfo(lp);
4326
4327 if (headlen <= offset) {
4328 skb_frag_t *frag;
4329 skb_frag_t *frag2;
4330 int i = skbinfo->nr_frags;
4331 int nr_frags = pinfo->nr_frags + i;
4332
4333 if (nr_frags > MAX_SKB_FRAGS)
4334 goto merge;
4335
4336 offset -= headlen;
4337 pinfo->nr_frags = nr_frags;
4338 skbinfo->nr_frags = 0;
4339
4340 frag = pinfo->frags + nr_frags;
4341 frag2 = skbinfo->frags + i;
4342 do {
4343 *--frag = *--frag2;
4344 } while (--i);
4345
4346 skb_frag_off_add(frag, offset);
4347 skb_frag_size_sub(frag, offset);
4348
4349 /* all fragments truesize : remove (head size + sk_buff) */
4350 new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4351 delta_truesize = skb->truesize - new_truesize;
4352
4353 skb->truesize = new_truesize;
4354 skb->len -= skb->data_len;
4355 skb->data_len = 0;
4356
4357 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4358 goto done;
4359 } else if (skb->head_frag) {
4360 int nr_frags = pinfo->nr_frags;
4361 skb_frag_t *frag = pinfo->frags + nr_frags;
4362 struct page *page = virt_to_head_page(skb->head);
4363 unsigned int first_size = headlen - offset;
4364 unsigned int first_offset;
4365
4366 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4367 goto merge;
4368
4369 first_offset = skb->data -
4370 (unsigned char *)page_address(page) +
4371 offset;
4372
4373 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4374
4375 __skb_frag_set_page(frag, page);
4376 skb_frag_off_set(frag, first_offset);
4377 skb_frag_size_set(frag, first_size);
4378
4379 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4380 /* We dont need to clear skbinfo->nr_frags here */
4381
4382 new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4383 delta_truesize = skb->truesize - new_truesize;
4384 skb->truesize = new_truesize;
4385 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4386 goto done;
4387 }
4388
4389 merge:
4390 /* sk owenrship - if any - completely transferred to the aggregated packet */
4391 skb->destructor = NULL;
4392 delta_truesize = skb->truesize;
4393 if (offset > headlen) {
4394 unsigned int eat = offset - headlen;
4395
4396 skb_frag_off_add(&skbinfo->frags[0], eat);
4397 skb_frag_size_sub(&skbinfo->frags[0], eat);
4398 skb->data_len -= eat;
4399 skb->len -= eat;
4400 offset = headlen;
4401 }
4402
4403 __skb_pull(skb, offset);
4404
4405 if (NAPI_GRO_CB(p)->last == p)
4406 skb_shinfo(p)->frag_list = skb;
4407 else
4408 NAPI_GRO_CB(p)->last->next = skb;
4409 NAPI_GRO_CB(p)->last = skb;
4410 __skb_header_release(skb);
4411 lp = p;
4412
4413 done:
4414 NAPI_GRO_CB(p)->count++;
4415 p->data_len += len;
4416 p->truesize += delta_truesize;
4417 p->len += len;
4418 if (lp != p) {
4419 lp->data_len += len;
4420 lp->truesize += delta_truesize;
4421 lp->len += len;
4422 }
4423 NAPI_GRO_CB(skb)->same_flow = 1;
4424 return 0;
4425 }
4426
4427 #ifdef CONFIG_SKB_EXTENSIONS
4428 #define SKB_EXT_ALIGN_VALUE 8
4429 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4430
4431 static const u8 skb_ext_type_len[] = {
4432 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4433 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4434 #endif
4435 #ifdef CONFIG_XFRM
4436 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4437 #endif
4438 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4439 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4440 #endif
4441 #if IS_ENABLED(CONFIG_MPTCP)
4442 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4443 #endif
4444 };
4445
skb_ext_total_length(void)4446 static __always_inline unsigned int skb_ext_total_length(void)
4447 {
4448 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4449 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4450 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4451 #endif
4452 #ifdef CONFIG_XFRM
4453 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4454 #endif
4455 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4456 skb_ext_type_len[TC_SKB_EXT] +
4457 #endif
4458 #if IS_ENABLED(CONFIG_MPTCP)
4459 skb_ext_type_len[SKB_EXT_MPTCP] +
4460 #endif
4461 0;
4462 }
4463
skb_extensions_init(void)4464 static void skb_extensions_init(void)
4465 {
4466 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4467 BUILD_BUG_ON(skb_ext_total_length() > 255);
4468
4469 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4470 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4471 0,
4472 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4473 NULL);
4474 }
4475 #else
skb_extensions_init(void)4476 static void skb_extensions_init(void) {}
4477 #endif
4478
skb_init(void)4479 void __init skb_init(void)
4480 {
4481 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4482 sizeof(struct sk_buff),
4483 0,
4484 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4485 offsetof(struct sk_buff, cb),
4486 sizeof_field(struct sk_buff, cb),
4487 NULL);
4488 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4489 sizeof(struct sk_buff_fclones),
4490 0,
4491 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4492 NULL);
4493 skb_extensions_init();
4494 }
4495
4496 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4497 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4498 unsigned int recursion_level)
4499 {
4500 int start = skb_headlen(skb);
4501 int i, copy = start - offset;
4502 struct sk_buff *frag_iter;
4503 int elt = 0;
4504
4505 if (unlikely(recursion_level >= 24))
4506 return -EMSGSIZE;
4507
4508 if (copy > 0) {
4509 if (copy > len)
4510 copy = len;
4511 sg_set_buf(sg, skb->data + offset, copy);
4512 elt++;
4513 if ((len -= copy) == 0)
4514 return elt;
4515 offset += copy;
4516 }
4517
4518 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4519 int end;
4520
4521 WARN_ON(start > offset + len);
4522
4523 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4524 if ((copy = end - offset) > 0) {
4525 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4526 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4527 return -EMSGSIZE;
4528
4529 if (copy > len)
4530 copy = len;
4531 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4532 skb_frag_off(frag) + offset - start);
4533 elt++;
4534 if (!(len -= copy))
4535 return elt;
4536 offset += copy;
4537 }
4538 start = end;
4539 }
4540
4541 skb_walk_frags(skb, frag_iter) {
4542 int end, ret;
4543
4544 WARN_ON(start > offset + len);
4545
4546 end = start + frag_iter->len;
4547 if ((copy = end - offset) > 0) {
4548 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4549 return -EMSGSIZE;
4550
4551 if (copy > len)
4552 copy = len;
4553 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4554 copy, recursion_level + 1);
4555 if (unlikely(ret < 0))
4556 return ret;
4557 elt += ret;
4558 if ((len -= copy) == 0)
4559 return elt;
4560 offset += copy;
4561 }
4562 start = end;
4563 }
4564 BUG_ON(len);
4565 return elt;
4566 }
4567
4568 /**
4569 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4570 * @skb: Socket buffer containing the buffers to be mapped
4571 * @sg: The scatter-gather list to map into
4572 * @offset: The offset into the buffer's contents to start mapping
4573 * @len: Length of buffer space to be mapped
4574 *
4575 * Fill the specified scatter-gather list with mappings/pointers into a
4576 * region of the buffer space attached to a socket buffer. Returns either
4577 * the number of scatterlist items used, or -EMSGSIZE if the contents
4578 * could not fit.
4579 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4580 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4581 {
4582 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4583
4584 if (nsg <= 0)
4585 return nsg;
4586
4587 sg_mark_end(&sg[nsg - 1]);
4588
4589 return nsg;
4590 }
4591 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4592
4593 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4594 * sglist without mark the sg which contain last skb data as the end.
4595 * So the caller can mannipulate sg list as will when padding new data after
4596 * the first call without calling sg_unmark_end to expend sg list.
4597 *
4598 * Scenario to use skb_to_sgvec_nomark:
4599 * 1. sg_init_table
4600 * 2. skb_to_sgvec_nomark(payload1)
4601 * 3. skb_to_sgvec_nomark(payload2)
4602 *
4603 * This is equivalent to:
4604 * 1. sg_init_table
4605 * 2. skb_to_sgvec(payload1)
4606 * 3. sg_unmark_end
4607 * 4. skb_to_sgvec(payload2)
4608 *
4609 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4610 * is more preferable.
4611 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4612 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4613 int offset, int len)
4614 {
4615 return __skb_to_sgvec(skb, sg, offset, len, 0);
4616 }
4617 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4618
4619
4620
4621 /**
4622 * skb_cow_data - Check that a socket buffer's data buffers are writable
4623 * @skb: The socket buffer to check.
4624 * @tailbits: Amount of trailing space to be added
4625 * @trailer: Returned pointer to the skb where the @tailbits space begins
4626 *
4627 * Make sure that the data buffers attached to a socket buffer are
4628 * writable. If they are not, private copies are made of the data buffers
4629 * and the socket buffer is set to use these instead.
4630 *
4631 * If @tailbits is given, make sure that there is space to write @tailbits
4632 * bytes of data beyond current end of socket buffer. @trailer will be
4633 * set to point to the skb in which this space begins.
4634 *
4635 * The number of scatterlist elements required to completely map the
4636 * COW'd and extended socket buffer will be returned.
4637 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4638 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4639 {
4640 int copyflag;
4641 int elt;
4642 struct sk_buff *skb1, **skb_p;
4643
4644 /* If skb is cloned or its head is paged, reallocate
4645 * head pulling out all the pages (pages are considered not writable
4646 * at the moment even if they are anonymous).
4647 */
4648 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4649 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4650 return -ENOMEM;
4651
4652 /* Easy case. Most of packets will go this way. */
4653 if (!skb_has_frag_list(skb)) {
4654 /* A little of trouble, not enough of space for trailer.
4655 * This should not happen, when stack is tuned to generate
4656 * good frames. OK, on miss we reallocate and reserve even more
4657 * space, 128 bytes is fair. */
4658
4659 if (skb_tailroom(skb) < tailbits &&
4660 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4661 return -ENOMEM;
4662
4663 /* Voila! */
4664 *trailer = skb;
4665 return 1;
4666 }
4667
4668 /* Misery. We are in troubles, going to mincer fragments... */
4669
4670 elt = 1;
4671 skb_p = &skb_shinfo(skb)->frag_list;
4672 copyflag = 0;
4673
4674 while ((skb1 = *skb_p) != NULL) {
4675 int ntail = 0;
4676
4677 /* The fragment is partially pulled by someone,
4678 * this can happen on input. Copy it and everything
4679 * after it. */
4680
4681 if (skb_shared(skb1))
4682 copyflag = 1;
4683
4684 /* If the skb is the last, worry about trailer. */
4685
4686 if (skb1->next == NULL && tailbits) {
4687 if (skb_shinfo(skb1)->nr_frags ||
4688 skb_has_frag_list(skb1) ||
4689 skb_tailroom(skb1) < tailbits)
4690 ntail = tailbits + 128;
4691 }
4692
4693 if (copyflag ||
4694 skb_cloned(skb1) ||
4695 ntail ||
4696 skb_shinfo(skb1)->nr_frags ||
4697 skb_has_frag_list(skb1)) {
4698 struct sk_buff *skb2;
4699
4700 /* Fuck, we are miserable poor guys... */
4701 if (ntail == 0)
4702 skb2 = skb_copy(skb1, GFP_ATOMIC);
4703 else
4704 skb2 = skb_copy_expand(skb1,
4705 skb_headroom(skb1),
4706 ntail,
4707 GFP_ATOMIC);
4708 if (unlikely(skb2 == NULL))
4709 return -ENOMEM;
4710
4711 if (skb1->sk)
4712 skb_set_owner_w(skb2, skb1->sk);
4713
4714 /* Looking around. Are we still alive?
4715 * OK, link new skb, drop old one */
4716
4717 skb2->next = skb1->next;
4718 *skb_p = skb2;
4719 kfree_skb(skb1);
4720 skb1 = skb2;
4721 }
4722 elt++;
4723 *trailer = skb1;
4724 skb_p = &skb1->next;
4725 }
4726
4727 return elt;
4728 }
4729 EXPORT_SYMBOL_GPL(skb_cow_data);
4730
sock_rmem_free(struct sk_buff * skb)4731 static void sock_rmem_free(struct sk_buff *skb)
4732 {
4733 struct sock *sk = skb->sk;
4734
4735 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4736 }
4737
skb_set_err_queue(struct sk_buff * skb)4738 static void skb_set_err_queue(struct sk_buff *skb)
4739 {
4740 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4741 * So, it is safe to (mis)use it to mark skbs on the error queue.
4742 */
4743 skb->pkt_type = PACKET_OUTGOING;
4744 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4745 }
4746
4747 /*
4748 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4749 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4750 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4751 {
4752 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4753 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4754 return -ENOMEM;
4755
4756 skb_orphan(skb);
4757 skb->sk = sk;
4758 skb->destructor = sock_rmem_free;
4759 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4760 skb_set_err_queue(skb);
4761
4762 /* before exiting rcu section, make sure dst is refcounted */
4763 skb_dst_force(skb);
4764
4765 skb_queue_tail(&sk->sk_error_queue, skb);
4766 if (!sock_flag(sk, SOCK_DEAD))
4767 sk_error_report(sk);
4768 return 0;
4769 }
4770 EXPORT_SYMBOL(sock_queue_err_skb);
4771
is_icmp_err_skb(const struct sk_buff * skb)4772 static bool is_icmp_err_skb(const struct sk_buff *skb)
4773 {
4774 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4775 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4776 }
4777
sock_dequeue_err_skb(struct sock * sk)4778 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4779 {
4780 struct sk_buff_head *q = &sk->sk_error_queue;
4781 struct sk_buff *skb, *skb_next = NULL;
4782 bool icmp_next = false;
4783 unsigned long flags;
4784
4785 spin_lock_irqsave(&q->lock, flags);
4786 skb = __skb_dequeue(q);
4787 if (skb && (skb_next = skb_peek(q))) {
4788 icmp_next = is_icmp_err_skb(skb_next);
4789 if (icmp_next)
4790 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4791 }
4792 spin_unlock_irqrestore(&q->lock, flags);
4793
4794 if (is_icmp_err_skb(skb) && !icmp_next)
4795 sk->sk_err = 0;
4796
4797 if (skb_next)
4798 sk_error_report(sk);
4799
4800 return skb;
4801 }
4802 EXPORT_SYMBOL(sock_dequeue_err_skb);
4803
4804 /**
4805 * skb_clone_sk - create clone of skb, and take reference to socket
4806 * @skb: the skb to clone
4807 *
4808 * This function creates a clone of a buffer that holds a reference on
4809 * sk_refcnt. Buffers created via this function are meant to be
4810 * returned using sock_queue_err_skb, or free via kfree_skb.
4811 *
4812 * When passing buffers allocated with this function to sock_queue_err_skb
4813 * it is necessary to wrap the call with sock_hold/sock_put in order to
4814 * prevent the socket from being released prior to being enqueued on
4815 * the sk_error_queue.
4816 */
skb_clone_sk(struct sk_buff * skb)4817 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4818 {
4819 struct sock *sk = skb->sk;
4820 struct sk_buff *clone;
4821
4822 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4823 return NULL;
4824
4825 clone = skb_clone(skb, GFP_ATOMIC);
4826 if (!clone) {
4827 sock_put(sk);
4828 return NULL;
4829 }
4830
4831 clone->sk = sk;
4832 clone->destructor = sock_efree;
4833
4834 return clone;
4835 }
4836 EXPORT_SYMBOL(skb_clone_sk);
4837
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4838 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4839 struct sock *sk,
4840 int tstype,
4841 bool opt_stats)
4842 {
4843 struct sock_exterr_skb *serr;
4844 int err;
4845
4846 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4847
4848 serr = SKB_EXT_ERR(skb);
4849 memset(serr, 0, sizeof(*serr));
4850 serr->ee.ee_errno = ENOMSG;
4851 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4852 serr->ee.ee_info = tstype;
4853 serr->opt_stats = opt_stats;
4854 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4855 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4856 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4857 if (sk->sk_protocol == IPPROTO_TCP &&
4858 sk->sk_type == SOCK_STREAM)
4859 serr->ee.ee_data -= sk->sk_tskey;
4860 }
4861
4862 err = sock_queue_err_skb(sk, skb);
4863
4864 if (err)
4865 kfree_skb(skb);
4866 }
4867
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4868 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4869 {
4870 bool ret;
4871
4872 if (likely(sysctl_tstamp_allow_data || tsonly))
4873 return true;
4874
4875 read_lock_bh(&sk->sk_callback_lock);
4876 ret = sk->sk_socket && sk->sk_socket->file &&
4877 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4878 read_unlock_bh(&sk->sk_callback_lock);
4879 return ret;
4880 }
4881
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4882 void skb_complete_tx_timestamp(struct sk_buff *skb,
4883 struct skb_shared_hwtstamps *hwtstamps)
4884 {
4885 struct sock *sk = skb->sk;
4886
4887 if (!skb_may_tx_timestamp(sk, false))
4888 goto err;
4889
4890 /* Take a reference to prevent skb_orphan() from freeing the socket,
4891 * but only if the socket refcount is not zero.
4892 */
4893 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4894 *skb_hwtstamps(skb) = *hwtstamps;
4895 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4896 sock_put(sk);
4897 return;
4898 }
4899
4900 err:
4901 kfree_skb(skb);
4902 }
4903 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4904
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4905 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4906 const struct sk_buff *ack_skb,
4907 struct skb_shared_hwtstamps *hwtstamps,
4908 struct sock *sk, int tstype)
4909 {
4910 struct sk_buff *skb;
4911 bool tsonly, opt_stats = false;
4912
4913 if (!sk)
4914 return;
4915
4916 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4917 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4918 return;
4919
4920 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4921 if (!skb_may_tx_timestamp(sk, tsonly))
4922 return;
4923
4924 if (tsonly) {
4925 #ifdef CONFIG_INET
4926 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4927 sk->sk_protocol == IPPROTO_TCP &&
4928 sk->sk_type == SOCK_STREAM) {
4929 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4930 ack_skb);
4931 opt_stats = true;
4932 } else
4933 #endif
4934 skb = alloc_skb(0, GFP_ATOMIC);
4935 } else {
4936 skb = skb_clone(orig_skb, GFP_ATOMIC);
4937 }
4938 if (!skb)
4939 return;
4940
4941 if (tsonly) {
4942 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4943 SKBTX_ANY_TSTAMP;
4944 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4945 }
4946
4947 if (hwtstamps)
4948 *skb_hwtstamps(skb) = *hwtstamps;
4949 else
4950 skb->tstamp = ktime_get_real();
4951
4952 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4953 }
4954 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4955
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4956 void skb_tstamp_tx(struct sk_buff *orig_skb,
4957 struct skb_shared_hwtstamps *hwtstamps)
4958 {
4959 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
4960 SCM_TSTAMP_SND);
4961 }
4962 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4963
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4964 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4965 {
4966 struct sock *sk = skb->sk;
4967 struct sock_exterr_skb *serr;
4968 int err = 1;
4969
4970 skb->wifi_acked_valid = 1;
4971 skb->wifi_acked = acked;
4972
4973 serr = SKB_EXT_ERR(skb);
4974 memset(serr, 0, sizeof(*serr));
4975 serr->ee.ee_errno = ENOMSG;
4976 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4977
4978 /* Take a reference to prevent skb_orphan() from freeing the socket,
4979 * but only if the socket refcount is not zero.
4980 */
4981 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4982 err = sock_queue_err_skb(sk, skb);
4983 sock_put(sk);
4984 }
4985 if (err)
4986 kfree_skb(skb);
4987 }
4988 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4989
4990 /**
4991 * skb_partial_csum_set - set up and verify partial csum values for packet
4992 * @skb: the skb to set
4993 * @start: the number of bytes after skb->data to start checksumming.
4994 * @off: the offset from start to place the checksum.
4995 *
4996 * For untrusted partially-checksummed packets, we need to make sure the values
4997 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4998 *
4999 * This function checks and sets those values and skb->ip_summed: if this
5000 * returns false you should drop the packet.
5001 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5002 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5003 {
5004 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5005 u32 csum_start = skb_headroom(skb) + (u32)start;
5006
5007 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5008 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5009 start, off, skb_headroom(skb), skb_headlen(skb));
5010 return false;
5011 }
5012 skb->ip_summed = CHECKSUM_PARTIAL;
5013 skb->csum_start = csum_start;
5014 skb->csum_offset = off;
5015 skb_set_transport_header(skb, start);
5016 return true;
5017 }
5018 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5019
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5020 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5021 unsigned int max)
5022 {
5023 if (skb_headlen(skb) >= len)
5024 return 0;
5025
5026 /* If we need to pullup then pullup to the max, so we
5027 * won't need to do it again.
5028 */
5029 if (max > skb->len)
5030 max = skb->len;
5031
5032 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5033 return -ENOMEM;
5034
5035 if (skb_headlen(skb) < len)
5036 return -EPROTO;
5037
5038 return 0;
5039 }
5040
5041 #define MAX_TCP_HDR_LEN (15 * 4)
5042
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)5043 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5044 typeof(IPPROTO_IP) proto,
5045 unsigned int off)
5046 {
5047 int err;
5048
5049 switch (proto) {
5050 case IPPROTO_TCP:
5051 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5052 off + MAX_TCP_HDR_LEN);
5053 if (!err && !skb_partial_csum_set(skb, off,
5054 offsetof(struct tcphdr,
5055 check)))
5056 err = -EPROTO;
5057 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5058
5059 case IPPROTO_UDP:
5060 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5061 off + sizeof(struct udphdr));
5062 if (!err && !skb_partial_csum_set(skb, off,
5063 offsetof(struct udphdr,
5064 check)))
5065 err = -EPROTO;
5066 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5067 }
5068
5069 return ERR_PTR(-EPROTO);
5070 }
5071
5072 /* This value should be large enough to cover a tagged ethernet header plus
5073 * maximally sized IP and TCP or UDP headers.
5074 */
5075 #define MAX_IP_HDR_LEN 128
5076
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5077 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5078 {
5079 unsigned int off;
5080 bool fragment;
5081 __sum16 *csum;
5082 int err;
5083
5084 fragment = false;
5085
5086 err = skb_maybe_pull_tail(skb,
5087 sizeof(struct iphdr),
5088 MAX_IP_HDR_LEN);
5089 if (err < 0)
5090 goto out;
5091
5092 if (ip_is_fragment(ip_hdr(skb)))
5093 fragment = true;
5094
5095 off = ip_hdrlen(skb);
5096
5097 err = -EPROTO;
5098
5099 if (fragment)
5100 goto out;
5101
5102 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5103 if (IS_ERR(csum))
5104 return PTR_ERR(csum);
5105
5106 if (recalculate)
5107 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5108 ip_hdr(skb)->daddr,
5109 skb->len - off,
5110 ip_hdr(skb)->protocol, 0);
5111 err = 0;
5112
5113 out:
5114 return err;
5115 }
5116
5117 /* This value should be large enough to cover a tagged ethernet header plus
5118 * an IPv6 header, all options, and a maximal TCP or UDP header.
5119 */
5120 #define MAX_IPV6_HDR_LEN 256
5121
5122 #define OPT_HDR(type, skb, off) \
5123 (type *)(skb_network_header(skb) + (off))
5124
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5125 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5126 {
5127 int err;
5128 u8 nexthdr;
5129 unsigned int off;
5130 unsigned int len;
5131 bool fragment;
5132 bool done;
5133 __sum16 *csum;
5134
5135 fragment = false;
5136 done = false;
5137
5138 off = sizeof(struct ipv6hdr);
5139
5140 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5141 if (err < 0)
5142 goto out;
5143
5144 nexthdr = ipv6_hdr(skb)->nexthdr;
5145
5146 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5147 while (off <= len && !done) {
5148 switch (nexthdr) {
5149 case IPPROTO_DSTOPTS:
5150 case IPPROTO_HOPOPTS:
5151 case IPPROTO_ROUTING: {
5152 struct ipv6_opt_hdr *hp;
5153
5154 err = skb_maybe_pull_tail(skb,
5155 off +
5156 sizeof(struct ipv6_opt_hdr),
5157 MAX_IPV6_HDR_LEN);
5158 if (err < 0)
5159 goto out;
5160
5161 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5162 nexthdr = hp->nexthdr;
5163 off += ipv6_optlen(hp);
5164 break;
5165 }
5166 case IPPROTO_AH: {
5167 struct ip_auth_hdr *hp;
5168
5169 err = skb_maybe_pull_tail(skb,
5170 off +
5171 sizeof(struct ip_auth_hdr),
5172 MAX_IPV6_HDR_LEN);
5173 if (err < 0)
5174 goto out;
5175
5176 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5177 nexthdr = hp->nexthdr;
5178 off += ipv6_authlen(hp);
5179 break;
5180 }
5181 case IPPROTO_FRAGMENT: {
5182 struct frag_hdr *hp;
5183
5184 err = skb_maybe_pull_tail(skb,
5185 off +
5186 sizeof(struct frag_hdr),
5187 MAX_IPV6_HDR_LEN);
5188 if (err < 0)
5189 goto out;
5190
5191 hp = OPT_HDR(struct frag_hdr, skb, off);
5192
5193 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5194 fragment = true;
5195
5196 nexthdr = hp->nexthdr;
5197 off += sizeof(struct frag_hdr);
5198 break;
5199 }
5200 default:
5201 done = true;
5202 break;
5203 }
5204 }
5205
5206 err = -EPROTO;
5207
5208 if (!done || fragment)
5209 goto out;
5210
5211 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5212 if (IS_ERR(csum))
5213 return PTR_ERR(csum);
5214
5215 if (recalculate)
5216 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5217 &ipv6_hdr(skb)->daddr,
5218 skb->len - off, nexthdr, 0);
5219 err = 0;
5220
5221 out:
5222 return err;
5223 }
5224
5225 /**
5226 * skb_checksum_setup - set up partial checksum offset
5227 * @skb: the skb to set up
5228 * @recalculate: if true the pseudo-header checksum will be recalculated
5229 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5230 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5231 {
5232 int err;
5233
5234 switch (skb->protocol) {
5235 case htons(ETH_P_IP):
5236 err = skb_checksum_setup_ipv4(skb, recalculate);
5237 break;
5238
5239 case htons(ETH_P_IPV6):
5240 err = skb_checksum_setup_ipv6(skb, recalculate);
5241 break;
5242
5243 default:
5244 err = -EPROTO;
5245 break;
5246 }
5247
5248 return err;
5249 }
5250 EXPORT_SYMBOL(skb_checksum_setup);
5251
5252 /**
5253 * skb_checksum_maybe_trim - maybe trims the given skb
5254 * @skb: the skb to check
5255 * @transport_len: the data length beyond the network header
5256 *
5257 * Checks whether the given skb has data beyond the given transport length.
5258 * If so, returns a cloned skb trimmed to this transport length.
5259 * Otherwise returns the provided skb. Returns NULL in error cases
5260 * (e.g. transport_len exceeds skb length or out-of-memory).
5261 *
5262 * Caller needs to set the skb transport header and free any returned skb if it
5263 * differs from the provided skb.
5264 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5265 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5266 unsigned int transport_len)
5267 {
5268 struct sk_buff *skb_chk;
5269 unsigned int len = skb_transport_offset(skb) + transport_len;
5270 int ret;
5271
5272 if (skb->len < len)
5273 return NULL;
5274 else if (skb->len == len)
5275 return skb;
5276
5277 skb_chk = skb_clone(skb, GFP_ATOMIC);
5278 if (!skb_chk)
5279 return NULL;
5280
5281 ret = pskb_trim_rcsum(skb_chk, len);
5282 if (ret) {
5283 kfree_skb(skb_chk);
5284 return NULL;
5285 }
5286
5287 return skb_chk;
5288 }
5289
5290 /**
5291 * skb_checksum_trimmed - validate checksum of an skb
5292 * @skb: the skb to check
5293 * @transport_len: the data length beyond the network header
5294 * @skb_chkf: checksum function to use
5295 *
5296 * Applies the given checksum function skb_chkf to the provided skb.
5297 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5298 *
5299 * If the skb has data beyond the given transport length, then a
5300 * trimmed & cloned skb is checked and returned.
5301 *
5302 * Caller needs to set the skb transport header and free any returned skb if it
5303 * differs from the provided skb.
5304 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5305 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5306 unsigned int transport_len,
5307 __sum16(*skb_chkf)(struct sk_buff *skb))
5308 {
5309 struct sk_buff *skb_chk;
5310 unsigned int offset = skb_transport_offset(skb);
5311 __sum16 ret;
5312
5313 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5314 if (!skb_chk)
5315 goto err;
5316
5317 if (!pskb_may_pull(skb_chk, offset))
5318 goto err;
5319
5320 skb_pull_rcsum(skb_chk, offset);
5321 ret = skb_chkf(skb_chk);
5322 skb_push_rcsum(skb_chk, offset);
5323
5324 if (ret)
5325 goto err;
5326
5327 return skb_chk;
5328
5329 err:
5330 if (skb_chk && skb_chk != skb)
5331 kfree_skb(skb_chk);
5332
5333 return NULL;
5334
5335 }
5336 EXPORT_SYMBOL(skb_checksum_trimmed);
5337
__skb_warn_lro_forwarding(const struct sk_buff * skb)5338 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5339 {
5340 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5341 skb->dev->name);
5342 }
5343 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5344
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5345 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5346 {
5347 if (head_stolen) {
5348 skb_release_head_state(skb);
5349 kmem_cache_free(skbuff_head_cache, skb);
5350 } else {
5351 __kfree_skb(skb);
5352 }
5353 }
5354 EXPORT_SYMBOL(kfree_skb_partial);
5355
5356 /**
5357 * skb_try_coalesce - try to merge skb to prior one
5358 * @to: prior buffer
5359 * @from: buffer to add
5360 * @fragstolen: pointer to boolean
5361 * @delta_truesize: how much more was allocated than was requested
5362 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5363 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5364 bool *fragstolen, int *delta_truesize)
5365 {
5366 struct skb_shared_info *to_shinfo, *from_shinfo;
5367 int i, delta, len = from->len;
5368
5369 *fragstolen = false;
5370
5371 if (skb_cloned(to))
5372 return false;
5373
5374 /* The page pool signature of struct page will eventually figure out
5375 * which pages can be recycled or not but for now let's prohibit slab
5376 * allocated and page_pool allocated SKBs from being coalesced.
5377 */
5378 if (to->pp_recycle != from->pp_recycle)
5379 return false;
5380
5381 if (len <= skb_tailroom(to)) {
5382 if (len)
5383 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5384 *delta_truesize = 0;
5385 return true;
5386 }
5387
5388 to_shinfo = skb_shinfo(to);
5389 from_shinfo = skb_shinfo(from);
5390 if (to_shinfo->frag_list || from_shinfo->frag_list)
5391 return false;
5392 if (skb_zcopy(to) || skb_zcopy(from))
5393 return false;
5394
5395 if (skb_headlen(from) != 0) {
5396 struct page *page;
5397 unsigned int offset;
5398
5399 if (to_shinfo->nr_frags +
5400 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5401 return false;
5402
5403 if (skb_head_is_locked(from))
5404 return false;
5405
5406 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5407
5408 page = virt_to_head_page(from->head);
5409 offset = from->data - (unsigned char *)page_address(page);
5410
5411 skb_fill_page_desc(to, to_shinfo->nr_frags,
5412 page, offset, skb_headlen(from));
5413 *fragstolen = true;
5414 } else {
5415 if (to_shinfo->nr_frags +
5416 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5417 return false;
5418
5419 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5420 }
5421
5422 WARN_ON_ONCE(delta < len);
5423
5424 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5425 from_shinfo->frags,
5426 from_shinfo->nr_frags * sizeof(skb_frag_t));
5427 to_shinfo->nr_frags += from_shinfo->nr_frags;
5428
5429 if (!skb_cloned(from))
5430 from_shinfo->nr_frags = 0;
5431
5432 /* if the skb is not cloned this does nothing
5433 * since we set nr_frags to 0.
5434 */
5435 for (i = 0; i < from_shinfo->nr_frags; i++)
5436 __skb_frag_ref(&from_shinfo->frags[i]);
5437
5438 to->truesize += delta;
5439 to->len += len;
5440 to->data_len += len;
5441
5442 *delta_truesize = delta;
5443 return true;
5444 }
5445 EXPORT_SYMBOL(skb_try_coalesce);
5446
5447 /**
5448 * skb_scrub_packet - scrub an skb
5449 *
5450 * @skb: buffer to clean
5451 * @xnet: packet is crossing netns
5452 *
5453 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5454 * into/from a tunnel. Some information have to be cleared during these
5455 * operations.
5456 * skb_scrub_packet can also be used to clean a skb before injecting it in
5457 * another namespace (@xnet == true). We have to clear all information in the
5458 * skb that could impact namespace isolation.
5459 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5460 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5461 {
5462 skb->pkt_type = PACKET_HOST;
5463 skb->skb_iif = 0;
5464 skb->ignore_df = 0;
5465 skb_dst_drop(skb);
5466 skb_ext_reset(skb);
5467 nf_reset_ct(skb);
5468 nf_reset_trace(skb);
5469
5470 #ifdef CONFIG_NET_SWITCHDEV
5471 skb->offload_fwd_mark = 0;
5472 skb->offload_l3_fwd_mark = 0;
5473 #endif
5474
5475 if (!xnet)
5476 return;
5477
5478 ipvs_reset(skb);
5479 skb->mark = 0;
5480 skb->tstamp = 0;
5481 }
5482 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5483
5484 /**
5485 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5486 *
5487 * @skb: GSO skb
5488 *
5489 * skb_gso_transport_seglen is used to determine the real size of the
5490 * individual segments, including Layer4 headers (TCP/UDP).
5491 *
5492 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5493 */
skb_gso_transport_seglen(const struct sk_buff * skb)5494 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5495 {
5496 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5497 unsigned int thlen = 0;
5498
5499 if (skb->encapsulation) {
5500 thlen = skb_inner_transport_header(skb) -
5501 skb_transport_header(skb);
5502
5503 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5504 thlen += inner_tcp_hdrlen(skb);
5505 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5506 thlen = tcp_hdrlen(skb);
5507 } else if (unlikely(skb_is_gso_sctp(skb))) {
5508 thlen = sizeof(struct sctphdr);
5509 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5510 thlen = sizeof(struct udphdr);
5511 }
5512 /* UFO sets gso_size to the size of the fragmentation
5513 * payload, i.e. the size of the L4 (UDP) header is already
5514 * accounted for.
5515 */
5516 return thlen + shinfo->gso_size;
5517 }
5518
5519 /**
5520 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5521 *
5522 * @skb: GSO skb
5523 *
5524 * skb_gso_network_seglen is used to determine the real size of the
5525 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5526 *
5527 * The MAC/L2 header is not accounted for.
5528 */
skb_gso_network_seglen(const struct sk_buff * skb)5529 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5530 {
5531 unsigned int hdr_len = skb_transport_header(skb) -
5532 skb_network_header(skb);
5533
5534 return hdr_len + skb_gso_transport_seglen(skb);
5535 }
5536
5537 /**
5538 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5539 *
5540 * @skb: GSO skb
5541 *
5542 * skb_gso_mac_seglen is used to determine the real size of the
5543 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5544 * headers (TCP/UDP).
5545 */
skb_gso_mac_seglen(const struct sk_buff * skb)5546 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5547 {
5548 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5549
5550 return hdr_len + skb_gso_transport_seglen(skb);
5551 }
5552
5553 /**
5554 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5555 *
5556 * There are a couple of instances where we have a GSO skb, and we
5557 * want to determine what size it would be after it is segmented.
5558 *
5559 * We might want to check:
5560 * - L3+L4+payload size (e.g. IP forwarding)
5561 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5562 *
5563 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5564 *
5565 * @skb: GSO skb
5566 *
5567 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5568 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5569 *
5570 * @max_len: The maximum permissible length.
5571 *
5572 * Returns true if the segmented length <= max length.
5573 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5574 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5575 unsigned int seg_len,
5576 unsigned int max_len) {
5577 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5578 const struct sk_buff *iter;
5579
5580 if (shinfo->gso_size != GSO_BY_FRAGS)
5581 return seg_len <= max_len;
5582
5583 /* Undo this so we can re-use header sizes */
5584 seg_len -= GSO_BY_FRAGS;
5585
5586 skb_walk_frags(skb, iter) {
5587 if (seg_len + skb_headlen(iter) > max_len)
5588 return false;
5589 }
5590
5591 return true;
5592 }
5593
5594 /**
5595 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5596 *
5597 * @skb: GSO skb
5598 * @mtu: MTU to validate against
5599 *
5600 * skb_gso_validate_network_len validates if a given skb will fit a
5601 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5602 * payload.
5603 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5604 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5605 {
5606 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5607 }
5608 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5609
5610 /**
5611 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5612 *
5613 * @skb: GSO skb
5614 * @len: length to validate against
5615 *
5616 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5617 * length once split, including L2, L3 and L4 headers and the payload.
5618 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5619 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5620 {
5621 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5622 }
5623 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5624
skb_reorder_vlan_header(struct sk_buff * skb)5625 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5626 {
5627 int mac_len, meta_len;
5628 void *meta;
5629
5630 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5631 kfree_skb(skb);
5632 return NULL;
5633 }
5634
5635 mac_len = skb->data - skb_mac_header(skb);
5636 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5637 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5638 mac_len - VLAN_HLEN - ETH_TLEN);
5639 }
5640
5641 meta_len = skb_metadata_len(skb);
5642 if (meta_len) {
5643 meta = skb_metadata_end(skb) - meta_len;
5644 memmove(meta + VLAN_HLEN, meta, meta_len);
5645 }
5646
5647 skb->mac_header += VLAN_HLEN;
5648 return skb;
5649 }
5650
skb_vlan_untag(struct sk_buff * skb)5651 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5652 {
5653 struct vlan_hdr *vhdr;
5654 u16 vlan_tci;
5655
5656 if (unlikely(skb_vlan_tag_present(skb))) {
5657 /* vlan_tci is already set-up so leave this for another time */
5658 return skb;
5659 }
5660
5661 skb = skb_share_check(skb, GFP_ATOMIC);
5662 if (unlikely(!skb))
5663 goto err_free;
5664 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5665 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5666 goto err_free;
5667
5668 vhdr = (struct vlan_hdr *)skb->data;
5669 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5670 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5671
5672 skb_pull_rcsum(skb, VLAN_HLEN);
5673 vlan_set_encap_proto(skb, vhdr);
5674
5675 skb = skb_reorder_vlan_header(skb);
5676 if (unlikely(!skb))
5677 goto err_free;
5678
5679 skb_reset_network_header(skb);
5680 if (!skb_transport_header_was_set(skb))
5681 skb_reset_transport_header(skb);
5682 skb_reset_mac_len(skb);
5683
5684 return skb;
5685
5686 err_free:
5687 kfree_skb(skb);
5688 return NULL;
5689 }
5690 EXPORT_SYMBOL(skb_vlan_untag);
5691
skb_ensure_writable(struct sk_buff * skb,int write_len)5692 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5693 {
5694 if (!pskb_may_pull(skb, write_len))
5695 return -ENOMEM;
5696
5697 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5698 return 0;
5699
5700 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5701 }
5702 EXPORT_SYMBOL(skb_ensure_writable);
5703
5704 /* remove VLAN header from packet and update csum accordingly.
5705 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5706 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5707 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5708 {
5709 struct vlan_hdr *vhdr;
5710 int offset = skb->data - skb_mac_header(skb);
5711 int err;
5712
5713 if (WARN_ONCE(offset,
5714 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5715 offset)) {
5716 return -EINVAL;
5717 }
5718
5719 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5720 if (unlikely(err))
5721 return err;
5722
5723 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5724
5725 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5726 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5727
5728 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5729 __skb_pull(skb, VLAN_HLEN);
5730
5731 vlan_set_encap_proto(skb, vhdr);
5732 skb->mac_header += VLAN_HLEN;
5733
5734 if (skb_network_offset(skb) < ETH_HLEN)
5735 skb_set_network_header(skb, ETH_HLEN);
5736
5737 skb_reset_mac_len(skb);
5738
5739 return err;
5740 }
5741 EXPORT_SYMBOL(__skb_vlan_pop);
5742
5743 /* Pop a vlan tag either from hwaccel or from payload.
5744 * Expects skb->data at mac header.
5745 */
skb_vlan_pop(struct sk_buff * skb)5746 int skb_vlan_pop(struct sk_buff *skb)
5747 {
5748 u16 vlan_tci;
5749 __be16 vlan_proto;
5750 int err;
5751
5752 if (likely(skb_vlan_tag_present(skb))) {
5753 __vlan_hwaccel_clear_tag(skb);
5754 } else {
5755 if (unlikely(!eth_type_vlan(skb->protocol)))
5756 return 0;
5757
5758 err = __skb_vlan_pop(skb, &vlan_tci);
5759 if (err)
5760 return err;
5761 }
5762 /* move next vlan tag to hw accel tag */
5763 if (likely(!eth_type_vlan(skb->protocol)))
5764 return 0;
5765
5766 vlan_proto = skb->protocol;
5767 err = __skb_vlan_pop(skb, &vlan_tci);
5768 if (unlikely(err))
5769 return err;
5770
5771 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5772 return 0;
5773 }
5774 EXPORT_SYMBOL(skb_vlan_pop);
5775
5776 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5777 * Expects skb->data at mac header.
5778 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5779 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5780 {
5781 if (skb_vlan_tag_present(skb)) {
5782 int offset = skb->data - skb_mac_header(skb);
5783 int err;
5784
5785 if (WARN_ONCE(offset,
5786 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5787 offset)) {
5788 return -EINVAL;
5789 }
5790
5791 err = __vlan_insert_tag(skb, skb->vlan_proto,
5792 skb_vlan_tag_get(skb));
5793 if (err)
5794 return err;
5795
5796 skb->protocol = skb->vlan_proto;
5797 skb->mac_len += VLAN_HLEN;
5798
5799 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5800 }
5801 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5802 return 0;
5803 }
5804 EXPORT_SYMBOL(skb_vlan_push);
5805
5806 /**
5807 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5808 *
5809 * @skb: Socket buffer to modify
5810 *
5811 * Drop the Ethernet header of @skb.
5812 *
5813 * Expects that skb->data points to the mac header and that no VLAN tags are
5814 * present.
5815 *
5816 * Returns 0 on success, -errno otherwise.
5817 */
skb_eth_pop(struct sk_buff * skb)5818 int skb_eth_pop(struct sk_buff *skb)
5819 {
5820 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5821 skb_network_offset(skb) < ETH_HLEN)
5822 return -EPROTO;
5823
5824 skb_pull_rcsum(skb, ETH_HLEN);
5825 skb_reset_mac_header(skb);
5826 skb_reset_mac_len(skb);
5827
5828 return 0;
5829 }
5830 EXPORT_SYMBOL(skb_eth_pop);
5831
5832 /**
5833 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5834 *
5835 * @skb: Socket buffer to modify
5836 * @dst: Destination MAC address of the new header
5837 * @src: Source MAC address of the new header
5838 *
5839 * Prepend @skb with a new Ethernet header.
5840 *
5841 * Expects that skb->data points to the mac header, which must be empty.
5842 *
5843 * Returns 0 on success, -errno otherwise.
5844 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5845 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5846 const unsigned char *src)
5847 {
5848 struct ethhdr *eth;
5849 int err;
5850
5851 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5852 return -EPROTO;
5853
5854 err = skb_cow_head(skb, sizeof(*eth));
5855 if (err < 0)
5856 return err;
5857
5858 skb_push(skb, sizeof(*eth));
5859 skb_reset_mac_header(skb);
5860 skb_reset_mac_len(skb);
5861
5862 eth = eth_hdr(skb);
5863 ether_addr_copy(eth->h_dest, dst);
5864 ether_addr_copy(eth->h_source, src);
5865 eth->h_proto = skb->protocol;
5866
5867 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5868
5869 return 0;
5870 }
5871 EXPORT_SYMBOL(skb_eth_push);
5872
5873 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5874 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5875 __be16 ethertype)
5876 {
5877 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5878 __be16 diff[] = { ~hdr->h_proto, ethertype };
5879
5880 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5881 }
5882
5883 hdr->h_proto = ethertype;
5884 }
5885
5886 /**
5887 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5888 * the packet
5889 *
5890 * @skb: buffer
5891 * @mpls_lse: MPLS label stack entry to push
5892 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5893 * @mac_len: length of the MAC header
5894 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5895 * ethernet
5896 *
5897 * Expects skb->data at mac header.
5898 *
5899 * Returns 0 on success, -errno otherwise.
5900 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5901 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5902 int mac_len, bool ethernet)
5903 {
5904 struct mpls_shim_hdr *lse;
5905 int err;
5906
5907 if (unlikely(!eth_p_mpls(mpls_proto)))
5908 return -EINVAL;
5909
5910 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5911 if (skb->encapsulation)
5912 return -EINVAL;
5913
5914 err = skb_cow_head(skb, MPLS_HLEN);
5915 if (unlikely(err))
5916 return err;
5917
5918 if (!skb->inner_protocol) {
5919 skb_set_inner_network_header(skb, skb_network_offset(skb));
5920 skb_set_inner_protocol(skb, skb->protocol);
5921 }
5922
5923 skb_push(skb, MPLS_HLEN);
5924 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5925 mac_len);
5926 skb_reset_mac_header(skb);
5927 skb_set_network_header(skb, mac_len);
5928 skb_reset_mac_len(skb);
5929
5930 lse = mpls_hdr(skb);
5931 lse->label_stack_entry = mpls_lse;
5932 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5933
5934 if (ethernet && mac_len >= ETH_HLEN)
5935 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5936 skb->protocol = mpls_proto;
5937
5938 return 0;
5939 }
5940 EXPORT_SYMBOL_GPL(skb_mpls_push);
5941
5942 /**
5943 * skb_mpls_pop() - pop the outermost MPLS header
5944 *
5945 * @skb: buffer
5946 * @next_proto: ethertype of header after popped MPLS header
5947 * @mac_len: length of the MAC header
5948 * @ethernet: flag to indicate if the packet is ethernet
5949 *
5950 * Expects skb->data at mac header.
5951 *
5952 * Returns 0 on success, -errno otherwise.
5953 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5954 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5955 bool ethernet)
5956 {
5957 int err;
5958
5959 if (unlikely(!eth_p_mpls(skb->protocol)))
5960 return 0;
5961
5962 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5963 if (unlikely(err))
5964 return err;
5965
5966 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5967 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5968 mac_len);
5969
5970 __skb_pull(skb, MPLS_HLEN);
5971 skb_reset_mac_header(skb);
5972 skb_set_network_header(skb, mac_len);
5973
5974 if (ethernet && mac_len >= ETH_HLEN) {
5975 struct ethhdr *hdr;
5976
5977 /* use mpls_hdr() to get ethertype to account for VLANs. */
5978 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5979 skb_mod_eth_type(skb, hdr, next_proto);
5980 }
5981 skb->protocol = next_proto;
5982
5983 return 0;
5984 }
5985 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5986
5987 /**
5988 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5989 *
5990 * @skb: buffer
5991 * @mpls_lse: new MPLS label stack entry to update to
5992 *
5993 * Expects skb->data at mac header.
5994 *
5995 * Returns 0 on success, -errno otherwise.
5996 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5997 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5998 {
5999 int err;
6000
6001 if (unlikely(!eth_p_mpls(skb->protocol)))
6002 return -EINVAL;
6003
6004 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6005 if (unlikely(err))
6006 return err;
6007
6008 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6009 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6010
6011 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6012 }
6013
6014 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6015
6016 return 0;
6017 }
6018 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6019
6020 /**
6021 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6022 *
6023 * @skb: buffer
6024 *
6025 * Expects skb->data at mac header.
6026 *
6027 * Returns 0 on success, -errno otherwise.
6028 */
skb_mpls_dec_ttl(struct sk_buff * skb)6029 int skb_mpls_dec_ttl(struct sk_buff *skb)
6030 {
6031 u32 lse;
6032 u8 ttl;
6033
6034 if (unlikely(!eth_p_mpls(skb->protocol)))
6035 return -EINVAL;
6036
6037 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6038 return -ENOMEM;
6039
6040 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6041 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6042 if (!--ttl)
6043 return -EINVAL;
6044
6045 lse &= ~MPLS_LS_TTL_MASK;
6046 lse |= ttl << MPLS_LS_TTL_SHIFT;
6047
6048 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6049 }
6050 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6051
6052 /**
6053 * alloc_skb_with_frags - allocate skb with page frags
6054 *
6055 * @header_len: size of linear part
6056 * @data_len: needed length in frags
6057 * @max_page_order: max page order desired.
6058 * @errcode: pointer to error code if any
6059 * @gfp_mask: allocation mask
6060 *
6061 * This can be used to allocate a paged skb, given a maximal order for frags.
6062 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6063 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6064 unsigned long data_len,
6065 int max_page_order,
6066 int *errcode,
6067 gfp_t gfp_mask)
6068 {
6069 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6070 unsigned long chunk;
6071 struct sk_buff *skb;
6072 struct page *page;
6073 int i;
6074
6075 *errcode = -EMSGSIZE;
6076 /* Note this test could be relaxed, if we succeed to allocate
6077 * high order pages...
6078 */
6079 if (npages > MAX_SKB_FRAGS)
6080 return NULL;
6081
6082 *errcode = -ENOBUFS;
6083 skb = alloc_skb(header_len, gfp_mask);
6084 if (!skb)
6085 return NULL;
6086
6087 skb->truesize += npages << PAGE_SHIFT;
6088
6089 for (i = 0; npages > 0; i++) {
6090 int order = max_page_order;
6091
6092 while (order) {
6093 if (npages >= 1 << order) {
6094 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6095 __GFP_COMP |
6096 __GFP_NOWARN,
6097 order);
6098 if (page)
6099 goto fill_page;
6100 /* Do not retry other high order allocations */
6101 order = 1;
6102 max_page_order = 0;
6103 }
6104 order--;
6105 }
6106 page = alloc_page(gfp_mask);
6107 if (!page)
6108 goto failure;
6109 fill_page:
6110 chunk = min_t(unsigned long, data_len,
6111 PAGE_SIZE << order);
6112 skb_fill_page_desc(skb, i, page, 0, chunk);
6113 data_len -= chunk;
6114 npages -= 1 << order;
6115 }
6116 return skb;
6117
6118 failure:
6119 kfree_skb(skb);
6120 return NULL;
6121 }
6122 EXPORT_SYMBOL(alloc_skb_with_frags);
6123
6124 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6125 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6126 const int headlen, gfp_t gfp_mask)
6127 {
6128 int i;
6129 int size = skb_end_offset(skb);
6130 int new_hlen = headlen - off;
6131 u8 *data;
6132
6133 size = SKB_DATA_ALIGN(size);
6134
6135 if (skb_pfmemalloc(skb))
6136 gfp_mask |= __GFP_MEMALLOC;
6137 data = kmalloc_reserve(size +
6138 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6139 gfp_mask, NUMA_NO_NODE, NULL);
6140 if (!data)
6141 return -ENOMEM;
6142
6143 size = SKB_WITH_OVERHEAD(ksize(data));
6144
6145 /* Copy real data, and all frags */
6146 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6147 skb->len -= off;
6148
6149 memcpy((struct skb_shared_info *)(data + size),
6150 skb_shinfo(skb),
6151 offsetof(struct skb_shared_info,
6152 frags[skb_shinfo(skb)->nr_frags]));
6153 if (skb_cloned(skb)) {
6154 /* drop the old head gracefully */
6155 if (skb_orphan_frags(skb, gfp_mask)) {
6156 kfree(data);
6157 return -ENOMEM;
6158 }
6159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6160 skb_frag_ref(skb, i);
6161 if (skb_has_frag_list(skb))
6162 skb_clone_fraglist(skb);
6163 skb_release_data(skb);
6164 } else {
6165 /* we can reuse existing recount- all we did was
6166 * relocate values
6167 */
6168 skb_free_head(skb);
6169 }
6170
6171 skb->head = data;
6172 skb->data = data;
6173 skb->head_frag = 0;
6174 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6175 skb->end = size;
6176 #else
6177 skb->end = skb->head + size;
6178 #endif
6179 skb_set_tail_pointer(skb, skb_headlen(skb));
6180 skb_headers_offset_update(skb, 0);
6181 skb->cloned = 0;
6182 skb->hdr_len = 0;
6183 skb->nohdr = 0;
6184 atomic_set(&skb_shinfo(skb)->dataref, 1);
6185
6186 return 0;
6187 }
6188
6189 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6190
6191 /* carve out the first eat bytes from skb's frag_list. May recurse into
6192 * pskb_carve()
6193 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6194 static int pskb_carve_frag_list(struct sk_buff *skb,
6195 struct skb_shared_info *shinfo, int eat,
6196 gfp_t gfp_mask)
6197 {
6198 struct sk_buff *list = shinfo->frag_list;
6199 struct sk_buff *clone = NULL;
6200 struct sk_buff *insp = NULL;
6201
6202 do {
6203 if (!list) {
6204 pr_err("Not enough bytes to eat. Want %d\n", eat);
6205 return -EFAULT;
6206 }
6207 if (list->len <= eat) {
6208 /* Eaten as whole. */
6209 eat -= list->len;
6210 list = list->next;
6211 insp = list;
6212 } else {
6213 /* Eaten partially. */
6214 if (skb_shared(list)) {
6215 clone = skb_clone(list, gfp_mask);
6216 if (!clone)
6217 return -ENOMEM;
6218 insp = list->next;
6219 list = clone;
6220 } else {
6221 /* This may be pulled without problems. */
6222 insp = list;
6223 }
6224 if (pskb_carve(list, eat, gfp_mask) < 0) {
6225 kfree_skb(clone);
6226 return -ENOMEM;
6227 }
6228 break;
6229 }
6230 } while (eat);
6231
6232 /* Free pulled out fragments. */
6233 while ((list = shinfo->frag_list) != insp) {
6234 shinfo->frag_list = list->next;
6235 kfree_skb(list);
6236 }
6237 /* And insert new clone at head. */
6238 if (clone) {
6239 clone->next = list;
6240 shinfo->frag_list = clone;
6241 }
6242 return 0;
6243 }
6244
6245 /* carve off first len bytes from skb. Split line (off) is in the
6246 * non-linear part of skb
6247 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6248 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6249 int pos, gfp_t gfp_mask)
6250 {
6251 int i, k = 0;
6252 int size = skb_end_offset(skb);
6253 u8 *data;
6254 const int nfrags = skb_shinfo(skb)->nr_frags;
6255 struct skb_shared_info *shinfo;
6256
6257 size = SKB_DATA_ALIGN(size);
6258
6259 if (skb_pfmemalloc(skb))
6260 gfp_mask |= __GFP_MEMALLOC;
6261 data = kmalloc_reserve(size +
6262 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6263 gfp_mask, NUMA_NO_NODE, NULL);
6264 if (!data)
6265 return -ENOMEM;
6266
6267 size = SKB_WITH_OVERHEAD(ksize(data));
6268
6269 memcpy((struct skb_shared_info *)(data + size),
6270 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6271 if (skb_orphan_frags(skb, gfp_mask)) {
6272 kfree(data);
6273 return -ENOMEM;
6274 }
6275 shinfo = (struct skb_shared_info *)(data + size);
6276 for (i = 0; i < nfrags; i++) {
6277 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6278
6279 if (pos + fsize > off) {
6280 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6281
6282 if (pos < off) {
6283 /* Split frag.
6284 * We have two variants in this case:
6285 * 1. Move all the frag to the second
6286 * part, if it is possible. F.e.
6287 * this approach is mandatory for TUX,
6288 * where splitting is expensive.
6289 * 2. Split is accurately. We make this.
6290 */
6291 skb_frag_off_add(&shinfo->frags[0], off - pos);
6292 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6293 }
6294 skb_frag_ref(skb, i);
6295 k++;
6296 }
6297 pos += fsize;
6298 }
6299 shinfo->nr_frags = k;
6300 if (skb_has_frag_list(skb))
6301 skb_clone_fraglist(skb);
6302
6303 /* split line is in frag list */
6304 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6305 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6306 if (skb_has_frag_list(skb))
6307 kfree_skb_list(skb_shinfo(skb)->frag_list);
6308 kfree(data);
6309 return -ENOMEM;
6310 }
6311 skb_release_data(skb);
6312
6313 skb->head = data;
6314 skb->head_frag = 0;
6315 skb->data = data;
6316 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6317 skb->end = size;
6318 #else
6319 skb->end = skb->head + size;
6320 #endif
6321 skb_reset_tail_pointer(skb);
6322 skb_headers_offset_update(skb, 0);
6323 skb->cloned = 0;
6324 skb->hdr_len = 0;
6325 skb->nohdr = 0;
6326 skb->len -= off;
6327 skb->data_len = skb->len;
6328 atomic_set(&skb_shinfo(skb)->dataref, 1);
6329 return 0;
6330 }
6331
6332 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6333 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6334 {
6335 int headlen = skb_headlen(skb);
6336
6337 if (len < headlen)
6338 return pskb_carve_inside_header(skb, len, headlen, gfp);
6339 else
6340 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6341 }
6342
6343 /* Extract to_copy bytes starting at off from skb, and return this in
6344 * a new skb
6345 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6346 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6347 int to_copy, gfp_t gfp)
6348 {
6349 struct sk_buff *clone = skb_clone(skb, gfp);
6350
6351 if (!clone)
6352 return NULL;
6353
6354 if (pskb_carve(clone, off, gfp) < 0 ||
6355 pskb_trim(clone, to_copy)) {
6356 kfree_skb(clone);
6357 return NULL;
6358 }
6359 return clone;
6360 }
6361 EXPORT_SYMBOL(pskb_extract);
6362
6363 /**
6364 * skb_condense - try to get rid of fragments/frag_list if possible
6365 * @skb: buffer
6366 *
6367 * Can be used to save memory before skb is added to a busy queue.
6368 * If packet has bytes in frags and enough tail room in skb->head,
6369 * pull all of them, so that we can free the frags right now and adjust
6370 * truesize.
6371 * Notes:
6372 * We do not reallocate skb->head thus can not fail.
6373 * Caller must re-evaluate skb->truesize if needed.
6374 */
skb_condense(struct sk_buff * skb)6375 void skb_condense(struct sk_buff *skb)
6376 {
6377 if (skb->data_len) {
6378 if (skb->data_len > skb->end - skb->tail ||
6379 skb_cloned(skb))
6380 return;
6381
6382 /* Nice, we can free page frag(s) right now */
6383 __pskb_pull_tail(skb, skb->data_len);
6384 }
6385 /* At this point, skb->truesize might be over estimated,
6386 * because skb had a fragment, and fragments do not tell
6387 * their truesize.
6388 * When we pulled its content into skb->head, fragment
6389 * was freed, but __pskb_pull_tail() could not possibly
6390 * adjust skb->truesize, not knowing the frag truesize.
6391 */
6392 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6393 }
6394
6395 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6396 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6397 {
6398 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6399 }
6400
6401 /**
6402 * __skb_ext_alloc - allocate a new skb extensions storage
6403 *
6404 * @flags: See kmalloc().
6405 *
6406 * Returns the newly allocated pointer. The pointer can later attached to a
6407 * skb via __skb_ext_set().
6408 * Note: caller must handle the skb_ext as an opaque data.
6409 */
__skb_ext_alloc(gfp_t flags)6410 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6411 {
6412 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6413
6414 if (new) {
6415 memset(new->offset, 0, sizeof(new->offset));
6416 refcount_set(&new->refcnt, 1);
6417 }
6418
6419 return new;
6420 }
6421
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6422 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6423 unsigned int old_active)
6424 {
6425 struct skb_ext *new;
6426
6427 if (refcount_read(&old->refcnt) == 1)
6428 return old;
6429
6430 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6431 if (!new)
6432 return NULL;
6433
6434 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6435 refcount_set(&new->refcnt, 1);
6436
6437 #ifdef CONFIG_XFRM
6438 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6439 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6440 unsigned int i;
6441
6442 for (i = 0; i < sp->len; i++)
6443 xfrm_state_hold(sp->xvec[i]);
6444 }
6445 #endif
6446 __skb_ext_put(old);
6447 return new;
6448 }
6449
6450 /**
6451 * __skb_ext_set - attach the specified extension storage to this skb
6452 * @skb: buffer
6453 * @id: extension id
6454 * @ext: extension storage previously allocated via __skb_ext_alloc()
6455 *
6456 * Existing extensions, if any, are cleared.
6457 *
6458 * Returns the pointer to the extension.
6459 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6460 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6461 struct skb_ext *ext)
6462 {
6463 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6464
6465 skb_ext_put(skb);
6466 newlen = newoff + skb_ext_type_len[id];
6467 ext->chunks = newlen;
6468 ext->offset[id] = newoff;
6469 skb->extensions = ext;
6470 skb->active_extensions = 1 << id;
6471 return skb_ext_get_ptr(ext, id);
6472 }
6473
6474 /**
6475 * skb_ext_add - allocate space for given extension, COW if needed
6476 * @skb: buffer
6477 * @id: extension to allocate space for
6478 *
6479 * Allocates enough space for the given extension.
6480 * If the extension is already present, a pointer to that extension
6481 * is returned.
6482 *
6483 * If the skb was cloned, COW applies and the returned memory can be
6484 * modified without changing the extension space of clones buffers.
6485 *
6486 * Returns pointer to the extension or NULL on allocation failure.
6487 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6488 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6489 {
6490 struct skb_ext *new, *old = NULL;
6491 unsigned int newlen, newoff;
6492
6493 if (skb->active_extensions) {
6494 old = skb->extensions;
6495
6496 new = skb_ext_maybe_cow(old, skb->active_extensions);
6497 if (!new)
6498 return NULL;
6499
6500 if (__skb_ext_exist(new, id))
6501 goto set_active;
6502
6503 newoff = new->chunks;
6504 } else {
6505 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6506
6507 new = __skb_ext_alloc(GFP_ATOMIC);
6508 if (!new)
6509 return NULL;
6510 }
6511
6512 newlen = newoff + skb_ext_type_len[id];
6513 new->chunks = newlen;
6514 new->offset[id] = newoff;
6515 set_active:
6516 skb->slow_gro = 1;
6517 skb->extensions = new;
6518 skb->active_extensions |= 1 << id;
6519 return skb_ext_get_ptr(new, id);
6520 }
6521 EXPORT_SYMBOL(skb_ext_add);
6522
6523 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6524 static void skb_ext_put_sp(struct sec_path *sp)
6525 {
6526 unsigned int i;
6527
6528 for (i = 0; i < sp->len; i++)
6529 xfrm_state_put(sp->xvec[i]);
6530 }
6531 #endif
6532
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6533 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6534 {
6535 struct skb_ext *ext = skb->extensions;
6536
6537 skb->active_extensions &= ~(1 << id);
6538 if (skb->active_extensions == 0) {
6539 skb->extensions = NULL;
6540 __skb_ext_put(ext);
6541 #ifdef CONFIG_XFRM
6542 } else if (id == SKB_EXT_SEC_PATH &&
6543 refcount_read(&ext->refcnt) == 1) {
6544 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6545
6546 skb_ext_put_sp(sp);
6547 sp->len = 0;
6548 #endif
6549 }
6550 }
6551 EXPORT_SYMBOL(__skb_ext_del);
6552
__skb_ext_put(struct skb_ext * ext)6553 void __skb_ext_put(struct skb_ext *ext)
6554 {
6555 /* If this is last clone, nothing can increment
6556 * it after check passes. Avoids one atomic op.
6557 */
6558 if (refcount_read(&ext->refcnt) == 1)
6559 goto free_now;
6560
6561 if (!refcount_dec_and_test(&ext->refcnt))
6562 return;
6563 free_now:
6564 #ifdef CONFIG_XFRM
6565 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6566 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6567 #endif
6568
6569 kmem_cache_free(skbuff_ext_cache, ext);
6570 }
6571 EXPORT_SYMBOL(__skb_ext_put);
6572 #endif /* CONFIG_SKB_EXTENSIONS */
6573