1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/device.h>
5 #include <linux/dma-direction.h>
6 #include <linux/dma-mapping.h>
7 #include <linux/err.h>
8 #include <linux/pci.h>
9 #include <linux/slab.h>
10 #include "hclgevf_cmd.h"
11 #include "hclgevf_main.h"
12 #include "hnae3.h"
13 
14 #define cmq_ring_to_dev(ring)   (&(ring)->dev->pdev->dev)
15 
hclgevf_ring_space(struct hclgevf_cmq_ring * ring)16 static int hclgevf_ring_space(struct hclgevf_cmq_ring *ring)
17 {
18 	int ntc = ring->next_to_clean;
19 	int ntu = ring->next_to_use;
20 	int used;
21 
22 	used = (ntu - ntc + ring->desc_num) % ring->desc_num;
23 
24 	return ring->desc_num - used - 1;
25 }
26 
hclgevf_is_valid_csq_clean_head(struct hclgevf_cmq_ring * ring,int head)27 static int hclgevf_is_valid_csq_clean_head(struct hclgevf_cmq_ring *ring,
28 					   int head)
29 {
30 	int ntu = ring->next_to_use;
31 	int ntc = ring->next_to_clean;
32 
33 	if (ntu > ntc)
34 		return head >= ntc && head <= ntu;
35 
36 	return head >= ntc || head <= ntu;
37 }
38 
hclgevf_cmd_csq_clean(struct hclgevf_hw * hw)39 static int hclgevf_cmd_csq_clean(struct hclgevf_hw *hw)
40 {
41 	struct hclgevf_dev *hdev = container_of(hw, struct hclgevf_dev, hw);
42 	struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
43 	int clean;
44 	u32 head;
45 
46 	head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
47 	rmb(); /* Make sure head is ready before touch any data */
48 
49 	if (!hclgevf_is_valid_csq_clean_head(csq, head)) {
50 		dev_warn(&hdev->pdev->dev, "wrong cmd head (%u, %d-%d)\n", head,
51 			 csq->next_to_use, csq->next_to_clean);
52 		dev_warn(&hdev->pdev->dev,
53 			 "Disabling any further commands to IMP firmware\n");
54 		set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
55 		return -EIO;
56 	}
57 
58 	clean = (head - csq->next_to_clean + csq->desc_num) % csq->desc_num;
59 	csq->next_to_clean = head;
60 	return clean;
61 }
62 
hclgevf_cmd_csq_done(struct hclgevf_hw * hw)63 static bool hclgevf_cmd_csq_done(struct hclgevf_hw *hw)
64 {
65 	u32 head;
66 
67 	head = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG);
68 
69 	return head == hw->cmq.csq.next_to_use;
70 }
71 
hclgevf_is_special_opcode(u16 opcode)72 static bool hclgevf_is_special_opcode(u16 opcode)
73 {
74 	static const u16 spec_opcode[] = {0x30, 0x31, 0x32};
75 	int i;
76 
77 	for (i = 0; i < ARRAY_SIZE(spec_opcode); i++) {
78 		if (spec_opcode[i] == opcode)
79 			return true;
80 	}
81 
82 	return false;
83 }
84 
hclgevf_cmd_config_regs(struct hclgevf_cmq_ring * ring)85 static void hclgevf_cmd_config_regs(struct hclgevf_cmq_ring *ring)
86 {
87 	struct hclgevf_dev *hdev = ring->dev;
88 	struct hclgevf_hw *hw = &hdev->hw;
89 	u32 reg_val;
90 
91 	if (ring->flag == HCLGEVF_TYPE_CSQ) {
92 		reg_val = lower_32_bits(ring->desc_dma_addr);
93 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, reg_val);
94 		reg_val = upper_32_bits(ring->desc_dma_addr);
95 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, reg_val);
96 
97 		reg_val = hclgevf_read_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
98 		reg_val &= HCLGEVF_NIC_SW_RST_RDY;
99 		reg_val |= (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
100 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, reg_val);
101 
102 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
103 		hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
104 	} else {
105 		reg_val = lower_32_bits(ring->desc_dma_addr);
106 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, reg_val);
107 		reg_val = upper_32_bits(ring->desc_dma_addr);
108 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, reg_val);
109 
110 		reg_val = (ring->desc_num >> HCLGEVF_NIC_CMQ_DESC_NUM_S);
111 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, reg_val);
112 
113 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
114 		hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
115 	}
116 }
117 
hclgevf_cmd_init_regs(struct hclgevf_hw * hw)118 static void hclgevf_cmd_init_regs(struct hclgevf_hw *hw)
119 {
120 	hclgevf_cmd_config_regs(&hw->cmq.csq);
121 	hclgevf_cmd_config_regs(&hw->cmq.crq);
122 }
123 
hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring * ring)124 static int hclgevf_alloc_cmd_desc(struct hclgevf_cmq_ring *ring)
125 {
126 	int size = ring->desc_num * sizeof(struct hclgevf_desc);
127 
128 	ring->desc = dma_alloc_coherent(cmq_ring_to_dev(ring), size,
129 					&ring->desc_dma_addr, GFP_KERNEL);
130 	if (!ring->desc)
131 		return -ENOMEM;
132 
133 	return 0;
134 }
135 
hclgevf_free_cmd_desc(struct hclgevf_cmq_ring * ring)136 static void hclgevf_free_cmd_desc(struct hclgevf_cmq_ring *ring)
137 {
138 	int size  = ring->desc_num * sizeof(struct hclgevf_desc);
139 
140 	if (ring->desc) {
141 		dma_free_coherent(cmq_ring_to_dev(ring), size,
142 				  ring->desc, ring->desc_dma_addr);
143 		ring->desc = NULL;
144 	}
145 }
146 
hclgevf_alloc_cmd_queue(struct hclgevf_dev * hdev,int ring_type)147 static int hclgevf_alloc_cmd_queue(struct hclgevf_dev *hdev, int ring_type)
148 {
149 	struct hclgevf_hw *hw = &hdev->hw;
150 	struct hclgevf_cmq_ring *ring =
151 		(ring_type == HCLGEVF_TYPE_CSQ) ? &hw->cmq.csq : &hw->cmq.crq;
152 	int ret;
153 
154 	ring->dev = hdev;
155 	ring->flag = ring_type;
156 
157 	/* allocate CSQ/CRQ descriptor */
158 	ret = hclgevf_alloc_cmd_desc(ring);
159 	if (ret)
160 		dev_err(&hdev->pdev->dev, "failed(%d) to alloc %s desc\n", ret,
161 			(ring_type == HCLGEVF_TYPE_CSQ) ? "CSQ" : "CRQ");
162 
163 	return ret;
164 }
165 
hclgevf_cmd_setup_basic_desc(struct hclgevf_desc * desc,enum hclgevf_opcode_type opcode,bool is_read)166 void hclgevf_cmd_setup_basic_desc(struct hclgevf_desc *desc,
167 				  enum hclgevf_opcode_type opcode, bool is_read)
168 {
169 	memset(desc, 0, sizeof(struct hclgevf_desc));
170 	desc->opcode = cpu_to_le16(opcode);
171 	desc->flag = cpu_to_le16(HCLGEVF_CMD_FLAG_NO_INTR |
172 				 HCLGEVF_CMD_FLAG_IN);
173 	if (is_read)
174 		desc->flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_WR);
175 	else
176 		desc->flag &= cpu_to_le16(~HCLGEVF_CMD_FLAG_WR);
177 }
178 
hclgevf_cmd_convert_err_code(u16 desc_ret)179 static int hclgevf_cmd_convert_err_code(u16 desc_ret)
180 {
181 	switch (desc_ret) {
182 	case HCLGEVF_CMD_EXEC_SUCCESS:
183 		return 0;
184 	case HCLGEVF_CMD_NO_AUTH:
185 		return -EPERM;
186 	case HCLGEVF_CMD_NOT_SUPPORTED:
187 		return -EOPNOTSUPP;
188 	case HCLGEVF_CMD_QUEUE_FULL:
189 		return -EXFULL;
190 	case HCLGEVF_CMD_NEXT_ERR:
191 		return -ENOSR;
192 	case HCLGEVF_CMD_UNEXE_ERR:
193 		return -ENOTBLK;
194 	case HCLGEVF_CMD_PARA_ERR:
195 		return -EINVAL;
196 	case HCLGEVF_CMD_RESULT_ERR:
197 		return -ERANGE;
198 	case HCLGEVF_CMD_TIMEOUT:
199 		return -ETIME;
200 	case HCLGEVF_CMD_HILINK_ERR:
201 		return -ENOLINK;
202 	case HCLGEVF_CMD_QUEUE_ILLEGAL:
203 		return -ENXIO;
204 	case HCLGEVF_CMD_INVALID:
205 		return -EBADR;
206 	default:
207 		return -EIO;
208 	}
209 }
210 
211 /* hclgevf_cmd_send - send command to command queue
212  * @hw: pointer to the hw struct
213  * @desc: prefilled descriptor for describing the command
214  * @num : the number of descriptors to be sent
215  *
216  * This is the main send command for command queue, it
217  * sends the queue, cleans the queue, etc
218  */
hclgevf_cmd_send(struct hclgevf_hw * hw,struct hclgevf_desc * desc,int num)219 int hclgevf_cmd_send(struct hclgevf_hw *hw, struct hclgevf_desc *desc, int num)
220 {
221 	struct hclgevf_dev *hdev = (struct hclgevf_dev *)hw->hdev;
222 	struct hclgevf_cmq_ring *csq = &hw->cmq.csq;
223 	struct hclgevf_desc *desc_to_use;
224 	bool complete = false;
225 	u32 timeout = 0;
226 	int handle = 0;
227 	int status = 0;
228 	u16 retval;
229 	u16 opcode;
230 	int ntc;
231 
232 	spin_lock_bh(&hw->cmq.csq.lock);
233 
234 	if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state)) {
235 		spin_unlock_bh(&hw->cmq.csq.lock);
236 		return -EBUSY;
237 	}
238 
239 	if (num > hclgevf_ring_space(&hw->cmq.csq)) {
240 		/* If CMDQ ring is full, SW HEAD and HW HEAD may be different,
241 		 * need update the SW HEAD pointer csq->next_to_clean
242 		 */
243 		csq->next_to_clean = hclgevf_read_dev(hw,
244 						      HCLGEVF_NIC_CSQ_HEAD_REG);
245 		spin_unlock_bh(&hw->cmq.csq.lock);
246 		return -EBUSY;
247 	}
248 
249 	/* Record the location of desc in the ring for this time
250 	 * which will be use for hardware to write back
251 	 */
252 	ntc = hw->cmq.csq.next_to_use;
253 	opcode = le16_to_cpu(desc[0].opcode);
254 	while (handle < num) {
255 		desc_to_use = &hw->cmq.csq.desc[hw->cmq.csq.next_to_use];
256 		*desc_to_use = desc[handle];
257 		(hw->cmq.csq.next_to_use)++;
258 		if (hw->cmq.csq.next_to_use == hw->cmq.csq.desc_num)
259 			hw->cmq.csq.next_to_use = 0;
260 		handle++;
261 	}
262 
263 	/* Write to hardware */
264 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG,
265 			  hw->cmq.csq.next_to_use);
266 
267 	/* If the command is sync, wait for the firmware to write back,
268 	 * if multi descriptors to be sent, use the first one to check
269 	 */
270 	if (HCLGEVF_SEND_SYNC(le16_to_cpu(desc->flag))) {
271 		do {
272 			if (hclgevf_cmd_csq_done(hw))
273 				break;
274 			udelay(1);
275 			timeout++;
276 		} while (timeout < hw->cmq.tx_timeout);
277 	}
278 
279 	if (hclgevf_cmd_csq_done(hw)) {
280 		complete = true;
281 		handle = 0;
282 
283 		while (handle < num) {
284 			/* Get the result of hardware write back */
285 			desc_to_use = &hw->cmq.csq.desc[ntc];
286 			desc[handle] = *desc_to_use;
287 
288 			if (likely(!hclgevf_is_special_opcode(opcode)))
289 				retval = le16_to_cpu(desc[handle].retval);
290 			else
291 				retval = le16_to_cpu(desc[0].retval);
292 
293 			status = hclgevf_cmd_convert_err_code(retval);
294 			hw->cmq.last_status = (enum hclgevf_cmd_status)retval;
295 			ntc++;
296 			handle++;
297 			if (ntc == hw->cmq.csq.desc_num)
298 				ntc = 0;
299 		}
300 	}
301 
302 	if (!complete)
303 		status = -EBADE;
304 
305 	/* Clean the command send queue */
306 	handle = hclgevf_cmd_csq_clean(hw);
307 	if (handle != num)
308 		dev_warn(&hdev->pdev->dev,
309 			 "cleaned %d, need to clean %d\n", handle, num);
310 
311 	spin_unlock_bh(&hw->cmq.csq.lock);
312 
313 	return status;
314 }
315 
hclgevf_set_default_capability(struct hclgevf_dev * hdev)316 static void hclgevf_set_default_capability(struct hclgevf_dev *hdev)
317 {
318 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
319 
320 	set_bit(HNAE3_DEV_SUPPORT_FD_B, ae_dev->caps);
321 	set_bit(HNAE3_DEV_SUPPORT_GRO_B, ae_dev->caps);
322 	set_bit(HNAE3_DEV_SUPPORT_FEC_B, ae_dev->caps);
323 }
324 
hclgevf_parse_capability(struct hclgevf_dev * hdev,struct hclgevf_query_version_cmd * cmd)325 static void hclgevf_parse_capability(struct hclgevf_dev *hdev,
326 				     struct hclgevf_query_version_cmd *cmd)
327 {
328 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
329 	u32 caps;
330 
331 	caps = __le32_to_cpu(cmd->caps[0]);
332 
333 	if (hnae3_get_bit(caps, HCLGEVF_CAP_UDP_GSO_B))
334 		set_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps);
335 	if (hnae3_get_bit(caps, HCLGEVF_CAP_INT_QL_B))
336 		set_bit(HNAE3_DEV_SUPPORT_INT_QL_B, ae_dev->caps);
337 	if (hnae3_get_bit(caps, HCLGEVF_CAP_TQP_TXRX_INDEP_B))
338 		set_bit(HNAE3_DEV_SUPPORT_TQP_TXRX_INDEP_B, ae_dev->caps);
339 }
340 
hclgevf_cmd_query_version_and_capability(struct hclgevf_dev * hdev)341 static int hclgevf_cmd_query_version_and_capability(struct hclgevf_dev *hdev)
342 {
343 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
344 	struct hclgevf_query_version_cmd *resp;
345 	struct hclgevf_desc desc;
346 	int status;
347 
348 	resp = (struct hclgevf_query_version_cmd *)desc.data;
349 
350 	hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_FW_VER, 1);
351 	status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
352 	if (status)
353 		return status;
354 
355 	hdev->fw_version = le32_to_cpu(resp->firmware);
356 
357 	ae_dev->dev_version = le32_to_cpu(resp->hardware) <<
358 				 HNAE3_PCI_REVISION_BIT_SIZE;
359 	ae_dev->dev_version |= hdev->pdev->revision;
360 
361 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
362 		hclgevf_set_default_capability(hdev);
363 
364 	hclgevf_parse_capability(hdev, resp);
365 
366 	return status;
367 }
368 
hclgevf_cmd_queue_init(struct hclgevf_dev * hdev)369 int hclgevf_cmd_queue_init(struct hclgevf_dev *hdev)
370 {
371 	int ret;
372 
373 	/* Setup the lock for command queue */
374 	spin_lock_init(&hdev->hw.cmq.csq.lock);
375 	spin_lock_init(&hdev->hw.cmq.crq.lock);
376 
377 	hdev->hw.cmq.tx_timeout = HCLGEVF_CMDQ_TX_TIMEOUT;
378 	hdev->hw.cmq.csq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
379 	hdev->hw.cmq.crq.desc_num = HCLGEVF_NIC_CMQ_DESC_NUM;
380 
381 	ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CSQ);
382 	if (ret) {
383 		dev_err(&hdev->pdev->dev,
384 			"CSQ ring setup error %d\n", ret);
385 		return ret;
386 	}
387 
388 	ret = hclgevf_alloc_cmd_queue(hdev, HCLGEVF_TYPE_CRQ);
389 	if (ret) {
390 		dev_err(&hdev->pdev->dev,
391 			"CRQ ring setup error %d\n", ret);
392 		goto err_csq;
393 	}
394 
395 	return 0;
396 err_csq:
397 	hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
398 	return ret;
399 }
400 
hclgevf_cmd_init(struct hclgevf_dev * hdev)401 int hclgevf_cmd_init(struct hclgevf_dev *hdev)
402 {
403 	int ret;
404 
405 	spin_lock_bh(&hdev->hw.cmq.csq.lock);
406 	spin_lock(&hdev->hw.cmq.crq.lock);
407 
408 	/* initialize the pointers of async rx queue of mailbox */
409 	hdev->arq.hdev = hdev;
410 	hdev->arq.head = 0;
411 	hdev->arq.tail = 0;
412 	atomic_set(&hdev->arq.count, 0);
413 	hdev->hw.cmq.csq.next_to_clean = 0;
414 	hdev->hw.cmq.csq.next_to_use = 0;
415 	hdev->hw.cmq.crq.next_to_clean = 0;
416 	hdev->hw.cmq.crq.next_to_use = 0;
417 
418 	hclgevf_cmd_init_regs(&hdev->hw);
419 
420 	spin_unlock(&hdev->hw.cmq.crq.lock);
421 	spin_unlock_bh(&hdev->hw.cmq.csq.lock);
422 
423 	clear_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
424 
425 	/* Check if there is new reset pending, because the higher level
426 	 * reset may happen when lower level reset is being processed.
427 	 */
428 	if (hclgevf_is_reset_pending(hdev)) {
429 		ret = -EBUSY;
430 		goto err_cmd_init;
431 	}
432 
433 	/* get version and device capabilities */
434 	ret = hclgevf_cmd_query_version_and_capability(hdev);
435 	if (ret) {
436 		dev_err(&hdev->pdev->dev,
437 			"failed to query version and capabilities, ret = %d\n", ret);
438 		goto err_cmd_init;
439 	}
440 
441 	dev_info(&hdev->pdev->dev, "The firmware version is %lu.%lu.%lu.%lu\n",
442 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE3_MASK,
443 				 HNAE3_FW_VERSION_BYTE3_SHIFT),
444 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE2_MASK,
445 				 HNAE3_FW_VERSION_BYTE2_SHIFT),
446 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE1_MASK,
447 				 HNAE3_FW_VERSION_BYTE1_SHIFT),
448 		 hnae3_get_field(hdev->fw_version, HNAE3_FW_VERSION_BYTE0_MASK,
449 				 HNAE3_FW_VERSION_BYTE0_SHIFT));
450 
451 	return 0;
452 
453 err_cmd_init:
454 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
455 
456 	return ret;
457 }
458 
hclgevf_cmd_uninit_regs(struct hclgevf_hw * hw)459 static void hclgevf_cmd_uninit_regs(struct hclgevf_hw *hw)
460 {
461 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_L_REG, 0);
462 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_BASEADDR_H_REG, 0);
463 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_DEPTH_REG, 0);
464 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_HEAD_REG, 0);
465 	hclgevf_write_dev(hw, HCLGEVF_NIC_CSQ_TAIL_REG, 0);
466 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_L_REG, 0);
467 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_BASEADDR_H_REG, 0);
468 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_DEPTH_REG, 0);
469 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_HEAD_REG, 0);
470 	hclgevf_write_dev(hw, HCLGEVF_NIC_CRQ_TAIL_REG, 0);
471 }
472 
hclgevf_cmd_uninit(struct hclgevf_dev * hdev)473 void hclgevf_cmd_uninit(struct hclgevf_dev *hdev)
474 {
475 	spin_lock_bh(&hdev->hw.cmq.csq.lock);
476 	spin_lock(&hdev->hw.cmq.crq.lock);
477 	set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
478 	hclgevf_cmd_uninit_regs(&hdev->hw);
479 	spin_unlock(&hdev->hw.cmq.crq.lock);
480 	spin_unlock_bh(&hdev->hw.cmq.csq.lock);
481 	hclgevf_free_cmd_desc(&hdev->hw.cmq.csq);
482 	hclgevf_free_cmd_desc(&hdev->hw.cmq.crq);
483 }
484