1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11 #include "hclgevf_devlink.h"
12
13 #define HCLGEVF_NAME "hclgevf"
14
15 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
16
17 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
18 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
19 unsigned long delay);
20
21 static struct hnae3_ae_algo ae_algovf;
22
23 static struct workqueue_struct *hclgevf_wq;
24
25 static const struct pci_device_id ae_algovf_pci_tbl[] = {
26 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
27 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
28 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
29 /* required last entry */
30 {0, }
31 };
32
33 static const u8 hclgevf_hash_key[] = {
34 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
35 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
36 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
37 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
38 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
39 };
40
41 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
42
43 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_NIC_CSQ_BASEADDR_L_REG,
44 HCLGEVF_NIC_CSQ_BASEADDR_H_REG,
45 HCLGEVF_NIC_CSQ_DEPTH_REG,
46 HCLGEVF_NIC_CSQ_TAIL_REG,
47 HCLGEVF_NIC_CSQ_HEAD_REG,
48 HCLGEVF_NIC_CRQ_BASEADDR_L_REG,
49 HCLGEVF_NIC_CRQ_BASEADDR_H_REG,
50 HCLGEVF_NIC_CRQ_DEPTH_REG,
51 HCLGEVF_NIC_CRQ_TAIL_REG,
52 HCLGEVF_NIC_CRQ_HEAD_REG,
53 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
54 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
55 HCLGEVF_CMDQ_INTR_EN_REG,
56 HCLGEVF_CMDQ_INTR_GEN_REG};
57
58 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
59 HCLGEVF_RST_ING,
60 HCLGEVF_GRO_EN_REG};
61
62 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
63 HCLGEVF_RING_RX_ADDR_H_REG,
64 HCLGEVF_RING_RX_BD_NUM_REG,
65 HCLGEVF_RING_RX_BD_LENGTH_REG,
66 HCLGEVF_RING_RX_MERGE_EN_REG,
67 HCLGEVF_RING_RX_TAIL_REG,
68 HCLGEVF_RING_RX_HEAD_REG,
69 HCLGEVF_RING_RX_FBD_NUM_REG,
70 HCLGEVF_RING_RX_OFFSET_REG,
71 HCLGEVF_RING_RX_FBD_OFFSET_REG,
72 HCLGEVF_RING_RX_STASH_REG,
73 HCLGEVF_RING_RX_BD_ERR_REG,
74 HCLGEVF_RING_TX_ADDR_L_REG,
75 HCLGEVF_RING_TX_ADDR_H_REG,
76 HCLGEVF_RING_TX_BD_NUM_REG,
77 HCLGEVF_RING_TX_PRIORITY_REG,
78 HCLGEVF_RING_TX_TC_REG,
79 HCLGEVF_RING_TX_MERGE_EN_REG,
80 HCLGEVF_RING_TX_TAIL_REG,
81 HCLGEVF_RING_TX_HEAD_REG,
82 HCLGEVF_RING_TX_FBD_NUM_REG,
83 HCLGEVF_RING_TX_OFFSET_REG,
84 HCLGEVF_RING_TX_EBD_NUM_REG,
85 HCLGEVF_RING_TX_EBD_OFFSET_REG,
86 HCLGEVF_RING_TX_BD_ERR_REG,
87 HCLGEVF_RING_EN_REG};
88
89 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
90 HCLGEVF_TQP_INTR_GL0_REG,
91 HCLGEVF_TQP_INTR_GL1_REG,
92 HCLGEVF_TQP_INTR_GL2_REG,
93 HCLGEVF_TQP_INTR_RL_REG};
94
hclgevf_ae_get_hdev(struct hnae3_handle * handle)95 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
96 {
97 if (!handle->client)
98 return container_of(handle, struct hclgevf_dev, nic);
99 else if (handle->client->type == HNAE3_CLIENT_ROCE)
100 return container_of(handle, struct hclgevf_dev, roce);
101 else
102 return container_of(handle, struct hclgevf_dev, nic);
103 }
104
hclgevf_tqps_update_stats(struct hnae3_handle * handle)105 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
106 {
107 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
108 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
109 struct hclgevf_desc desc;
110 struct hclgevf_tqp *tqp;
111 int status;
112 int i;
113
114 for (i = 0; i < kinfo->num_tqps; i++) {
115 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
116 hclgevf_cmd_setup_basic_desc(&desc,
117 HCLGEVF_OPC_QUERY_RX_STATUS,
118 true);
119
120 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
121 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
122 if (status) {
123 dev_err(&hdev->pdev->dev,
124 "Query tqp stat fail, status = %d,queue = %d\n",
125 status, i);
126 return status;
127 }
128 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
129 le32_to_cpu(desc.data[1]);
130
131 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
132 true);
133
134 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
135 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
136 if (status) {
137 dev_err(&hdev->pdev->dev,
138 "Query tqp stat fail, status = %d,queue = %d\n",
139 status, i);
140 return status;
141 }
142 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
143 le32_to_cpu(desc.data[1]);
144 }
145
146 return 0;
147 }
148
hclgevf_tqps_get_stats(struct hnae3_handle * handle,u64 * data)149 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
150 {
151 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
152 struct hclgevf_tqp *tqp;
153 u64 *buff = data;
154 int i;
155
156 for (i = 0; i < kinfo->num_tqps; i++) {
157 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
158 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
159 }
160 for (i = 0; i < kinfo->num_tqps; i++) {
161 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
162 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
163 }
164
165 return buff;
166 }
167
hclgevf_tqps_get_sset_count(struct hnae3_handle * handle,int strset)168 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
169 {
170 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171
172 return kinfo->num_tqps * 2;
173 }
174
hclgevf_tqps_get_strings(struct hnae3_handle * handle,u8 * data)175 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
176 {
177 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
178 u8 *buff = data;
179 int i;
180
181 for (i = 0; i < kinfo->num_tqps; i++) {
182 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
183 struct hclgevf_tqp, q);
184 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
185 tqp->index);
186 buff += ETH_GSTRING_LEN;
187 }
188
189 for (i = 0; i < kinfo->num_tqps; i++) {
190 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
191 struct hclgevf_tqp, q);
192 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
193 tqp->index);
194 buff += ETH_GSTRING_LEN;
195 }
196
197 return buff;
198 }
199
hclgevf_update_stats(struct hnae3_handle * handle,struct net_device_stats * net_stats)200 static void hclgevf_update_stats(struct hnae3_handle *handle,
201 struct net_device_stats *net_stats)
202 {
203 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
204 int status;
205
206 status = hclgevf_tqps_update_stats(handle);
207 if (status)
208 dev_err(&hdev->pdev->dev,
209 "VF update of TQPS stats fail, status = %d.\n",
210 status);
211 }
212
hclgevf_get_sset_count(struct hnae3_handle * handle,int strset)213 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
214 {
215 if (strset == ETH_SS_TEST)
216 return -EOPNOTSUPP;
217 else if (strset == ETH_SS_STATS)
218 return hclgevf_tqps_get_sset_count(handle, strset);
219
220 return 0;
221 }
222
hclgevf_get_strings(struct hnae3_handle * handle,u32 strset,u8 * data)223 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
224 u8 *data)
225 {
226 u8 *p = (char *)data;
227
228 if (strset == ETH_SS_STATS)
229 p = hclgevf_tqps_get_strings(handle, p);
230 }
231
hclgevf_get_stats(struct hnae3_handle * handle,u64 * data)232 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
233 {
234 hclgevf_tqps_get_stats(handle, data);
235 }
236
hclgevf_build_send_msg(struct hclge_vf_to_pf_msg * msg,u8 code,u8 subcode)237 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
238 u8 subcode)
239 {
240 if (msg) {
241 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
242 msg->code = code;
243 msg->subcode = subcode;
244 }
245 }
246
hclgevf_get_basic_info(struct hclgevf_dev * hdev)247 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
248 {
249 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
250 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
251 struct hclge_basic_info *basic_info;
252 struct hclge_vf_to_pf_msg send_msg;
253 unsigned long caps;
254 int status;
255
256 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
257 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
258 sizeof(resp_msg));
259 if (status) {
260 dev_err(&hdev->pdev->dev,
261 "failed to get basic info from pf, ret = %d", status);
262 return status;
263 }
264
265 basic_info = (struct hclge_basic_info *)resp_msg;
266
267 hdev->hw_tc_map = basic_info->hw_tc_map;
268 hdev->mbx_api_version = basic_info->mbx_api_version;
269 caps = basic_info->pf_caps;
270 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
271 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
272
273 return 0;
274 }
275
hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev * hdev)276 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
277 {
278 struct hnae3_handle *nic = &hdev->nic;
279 struct hclge_vf_to_pf_msg send_msg;
280 u8 resp_msg;
281 int ret;
282
283 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
284 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
285 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
286 sizeof(u8));
287 if (ret) {
288 dev_err(&hdev->pdev->dev,
289 "VF request to get port based vlan state failed %d",
290 ret);
291 return ret;
292 }
293
294 nic->port_base_vlan_state = resp_msg;
295
296 return 0;
297 }
298
hclgevf_get_queue_info(struct hclgevf_dev * hdev)299 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
300 {
301 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
302 #define HCLGEVF_TQPS_ALLOC_OFFSET 0
303 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2
304 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4
305
306 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
307 struct hclge_vf_to_pf_msg send_msg;
308 int status;
309
310 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
311 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
312 HCLGEVF_TQPS_RSS_INFO_LEN);
313 if (status) {
314 dev_err(&hdev->pdev->dev,
315 "VF request to get tqp info from PF failed %d",
316 status);
317 return status;
318 }
319
320 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
321 sizeof(u16));
322 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
323 sizeof(u16));
324 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
325 sizeof(u16));
326
327 return 0;
328 }
329
hclgevf_get_queue_depth(struct hclgevf_dev * hdev)330 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
331 {
332 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
333 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
334 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
335
336 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
337 struct hclge_vf_to_pf_msg send_msg;
338 int ret;
339
340 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
341 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
342 HCLGEVF_TQPS_DEPTH_INFO_LEN);
343 if (ret) {
344 dev_err(&hdev->pdev->dev,
345 "VF request to get tqp depth info from PF failed %d",
346 ret);
347 return ret;
348 }
349
350 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
351 sizeof(u16));
352 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
353 sizeof(u16));
354
355 return 0;
356 }
357
hclgevf_get_qid_global(struct hnae3_handle * handle,u16 queue_id)358 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
359 {
360 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
361 struct hclge_vf_to_pf_msg send_msg;
362 u16 qid_in_pf = 0;
363 u8 resp_data[2];
364 int ret;
365
366 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
367 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
368 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
369 sizeof(resp_data));
370 if (!ret)
371 qid_in_pf = *(u16 *)resp_data;
372
373 return qid_in_pf;
374 }
375
hclgevf_get_pf_media_type(struct hclgevf_dev * hdev)376 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
377 {
378 struct hclge_vf_to_pf_msg send_msg;
379 u8 resp_msg[2];
380 int ret;
381
382 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
383 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
384 sizeof(resp_msg));
385 if (ret) {
386 dev_err(&hdev->pdev->dev,
387 "VF request to get the pf port media type failed %d",
388 ret);
389 return ret;
390 }
391
392 hdev->hw.mac.media_type = resp_msg[0];
393 hdev->hw.mac.module_type = resp_msg[1];
394
395 return 0;
396 }
397
hclgevf_alloc_tqps(struct hclgevf_dev * hdev)398 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
399 {
400 struct hclgevf_tqp *tqp;
401 int i;
402
403 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
404 sizeof(struct hclgevf_tqp), GFP_KERNEL);
405 if (!hdev->htqp)
406 return -ENOMEM;
407
408 tqp = hdev->htqp;
409
410 for (i = 0; i < hdev->num_tqps; i++) {
411 tqp->dev = &hdev->pdev->dev;
412 tqp->index = i;
413
414 tqp->q.ae_algo = &ae_algovf;
415 tqp->q.buf_size = hdev->rx_buf_len;
416 tqp->q.tx_desc_num = hdev->num_tx_desc;
417 tqp->q.rx_desc_num = hdev->num_rx_desc;
418
419 /* need an extended offset to configure queues >=
420 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
421 */
422 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
423 tqp->q.io_base = hdev->hw.io_base +
424 HCLGEVF_TQP_REG_OFFSET +
425 i * HCLGEVF_TQP_REG_SIZE;
426 else
427 tqp->q.io_base = hdev->hw.io_base +
428 HCLGEVF_TQP_REG_OFFSET +
429 HCLGEVF_TQP_EXT_REG_OFFSET +
430 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
431 HCLGEVF_TQP_REG_SIZE;
432
433 tqp++;
434 }
435
436 return 0;
437 }
438
hclgevf_knic_setup(struct hclgevf_dev * hdev)439 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
440 {
441 struct hnae3_handle *nic = &hdev->nic;
442 struct hnae3_knic_private_info *kinfo;
443 u16 new_tqps = hdev->num_tqps;
444 unsigned int i;
445 u8 num_tc = 0;
446
447 kinfo = &nic->kinfo;
448 kinfo->num_tx_desc = hdev->num_tx_desc;
449 kinfo->num_rx_desc = hdev->num_rx_desc;
450 kinfo->rx_buf_len = hdev->rx_buf_len;
451 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
452 if (hdev->hw_tc_map & BIT(i))
453 num_tc++;
454
455 num_tc = num_tc ? num_tc : 1;
456 kinfo->tc_info.num_tc = num_tc;
457 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
458 new_tqps = kinfo->rss_size * num_tc;
459 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
460
461 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
462 sizeof(struct hnae3_queue *), GFP_KERNEL);
463 if (!kinfo->tqp)
464 return -ENOMEM;
465
466 for (i = 0; i < kinfo->num_tqps; i++) {
467 hdev->htqp[i].q.handle = &hdev->nic;
468 hdev->htqp[i].q.tqp_index = i;
469 kinfo->tqp[i] = &hdev->htqp[i].q;
470 }
471
472 /* after init the max rss_size and tqps, adjust the default tqp numbers
473 * and rss size with the actual vector numbers
474 */
475 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
476 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
477 kinfo->rss_size);
478
479 return 0;
480 }
481
hclgevf_request_link_info(struct hclgevf_dev * hdev)482 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
483 {
484 struct hclge_vf_to_pf_msg send_msg;
485 int status;
486
487 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
488 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
489 if (status)
490 dev_err(&hdev->pdev->dev,
491 "VF failed to fetch link status(%d) from PF", status);
492 }
493
hclgevf_update_link_status(struct hclgevf_dev * hdev,int link_state)494 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
495 {
496 struct hnae3_handle *rhandle = &hdev->roce;
497 struct hnae3_handle *handle = &hdev->nic;
498 struct hnae3_client *rclient;
499 struct hnae3_client *client;
500
501 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
502 return;
503
504 client = handle->client;
505 rclient = hdev->roce_client;
506
507 link_state =
508 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
509 if (link_state != hdev->hw.mac.link) {
510 hdev->hw.mac.link = link_state;
511 client->ops->link_status_change(handle, !!link_state);
512 if (rclient && rclient->ops->link_status_change)
513 rclient->ops->link_status_change(rhandle, !!link_state);
514 }
515
516 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
517 }
518
hclgevf_update_link_mode(struct hclgevf_dev * hdev)519 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
520 {
521 #define HCLGEVF_ADVERTISING 0
522 #define HCLGEVF_SUPPORTED 1
523
524 struct hclge_vf_to_pf_msg send_msg;
525
526 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
527 send_msg.data[0] = HCLGEVF_ADVERTISING;
528 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
529 send_msg.data[0] = HCLGEVF_SUPPORTED;
530 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
531 }
532
hclgevf_set_handle_info(struct hclgevf_dev * hdev)533 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
534 {
535 struct hnae3_handle *nic = &hdev->nic;
536 int ret;
537
538 nic->ae_algo = &ae_algovf;
539 nic->pdev = hdev->pdev;
540 nic->numa_node_mask = hdev->numa_node_mask;
541 nic->flags |= HNAE3_SUPPORT_VF;
542 nic->kinfo.io_base = hdev->hw.io_base;
543
544 ret = hclgevf_knic_setup(hdev);
545 if (ret)
546 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
547 ret);
548 return ret;
549 }
550
hclgevf_free_vector(struct hclgevf_dev * hdev,int vector_id)551 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
552 {
553 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
554 dev_warn(&hdev->pdev->dev,
555 "vector(vector_id %d) has been freed.\n", vector_id);
556 return;
557 }
558
559 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
560 hdev->num_msi_left += 1;
561 hdev->num_msi_used -= 1;
562 }
563
hclgevf_get_vector(struct hnae3_handle * handle,u16 vector_num,struct hnae3_vector_info * vector_info)564 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
565 struct hnae3_vector_info *vector_info)
566 {
567 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
568 struct hnae3_vector_info *vector = vector_info;
569 int alloc = 0;
570 int i, j;
571
572 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
573 vector_num = min(hdev->num_msi_left, vector_num);
574
575 for (j = 0; j < vector_num; j++) {
576 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
577 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
578 vector->vector = pci_irq_vector(hdev->pdev, i);
579 vector->io_addr = hdev->hw.io_base +
580 HCLGEVF_VECTOR_REG_BASE +
581 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
582 hdev->vector_status[i] = 0;
583 hdev->vector_irq[i] = vector->vector;
584
585 vector++;
586 alloc++;
587
588 break;
589 }
590 }
591 }
592 hdev->num_msi_left -= alloc;
593 hdev->num_msi_used += alloc;
594
595 return alloc;
596 }
597
hclgevf_get_vector_index(struct hclgevf_dev * hdev,int vector)598 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
599 {
600 int i;
601
602 for (i = 0; i < hdev->num_msi; i++)
603 if (vector == hdev->vector_irq[i])
604 return i;
605
606 return -EINVAL;
607 }
608
hclgevf_set_rss_algo_key(struct hclgevf_dev * hdev,const u8 hfunc,const u8 * key)609 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
610 const u8 hfunc, const u8 *key)
611 {
612 struct hclgevf_rss_config_cmd *req;
613 unsigned int key_offset = 0;
614 struct hclgevf_desc desc;
615 int key_counts;
616 int key_size;
617 int ret;
618
619 key_counts = HCLGEVF_RSS_KEY_SIZE;
620 req = (struct hclgevf_rss_config_cmd *)desc.data;
621
622 while (key_counts) {
623 hclgevf_cmd_setup_basic_desc(&desc,
624 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
625 false);
626
627 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
628 req->hash_config |=
629 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
630
631 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
632 memcpy(req->hash_key,
633 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
634
635 key_counts -= key_size;
636 key_offset++;
637 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
638 if (ret) {
639 dev_err(&hdev->pdev->dev,
640 "Configure RSS config fail, status = %d\n",
641 ret);
642 return ret;
643 }
644 }
645
646 return 0;
647 }
648
hclgevf_get_rss_key_size(struct hnae3_handle * handle)649 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
650 {
651 return HCLGEVF_RSS_KEY_SIZE;
652 }
653
hclgevf_set_rss_indir_table(struct hclgevf_dev * hdev)654 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
655 {
656 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
657 struct hclgevf_rss_indirection_table_cmd *req;
658 struct hclgevf_desc desc;
659 int rss_cfg_tbl_num;
660 int status;
661 int i, j;
662
663 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
664 rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
665 HCLGEVF_RSS_CFG_TBL_SIZE;
666
667 for (i = 0; i < rss_cfg_tbl_num; i++) {
668 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
669 false);
670 req->start_table_index =
671 cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
672 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
673 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
674 req->rss_result[j] =
675 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
676
677 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
678 if (status) {
679 dev_err(&hdev->pdev->dev,
680 "VF failed(=%d) to set RSS indirection table\n",
681 status);
682 return status;
683 }
684 }
685
686 return 0;
687 }
688
hclgevf_set_rss_tc_mode(struct hclgevf_dev * hdev,u16 rss_size)689 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
690 {
691 struct hclgevf_rss_tc_mode_cmd *req;
692 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
693 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
694 u16 tc_size[HCLGEVF_MAX_TC_NUM];
695 struct hclgevf_desc desc;
696 u16 roundup_size;
697 unsigned int i;
698 int status;
699
700 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
701
702 roundup_size = roundup_pow_of_two(rss_size);
703 roundup_size = ilog2(roundup_size);
704
705 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
706 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
707 tc_size[i] = roundup_size;
708 tc_offset[i] = rss_size * i;
709 }
710
711 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
712 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
713 u16 mode = 0;
714
715 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
716 (tc_valid[i] & 0x1));
717 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
718 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
719 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
720 tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
721 0x1);
722 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
723 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
724
725 req->rss_tc_mode[i] = cpu_to_le16(mode);
726 }
727 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
728 if (status)
729 dev_err(&hdev->pdev->dev,
730 "VF failed(=%d) to set rss tc mode\n", status);
731
732 return status;
733 }
734
735 /* for revision 0x20, vf shared the same rss config with pf */
hclgevf_get_rss_hash_key(struct hclgevf_dev * hdev)736 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
737 {
738 #define HCLGEVF_RSS_MBX_RESP_LEN 8
739 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
740 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
741 struct hclge_vf_to_pf_msg send_msg;
742 u16 msg_num, hash_key_index;
743 u8 index;
744 int ret;
745
746 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
747 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
748 HCLGEVF_RSS_MBX_RESP_LEN;
749 for (index = 0; index < msg_num; index++) {
750 send_msg.data[0] = index;
751 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
752 HCLGEVF_RSS_MBX_RESP_LEN);
753 if (ret) {
754 dev_err(&hdev->pdev->dev,
755 "VF get rss hash key from PF failed, ret=%d",
756 ret);
757 return ret;
758 }
759
760 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
761 if (index == msg_num - 1)
762 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
763 &resp_msg[0],
764 HCLGEVF_RSS_KEY_SIZE - hash_key_index);
765 else
766 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
767 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
768 }
769
770 return 0;
771 }
772
hclgevf_get_rss(struct hnae3_handle * handle,u32 * indir,u8 * key,u8 * hfunc)773 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
774 u8 *hfunc)
775 {
776 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
777 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
778 int i, ret;
779
780 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
781 /* Get hash algorithm */
782 if (hfunc) {
783 switch (rss_cfg->hash_algo) {
784 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
785 *hfunc = ETH_RSS_HASH_TOP;
786 break;
787 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
788 *hfunc = ETH_RSS_HASH_XOR;
789 break;
790 default:
791 *hfunc = ETH_RSS_HASH_UNKNOWN;
792 break;
793 }
794 }
795
796 /* Get the RSS Key required by the user */
797 if (key)
798 memcpy(key, rss_cfg->rss_hash_key,
799 HCLGEVF_RSS_KEY_SIZE);
800 } else {
801 if (hfunc)
802 *hfunc = ETH_RSS_HASH_TOP;
803 if (key) {
804 ret = hclgevf_get_rss_hash_key(hdev);
805 if (ret)
806 return ret;
807 memcpy(key, rss_cfg->rss_hash_key,
808 HCLGEVF_RSS_KEY_SIZE);
809 }
810 }
811
812 if (indir)
813 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
814 indir[i] = rss_cfg->rss_indirection_tbl[i];
815
816 return 0;
817 }
818
hclgevf_parse_rss_hfunc(struct hclgevf_dev * hdev,const u8 hfunc,u8 * hash_algo)819 static int hclgevf_parse_rss_hfunc(struct hclgevf_dev *hdev, const u8 hfunc,
820 u8 *hash_algo)
821 {
822 switch (hfunc) {
823 case ETH_RSS_HASH_TOP:
824 *hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
825 return 0;
826 case ETH_RSS_HASH_XOR:
827 *hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
828 return 0;
829 case ETH_RSS_HASH_NO_CHANGE:
830 *hash_algo = hdev->rss_cfg.hash_algo;
831 return 0;
832 default:
833 return -EINVAL;
834 }
835 }
836
hclgevf_set_rss(struct hnae3_handle * handle,const u32 * indir,const u8 * key,const u8 hfunc)837 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
838 const u8 *key, const u8 hfunc)
839 {
840 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
841 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
842 u8 hash_algo;
843 int ret, i;
844
845 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
846 ret = hclgevf_parse_rss_hfunc(hdev, hfunc, &hash_algo);
847 if (ret)
848 return ret;
849
850 /* Set the RSS Hash Key if specififed by the user */
851 if (key) {
852 ret = hclgevf_set_rss_algo_key(hdev, hash_algo, key);
853 if (ret) {
854 dev_err(&hdev->pdev->dev,
855 "invalid hfunc type %u\n", hfunc);
856 return ret;
857 }
858
859 /* Update the shadow RSS key with user specified qids */
860 memcpy(rss_cfg->rss_hash_key, key,
861 HCLGEVF_RSS_KEY_SIZE);
862 } else {
863 ret = hclgevf_set_rss_algo_key(hdev, hash_algo,
864 rss_cfg->rss_hash_key);
865 if (ret)
866 return ret;
867 }
868 rss_cfg->hash_algo = hash_algo;
869 }
870
871 /* update the shadow RSS table with user specified qids */
872 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
873 rss_cfg->rss_indirection_tbl[i] = indir[i];
874
875 /* update the hardware */
876 return hclgevf_set_rss_indir_table(hdev);
877 }
878
hclgevf_get_rss_hash_bits(struct ethtool_rxnfc * nfc)879 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
880 {
881 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
882
883 if (nfc->data & RXH_L4_B_2_3)
884 hash_sets |= HCLGEVF_D_PORT_BIT;
885 else
886 hash_sets &= ~HCLGEVF_D_PORT_BIT;
887
888 if (nfc->data & RXH_IP_SRC)
889 hash_sets |= HCLGEVF_S_IP_BIT;
890 else
891 hash_sets &= ~HCLGEVF_S_IP_BIT;
892
893 if (nfc->data & RXH_IP_DST)
894 hash_sets |= HCLGEVF_D_IP_BIT;
895 else
896 hash_sets &= ~HCLGEVF_D_IP_BIT;
897
898 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
899 hash_sets |= HCLGEVF_V_TAG_BIT;
900
901 return hash_sets;
902 }
903
hclgevf_init_rss_tuple_cmd(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc,struct hclgevf_rss_input_tuple_cmd * req)904 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
905 struct ethtool_rxnfc *nfc,
906 struct hclgevf_rss_input_tuple_cmd *req)
907 {
908 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
909 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
910 u8 tuple_sets;
911
912 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
913 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
914 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
915 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
916 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
917 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
918 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
919 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
920
921 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
922 switch (nfc->flow_type) {
923 case TCP_V4_FLOW:
924 req->ipv4_tcp_en = tuple_sets;
925 break;
926 case TCP_V6_FLOW:
927 req->ipv6_tcp_en = tuple_sets;
928 break;
929 case UDP_V4_FLOW:
930 req->ipv4_udp_en = tuple_sets;
931 break;
932 case UDP_V6_FLOW:
933 req->ipv6_udp_en = tuple_sets;
934 break;
935 case SCTP_V4_FLOW:
936 req->ipv4_sctp_en = tuple_sets;
937 break;
938 case SCTP_V6_FLOW:
939 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
940 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
941 return -EINVAL;
942
943 req->ipv6_sctp_en = tuple_sets;
944 break;
945 case IPV4_FLOW:
946 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
947 break;
948 case IPV6_FLOW:
949 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
950 break;
951 default:
952 return -EINVAL;
953 }
954
955 return 0;
956 }
957
hclgevf_set_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)958 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
959 struct ethtool_rxnfc *nfc)
960 {
961 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
962 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
963 struct hclgevf_rss_input_tuple_cmd *req;
964 struct hclgevf_desc desc;
965 int ret;
966
967 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
968 return -EOPNOTSUPP;
969
970 if (nfc->data &
971 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
972 return -EINVAL;
973
974 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
975 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
976
977 ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
978 if (ret) {
979 dev_err(&hdev->pdev->dev,
980 "failed to init rss tuple cmd, ret = %d\n", ret);
981 return ret;
982 }
983
984 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
985 if (ret) {
986 dev_err(&hdev->pdev->dev,
987 "Set rss tuple fail, status = %d\n", ret);
988 return ret;
989 }
990
991 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
992 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
993 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
994 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
995 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
996 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
997 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
998 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
999 return 0;
1000 }
1001
hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev * hdev,int flow_type,u8 * tuple_sets)1002 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
1003 int flow_type, u8 *tuple_sets)
1004 {
1005 switch (flow_type) {
1006 case TCP_V4_FLOW:
1007 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
1008 break;
1009 case UDP_V4_FLOW:
1010 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
1011 break;
1012 case TCP_V6_FLOW:
1013 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
1014 break;
1015 case UDP_V6_FLOW:
1016 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
1017 break;
1018 case SCTP_V4_FLOW:
1019 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1020 break;
1021 case SCTP_V6_FLOW:
1022 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1023 break;
1024 case IPV4_FLOW:
1025 case IPV6_FLOW:
1026 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1027 break;
1028 default:
1029 return -EINVAL;
1030 }
1031
1032 return 0;
1033 }
1034
hclgevf_convert_rss_tuple(u8 tuple_sets)1035 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1036 {
1037 u64 tuple_data = 0;
1038
1039 if (tuple_sets & HCLGEVF_D_PORT_BIT)
1040 tuple_data |= RXH_L4_B_2_3;
1041 if (tuple_sets & HCLGEVF_S_PORT_BIT)
1042 tuple_data |= RXH_L4_B_0_1;
1043 if (tuple_sets & HCLGEVF_D_IP_BIT)
1044 tuple_data |= RXH_IP_DST;
1045 if (tuple_sets & HCLGEVF_S_IP_BIT)
1046 tuple_data |= RXH_IP_SRC;
1047
1048 return tuple_data;
1049 }
1050
hclgevf_get_rss_tuple(struct hnae3_handle * handle,struct ethtool_rxnfc * nfc)1051 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1052 struct ethtool_rxnfc *nfc)
1053 {
1054 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1055 u8 tuple_sets;
1056 int ret;
1057
1058 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1059 return -EOPNOTSUPP;
1060
1061 nfc->data = 0;
1062
1063 ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1064 &tuple_sets);
1065 if (ret || !tuple_sets)
1066 return ret;
1067
1068 nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1069
1070 return 0;
1071 }
1072
hclgevf_set_rss_input_tuple(struct hclgevf_dev * hdev,struct hclgevf_rss_cfg * rss_cfg)1073 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1074 struct hclgevf_rss_cfg *rss_cfg)
1075 {
1076 struct hclgevf_rss_input_tuple_cmd *req;
1077 struct hclgevf_desc desc;
1078 int ret;
1079
1080 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1081
1082 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1083
1084 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1085 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1086 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1087 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1088 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1089 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1090 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1091 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1092
1093 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1094 if (ret)
1095 dev_err(&hdev->pdev->dev,
1096 "Configure rss input fail, status = %d\n", ret);
1097 return ret;
1098 }
1099
hclgevf_get_tc_size(struct hnae3_handle * handle)1100 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1101 {
1102 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1103 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1104
1105 return rss_cfg->rss_size;
1106 }
1107
hclgevf_bind_ring_to_vector(struct hnae3_handle * handle,bool en,int vector_id,struct hnae3_ring_chain_node * ring_chain)1108 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1109 int vector_id,
1110 struct hnae3_ring_chain_node *ring_chain)
1111 {
1112 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1113 struct hclge_vf_to_pf_msg send_msg;
1114 struct hnae3_ring_chain_node *node;
1115 int status;
1116 int i = 0;
1117
1118 memset(&send_msg, 0, sizeof(send_msg));
1119 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1120 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1121 send_msg.vector_id = vector_id;
1122
1123 for (node = ring_chain; node; node = node->next) {
1124 send_msg.param[i].ring_type =
1125 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1126
1127 send_msg.param[i].tqp_index = node->tqp_index;
1128 send_msg.param[i].int_gl_index =
1129 hnae3_get_field(node->int_gl_idx,
1130 HNAE3_RING_GL_IDX_M,
1131 HNAE3_RING_GL_IDX_S);
1132
1133 i++;
1134 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1135 send_msg.ring_num = i;
1136
1137 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1138 NULL, 0);
1139 if (status) {
1140 dev_err(&hdev->pdev->dev,
1141 "Map TQP fail, status is %d.\n",
1142 status);
1143 return status;
1144 }
1145 i = 0;
1146 }
1147 }
1148
1149 return 0;
1150 }
1151
hclgevf_map_ring_to_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1152 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1153 struct hnae3_ring_chain_node *ring_chain)
1154 {
1155 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1156 int vector_id;
1157
1158 vector_id = hclgevf_get_vector_index(hdev, vector);
1159 if (vector_id < 0) {
1160 dev_err(&handle->pdev->dev,
1161 "Get vector index fail. ret =%d\n", vector_id);
1162 return vector_id;
1163 }
1164
1165 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1166 }
1167
hclgevf_unmap_ring_from_vector(struct hnae3_handle * handle,int vector,struct hnae3_ring_chain_node * ring_chain)1168 static int hclgevf_unmap_ring_from_vector(
1169 struct hnae3_handle *handle,
1170 int vector,
1171 struct hnae3_ring_chain_node *ring_chain)
1172 {
1173 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1174 int ret, vector_id;
1175
1176 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1177 return 0;
1178
1179 vector_id = hclgevf_get_vector_index(hdev, vector);
1180 if (vector_id < 0) {
1181 dev_err(&handle->pdev->dev,
1182 "Get vector index fail. ret =%d\n", vector_id);
1183 return vector_id;
1184 }
1185
1186 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1187 if (ret)
1188 dev_err(&handle->pdev->dev,
1189 "Unmap ring from vector fail. vector=%d, ret =%d\n",
1190 vector_id,
1191 ret);
1192
1193 return ret;
1194 }
1195
hclgevf_put_vector(struct hnae3_handle * handle,int vector)1196 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1197 {
1198 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1199 int vector_id;
1200
1201 vector_id = hclgevf_get_vector_index(hdev, vector);
1202 if (vector_id < 0) {
1203 dev_err(&handle->pdev->dev,
1204 "hclgevf_put_vector get vector index fail. ret =%d\n",
1205 vector_id);
1206 return vector_id;
1207 }
1208
1209 hclgevf_free_vector(hdev, vector_id);
1210
1211 return 0;
1212 }
1213
hclgevf_cmd_set_promisc_mode(struct hclgevf_dev * hdev,bool en_uc_pmc,bool en_mc_pmc,bool en_bc_pmc)1214 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1215 bool en_uc_pmc, bool en_mc_pmc,
1216 bool en_bc_pmc)
1217 {
1218 struct hnae3_handle *handle = &hdev->nic;
1219 struct hclge_vf_to_pf_msg send_msg;
1220 int ret;
1221
1222 memset(&send_msg, 0, sizeof(send_msg));
1223 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1224 send_msg.en_bc = en_bc_pmc ? 1 : 0;
1225 send_msg.en_uc = en_uc_pmc ? 1 : 0;
1226 send_msg.en_mc = en_mc_pmc ? 1 : 0;
1227 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1228 &handle->priv_flags) ? 1 : 0;
1229
1230 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1231 if (ret)
1232 dev_err(&hdev->pdev->dev,
1233 "Set promisc mode fail, status is %d.\n", ret);
1234
1235 return ret;
1236 }
1237
hclgevf_set_promisc_mode(struct hnae3_handle * handle,bool en_uc_pmc,bool en_mc_pmc)1238 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1239 bool en_mc_pmc)
1240 {
1241 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1242 bool en_bc_pmc;
1243
1244 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1245
1246 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1247 en_bc_pmc);
1248 }
1249
hclgevf_request_update_promisc_mode(struct hnae3_handle * handle)1250 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1251 {
1252 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1253
1254 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1255 hclgevf_task_schedule(hdev, 0);
1256 }
1257
hclgevf_sync_promisc_mode(struct hclgevf_dev * hdev)1258 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1259 {
1260 struct hnae3_handle *handle = &hdev->nic;
1261 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1262 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1263 int ret;
1264
1265 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1266 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1267 if (!ret)
1268 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1269 }
1270 }
1271
hclgevf_tqp_enable_cmd_send(struct hclgevf_dev * hdev,u16 tqp_id,u16 stream_id,bool enable)1272 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1273 u16 stream_id, bool enable)
1274 {
1275 struct hclgevf_cfg_com_tqp_queue_cmd *req;
1276 struct hclgevf_desc desc;
1277
1278 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1279
1280 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1281 false);
1282 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1283 req->stream_id = cpu_to_le16(stream_id);
1284 if (enable)
1285 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1286
1287 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1288 }
1289
hclgevf_tqp_enable(struct hnae3_handle * handle,bool enable)1290 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1291 {
1292 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1293 int ret;
1294 u16 i;
1295
1296 for (i = 0; i < handle->kinfo.num_tqps; i++) {
1297 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1298 if (ret)
1299 return ret;
1300 }
1301
1302 return 0;
1303 }
1304
hclgevf_reset_tqp_stats(struct hnae3_handle * handle)1305 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1306 {
1307 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1308 struct hclgevf_tqp *tqp;
1309 int i;
1310
1311 for (i = 0; i < kinfo->num_tqps; i++) {
1312 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1313 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1314 }
1315 }
1316
hclgevf_get_host_mac_addr(struct hclgevf_dev * hdev,u8 * p)1317 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1318 {
1319 struct hclge_vf_to_pf_msg send_msg;
1320 u8 host_mac[ETH_ALEN];
1321 int status;
1322
1323 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1324 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1325 ETH_ALEN);
1326 if (status) {
1327 dev_err(&hdev->pdev->dev,
1328 "fail to get VF MAC from host %d", status);
1329 return status;
1330 }
1331
1332 ether_addr_copy(p, host_mac);
1333
1334 return 0;
1335 }
1336
hclgevf_get_mac_addr(struct hnae3_handle * handle,u8 * p)1337 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1338 {
1339 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1340 u8 host_mac_addr[ETH_ALEN];
1341
1342 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1343 return;
1344
1345 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1346 if (hdev->has_pf_mac)
1347 ether_addr_copy(p, host_mac_addr);
1348 else
1349 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1350 }
1351
hclgevf_set_mac_addr(struct hnae3_handle * handle,void * p,bool is_first)1352 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1353 bool is_first)
1354 {
1355 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1356 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1357 struct hclge_vf_to_pf_msg send_msg;
1358 u8 *new_mac_addr = (u8 *)p;
1359 int status;
1360
1361 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1362 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1363 ether_addr_copy(send_msg.data, new_mac_addr);
1364 if (is_first && !hdev->has_pf_mac)
1365 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1366 else
1367 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1368 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1369 if (!status)
1370 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1371
1372 return status;
1373 }
1374
1375 static struct hclgevf_mac_addr_node *
hclgevf_find_mac_node(struct list_head * list,const u8 * mac_addr)1376 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1377 {
1378 struct hclgevf_mac_addr_node *mac_node, *tmp;
1379
1380 list_for_each_entry_safe(mac_node, tmp, list, node)
1381 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1382 return mac_node;
1383
1384 return NULL;
1385 }
1386
hclgevf_update_mac_node(struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_NODE_STATE state)1387 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1388 enum HCLGEVF_MAC_NODE_STATE state)
1389 {
1390 switch (state) {
1391 /* from set_rx_mode or tmp_add_list */
1392 case HCLGEVF_MAC_TO_ADD:
1393 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1394 mac_node->state = HCLGEVF_MAC_ACTIVE;
1395 break;
1396 /* only from set_rx_mode */
1397 case HCLGEVF_MAC_TO_DEL:
1398 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1399 list_del(&mac_node->node);
1400 kfree(mac_node);
1401 } else {
1402 mac_node->state = HCLGEVF_MAC_TO_DEL;
1403 }
1404 break;
1405 /* only from tmp_add_list, the mac_node->state won't be
1406 * HCLGEVF_MAC_ACTIVE
1407 */
1408 case HCLGEVF_MAC_ACTIVE:
1409 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1410 mac_node->state = HCLGEVF_MAC_ACTIVE;
1411 break;
1412 }
1413 }
1414
hclgevf_update_mac_list(struct hnae3_handle * handle,enum HCLGEVF_MAC_NODE_STATE state,enum HCLGEVF_MAC_ADDR_TYPE mac_type,const unsigned char * addr)1415 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1416 enum HCLGEVF_MAC_NODE_STATE state,
1417 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1418 const unsigned char *addr)
1419 {
1420 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1421 struct hclgevf_mac_addr_node *mac_node;
1422 struct list_head *list;
1423
1424 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1425 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1426
1427 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1428
1429 /* if the mac addr is already in the mac list, no need to add a new
1430 * one into it, just check the mac addr state, convert it to a new
1431 * new state, or just remove it, or do nothing.
1432 */
1433 mac_node = hclgevf_find_mac_node(list, addr);
1434 if (mac_node) {
1435 hclgevf_update_mac_node(mac_node, state);
1436 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1437 return 0;
1438 }
1439 /* if this address is never added, unnecessary to delete */
1440 if (state == HCLGEVF_MAC_TO_DEL) {
1441 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1442 return -ENOENT;
1443 }
1444
1445 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1446 if (!mac_node) {
1447 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1448 return -ENOMEM;
1449 }
1450
1451 mac_node->state = state;
1452 ether_addr_copy(mac_node->mac_addr, addr);
1453 list_add_tail(&mac_node->node, list);
1454
1455 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1456 return 0;
1457 }
1458
hclgevf_add_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1459 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1460 const unsigned char *addr)
1461 {
1462 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1463 HCLGEVF_MAC_ADDR_UC, addr);
1464 }
1465
hclgevf_rm_uc_addr(struct hnae3_handle * handle,const unsigned char * addr)1466 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1467 const unsigned char *addr)
1468 {
1469 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1470 HCLGEVF_MAC_ADDR_UC, addr);
1471 }
1472
hclgevf_add_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1473 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1474 const unsigned char *addr)
1475 {
1476 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1477 HCLGEVF_MAC_ADDR_MC, addr);
1478 }
1479
hclgevf_rm_mc_addr(struct hnae3_handle * handle,const unsigned char * addr)1480 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1481 const unsigned char *addr)
1482 {
1483 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1484 HCLGEVF_MAC_ADDR_MC, addr);
1485 }
1486
hclgevf_add_del_mac_addr(struct hclgevf_dev * hdev,struct hclgevf_mac_addr_node * mac_node,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1487 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1488 struct hclgevf_mac_addr_node *mac_node,
1489 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1490 {
1491 struct hclge_vf_to_pf_msg send_msg;
1492 u8 code, subcode;
1493
1494 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1495 code = HCLGE_MBX_SET_UNICAST;
1496 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1497 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1498 else
1499 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1500 } else {
1501 code = HCLGE_MBX_SET_MULTICAST;
1502 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1503 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1504 else
1505 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1506 }
1507
1508 hclgevf_build_send_msg(&send_msg, code, subcode);
1509 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1510 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1511 }
1512
hclgevf_config_mac_list(struct hclgevf_dev * hdev,struct list_head * list,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1513 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1514 struct list_head *list,
1515 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1516 {
1517 struct hclgevf_mac_addr_node *mac_node, *tmp;
1518 int ret;
1519
1520 list_for_each_entry_safe(mac_node, tmp, list, node) {
1521 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1522 if (ret) {
1523 dev_err(&hdev->pdev->dev,
1524 "failed to configure mac %pM, state = %d, ret = %d\n",
1525 mac_node->mac_addr, mac_node->state, ret);
1526 return;
1527 }
1528 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1529 mac_node->state = HCLGEVF_MAC_ACTIVE;
1530 } else {
1531 list_del(&mac_node->node);
1532 kfree(mac_node);
1533 }
1534 }
1535 }
1536
hclgevf_sync_from_add_list(struct list_head * add_list,struct list_head * mac_list)1537 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1538 struct list_head *mac_list)
1539 {
1540 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1541
1542 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1543 /* if the mac address from tmp_add_list is not in the
1544 * uc/mc_mac_list, it means have received a TO_DEL request
1545 * during the time window of sending mac config request to PF
1546 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1547 * then it will be removed at next time. If is TO_ADD, it means
1548 * send TO_ADD request failed, so just remove the mac node.
1549 */
1550 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1551 if (new_node) {
1552 hclgevf_update_mac_node(new_node, mac_node->state);
1553 list_del(&mac_node->node);
1554 kfree(mac_node);
1555 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1556 mac_node->state = HCLGEVF_MAC_TO_DEL;
1557 list_move_tail(&mac_node->node, mac_list);
1558 } else {
1559 list_del(&mac_node->node);
1560 kfree(mac_node);
1561 }
1562 }
1563 }
1564
hclgevf_sync_from_del_list(struct list_head * del_list,struct list_head * mac_list)1565 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1566 struct list_head *mac_list)
1567 {
1568 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1569
1570 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1571 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1572 if (new_node) {
1573 /* If the mac addr is exist in the mac list, it means
1574 * received a new request TO_ADD during the time window
1575 * of sending mac addr configurrequest to PF, so just
1576 * change the mac state to ACTIVE.
1577 */
1578 new_node->state = HCLGEVF_MAC_ACTIVE;
1579 list_del(&mac_node->node);
1580 kfree(mac_node);
1581 } else {
1582 list_move_tail(&mac_node->node, mac_list);
1583 }
1584 }
1585 }
1586
hclgevf_clear_list(struct list_head * list)1587 static void hclgevf_clear_list(struct list_head *list)
1588 {
1589 struct hclgevf_mac_addr_node *mac_node, *tmp;
1590
1591 list_for_each_entry_safe(mac_node, tmp, list, node) {
1592 list_del(&mac_node->node);
1593 kfree(mac_node);
1594 }
1595 }
1596
hclgevf_sync_mac_list(struct hclgevf_dev * hdev,enum HCLGEVF_MAC_ADDR_TYPE mac_type)1597 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1598 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1599 {
1600 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1601 struct list_head tmp_add_list, tmp_del_list;
1602 struct list_head *list;
1603
1604 INIT_LIST_HEAD(&tmp_add_list);
1605 INIT_LIST_HEAD(&tmp_del_list);
1606
1607 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1608 * we can add/delete these mac addr outside the spin lock
1609 */
1610 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1611 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1612
1613 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1614
1615 list_for_each_entry_safe(mac_node, tmp, list, node) {
1616 switch (mac_node->state) {
1617 case HCLGEVF_MAC_TO_DEL:
1618 list_move_tail(&mac_node->node, &tmp_del_list);
1619 break;
1620 case HCLGEVF_MAC_TO_ADD:
1621 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1622 if (!new_node)
1623 goto stop_traverse;
1624
1625 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1626 new_node->state = mac_node->state;
1627 list_add_tail(&new_node->node, &tmp_add_list);
1628 break;
1629 default:
1630 break;
1631 }
1632 }
1633
1634 stop_traverse:
1635 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1636
1637 /* delete first, in order to get max mac table space for adding */
1638 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1639 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1640
1641 /* if some mac addresses were added/deleted fail, move back to the
1642 * mac_list, and retry at next time.
1643 */
1644 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1645
1646 hclgevf_sync_from_del_list(&tmp_del_list, list);
1647 hclgevf_sync_from_add_list(&tmp_add_list, list);
1648
1649 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1650 }
1651
hclgevf_sync_mac_table(struct hclgevf_dev * hdev)1652 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1653 {
1654 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1655 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1656 }
1657
hclgevf_uninit_mac_list(struct hclgevf_dev * hdev)1658 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1659 {
1660 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1661
1662 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1663 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1664
1665 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1666 }
1667
hclgevf_enable_vlan_filter(struct hnae3_handle * handle,bool enable)1668 static int hclgevf_enable_vlan_filter(struct hnae3_handle *handle, bool enable)
1669 {
1670 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1671 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
1672 struct hclge_vf_to_pf_msg send_msg;
1673
1674 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
1675 return -EOPNOTSUPP;
1676
1677 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1678 HCLGE_MBX_ENABLE_VLAN_FILTER);
1679 send_msg.data[0] = enable ? 1 : 0;
1680
1681 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1682 }
1683
hclgevf_set_vlan_filter(struct hnae3_handle * handle,__be16 proto,u16 vlan_id,bool is_kill)1684 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1685 __be16 proto, u16 vlan_id,
1686 bool is_kill)
1687 {
1688 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1689 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1690 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3
1691
1692 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1693 struct hclge_vf_to_pf_msg send_msg;
1694 int ret;
1695
1696 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1697 return -EINVAL;
1698
1699 if (proto != htons(ETH_P_8021Q))
1700 return -EPROTONOSUPPORT;
1701
1702 /* When device is resetting or reset failed, firmware is unable to
1703 * handle mailbox. Just record the vlan id, and remove it after
1704 * reset finished.
1705 */
1706 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1707 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1708 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1709 return -EBUSY;
1710 }
1711
1712 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1713 HCLGE_MBX_VLAN_FILTER);
1714 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1715 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1716 sizeof(vlan_id));
1717 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1718 sizeof(proto));
1719 /* when remove hw vlan filter failed, record the vlan id,
1720 * and try to remove it from hw later, to be consistence
1721 * with stack.
1722 */
1723 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1724 if (is_kill && ret)
1725 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1726
1727 return ret;
1728 }
1729
hclgevf_sync_vlan_filter(struct hclgevf_dev * hdev)1730 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1731 {
1732 #define HCLGEVF_MAX_SYNC_COUNT 60
1733 struct hnae3_handle *handle = &hdev->nic;
1734 int ret, sync_cnt = 0;
1735 u16 vlan_id;
1736
1737 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1738 while (vlan_id != VLAN_N_VID) {
1739 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1740 vlan_id, true);
1741 if (ret)
1742 return;
1743
1744 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1745 sync_cnt++;
1746 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1747 return;
1748
1749 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1750 }
1751 }
1752
hclgevf_en_hw_strip_rxvtag(struct hnae3_handle * handle,bool enable)1753 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1754 {
1755 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1756 struct hclge_vf_to_pf_msg send_msg;
1757
1758 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1759 HCLGE_MBX_VLAN_RX_OFF_CFG);
1760 send_msg.data[0] = enable ? 1 : 0;
1761 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1762 }
1763
hclgevf_reset_tqp(struct hnae3_handle * handle)1764 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1765 {
1766 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1767 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1768 struct hclge_vf_to_pf_msg send_msg;
1769 u8 return_status = 0;
1770 int ret;
1771 u16 i;
1772
1773 /* disable vf queue before send queue reset msg to PF */
1774 ret = hclgevf_tqp_enable(handle, false);
1775 if (ret) {
1776 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1777 ret);
1778 return ret;
1779 }
1780
1781 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1782
1783 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1784 sizeof(return_status));
1785 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1786 return ret;
1787
1788 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1789 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1790 memcpy(send_msg.data, &i, sizeof(i));
1791 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1792 if (ret)
1793 return ret;
1794 }
1795
1796 return 0;
1797 }
1798
hclgevf_set_mtu(struct hnae3_handle * handle,int new_mtu)1799 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1800 {
1801 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1802 struct hclge_vf_to_pf_msg send_msg;
1803
1804 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1805 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1806 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1807 }
1808
hclgevf_notify_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1809 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1810 enum hnae3_reset_notify_type type)
1811 {
1812 struct hnae3_client *client = hdev->nic_client;
1813 struct hnae3_handle *handle = &hdev->nic;
1814 int ret;
1815
1816 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1817 !client)
1818 return 0;
1819
1820 if (!client->ops->reset_notify)
1821 return -EOPNOTSUPP;
1822
1823 ret = client->ops->reset_notify(handle, type);
1824 if (ret)
1825 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1826 type, ret);
1827
1828 return ret;
1829 }
1830
hclgevf_notify_roce_client(struct hclgevf_dev * hdev,enum hnae3_reset_notify_type type)1831 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1832 enum hnae3_reset_notify_type type)
1833 {
1834 struct hnae3_client *client = hdev->roce_client;
1835 struct hnae3_handle *handle = &hdev->roce;
1836 int ret;
1837
1838 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1839 return 0;
1840
1841 if (!client->ops->reset_notify)
1842 return -EOPNOTSUPP;
1843
1844 ret = client->ops->reset_notify(handle, type);
1845 if (ret)
1846 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1847 type, ret);
1848 return ret;
1849 }
1850
hclgevf_reset_wait(struct hclgevf_dev * hdev)1851 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1852 {
1853 #define HCLGEVF_RESET_WAIT_US 20000
1854 #define HCLGEVF_RESET_WAIT_CNT 2000
1855 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1856 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1857
1858 u32 val;
1859 int ret;
1860
1861 if (hdev->reset_type == HNAE3_VF_RESET)
1862 ret = readl_poll_timeout(hdev->hw.io_base +
1863 HCLGEVF_VF_RST_ING, val,
1864 !(val & HCLGEVF_VF_RST_ING_BIT),
1865 HCLGEVF_RESET_WAIT_US,
1866 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1867 else
1868 ret = readl_poll_timeout(hdev->hw.io_base +
1869 HCLGEVF_RST_ING, val,
1870 !(val & HCLGEVF_RST_ING_BITS),
1871 HCLGEVF_RESET_WAIT_US,
1872 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1873
1874 /* hardware completion status should be available by this time */
1875 if (ret) {
1876 dev_err(&hdev->pdev->dev,
1877 "couldn't get reset done status from h/w, timeout!\n");
1878 return ret;
1879 }
1880
1881 /* we will wait a bit more to let reset of the stack to complete. This
1882 * might happen in case reset assertion was made by PF. Yes, this also
1883 * means we might end up waiting bit more even for VF reset.
1884 */
1885 msleep(5000);
1886
1887 return 0;
1888 }
1889
hclgevf_reset_handshake(struct hclgevf_dev * hdev,bool enable)1890 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1891 {
1892 u32 reg_val;
1893
1894 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1895 if (enable)
1896 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1897 else
1898 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1899
1900 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1901 reg_val);
1902 }
1903
hclgevf_reset_stack(struct hclgevf_dev * hdev)1904 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1905 {
1906 int ret;
1907
1908 /* uninitialize the nic client */
1909 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1910 if (ret)
1911 return ret;
1912
1913 /* re-initialize the hclge device */
1914 ret = hclgevf_reset_hdev(hdev);
1915 if (ret) {
1916 dev_err(&hdev->pdev->dev,
1917 "hclge device re-init failed, VF is disabled!\n");
1918 return ret;
1919 }
1920
1921 /* bring up the nic client again */
1922 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1923 if (ret)
1924 return ret;
1925
1926 /* clear handshake status with IMP */
1927 hclgevf_reset_handshake(hdev, false);
1928
1929 /* bring up the nic to enable TX/RX again */
1930 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1931 }
1932
hclgevf_reset_prepare_wait(struct hclgevf_dev * hdev)1933 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1934 {
1935 #define HCLGEVF_RESET_SYNC_TIME 100
1936
1937 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1938 struct hclge_vf_to_pf_msg send_msg;
1939 int ret;
1940
1941 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1942 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1943 if (ret) {
1944 dev_err(&hdev->pdev->dev,
1945 "failed to assert VF reset, ret = %d\n", ret);
1946 return ret;
1947 }
1948 hdev->rst_stats.vf_func_rst_cnt++;
1949 }
1950
1951 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1952 /* inform hardware that preparatory work is done */
1953 msleep(HCLGEVF_RESET_SYNC_TIME);
1954 hclgevf_reset_handshake(hdev, true);
1955 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1956 hdev->reset_type);
1957
1958 return 0;
1959 }
1960
hclgevf_dump_rst_info(struct hclgevf_dev * hdev)1961 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1962 {
1963 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1964 hdev->rst_stats.vf_func_rst_cnt);
1965 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1966 hdev->rst_stats.flr_rst_cnt);
1967 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1968 hdev->rst_stats.vf_rst_cnt);
1969 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1970 hdev->rst_stats.rst_done_cnt);
1971 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1972 hdev->rst_stats.hw_rst_done_cnt);
1973 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1974 hdev->rst_stats.rst_cnt);
1975 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1976 hdev->rst_stats.rst_fail_cnt);
1977 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1978 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1979 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1980 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1981 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1982 hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG));
1983 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1984 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1985 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1986 }
1987
hclgevf_reset_err_handle(struct hclgevf_dev * hdev)1988 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1989 {
1990 /* recover handshake status with IMP when reset fail */
1991 hclgevf_reset_handshake(hdev, true);
1992 hdev->rst_stats.rst_fail_cnt++;
1993 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1994 hdev->rst_stats.rst_fail_cnt);
1995
1996 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1997 set_bit(hdev->reset_type, &hdev->reset_pending);
1998
1999 if (hclgevf_is_reset_pending(hdev)) {
2000 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2001 hclgevf_reset_task_schedule(hdev);
2002 } else {
2003 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2004 hclgevf_dump_rst_info(hdev);
2005 }
2006 }
2007
hclgevf_reset_prepare(struct hclgevf_dev * hdev)2008 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
2009 {
2010 int ret;
2011
2012 hdev->rst_stats.rst_cnt++;
2013
2014 /* perform reset of the stack & ae device for a client */
2015 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
2016 if (ret)
2017 return ret;
2018
2019 rtnl_lock();
2020 /* bring down the nic to stop any ongoing TX/RX */
2021 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2022 rtnl_unlock();
2023 if (ret)
2024 return ret;
2025
2026 return hclgevf_reset_prepare_wait(hdev);
2027 }
2028
hclgevf_reset_rebuild(struct hclgevf_dev * hdev)2029 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
2030 {
2031 int ret;
2032
2033 hdev->rst_stats.hw_rst_done_cnt++;
2034 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2035 if (ret)
2036 return ret;
2037
2038 rtnl_lock();
2039 /* now, re-initialize the nic client and ae device */
2040 ret = hclgevf_reset_stack(hdev);
2041 rtnl_unlock();
2042 if (ret) {
2043 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2044 return ret;
2045 }
2046
2047 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2048 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2049 * times
2050 */
2051 if (ret &&
2052 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2053 return ret;
2054
2055 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2056 if (ret)
2057 return ret;
2058
2059 hdev->last_reset_time = jiffies;
2060 hdev->rst_stats.rst_done_cnt++;
2061 hdev->rst_stats.rst_fail_cnt = 0;
2062 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2063
2064 return 0;
2065 }
2066
hclgevf_reset(struct hclgevf_dev * hdev)2067 static void hclgevf_reset(struct hclgevf_dev *hdev)
2068 {
2069 if (hclgevf_reset_prepare(hdev))
2070 goto err_reset;
2071
2072 /* check if VF could successfully fetch the hardware reset completion
2073 * status from the hardware
2074 */
2075 if (hclgevf_reset_wait(hdev)) {
2076 /* can't do much in this situation, will disable VF */
2077 dev_err(&hdev->pdev->dev,
2078 "failed to fetch H/W reset completion status\n");
2079 goto err_reset;
2080 }
2081
2082 if (hclgevf_reset_rebuild(hdev))
2083 goto err_reset;
2084
2085 return;
2086
2087 err_reset:
2088 hclgevf_reset_err_handle(hdev);
2089 }
2090
hclgevf_get_reset_level(struct hclgevf_dev * hdev,unsigned long * addr)2091 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2092 unsigned long *addr)
2093 {
2094 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2095
2096 /* return the highest priority reset level amongst all */
2097 if (test_bit(HNAE3_VF_RESET, addr)) {
2098 rst_level = HNAE3_VF_RESET;
2099 clear_bit(HNAE3_VF_RESET, addr);
2100 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2101 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2102 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2103 rst_level = HNAE3_VF_FULL_RESET;
2104 clear_bit(HNAE3_VF_FULL_RESET, addr);
2105 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2106 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2107 rst_level = HNAE3_VF_PF_FUNC_RESET;
2108 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2109 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2110 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2111 rst_level = HNAE3_VF_FUNC_RESET;
2112 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2113 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2114 rst_level = HNAE3_FLR_RESET;
2115 clear_bit(HNAE3_FLR_RESET, addr);
2116 }
2117
2118 return rst_level;
2119 }
2120
hclgevf_reset_event(struct pci_dev * pdev,struct hnae3_handle * handle)2121 static void hclgevf_reset_event(struct pci_dev *pdev,
2122 struct hnae3_handle *handle)
2123 {
2124 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2125 struct hclgevf_dev *hdev = ae_dev->priv;
2126
2127 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2128
2129 if (hdev->default_reset_request)
2130 hdev->reset_level =
2131 hclgevf_get_reset_level(hdev,
2132 &hdev->default_reset_request);
2133 else
2134 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2135
2136 /* reset of this VF requested */
2137 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2138 hclgevf_reset_task_schedule(hdev);
2139
2140 hdev->last_reset_time = jiffies;
2141 }
2142
hclgevf_set_def_reset_request(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)2143 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2144 enum hnae3_reset_type rst_type)
2145 {
2146 struct hclgevf_dev *hdev = ae_dev->priv;
2147
2148 set_bit(rst_type, &hdev->default_reset_request);
2149 }
2150
hclgevf_enable_vector(struct hclgevf_misc_vector * vector,bool en)2151 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2152 {
2153 writel(en ? 1 : 0, vector->addr);
2154 }
2155
hclgevf_reset_prepare_general(struct hnae3_ae_dev * ae_dev,enum hnae3_reset_type rst_type)2156 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2157 enum hnae3_reset_type rst_type)
2158 {
2159 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
2160 #define HCLGEVF_RESET_RETRY_CNT 5
2161
2162 struct hclgevf_dev *hdev = ae_dev->priv;
2163 int retry_cnt = 0;
2164 int ret;
2165
2166 retry:
2167 down(&hdev->reset_sem);
2168 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2169 hdev->reset_type = rst_type;
2170 ret = hclgevf_reset_prepare(hdev);
2171 if (ret) {
2172 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2173 ret);
2174 if (hdev->reset_pending ||
2175 retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2176 dev_err(&hdev->pdev->dev,
2177 "reset_pending:0x%lx, retry_cnt:%d\n",
2178 hdev->reset_pending, retry_cnt);
2179 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2180 up(&hdev->reset_sem);
2181 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2182 goto retry;
2183 }
2184 }
2185
2186 /* disable misc vector before reset done */
2187 hclgevf_enable_vector(&hdev->misc_vector, false);
2188
2189 if (hdev->reset_type == HNAE3_FLR_RESET)
2190 hdev->rst_stats.flr_rst_cnt++;
2191 }
2192
hclgevf_reset_done(struct hnae3_ae_dev * ae_dev)2193 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2194 {
2195 struct hclgevf_dev *hdev = ae_dev->priv;
2196 int ret;
2197
2198 hclgevf_enable_vector(&hdev->misc_vector, true);
2199
2200 ret = hclgevf_reset_rebuild(hdev);
2201 if (ret)
2202 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2203 ret);
2204
2205 hdev->reset_type = HNAE3_NONE_RESET;
2206 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2207 up(&hdev->reset_sem);
2208 }
2209
hclgevf_get_fw_version(struct hnae3_handle * handle)2210 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2211 {
2212 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2213
2214 return hdev->fw_version;
2215 }
2216
hclgevf_get_misc_vector(struct hclgevf_dev * hdev)2217 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2218 {
2219 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2220
2221 vector->vector_irq = pci_irq_vector(hdev->pdev,
2222 HCLGEVF_MISC_VECTOR_NUM);
2223 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2224 /* vector status always valid for Vector 0 */
2225 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2226 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2227
2228 hdev->num_msi_left -= 1;
2229 hdev->num_msi_used += 1;
2230 }
2231
hclgevf_reset_task_schedule(struct hclgevf_dev * hdev)2232 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2233 {
2234 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2235 test_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state) &&
2236 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2237 &hdev->state))
2238 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2239 }
2240
hclgevf_mbx_task_schedule(struct hclgevf_dev * hdev)2241 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2242 {
2243 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2244 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2245 &hdev->state))
2246 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2247 }
2248
hclgevf_task_schedule(struct hclgevf_dev * hdev,unsigned long delay)2249 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2250 unsigned long delay)
2251 {
2252 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2253 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2254 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2255 }
2256
hclgevf_reset_service_task(struct hclgevf_dev * hdev)2257 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2258 {
2259 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
2260
2261 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2262 return;
2263
2264 down(&hdev->reset_sem);
2265 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2266
2267 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2268 &hdev->reset_state)) {
2269 /* PF has intimated that it is about to reset the hardware.
2270 * We now have to poll & check if hardware has actually
2271 * completed the reset sequence. On hardware reset completion,
2272 * VF needs to reset the client and ae device.
2273 */
2274 hdev->reset_attempts = 0;
2275
2276 hdev->last_reset_time = jiffies;
2277 hdev->reset_type =
2278 hclgevf_get_reset_level(hdev, &hdev->reset_pending);
2279 if (hdev->reset_type != HNAE3_NONE_RESET)
2280 hclgevf_reset(hdev);
2281 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2282 &hdev->reset_state)) {
2283 /* we could be here when either of below happens:
2284 * 1. reset was initiated due to watchdog timeout caused by
2285 * a. IMP was earlier reset and our TX got choked down and
2286 * which resulted in watchdog reacting and inducing VF
2287 * reset. This also means our cmdq would be unreliable.
2288 * b. problem in TX due to other lower layer(example link
2289 * layer not functioning properly etc.)
2290 * 2. VF reset might have been initiated due to some config
2291 * change.
2292 *
2293 * NOTE: Theres no clear way to detect above cases than to react
2294 * to the response of PF for this reset request. PF will ack the
2295 * 1b and 2. cases but we will not get any intimation about 1a
2296 * from PF as cmdq would be in unreliable state i.e. mailbox
2297 * communication between PF and VF would be broken.
2298 *
2299 * if we are never geting into pending state it means either:
2300 * 1. PF is not receiving our request which could be due to IMP
2301 * reset
2302 * 2. PF is screwed
2303 * We cannot do much for 2. but to check first we can try reset
2304 * our PCIe + stack and see if it alleviates the problem.
2305 */
2306 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2307 /* prepare for full reset of stack + pcie interface */
2308 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2309
2310 /* "defer" schedule the reset task again */
2311 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2312 } else {
2313 hdev->reset_attempts++;
2314
2315 set_bit(hdev->reset_level, &hdev->reset_pending);
2316 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2317 }
2318 hclgevf_reset_task_schedule(hdev);
2319 }
2320
2321 hdev->reset_type = HNAE3_NONE_RESET;
2322 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2323 up(&hdev->reset_sem);
2324 }
2325
hclgevf_mailbox_service_task(struct hclgevf_dev * hdev)2326 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2327 {
2328 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2329 return;
2330
2331 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2332 return;
2333
2334 hclgevf_mbx_async_handler(hdev);
2335
2336 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2337 }
2338
hclgevf_keep_alive(struct hclgevf_dev * hdev)2339 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2340 {
2341 struct hclge_vf_to_pf_msg send_msg;
2342 int ret;
2343
2344 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2345 return;
2346
2347 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2348 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2349 if (ret)
2350 dev_err(&hdev->pdev->dev,
2351 "VF sends keep alive cmd failed(=%d)\n", ret);
2352 }
2353
hclgevf_periodic_service_task(struct hclgevf_dev * hdev)2354 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2355 {
2356 unsigned long delta = round_jiffies_relative(HZ);
2357 struct hnae3_handle *handle = &hdev->nic;
2358
2359 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2360 return;
2361
2362 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2363 delta = jiffies - hdev->last_serv_processed;
2364
2365 if (delta < round_jiffies_relative(HZ)) {
2366 delta = round_jiffies_relative(HZ) - delta;
2367 goto out;
2368 }
2369 }
2370
2371 hdev->serv_processed_cnt++;
2372 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2373 hclgevf_keep_alive(hdev);
2374
2375 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2376 hdev->last_serv_processed = jiffies;
2377 goto out;
2378 }
2379
2380 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2381 hclgevf_tqps_update_stats(handle);
2382
2383 /* VF does not need to request link status when this bit is set, because
2384 * PF will push its link status to VFs when link status changed.
2385 */
2386 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2387 hclgevf_request_link_info(hdev);
2388
2389 hclgevf_update_link_mode(hdev);
2390
2391 hclgevf_sync_vlan_filter(hdev);
2392
2393 hclgevf_sync_mac_table(hdev);
2394
2395 hclgevf_sync_promisc_mode(hdev);
2396
2397 hdev->last_serv_processed = jiffies;
2398
2399 out:
2400 hclgevf_task_schedule(hdev, delta);
2401 }
2402
hclgevf_service_task(struct work_struct * work)2403 static void hclgevf_service_task(struct work_struct *work)
2404 {
2405 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2406 service_task.work);
2407
2408 hclgevf_reset_service_task(hdev);
2409 hclgevf_mailbox_service_task(hdev);
2410 hclgevf_periodic_service_task(hdev);
2411
2412 /* Handle reset and mbx again in case periodical task delays the
2413 * handling by calling hclgevf_task_schedule() in
2414 * hclgevf_periodic_service_task()
2415 */
2416 hclgevf_reset_service_task(hdev);
2417 hclgevf_mailbox_service_task(hdev);
2418 }
2419
hclgevf_clear_event_cause(struct hclgevf_dev * hdev,u32 regclr)2420 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2421 {
2422 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2423 }
2424
hclgevf_check_evt_cause(struct hclgevf_dev * hdev,u32 * clearval)2425 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2426 u32 *clearval)
2427 {
2428 u32 val, cmdq_stat_reg, rst_ing_reg;
2429
2430 /* fetch the events from their corresponding regs */
2431 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2432 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2433 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2434 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2435 dev_info(&hdev->pdev->dev,
2436 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2437 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2438 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2439 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2440 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2441 hdev->rst_stats.vf_rst_cnt++;
2442 /* set up VF hardware reset status, its PF will clear
2443 * this status when PF has initialized done.
2444 */
2445 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2446 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2447 val | HCLGEVF_VF_RST_ING_BIT);
2448 return HCLGEVF_VECTOR0_EVENT_RST;
2449 }
2450
2451 /* check for vector0 mailbox(=CMDQ RX) event source */
2452 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2453 /* for revision 0x21, clearing interrupt is writing bit 0
2454 * to the clear register, writing bit 1 means to keep the
2455 * old value.
2456 * for revision 0x20, the clear register is a read & write
2457 * register, so we should just write 0 to the bit we are
2458 * handling, and keep other bits as cmdq_stat_reg.
2459 */
2460 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2461 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2462 else
2463 *clearval = cmdq_stat_reg &
2464 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2465
2466 return HCLGEVF_VECTOR0_EVENT_MBX;
2467 }
2468
2469 /* print other vector0 event source */
2470 dev_info(&hdev->pdev->dev,
2471 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2472 cmdq_stat_reg);
2473
2474 return HCLGEVF_VECTOR0_EVENT_OTHER;
2475 }
2476
hclgevf_misc_irq_handle(int irq,void * data)2477 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2478 {
2479 enum hclgevf_evt_cause event_cause;
2480 struct hclgevf_dev *hdev = data;
2481 u32 clearval;
2482
2483 hclgevf_enable_vector(&hdev->misc_vector, false);
2484 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2485 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2486 hclgevf_clear_event_cause(hdev, clearval);
2487
2488 switch (event_cause) {
2489 case HCLGEVF_VECTOR0_EVENT_RST:
2490 hclgevf_reset_task_schedule(hdev);
2491 break;
2492 case HCLGEVF_VECTOR0_EVENT_MBX:
2493 hclgevf_mbx_handler(hdev);
2494 break;
2495 default:
2496 break;
2497 }
2498
2499 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER)
2500 hclgevf_enable_vector(&hdev->misc_vector, true);
2501
2502 return IRQ_HANDLED;
2503 }
2504
hclgevf_configure(struct hclgevf_dev * hdev)2505 static int hclgevf_configure(struct hclgevf_dev *hdev)
2506 {
2507 int ret;
2508
2509 hdev->gro_en = true;
2510
2511 ret = hclgevf_get_basic_info(hdev);
2512 if (ret)
2513 return ret;
2514
2515 /* get current port based vlan state from PF */
2516 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2517 if (ret)
2518 return ret;
2519
2520 /* get queue configuration from PF */
2521 ret = hclgevf_get_queue_info(hdev);
2522 if (ret)
2523 return ret;
2524
2525 /* get queue depth info from PF */
2526 ret = hclgevf_get_queue_depth(hdev);
2527 if (ret)
2528 return ret;
2529
2530 return hclgevf_get_pf_media_type(hdev);
2531 }
2532
hclgevf_alloc_hdev(struct hnae3_ae_dev * ae_dev)2533 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2534 {
2535 struct pci_dev *pdev = ae_dev->pdev;
2536 struct hclgevf_dev *hdev;
2537
2538 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2539 if (!hdev)
2540 return -ENOMEM;
2541
2542 hdev->pdev = pdev;
2543 hdev->ae_dev = ae_dev;
2544 ae_dev->priv = hdev;
2545
2546 return 0;
2547 }
2548
hclgevf_init_roce_base_info(struct hclgevf_dev * hdev)2549 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2550 {
2551 struct hnae3_handle *roce = &hdev->roce;
2552 struct hnae3_handle *nic = &hdev->nic;
2553
2554 roce->rinfo.num_vectors = hdev->num_roce_msix;
2555
2556 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2557 hdev->num_msi_left == 0)
2558 return -EINVAL;
2559
2560 roce->rinfo.base_vector = hdev->roce_base_vector;
2561
2562 roce->rinfo.netdev = nic->kinfo.netdev;
2563 roce->rinfo.roce_io_base = hdev->hw.io_base;
2564 roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2565
2566 roce->pdev = nic->pdev;
2567 roce->ae_algo = nic->ae_algo;
2568 roce->numa_node_mask = nic->numa_node_mask;
2569
2570 return 0;
2571 }
2572
hclgevf_config_gro(struct hclgevf_dev * hdev)2573 static int hclgevf_config_gro(struct hclgevf_dev *hdev)
2574 {
2575 struct hclgevf_cfg_gro_status_cmd *req;
2576 struct hclgevf_desc desc;
2577 int ret;
2578
2579 if (!hnae3_dev_gro_supported(hdev))
2580 return 0;
2581
2582 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2583 false);
2584 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2585
2586 req->gro_en = hdev->gro_en ? 1 : 0;
2587
2588 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2589 if (ret)
2590 dev_err(&hdev->pdev->dev,
2591 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2592
2593 return ret;
2594 }
2595
hclgevf_rss_init_cfg(struct hclgevf_dev * hdev)2596 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2597 {
2598 u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2599 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2600 struct hclgevf_rss_tuple_cfg *tuple_sets;
2601 u32 i;
2602
2603 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2604 rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2605 tuple_sets = &rss_cfg->rss_tuple_sets;
2606 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2607 u8 *rss_ind_tbl;
2608
2609 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2610
2611 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2612 sizeof(*rss_ind_tbl), GFP_KERNEL);
2613 if (!rss_ind_tbl)
2614 return -ENOMEM;
2615
2616 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2617 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2618 HCLGEVF_RSS_KEY_SIZE);
2619
2620 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2621 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2622 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2623 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2624 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2625 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2626 tuple_sets->ipv6_sctp_en =
2627 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2628 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2629 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2630 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2631 }
2632
2633 /* Initialize RSS indirect table */
2634 for (i = 0; i < rss_ind_tbl_size; i++)
2635 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2636
2637 return 0;
2638 }
2639
hclgevf_rss_init_hw(struct hclgevf_dev * hdev)2640 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2641 {
2642 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2643 int ret;
2644
2645 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2646 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2647 rss_cfg->rss_hash_key);
2648 if (ret)
2649 return ret;
2650
2651 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2652 if (ret)
2653 return ret;
2654 }
2655
2656 ret = hclgevf_set_rss_indir_table(hdev);
2657 if (ret)
2658 return ret;
2659
2660 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2661 }
2662
hclgevf_init_vlan_config(struct hclgevf_dev * hdev)2663 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2664 {
2665 struct hnae3_handle *nic = &hdev->nic;
2666 int ret;
2667
2668 ret = hclgevf_en_hw_strip_rxvtag(nic, true);
2669 if (ret) {
2670 dev_err(&hdev->pdev->dev,
2671 "failed to enable rx vlan offload, ret = %d\n", ret);
2672 return ret;
2673 }
2674
2675 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2676 false);
2677 }
2678
hclgevf_flush_link_update(struct hclgevf_dev * hdev)2679 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2680 {
2681 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2682
2683 unsigned long last = hdev->serv_processed_cnt;
2684 int i = 0;
2685
2686 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2687 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2688 last == hdev->serv_processed_cnt)
2689 usleep_range(1, 1);
2690 }
2691
hclgevf_set_timer_task(struct hnae3_handle * handle,bool enable)2692 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2693 {
2694 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2695
2696 if (enable) {
2697 hclgevf_task_schedule(hdev, 0);
2698 } else {
2699 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2700
2701 /* flush memory to make sure DOWN is seen by service task */
2702 smp_mb__before_atomic();
2703 hclgevf_flush_link_update(hdev);
2704 }
2705 }
2706
hclgevf_ae_start(struct hnae3_handle * handle)2707 static int hclgevf_ae_start(struct hnae3_handle *handle)
2708 {
2709 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2710
2711 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2712 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2713
2714 hclgevf_reset_tqp_stats(handle);
2715
2716 hclgevf_request_link_info(hdev);
2717
2718 hclgevf_update_link_mode(hdev);
2719
2720 return 0;
2721 }
2722
hclgevf_ae_stop(struct hnae3_handle * handle)2723 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2724 {
2725 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2726
2727 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2728
2729 if (hdev->reset_type != HNAE3_VF_RESET)
2730 hclgevf_reset_tqp(handle);
2731
2732 hclgevf_reset_tqp_stats(handle);
2733 hclgevf_update_link_status(hdev, 0);
2734 }
2735
hclgevf_set_alive(struct hnae3_handle * handle,bool alive)2736 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2737 {
2738 #define HCLGEVF_STATE_ALIVE 1
2739 #define HCLGEVF_STATE_NOT_ALIVE 0
2740
2741 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2742 struct hclge_vf_to_pf_msg send_msg;
2743
2744 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2745 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2746 HCLGEVF_STATE_NOT_ALIVE;
2747 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2748 }
2749
hclgevf_client_start(struct hnae3_handle * handle)2750 static int hclgevf_client_start(struct hnae3_handle *handle)
2751 {
2752 return hclgevf_set_alive(handle, true);
2753 }
2754
hclgevf_client_stop(struct hnae3_handle * handle)2755 static void hclgevf_client_stop(struct hnae3_handle *handle)
2756 {
2757 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2758 int ret;
2759
2760 ret = hclgevf_set_alive(handle, false);
2761 if (ret)
2762 dev_warn(&hdev->pdev->dev,
2763 "%s failed %d\n", __func__, ret);
2764 }
2765
hclgevf_state_init(struct hclgevf_dev * hdev)2766 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2767 {
2768 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2769 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2770 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2771
2772 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2773
2774 mutex_init(&hdev->mbx_resp.mbx_mutex);
2775 sema_init(&hdev->reset_sem, 1);
2776
2777 spin_lock_init(&hdev->mac_table.mac_list_lock);
2778 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2779 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2780
2781 /* bring the device down */
2782 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2783 }
2784
hclgevf_state_uninit(struct hclgevf_dev * hdev)2785 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2786 {
2787 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2788 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2789
2790 if (hdev->service_task.work.func)
2791 cancel_delayed_work_sync(&hdev->service_task);
2792
2793 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2794 }
2795
hclgevf_init_msi(struct hclgevf_dev * hdev)2796 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2797 {
2798 struct pci_dev *pdev = hdev->pdev;
2799 int vectors;
2800 int i;
2801
2802 if (hnae3_dev_roce_supported(hdev))
2803 vectors = pci_alloc_irq_vectors(pdev,
2804 hdev->roce_base_msix_offset + 1,
2805 hdev->num_msi,
2806 PCI_IRQ_MSIX);
2807 else
2808 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2809 hdev->num_msi,
2810 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2811
2812 if (vectors < 0) {
2813 dev_err(&pdev->dev,
2814 "failed(%d) to allocate MSI/MSI-X vectors\n",
2815 vectors);
2816 return vectors;
2817 }
2818 if (vectors < hdev->num_msi)
2819 dev_warn(&hdev->pdev->dev,
2820 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2821 hdev->num_msi, vectors);
2822
2823 hdev->num_msi = vectors;
2824 hdev->num_msi_left = vectors;
2825
2826 hdev->base_msi_vector = pdev->irq;
2827 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2828
2829 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2830 sizeof(u16), GFP_KERNEL);
2831 if (!hdev->vector_status) {
2832 pci_free_irq_vectors(pdev);
2833 return -ENOMEM;
2834 }
2835
2836 for (i = 0; i < hdev->num_msi; i++)
2837 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2838
2839 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2840 sizeof(int), GFP_KERNEL);
2841 if (!hdev->vector_irq) {
2842 devm_kfree(&pdev->dev, hdev->vector_status);
2843 pci_free_irq_vectors(pdev);
2844 return -ENOMEM;
2845 }
2846
2847 return 0;
2848 }
2849
hclgevf_uninit_msi(struct hclgevf_dev * hdev)2850 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2851 {
2852 struct pci_dev *pdev = hdev->pdev;
2853
2854 devm_kfree(&pdev->dev, hdev->vector_status);
2855 devm_kfree(&pdev->dev, hdev->vector_irq);
2856 pci_free_irq_vectors(pdev);
2857 }
2858
hclgevf_misc_irq_init(struct hclgevf_dev * hdev)2859 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2860 {
2861 int ret;
2862
2863 hclgevf_get_misc_vector(hdev);
2864
2865 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2866 HCLGEVF_NAME, pci_name(hdev->pdev));
2867 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2868 0, hdev->misc_vector.name, hdev);
2869 if (ret) {
2870 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2871 hdev->misc_vector.vector_irq);
2872 return ret;
2873 }
2874
2875 hclgevf_clear_event_cause(hdev, 0);
2876
2877 /* enable misc. vector(vector 0) */
2878 hclgevf_enable_vector(&hdev->misc_vector, true);
2879
2880 return ret;
2881 }
2882
hclgevf_misc_irq_uninit(struct hclgevf_dev * hdev)2883 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2884 {
2885 /* disable misc vector(vector 0) */
2886 hclgevf_enable_vector(&hdev->misc_vector, false);
2887 synchronize_irq(hdev->misc_vector.vector_irq);
2888 free_irq(hdev->misc_vector.vector_irq, hdev);
2889 hclgevf_free_vector(hdev, 0);
2890 }
2891
hclgevf_info_show(struct hclgevf_dev * hdev)2892 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2893 {
2894 struct device *dev = &hdev->pdev->dev;
2895
2896 dev_info(dev, "VF info begin:\n");
2897
2898 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2899 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2900 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2901 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2902 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2903 dev_info(dev, "PF media type of this VF: %u\n",
2904 hdev->hw.mac.media_type);
2905
2906 dev_info(dev, "VF info end.\n");
2907 }
2908
hclgevf_init_nic_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2909 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2910 struct hnae3_client *client)
2911 {
2912 struct hclgevf_dev *hdev = ae_dev->priv;
2913 int rst_cnt = hdev->rst_stats.rst_cnt;
2914 int ret;
2915
2916 ret = client->ops->init_instance(&hdev->nic);
2917 if (ret)
2918 return ret;
2919
2920 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2921 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2922 rst_cnt != hdev->rst_stats.rst_cnt) {
2923 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2924
2925 client->ops->uninit_instance(&hdev->nic, 0);
2926 return -EBUSY;
2927 }
2928
2929 hnae3_set_client_init_flag(client, ae_dev, 1);
2930
2931 if (netif_msg_drv(&hdev->nic))
2932 hclgevf_info_show(hdev);
2933
2934 return 0;
2935 }
2936
hclgevf_init_roce_client_instance(struct hnae3_ae_dev * ae_dev,struct hnae3_client * client)2937 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2938 struct hnae3_client *client)
2939 {
2940 struct hclgevf_dev *hdev = ae_dev->priv;
2941 int ret;
2942
2943 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2944 !hdev->nic_client)
2945 return 0;
2946
2947 ret = hclgevf_init_roce_base_info(hdev);
2948 if (ret)
2949 return ret;
2950
2951 ret = client->ops->init_instance(&hdev->roce);
2952 if (ret)
2953 return ret;
2954
2955 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2956 hnae3_set_client_init_flag(client, ae_dev, 1);
2957
2958 return 0;
2959 }
2960
hclgevf_init_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)2961 static int hclgevf_init_client_instance(struct hnae3_client *client,
2962 struct hnae3_ae_dev *ae_dev)
2963 {
2964 struct hclgevf_dev *hdev = ae_dev->priv;
2965 int ret;
2966
2967 switch (client->type) {
2968 case HNAE3_CLIENT_KNIC:
2969 hdev->nic_client = client;
2970 hdev->nic.client = client;
2971
2972 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2973 if (ret)
2974 goto clear_nic;
2975
2976 ret = hclgevf_init_roce_client_instance(ae_dev,
2977 hdev->roce_client);
2978 if (ret)
2979 goto clear_roce;
2980
2981 break;
2982 case HNAE3_CLIENT_ROCE:
2983 if (hnae3_dev_roce_supported(hdev)) {
2984 hdev->roce_client = client;
2985 hdev->roce.client = client;
2986 }
2987
2988 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2989 if (ret)
2990 goto clear_roce;
2991
2992 break;
2993 default:
2994 return -EINVAL;
2995 }
2996
2997 return 0;
2998
2999 clear_nic:
3000 hdev->nic_client = NULL;
3001 hdev->nic.client = NULL;
3002 return ret;
3003 clear_roce:
3004 hdev->roce_client = NULL;
3005 hdev->roce.client = NULL;
3006 return ret;
3007 }
3008
hclgevf_uninit_client_instance(struct hnae3_client * client,struct hnae3_ae_dev * ae_dev)3009 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
3010 struct hnae3_ae_dev *ae_dev)
3011 {
3012 struct hclgevf_dev *hdev = ae_dev->priv;
3013
3014 /* un-init roce, if it exists */
3015 if (hdev->roce_client) {
3016 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
3017 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
3018 hdev->roce_client = NULL;
3019 hdev->roce.client = NULL;
3020 }
3021
3022 /* un-init nic/unic, if this was not called by roce client */
3023 if (client->ops->uninit_instance && hdev->nic_client &&
3024 client->type != HNAE3_CLIENT_ROCE) {
3025 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
3026
3027 client->ops->uninit_instance(&hdev->nic, 0);
3028 hdev->nic_client = NULL;
3029 hdev->nic.client = NULL;
3030 }
3031 }
3032
hclgevf_dev_mem_map(struct hclgevf_dev * hdev)3033 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
3034 {
3035 #define HCLGEVF_MEM_BAR 4
3036
3037 struct pci_dev *pdev = hdev->pdev;
3038 struct hclgevf_hw *hw = &hdev->hw;
3039
3040 /* for device does not have device memory, return directly */
3041 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
3042 return 0;
3043
3044 hw->mem_base = devm_ioremap_wc(&pdev->dev,
3045 pci_resource_start(pdev,
3046 HCLGEVF_MEM_BAR),
3047 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3048 if (!hw->mem_base) {
3049 dev_err(&pdev->dev, "failed to map device memory\n");
3050 return -EFAULT;
3051 }
3052
3053 return 0;
3054 }
3055
hclgevf_pci_init(struct hclgevf_dev * hdev)3056 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3057 {
3058 struct pci_dev *pdev = hdev->pdev;
3059 struct hclgevf_hw *hw;
3060 int ret;
3061
3062 ret = pci_enable_device(pdev);
3063 if (ret) {
3064 dev_err(&pdev->dev, "failed to enable PCI device\n");
3065 return ret;
3066 }
3067
3068 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3069 if (ret) {
3070 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3071 goto err_disable_device;
3072 }
3073
3074 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3075 if (ret) {
3076 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3077 goto err_disable_device;
3078 }
3079
3080 pci_set_master(pdev);
3081 hw = &hdev->hw;
3082 hw->hdev = hdev;
3083 hw->io_base = pci_iomap(pdev, 2, 0);
3084 if (!hw->io_base) {
3085 dev_err(&pdev->dev, "can't map configuration register space\n");
3086 ret = -ENOMEM;
3087 goto err_clr_master;
3088 }
3089
3090 ret = hclgevf_dev_mem_map(hdev);
3091 if (ret)
3092 goto err_unmap_io_base;
3093
3094 return 0;
3095
3096 err_unmap_io_base:
3097 pci_iounmap(pdev, hdev->hw.io_base);
3098 err_clr_master:
3099 pci_clear_master(pdev);
3100 pci_release_regions(pdev);
3101 err_disable_device:
3102 pci_disable_device(pdev);
3103
3104 return ret;
3105 }
3106
hclgevf_pci_uninit(struct hclgevf_dev * hdev)3107 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3108 {
3109 struct pci_dev *pdev = hdev->pdev;
3110
3111 if (hdev->hw.mem_base)
3112 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3113
3114 pci_iounmap(pdev, hdev->hw.io_base);
3115 pci_clear_master(pdev);
3116 pci_release_regions(pdev);
3117 pci_disable_device(pdev);
3118 }
3119
hclgevf_query_vf_resource(struct hclgevf_dev * hdev)3120 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3121 {
3122 struct hclgevf_query_res_cmd *req;
3123 struct hclgevf_desc desc;
3124 int ret;
3125
3126 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3127 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3128 if (ret) {
3129 dev_err(&hdev->pdev->dev,
3130 "query vf resource failed, ret = %d.\n", ret);
3131 return ret;
3132 }
3133
3134 req = (struct hclgevf_query_res_cmd *)desc.data;
3135
3136 if (hnae3_dev_roce_supported(hdev)) {
3137 hdev->roce_base_msix_offset =
3138 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3139 HCLGEVF_MSIX_OFT_ROCEE_M,
3140 HCLGEVF_MSIX_OFT_ROCEE_S);
3141 hdev->num_roce_msix =
3142 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3143 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3144
3145 /* nic's msix numbers is always equals to the roce's. */
3146 hdev->num_nic_msix = hdev->num_roce_msix;
3147
3148 /* VF should have NIC vectors and Roce vectors, NIC vectors
3149 * are queued before Roce vectors. The offset is fixed to 64.
3150 */
3151 hdev->num_msi = hdev->num_roce_msix +
3152 hdev->roce_base_msix_offset;
3153 } else {
3154 hdev->num_msi =
3155 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3156 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3157
3158 hdev->num_nic_msix = hdev->num_msi;
3159 }
3160
3161 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3162 dev_err(&hdev->pdev->dev,
3163 "Just %u msi resources, not enough for vf(min:2).\n",
3164 hdev->num_nic_msix);
3165 return -EINVAL;
3166 }
3167
3168 return 0;
3169 }
3170
hclgevf_set_default_dev_specs(struct hclgevf_dev * hdev)3171 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3172 {
3173 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
3174
3175 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3176
3177 ae_dev->dev_specs.max_non_tso_bd_num =
3178 HCLGEVF_MAX_NON_TSO_BD_NUM;
3179 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3180 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3181 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3182 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3183 }
3184
hclgevf_parse_dev_specs(struct hclgevf_dev * hdev,struct hclgevf_desc * desc)3185 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3186 struct hclgevf_desc *desc)
3187 {
3188 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3189 struct hclgevf_dev_specs_0_cmd *req0;
3190 struct hclgevf_dev_specs_1_cmd *req1;
3191
3192 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3193 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3194
3195 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3196 ae_dev->dev_specs.rss_ind_tbl_size =
3197 le16_to_cpu(req0->rss_ind_tbl_size);
3198 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3199 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3200 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3201 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3202 }
3203
hclgevf_check_dev_specs(struct hclgevf_dev * hdev)3204 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3205 {
3206 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3207
3208 if (!dev_specs->max_non_tso_bd_num)
3209 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3210 if (!dev_specs->rss_ind_tbl_size)
3211 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3212 if (!dev_specs->rss_key_size)
3213 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3214 if (!dev_specs->max_int_gl)
3215 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3216 if (!dev_specs->max_frm_size)
3217 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3218 }
3219
hclgevf_query_dev_specs(struct hclgevf_dev * hdev)3220 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3221 {
3222 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3223 int ret;
3224 int i;
3225
3226 /* set default specifications as devices lower than version V3 do not
3227 * support querying specifications from firmware.
3228 */
3229 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3230 hclgevf_set_default_dev_specs(hdev);
3231 return 0;
3232 }
3233
3234 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3235 hclgevf_cmd_setup_basic_desc(&desc[i],
3236 HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3237 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3238 }
3239 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3240 true);
3241
3242 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3243 if (ret)
3244 return ret;
3245
3246 hclgevf_parse_dev_specs(hdev, desc);
3247 hclgevf_check_dev_specs(hdev);
3248
3249 return 0;
3250 }
3251
hclgevf_pci_reset(struct hclgevf_dev * hdev)3252 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3253 {
3254 struct pci_dev *pdev = hdev->pdev;
3255 int ret = 0;
3256
3257 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3258 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3259 hclgevf_misc_irq_uninit(hdev);
3260 hclgevf_uninit_msi(hdev);
3261 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3262 }
3263
3264 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3265 pci_set_master(pdev);
3266 ret = hclgevf_init_msi(hdev);
3267 if (ret) {
3268 dev_err(&pdev->dev,
3269 "failed(%d) to init MSI/MSI-X\n", ret);
3270 return ret;
3271 }
3272
3273 ret = hclgevf_misc_irq_init(hdev);
3274 if (ret) {
3275 hclgevf_uninit_msi(hdev);
3276 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3277 ret);
3278 return ret;
3279 }
3280
3281 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3282 }
3283
3284 return ret;
3285 }
3286
hclgevf_clear_vport_list(struct hclgevf_dev * hdev)3287 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3288 {
3289 struct hclge_vf_to_pf_msg send_msg;
3290
3291 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3292 HCLGE_MBX_VPORT_LIST_CLEAR);
3293 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3294 }
3295
hclgevf_init_rxd_adv_layout(struct hclgevf_dev * hdev)3296 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3297 {
3298 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3299 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3300 }
3301
hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev * hdev)3302 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3303 {
3304 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3305 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3306 }
3307
hclgevf_reset_hdev(struct hclgevf_dev * hdev)3308 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3309 {
3310 struct pci_dev *pdev = hdev->pdev;
3311 int ret;
3312
3313 ret = hclgevf_pci_reset(hdev);
3314 if (ret) {
3315 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3316 return ret;
3317 }
3318
3319 ret = hclgevf_cmd_init(hdev);
3320 if (ret) {
3321 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3322 return ret;
3323 }
3324
3325 ret = hclgevf_rss_init_hw(hdev);
3326 if (ret) {
3327 dev_err(&hdev->pdev->dev,
3328 "failed(%d) to initialize RSS\n", ret);
3329 return ret;
3330 }
3331
3332 ret = hclgevf_config_gro(hdev);
3333 if (ret)
3334 return ret;
3335
3336 ret = hclgevf_init_vlan_config(hdev);
3337 if (ret) {
3338 dev_err(&hdev->pdev->dev,
3339 "failed(%d) to initialize VLAN config\n", ret);
3340 return ret;
3341 }
3342
3343 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3344
3345 hclgevf_init_rxd_adv_layout(hdev);
3346
3347 dev_info(&hdev->pdev->dev, "Reset done\n");
3348
3349 return 0;
3350 }
3351
hclgevf_init_hdev(struct hclgevf_dev * hdev)3352 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3353 {
3354 struct pci_dev *pdev = hdev->pdev;
3355 int ret;
3356
3357 ret = hclgevf_pci_init(hdev);
3358 if (ret)
3359 return ret;
3360
3361 ret = hclgevf_devlink_init(hdev);
3362 if (ret)
3363 goto err_devlink_init;
3364
3365 ret = hclgevf_cmd_queue_init(hdev);
3366 if (ret)
3367 goto err_cmd_queue_init;
3368
3369 ret = hclgevf_cmd_init(hdev);
3370 if (ret)
3371 goto err_cmd_init;
3372
3373 /* Get vf resource */
3374 ret = hclgevf_query_vf_resource(hdev);
3375 if (ret)
3376 goto err_cmd_init;
3377
3378 ret = hclgevf_query_dev_specs(hdev);
3379 if (ret) {
3380 dev_err(&pdev->dev,
3381 "failed to query dev specifications, ret = %d\n", ret);
3382 goto err_cmd_init;
3383 }
3384
3385 ret = hclgevf_init_msi(hdev);
3386 if (ret) {
3387 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3388 goto err_cmd_init;
3389 }
3390
3391 hclgevf_state_init(hdev);
3392 hdev->reset_level = HNAE3_VF_FUNC_RESET;
3393 hdev->reset_type = HNAE3_NONE_RESET;
3394
3395 ret = hclgevf_misc_irq_init(hdev);
3396 if (ret)
3397 goto err_misc_irq_init;
3398
3399 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3400
3401 ret = hclgevf_configure(hdev);
3402 if (ret) {
3403 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3404 goto err_config;
3405 }
3406
3407 ret = hclgevf_alloc_tqps(hdev);
3408 if (ret) {
3409 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3410 goto err_config;
3411 }
3412
3413 ret = hclgevf_set_handle_info(hdev);
3414 if (ret)
3415 goto err_config;
3416
3417 ret = hclgevf_config_gro(hdev);
3418 if (ret)
3419 goto err_config;
3420
3421 /* Initialize RSS for this VF */
3422 ret = hclgevf_rss_init_cfg(hdev);
3423 if (ret) {
3424 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3425 goto err_config;
3426 }
3427
3428 ret = hclgevf_rss_init_hw(hdev);
3429 if (ret) {
3430 dev_err(&hdev->pdev->dev,
3431 "failed(%d) to initialize RSS\n", ret);
3432 goto err_config;
3433 }
3434
3435 /* ensure vf tbl list as empty before init*/
3436 ret = hclgevf_clear_vport_list(hdev);
3437 if (ret) {
3438 dev_err(&pdev->dev,
3439 "failed to clear tbl list configuration, ret = %d.\n",
3440 ret);
3441 goto err_config;
3442 }
3443
3444 ret = hclgevf_init_vlan_config(hdev);
3445 if (ret) {
3446 dev_err(&hdev->pdev->dev,
3447 "failed(%d) to initialize VLAN config\n", ret);
3448 goto err_config;
3449 }
3450
3451 hclgevf_init_rxd_adv_layout(hdev);
3452
3453 set_bit(HCLGEVF_STATE_SERVICE_INITED, &hdev->state);
3454
3455 hdev->last_reset_time = jiffies;
3456 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3457 HCLGEVF_DRIVER_NAME);
3458
3459 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3460
3461 return 0;
3462
3463 err_config:
3464 hclgevf_misc_irq_uninit(hdev);
3465 err_misc_irq_init:
3466 hclgevf_state_uninit(hdev);
3467 hclgevf_uninit_msi(hdev);
3468 err_cmd_init:
3469 hclgevf_cmd_uninit(hdev);
3470 err_cmd_queue_init:
3471 hclgevf_devlink_uninit(hdev);
3472 err_devlink_init:
3473 hclgevf_pci_uninit(hdev);
3474 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3475 return ret;
3476 }
3477
hclgevf_uninit_hdev(struct hclgevf_dev * hdev)3478 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3479 {
3480 struct hclge_vf_to_pf_msg send_msg;
3481
3482 hclgevf_state_uninit(hdev);
3483 hclgevf_uninit_rxd_adv_layout(hdev);
3484
3485 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3486 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3487
3488 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3489 hclgevf_misc_irq_uninit(hdev);
3490 hclgevf_uninit_msi(hdev);
3491 }
3492
3493 hclgevf_cmd_uninit(hdev);
3494 hclgevf_devlink_uninit(hdev);
3495 hclgevf_pci_uninit(hdev);
3496 hclgevf_uninit_mac_list(hdev);
3497 }
3498
hclgevf_init_ae_dev(struct hnae3_ae_dev * ae_dev)3499 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3500 {
3501 struct pci_dev *pdev = ae_dev->pdev;
3502 int ret;
3503
3504 ret = hclgevf_alloc_hdev(ae_dev);
3505 if (ret) {
3506 dev_err(&pdev->dev, "hclge device allocation failed\n");
3507 return ret;
3508 }
3509
3510 ret = hclgevf_init_hdev(ae_dev->priv);
3511 if (ret) {
3512 dev_err(&pdev->dev, "hclge device initialization failed\n");
3513 return ret;
3514 }
3515
3516 return 0;
3517 }
3518
hclgevf_uninit_ae_dev(struct hnae3_ae_dev * ae_dev)3519 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3520 {
3521 struct hclgevf_dev *hdev = ae_dev->priv;
3522
3523 hclgevf_uninit_hdev(hdev);
3524 ae_dev->priv = NULL;
3525 }
3526
hclgevf_get_max_channels(struct hclgevf_dev * hdev)3527 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3528 {
3529 struct hnae3_handle *nic = &hdev->nic;
3530 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3531
3532 return min_t(u32, hdev->rss_size_max,
3533 hdev->num_tqps / kinfo->tc_info.num_tc);
3534 }
3535
3536 /**
3537 * hclgevf_get_channels - Get the current channels enabled and max supported.
3538 * @handle: hardware information for network interface
3539 * @ch: ethtool channels structure
3540 *
3541 * We don't support separate tx and rx queues as channels. The other count
3542 * represents how many queues are being used for control. max_combined counts
3543 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3544 * q_vectors since we support a lot more queue pairs than q_vectors.
3545 **/
hclgevf_get_channels(struct hnae3_handle * handle,struct ethtool_channels * ch)3546 static void hclgevf_get_channels(struct hnae3_handle *handle,
3547 struct ethtool_channels *ch)
3548 {
3549 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3550
3551 ch->max_combined = hclgevf_get_max_channels(hdev);
3552 ch->other_count = 0;
3553 ch->max_other = 0;
3554 ch->combined_count = handle->kinfo.rss_size;
3555 }
3556
hclgevf_get_tqps_and_rss_info(struct hnae3_handle * handle,u16 * alloc_tqps,u16 * max_rss_size)3557 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3558 u16 *alloc_tqps, u16 *max_rss_size)
3559 {
3560 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3561
3562 *alloc_tqps = hdev->num_tqps;
3563 *max_rss_size = hdev->rss_size_max;
3564 }
3565
hclgevf_update_rss_size(struct hnae3_handle * handle,u32 new_tqps_num)3566 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3567 u32 new_tqps_num)
3568 {
3569 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3570 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3571 u16 max_rss_size;
3572
3573 kinfo->req_rss_size = new_tqps_num;
3574
3575 max_rss_size = min_t(u16, hdev->rss_size_max,
3576 hdev->num_tqps / kinfo->tc_info.num_tc);
3577
3578 /* Use the user's configuration when it is not larger than
3579 * max_rss_size, otherwise, use the maximum specification value.
3580 */
3581 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3582 kinfo->req_rss_size <= max_rss_size)
3583 kinfo->rss_size = kinfo->req_rss_size;
3584 else if (kinfo->rss_size > max_rss_size ||
3585 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3586 kinfo->rss_size = max_rss_size;
3587
3588 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3589 }
3590
hclgevf_set_channels(struct hnae3_handle * handle,u32 new_tqps_num,bool rxfh_configured)3591 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3592 bool rxfh_configured)
3593 {
3594 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3595 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3596 u16 cur_rss_size = kinfo->rss_size;
3597 u16 cur_tqps = kinfo->num_tqps;
3598 u32 *rss_indir;
3599 unsigned int i;
3600 int ret;
3601
3602 hclgevf_update_rss_size(handle, new_tqps_num);
3603
3604 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3605 if (ret)
3606 return ret;
3607
3608 /* RSS indirection table has been configured by user */
3609 if (rxfh_configured)
3610 goto out;
3611
3612 /* Reinitializes the rss indirect table according to the new RSS size */
3613 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3614 sizeof(u32), GFP_KERNEL);
3615 if (!rss_indir)
3616 return -ENOMEM;
3617
3618 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3619 rss_indir[i] = i % kinfo->rss_size;
3620
3621 hdev->rss_cfg.rss_size = kinfo->rss_size;
3622
3623 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3624 if (ret)
3625 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3626 ret);
3627
3628 kfree(rss_indir);
3629
3630 out:
3631 if (!ret)
3632 dev_info(&hdev->pdev->dev,
3633 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3634 cur_rss_size, kinfo->rss_size,
3635 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3636
3637 return ret;
3638 }
3639
hclgevf_get_status(struct hnae3_handle * handle)3640 static int hclgevf_get_status(struct hnae3_handle *handle)
3641 {
3642 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3643
3644 return hdev->hw.mac.link;
3645 }
3646
hclgevf_get_ksettings_an_result(struct hnae3_handle * handle,u8 * auto_neg,u32 * speed,u8 * duplex)3647 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3648 u8 *auto_neg, u32 *speed,
3649 u8 *duplex)
3650 {
3651 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3652
3653 if (speed)
3654 *speed = hdev->hw.mac.speed;
3655 if (duplex)
3656 *duplex = hdev->hw.mac.duplex;
3657 if (auto_neg)
3658 *auto_neg = AUTONEG_DISABLE;
3659 }
3660
hclgevf_update_speed_duplex(struct hclgevf_dev * hdev,u32 speed,u8 duplex)3661 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3662 u8 duplex)
3663 {
3664 hdev->hw.mac.speed = speed;
3665 hdev->hw.mac.duplex = duplex;
3666 }
3667
hclgevf_gro_en(struct hnae3_handle * handle,bool enable)3668 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3669 {
3670 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3671 bool gro_en_old = hdev->gro_en;
3672 int ret;
3673
3674 hdev->gro_en = enable;
3675 ret = hclgevf_config_gro(hdev);
3676 if (ret)
3677 hdev->gro_en = gro_en_old;
3678
3679 return ret;
3680 }
3681
hclgevf_get_media_type(struct hnae3_handle * handle,u8 * media_type,u8 * module_type)3682 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3683 u8 *module_type)
3684 {
3685 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3686
3687 if (media_type)
3688 *media_type = hdev->hw.mac.media_type;
3689
3690 if (module_type)
3691 *module_type = hdev->hw.mac.module_type;
3692 }
3693
hclgevf_get_hw_reset_stat(struct hnae3_handle * handle)3694 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3695 {
3696 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3697
3698 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3699 }
3700
hclgevf_get_cmdq_stat(struct hnae3_handle * handle)3701 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3702 {
3703 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3704
3705 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3706 }
3707
hclgevf_ae_dev_resetting(struct hnae3_handle * handle)3708 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3709 {
3710 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3711
3712 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3713 }
3714
hclgevf_ae_dev_reset_cnt(struct hnae3_handle * handle)3715 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3716 {
3717 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3718
3719 return hdev->rst_stats.hw_rst_done_cnt;
3720 }
3721
hclgevf_get_link_mode(struct hnae3_handle * handle,unsigned long * supported,unsigned long * advertising)3722 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3723 unsigned long *supported,
3724 unsigned long *advertising)
3725 {
3726 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3727
3728 *supported = hdev->hw.mac.supported;
3729 *advertising = hdev->hw.mac.advertising;
3730 }
3731
3732 #define MAX_SEPARATE_NUM 4
3733 #define SEPARATOR_VALUE 0xFDFCFBFA
3734 #define REG_NUM_PER_LINE 4
3735 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3736
hclgevf_get_regs_len(struct hnae3_handle * handle)3737 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3738 {
3739 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3740 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3741
3742 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3743 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3744 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3745 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3746
3747 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3748 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3749 }
3750
hclgevf_get_regs(struct hnae3_handle * handle,u32 * version,void * data)3751 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3752 void *data)
3753 {
3754 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3755 int i, j, reg_um, separator_num;
3756 u32 *reg = data;
3757
3758 *version = hdev->fw_version;
3759
3760 /* fetching per-VF registers values from VF PCIe register space */
3761 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3762 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3763 for (i = 0; i < reg_um; i++)
3764 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3765 for (i = 0; i < separator_num; i++)
3766 *reg++ = SEPARATOR_VALUE;
3767
3768 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3769 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3770 for (i = 0; i < reg_um; i++)
3771 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3772 for (i = 0; i < separator_num; i++)
3773 *reg++ = SEPARATOR_VALUE;
3774
3775 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3776 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3777 for (j = 0; j < hdev->num_tqps; j++) {
3778 for (i = 0; i < reg_um; i++)
3779 *reg++ = hclgevf_read_dev(&hdev->hw,
3780 ring_reg_addr_list[i] +
3781 0x200 * j);
3782 for (i = 0; i < separator_num; i++)
3783 *reg++ = SEPARATOR_VALUE;
3784 }
3785
3786 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3787 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3788 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3789 for (i = 0; i < reg_um; i++)
3790 *reg++ = hclgevf_read_dev(&hdev->hw,
3791 tqp_intr_reg_addr_list[i] +
3792 4 * j);
3793 for (i = 0; i < separator_num; i++)
3794 *reg++ = SEPARATOR_VALUE;
3795 }
3796 }
3797
hclgevf_update_port_base_vlan_info(struct hclgevf_dev * hdev,u16 state,u8 * port_base_vlan_info,u8 data_size)3798 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3799 u8 *port_base_vlan_info, u8 data_size)
3800 {
3801 struct hnae3_handle *nic = &hdev->nic;
3802 struct hclge_vf_to_pf_msg send_msg;
3803 int ret;
3804
3805 rtnl_lock();
3806
3807 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3808 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3809 dev_warn(&hdev->pdev->dev,
3810 "is resetting when updating port based vlan info\n");
3811 rtnl_unlock();
3812 return;
3813 }
3814
3815 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3816 if (ret) {
3817 rtnl_unlock();
3818 return;
3819 }
3820
3821 /* send msg to PF and wait update port based vlan info */
3822 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3823 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3824 memcpy(send_msg.data, port_base_vlan_info, data_size);
3825 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3826 if (!ret) {
3827 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3828 nic->port_base_vlan_state = state;
3829 else
3830 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3831 }
3832
3833 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3834 rtnl_unlock();
3835 }
3836
3837 static const struct hnae3_ae_ops hclgevf_ops = {
3838 .init_ae_dev = hclgevf_init_ae_dev,
3839 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3840 .reset_prepare = hclgevf_reset_prepare_general,
3841 .reset_done = hclgevf_reset_done,
3842 .init_client_instance = hclgevf_init_client_instance,
3843 .uninit_client_instance = hclgevf_uninit_client_instance,
3844 .start = hclgevf_ae_start,
3845 .stop = hclgevf_ae_stop,
3846 .client_start = hclgevf_client_start,
3847 .client_stop = hclgevf_client_stop,
3848 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3849 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3850 .get_vector = hclgevf_get_vector,
3851 .put_vector = hclgevf_put_vector,
3852 .reset_queue = hclgevf_reset_tqp,
3853 .get_mac_addr = hclgevf_get_mac_addr,
3854 .set_mac_addr = hclgevf_set_mac_addr,
3855 .add_uc_addr = hclgevf_add_uc_addr,
3856 .rm_uc_addr = hclgevf_rm_uc_addr,
3857 .add_mc_addr = hclgevf_add_mc_addr,
3858 .rm_mc_addr = hclgevf_rm_mc_addr,
3859 .get_stats = hclgevf_get_stats,
3860 .update_stats = hclgevf_update_stats,
3861 .get_strings = hclgevf_get_strings,
3862 .get_sset_count = hclgevf_get_sset_count,
3863 .get_rss_key_size = hclgevf_get_rss_key_size,
3864 .get_rss = hclgevf_get_rss,
3865 .set_rss = hclgevf_set_rss,
3866 .get_rss_tuple = hclgevf_get_rss_tuple,
3867 .set_rss_tuple = hclgevf_set_rss_tuple,
3868 .get_tc_size = hclgevf_get_tc_size,
3869 .get_fw_version = hclgevf_get_fw_version,
3870 .set_vlan_filter = hclgevf_set_vlan_filter,
3871 .enable_vlan_filter = hclgevf_enable_vlan_filter,
3872 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3873 .reset_event = hclgevf_reset_event,
3874 .set_default_reset_request = hclgevf_set_def_reset_request,
3875 .set_channels = hclgevf_set_channels,
3876 .get_channels = hclgevf_get_channels,
3877 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3878 .get_regs_len = hclgevf_get_regs_len,
3879 .get_regs = hclgevf_get_regs,
3880 .get_status = hclgevf_get_status,
3881 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3882 .get_media_type = hclgevf_get_media_type,
3883 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3884 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3885 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3886 .set_gro_en = hclgevf_gro_en,
3887 .set_mtu = hclgevf_set_mtu,
3888 .get_global_queue_id = hclgevf_get_qid_global,
3889 .set_timer_task = hclgevf_set_timer_task,
3890 .get_link_mode = hclgevf_get_link_mode,
3891 .set_promisc_mode = hclgevf_set_promisc_mode,
3892 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3893 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3894 };
3895
3896 static struct hnae3_ae_algo ae_algovf = {
3897 .ops = &hclgevf_ops,
3898 .pdev_id_table = ae_algovf_pci_tbl,
3899 };
3900
hclgevf_init(void)3901 static int hclgevf_init(void)
3902 {
3903 pr_info("%s is initializing\n", HCLGEVF_NAME);
3904
3905 hclgevf_wq = alloc_workqueue("%s", WQ_UNBOUND, 0, HCLGEVF_NAME);
3906 if (!hclgevf_wq) {
3907 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3908 return -ENOMEM;
3909 }
3910
3911 hnae3_register_ae_algo(&ae_algovf);
3912
3913 return 0;
3914 }
3915
hclgevf_exit(void)3916 static void hclgevf_exit(void)
3917 {
3918 hnae3_unregister_ae_algo(&ae_algovf);
3919 destroy_workqueue(hclgevf_wq);
3920 }
3921 module_init(hclgevf_init);
3922 module_exit(hclgevf_exit);
3923
3924 MODULE_LICENSE("GPL");
3925 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3926 MODULE_DESCRIPTION("HCLGEVF Driver");
3927 MODULE_VERSION(HCLGEVF_MOD_VERSION);
3928