1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3
4 Copyright (C) 2014 Intel Corporation
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
9
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
22 */
23
24 #include <linux/sched/signal.h>
25
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
29
30 #include "smp.h"
31 #include "hci_request.h"
32
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
36
hci_req_init(struct hci_request * req,struct hci_dev * hdev)37 void hci_req_init(struct hci_request *req, struct hci_dev *hdev)
38 {
39 skb_queue_head_init(&req->cmd_q);
40 req->hdev = hdev;
41 req->err = 0;
42 }
43
hci_req_purge(struct hci_request * req)44 void hci_req_purge(struct hci_request *req)
45 {
46 skb_queue_purge(&req->cmd_q);
47 }
48
req_run(struct hci_request * req,hci_req_complete_t complete,hci_req_complete_skb_t complete_skb)49 static int req_run(struct hci_request *req, hci_req_complete_t complete,
50 hci_req_complete_skb_t complete_skb)
51 {
52 struct hci_dev *hdev = req->hdev;
53 struct sk_buff *skb;
54 unsigned long flags;
55
56 BT_DBG("length %u", skb_queue_len(&req->cmd_q));
57
58 /* If an error occurred during request building, remove all HCI
59 * commands queued on the HCI request queue.
60 */
61 if (req->err) {
62 skb_queue_purge(&req->cmd_q);
63 return req->err;
64 }
65
66 /* Do not allow empty requests */
67 if (skb_queue_empty(&req->cmd_q))
68 return -ENODATA;
69
70 skb = skb_peek_tail(&req->cmd_q);
71 if (complete) {
72 bt_cb(skb)->hci.req_complete = complete;
73 } else if (complete_skb) {
74 bt_cb(skb)->hci.req_complete_skb = complete_skb;
75 bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB;
76 }
77
78 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
79 skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q);
80 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
81
82 queue_work(hdev->workqueue, &hdev->cmd_work);
83
84 return 0;
85 }
86
hci_req_run(struct hci_request * req,hci_req_complete_t complete)87 int hci_req_run(struct hci_request *req, hci_req_complete_t complete)
88 {
89 return req_run(req, complete, NULL);
90 }
91
hci_req_run_skb(struct hci_request * req,hci_req_complete_skb_t complete)92 int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete)
93 {
94 return req_run(req, NULL, complete);
95 }
96
hci_req_sync_complete(struct hci_dev * hdev,u8 result,u16 opcode,struct sk_buff * skb)97 static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode,
98 struct sk_buff *skb)
99 {
100 BT_DBG("%s result 0x%2.2x", hdev->name, result);
101
102 if (hdev->req_status == HCI_REQ_PEND) {
103 hdev->req_result = result;
104 hdev->req_status = HCI_REQ_DONE;
105 if (skb)
106 hdev->req_skb = skb_get(skb);
107 wake_up_interruptible(&hdev->req_wait_q);
108 }
109 }
110
hci_req_sync_cancel(struct hci_dev * hdev,int err)111 void hci_req_sync_cancel(struct hci_dev *hdev, int err)
112 {
113 BT_DBG("%s err 0x%2.2x", hdev->name, err);
114
115 if (hdev->req_status == HCI_REQ_PEND) {
116 hdev->req_result = err;
117 hdev->req_status = HCI_REQ_CANCELED;
118 wake_up_interruptible(&hdev->req_wait_q);
119 }
120 }
121
__hci_cmd_sync_ev(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u8 event,u32 timeout)122 struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen,
123 const void *param, u8 event, u32 timeout)
124 {
125 struct hci_request req;
126 struct sk_buff *skb;
127 int err = 0;
128
129 BT_DBG("%s", hdev->name);
130
131 hci_req_init(&req, hdev);
132
133 hci_req_add_ev(&req, opcode, plen, param, event);
134
135 hdev->req_status = HCI_REQ_PEND;
136
137 err = hci_req_run_skb(&req, hci_req_sync_complete);
138 if (err < 0)
139 return ERR_PTR(err);
140
141 err = wait_event_interruptible_timeout(hdev->req_wait_q,
142 hdev->req_status != HCI_REQ_PEND, timeout);
143
144 if (err == -ERESTARTSYS)
145 return ERR_PTR(-EINTR);
146
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_to_errno(hdev->req_result);
150 break;
151
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
155
156 default:
157 err = -ETIMEDOUT;
158 break;
159 }
160
161 hdev->req_status = hdev->req_result = 0;
162 skb = hdev->req_skb;
163 hdev->req_skb = NULL;
164
165 BT_DBG("%s end: err %d", hdev->name, err);
166
167 if (err < 0) {
168 kfree_skb(skb);
169 return ERR_PTR(err);
170 }
171
172 if (!skb)
173 return ERR_PTR(-ENODATA);
174
175 return skb;
176 }
177 EXPORT_SYMBOL(__hci_cmd_sync_ev);
178
__hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)179 struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
180 const void *param, u32 timeout)
181 {
182 return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout);
183 }
184 EXPORT_SYMBOL(__hci_cmd_sync);
185
186 /* Execute request and wait for completion. */
__hci_req_sync(struct hci_dev * hdev,int (* func)(struct hci_request * req,unsigned long opt),unsigned long opt,u32 timeout,u8 * hci_status)187 int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req,
188 unsigned long opt),
189 unsigned long opt, u32 timeout, u8 *hci_status)
190 {
191 struct hci_request req;
192 int err = 0;
193
194 BT_DBG("%s start", hdev->name);
195
196 hci_req_init(&req, hdev);
197
198 hdev->req_status = HCI_REQ_PEND;
199
200 err = func(&req, opt);
201 if (err) {
202 if (hci_status)
203 *hci_status = HCI_ERROR_UNSPECIFIED;
204 return err;
205 }
206
207 err = hci_req_run_skb(&req, hci_req_sync_complete);
208 if (err < 0) {
209 hdev->req_status = 0;
210
211 /* ENODATA means the HCI request command queue is empty.
212 * This can happen when a request with conditionals doesn't
213 * trigger any commands to be sent. This is normal behavior
214 * and should not trigger an error return.
215 */
216 if (err == -ENODATA) {
217 if (hci_status)
218 *hci_status = 0;
219 return 0;
220 }
221
222 if (hci_status)
223 *hci_status = HCI_ERROR_UNSPECIFIED;
224
225 return err;
226 }
227
228 err = wait_event_interruptible_timeout(hdev->req_wait_q,
229 hdev->req_status != HCI_REQ_PEND, timeout);
230
231 if (err == -ERESTARTSYS)
232 return -EINTR;
233
234 switch (hdev->req_status) {
235 case HCI_REQ_DONE:
236 err = -bt_to_errno(hdev->req_result);
237 if (hci_status)
238 *hci_status = hdev->req_result;
239 break;
240
241 case HCI_REQ_CANCELED:
242 err = -hdev->req_result;
243 if (hci_status)
244 *hci_status = HCI_ERROR_UNSPECIFIED;
245 break;
246
247 default:
248 err = -ETIMEDOUT;
249 if (hci_status)
250 *hci_status = HCI_ERROR_UNSPECIFIED;
251 break;
252 }
253
254 kfree_skb(hdev->req_skb);
255 hdev->req_skb = NULL;
256 hdev->req_status = hdev->req_result = 0;
257
258 BT_DBG("%s end: err %d", hdev->name, err);
259
260 return err;
261 }
262
hci_req_sync(struct hci_dev * hdev,int (* req)(struct hci_request * req,unsigned long opt),unsigned long opt,u32 timeout,u8 * hci_status)263 int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req,
264 unsigned long opt),
265 unsigned long opt, u32 timeout, u8 *hci_status)
266 {
267 int ret;
268
269 if (!test_bit(HCI_UP, &hdev->flags))
270 return -ENETDOWN;
271
272 /* Serialize all requests */
273 hci_req_sync_lock(hdev);
274 ret = __hci_req_sync(hdev, req, opt, timeout, hci_status);
275 hci_req_sync_unlock(hdev);
276
277 return ret;
278 }
279
hci_prepare_cmd(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)280 struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen,
281 const void *param)
282 {
283 int len = HCI_COMMAND_HDR_SIZE + plen;
284 struct hci_command_hdr *hdr;
285 struct sk_buff *skb;
286
287 skb = bt_skb_alloc(len, GFP_ATOMIC);
288 if (!skb)
289 return NULL;
290
291 hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE);
292 hdr->opcode = cpu_to_le16(opcode);
293 hdr->plen = plen;
294
295 if (plen)
296 skb_put_data(skb, param, plen);
297
298 BT_DBG("skb len %d", skb->len);
299
300 hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
301 hci_skb_opcode(skb) = opcode;
302
303 return skb;
304 }
305
306 /* Queue a command to an asynchronous HCI request */
hci_req_add_ev(struct hci_request * req,u16 opcode,u32 plen,const void * param,u8 event)307 void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen,
308 const void *param, u8 event)
309 {
310 struct hci_dev *hdev = req->hdev;
311 struct sk_buff *skb;
312
313 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
314
315 /* If an error occurred during request building, there is no point in
316 * queueing the HCI command. We can simply return.
317 */
318 if (req->err)
319 return;
320
321 skb = hci_prepare_cmd(hdev, opcode, plen, param);
322 if (!skb) {
323 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
324 opcode);
325 req->err = -ENOMEM;
326 return;
327 }
328
329 if (skb_queue_empty(&req->cmd_q))
330 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
331
332 bt_cb(skb)->hci.req_event = event;
333
334 skb_queue_tail(&req->cmd_q, skb);
335 }
336
hci_req_add(struct hci_request * req,u16 opcode,u32 plen,const void * param)337 void hci_req_add(struct hci_request *req, u16 opcode, u32 plen,
338 const void *param)
339 {
340 hci_req_add_ev(req, opcode, plen, param, 0);
341 }
342
__hci_req_write_fast_connectable(struct hci_request * req,bool enable)343 void __hci_req_write_fast_connectable(struct hci_request *req, bool enable)
344 {
345 struct hci_dev *hdev = req->hdev;
346 struct hci_cp_write_page_scan_activity acp;
347 u8 type;
348
349 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
350 return;
351
352 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
353 return;
354
355 if (enable) {
356 type = PAGE_SCAN_TYPE_INTERLACED;
357
358 /* 160 msec page scan interval */
359 acp.interval = cpu_to_le16(0x0100);
360 } else {
361 type = PAGE_SCAN_TYPE_STANDARD; /* default */
362
363 /* default 1.28 sec page scan */
364 acp.interval = cpu_to_le16(0x0800);
365 }
366
367 acp.window = cpu_to_le16(0x0012);
368
369 if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval ||
370 __cpu_to_le16(hdev->page_scan_window) != acp.window)
371 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY,
372 sizeof(acp), &acp);
373
374 if (hdev->page_scan_type != type)
375 hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type);
376 }
377
378 /* This function controls the background scanning based on hdev->pend_le_conns
379 * list. If there are pending LE connection we start the background scanning,
380 * otherwise we stop it.
381 *
382 * This function requires the caller holds hdev->lock.
383 */
__hci_update_background_scan(struct hci_request * req)384 static void __hci_update_background_scan(struct hci_request *req)
385 {
386 struct hci_dev *hdev = req->hdev;
387
388 if (!test_bit(HCI_UP, &hdev->flags) ||
389 test_bit(HCI_INIT, &hdev->flags) ||
390 hci_dev_test_flag(hdev, HCI_SETUP) ||
391 hci_dev_test_flag(hdev, HCI_CONFIG) ||
392 hci_dev_test_flag(hdev, HCI_AUTO_OFF) ||
393 hci_dev_test_flag(hdev, HCI_UNREGISTER))
394 return;
395
396 /* No point in doing scanning if LE support hasn't been enabled */
397 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
398 return;
399
400 /* If discovery is active don't interfere with it */
401 if (hdev->discovery.state != DISCOVERY_STOPPED)
402 return;
403
404 /* Reset RSSI and UUID filters when starting background scanning
405 * since these filters are meant for service discovery only.
406 *
407 * The Start Discovery and Start Service Discovery operations
408 * ensure to set proper values for RSSI threshold and UUID
409 * filter list. So it is safe to just reset them here.
410 */
411 hci_discovery_filter_clear(hdev);
412
413 if (list_empty(&hdev->pend_le_conns) &&
414 list_empty(&hdev->pend_le_reports)) {
415 /* If there is no pending LE connections or devices
416 * to be scanned for, we should stop the background
417 * scanning.
418 */
419
420 /* If controller is not scanning we are done. */
421 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
422 return;
423
424 hci_req_add_le_scan_disable(req);
425
426 BT_DBG("%s stopping background scanning", hdev->name);
427 } else {
428 /* If there is at least one pending LE connection, we should
429 * keep the background scan running.
430 */
431
432 /* If controller is connecting, we should not start scanning
433 * since some controllers are not able to scan and connect at
434 * the same time.
435 */
436 if (hci_lookup_le_connect(hdev))
437 return;
438
439 /* If controller is currently scanning, we stop it to ensure we
440 * don't miss any advertising (due to duplicates filter).
441 */
442 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
443 hci_req_add_le_scan_disable(req);
444
445 hci_req_add_le_passive_scan(req);
446
447 BT_DBG("%s starting background scanning", hdev->name);
448 }
449 }
450
__hci_req_update_name(struct hci_request * req)451 void __hci_req_update_name(struct hci_request *req)
452 {
453 struct hci_dev *hdev = req->hdev;
454 struct hci_cp_write_local_name cp;
455
456 memcpy(cp.name, hdev->dev_name, sizeof(cp.name));
457
458 hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp);
459 }
460
461 #define PNP_INFO_SVCLASS_ID 0x1200
462
create_uuid16_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)463 static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
464 {
465 u8 *ptr = data, *uuids_start = NULL;
466 struct bt_uuid *uuid;
467
468 if (len < 4)
469 return ptr;
470
471 list_for_each_entry(uuid, &hdev->uuids, list) {
472 u16 uuid16;
473
474 if (uuid->size != 16)
475 continue;
476
477 uuid16 = get_unaligned_le16(&uuid->uuid[12]);
478 if (uuid16 < 0x1100)
479 continue;
480
481 if (uuid16 == PNP_INFO_SVCLASS_ID)
482 continue;
483
484 if (!uuids_start) {
485 uuids_start = ptr;
486 uuids_start[0] = 1;
487 uuids_start[1] = EIR_UUID16_ALL;
488 ptr += 2;
489 }
490
491 /* Stop if not enough space to put next UUID */
492 if ((ptr - data) + sizeof(u16) > len) {
493 uuids_start[1] = EIR_UUID16_SOME;
494 break;
495 }
496
497 *ptr++ = (uuid16 & 0x00ff);
498 *ptr++ = (uuid16 & 0xff00) >> 8;
499 uuids_start[0] += sizeof(uuid16);
500 }
501
502 return ptr;
503 }
504
create_uuid32_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)505 static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
506 {
507 u8 *ptr = data, *uuids_start = NULL;
508 struct bt_uuid *uuid;
509
510 if (len < 6)
511 return ptr;
512
513 list_for_each_entry(uuid, &hdev->uuids, list) {
514 if (uuid->size != 32)
515 continue;
516
517 if (!uuids_start) {
518 uuids_start = ptr;
519 uuids_start[0] = 1;
520 uuids_start[1] = EIR_UUID32_ALL;
521 ptr += 2;
522 }
523
524 /* Stop if not enough space to put next UUID */
525 if ((ptr - data) + sizeof(u32) > len) {
526 uuids_start[1] = EIR_UUID32_SOME;
527 break;
528 }
529
530 memcpy(ptr, &uuid->uuid[12], sizeof(u32));
531 ptr += sizeof(u32);
532 uuids_start[0] += sizeof(u32);
533 }
534
535 return ptr;
536 }
537
create_uuid128_list(struct hci_dev * hdev,u8 * data,ptrdiff_t len)538 static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len)
539 {
540 u8 *ptr = data, *uuids_start = NULL;
541 struct bt_uuid *uuid;
542
543 if (len < 18)
544 return ptr;
545
546 list_for_each_entry(uuid, &hdev->uuids, list) {
547 if (uuid->size != 128)
548 continue;
549
550 if (!uuids_start) {
551 uuids_start = ptr;
552 uuids_start[0] = 1;
553 uuids_start[1] = EIR_UUID128_ALL;
554 ptr += 2;
555 }
556
557 /* Stop if not enough space to put next UUID */
558 if ((ptr - data) + 16 > len) {
559 uuids_start[1] = EIR_UUID128_SOME;
560 break;
561 }
562
563 memcpy(ptr, uuid->uuid, 16);
564 ptr += 16;
565 uuids_start[0] += 16;
566 }
567
568 return ptr;
569 }
570
create_eir(struct hci_dev * hdev,u8 * data)571 static void create_eir(struct hci_dev *hdev, u8 *data)
572 {
573 u8 *ptr = data;
574 size_t name_len;
575
576 name_len = strlen(hdev->dev_name);
577
578 if (name_len > 0) {
579 /* EIR Data type */
580 if (name_len > 48) {
581 name_len = 48;
582 ptr[1] = EIR_NAME_SHORT;
583 } else
584 ptr[1] = EIR_NAME_COMPLETE;
585
586 /* EIR Data length */
587 ptr[0] = name_len + 1;
588
589 memcpy(ptr + 2, hdev->dev_name, name_len);
590
591 ptr += (name_len + 2);
592 }
593
594 if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) {
595 ptr[0] = 2;
596 ptr[1] = EIR_TX_POWER;
597 ptr[2] = (u8) hdev->inq_tx_power;
598
599 ptr += 3;
600 }
601
602 if (hdev->devid_source > 0) {
603 ptr[0] = 9;
604 ptr[1] = EIR_DEVICE_ID;
605
606 put_unaligned_le16(hdev->devid_source, ptr + 2);
607 put_unaligned_le16(hdev->devid_vendor, ptr + 4);
608 put_unaligned_le16(hdev->devid_product, ptr + 6);
609 put_unaligned_le16(hdev->devid_version, ptr + 8);
610
611 ptr += 10;
612 }
613
614 ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
615 ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
616 ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data));
617 }
618
__hci_req_update_eir(struct hci_request * req)619 void __hci_req_update_eir(struct hci_request *req)
620 {
621 struct hci_dev *hdev = req->hdev;
622 struct hci_cp_write_eir cp;
623
624 if (!hdev_is_powered(hdev))
625 return;
626
627 if (!lmp_ext_inq_capable(hdev))
628 return;
629
630 if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED))
631 return;
632
633 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
634 return;
635
636 memset(&cp, 0, sizeof(cp));
637
638 create_eir(hdev, cp.data);
639
640 if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0)
641 return;
642
643 memcpy(hdev->eir, cp.data, sizeof(cp.data));
644
645 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
646 }
647
hci_req_add_le_scan_disable(struct hci_request * req)648 void hci_req_add_le_scan_disable(struct hci_request *req)
649 {
650 struct hci_dev *hdev = req->hdev;
651
652 if (use_ext_scan(hdev)) {
653 struct hci_cp_le_set_ext_scan_enable cp;
654
655 memset(&cp, 0, sizeof(cp));
656 cp.enable = LE_SCAN_DISABLE;
657 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp),
658 &cp);
659 } else {
660 struct hci_cp_le_set_scan_enable cp;
661
662 memset(&cp, 0, sizeof(cp));
663 cp.enable = LE_SCAN_DISABLE;
664 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
665 }
666 }
667
add_to_white_list(struct hci_request * req,struct hci_conn_params * params)668 static void add_to_white_list(struct hci_request *req,
669 struct hci_conn_params *params)
670 {
671 struct hci_cp_le_add_to_white_list cp;
672
673 cp.bdaddr_type = params->addr_type;
674 bacpy(&cp.bdaddr, ¶ms->addr);
675
676 hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp);
677 }
678
update_white_list(struct hci_request * req)679 static u8 update_white_list(struct hci_request *req)
680 {
681 struct hci_dev *hdev = req->hdev;
682 struct hci_conn_params *params;
683 struct bdaddr_list *b;
684 uint8_t white_list_entries = 0;
685
686 /* Go through the current white list programmed into the
687 * controller one by one and check if that address is still
688 * in the list of pending connections or list of devices to
689 * report. If not present in either list, then queue the
690 * command to remove it from the controller.
691 */
692 list_for_each_entry(b, &hdev->le_white_list, list) {
693 /* If the device is neither in pend_le_conns nor
694 * pend_le_reports then remove it from the whitelist.
695 */
696 if (!hci_pend_le_action_lookup(&hdev->pend_le_conns,
697 &b->bdaddr, b->bdaddr_type) &&
698 !hci_pend_le_action_lookup(&hdev->pend_le_reports,
699 &b->bdaddr, b->bdaddr_type)) {
700 struct hci_cp_le_del_from_white_list cp;
701
702 cp.bdaddr_type = b->bdaddr_type;
703 bacpy(&cp.bdaddr, &b->bdaddr);
704
705 hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST,
706 sizeof(cp), &cp);
707 continue;
708 }
709
710 if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) {
711 /* White list can not be used with RPAs */
712 return 0x00;
713 }
714
715 white_list_entries++;
716 }
717
718 /* Since all no longer valid white list entries have been
719 * removed, walk through the list of pending connections
720 * and ensure that any new device gets programmed into
721 * the controller.
722 *
723 * If the list of the devices is larger than the list of
724 * available white list entries in the controller, then
725 * just abort and return filer policy value to not use the
726 * white list.
727 */
728 list_for_each_entry(params, &hdev->pend_le_conns, action) {
729 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
730 ¶ms->addr, params->addr_type))
731 continue;
732
733 if (white_list_entries >= hdev->le_white_list_size) {
734 /* Select filter policy to accept all advertising */
735 return 0x00;
736 }
737
738 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
739 params->addr_type)) {
740 /* White list can not be used with RPAs */
741 return 0x00;
742 }
743
744 white_list_entries++;
745 add_to_white_list(req, params);
746 }
747
748 /* After adding all new pending connections, walk through
749 * the list of pending reports and also add these to the
750 * white list if there is still space.
751 */
752 list_for_each_entry(params, &hdev->pend_le_reports, action) {
753 if (hci_bdaddr_list_lookup(&hdev->le_white_list,
754 ¶ms->addr, params->addr_type))
755 continue;
756
757 if (white_list_entries >= hdev->le_white_list_size) {
758 /* Select filter policy to accept all advertising */
759 return 0x00;
760 }
761
762 if (hci_find_irk_by_addr(hdev, ¶ms->addr,
763 params->addr_type)) {
764 /* White list can not be used with RPAs */
765 return 0x00;
766 }
767
768 white_list_entries++;
769 add_to_white_list(req, params);
770 }
771
772 /* Select filter policy to use white list */
773 return 0x01;
774 }
775
scan_use_rpa(struct hci_dev * hdev)776 static bool scan_use_rpa(struct hci_dev *hdev)
777 {
778 return hci_dev_test_flag(hdev, HCI_PRIVACY);
779 }
780
hci_req_start_scan(struct hci_request * req,u8 type,u16 interval,u16 window,u8 own_addr_type,u8 filter_policy)781 static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval,
782 u16 window, u8 own_addr_type, u8 filter_policy)
783 {
784 struct hci_dev *hdev = req->hdev;
785
786 /* Use ext scanning if set ext scan param and ext scan enable is
787 * supported
788 */
789 if (use_ext_scan(hdev)) {
790 struct hci_cp_le_set_ext_scan_params *ext_param_cp;
791 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
792 struct hci_cp_le_scan_phy_params *phy_params;
793 u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2];
794 u32 plen;
795
796 ext_param_cp = (void *)data;
797 phy_params = (void *)ext_param_cp->data;
798
799 memset(ext_param_cp, 0, sizeof(*ext_param_cp));
800 ext_param_cp->own_addr_type = own_addr_type;
801 ext_param_cp->filter_policy = filter_policy;
802
803 plen = sizeof(*ext_param_cp);
804
805 if (scan_1m(hdev) || scan_2m(hdev)) {
806 ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M;
807
808 memset(phy_params, 0, sizeof(*phy_params));
809 phy_params->type = type;
810 phy_params->interval = cpu_to_le16(interval);
811 phy_params->window = cpu_to_le16(window);
812
813 plen += sizeof(*phy_params);
814 phy_params++;
815 }
816
817 if (scan_coded(hdev)) {
818 ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED;
819
820 memset(phy_params, 0, sizeof(*phy_params));
821 phy_params->type = type;
822 phy_params->interval = cpu_to_le16(interval);
823 phy_params->window = cpu_to_le16(window);
824
825 plen += sizeof(*phy_params);
826 phy_params++;
827 }
828
829 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS,
830 plen, ext_param_cp);
831
832 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
833 ext_enable_cp.enable = LE_SCAN_ENABLE;
834 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
835
836 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
837 sizeof(ext_enable_cp), &ext_enable_cp);
838 } else {
839 struct hci_cp_le_set_scan_param param_cp;
840 struct hci_cp_le_set_scan_enable enable_cp;
841
842 memset(¶m_cp, 0, sizeof(param_cp));
843 param_cp.type = type;
844 param_cp.interval = cpu_to_le16(interval);
845 param_cp.window = cpu_to_le16(window);
846 param_cp.own_address_type = own_addr_type;
847 param_cp.filter_policy = filter_policy;
848 hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp),
849 ¶m_cp);
850
851 memset(&enable_cp, 0, sizeof(enable_cp));
852 enable_cp.enable = LE_SCAN_ENABLE;
853 enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
854 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp),
855 &enable_cp);
856 }
857 }
858
hci_req_add_le_passive_scan(struct hci_request * req)859 void hci_req_add_le_passive_scan(struct hci_request *req)
860 {
861 struct hci_dev *hdev = req->hdev;
862 u8 own_addr_type;
863 u8 filter_policy;
864
865 /* Set require_privacy to false since no SCAN_REQ are send
866 * during passive scanning. Not using an non-resolvable address
867 * here is important so that peer devices using direct
868 * advertising with our address will be correctly reported
869 * by the controller.
870 */
871 if (hci_update_random_address(req, false, scan_use_rpa(hdev),
872 &own_addr_type))
873 return;
874
875 /* Adding or removing entries from the white list must
876 * happen before enabling scanning. The controller does
877 * not allow white list modification while scanning.
878 */
879 filter_policy = update_white_list(req);
880
881 /* When the controller is using random resolvable addresses and
882 * with that having LE privacy enabled, then controllers with
883 * Extended Scanner Filter Policies support can now enable support
884 * for handling directed advertising.
885 *
886 * So instead of using filter polices 0x00 (no whitelist)
887 * and 0x01 (whitelist enabled) use the new filter policies
888 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
889 */
890 if (hci_dev_test_flag(hdev, HCI_PRIVACY) &&
891 (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY))
892 filter_policy |= 0x02;
893
894 hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval,
895 hdev->le_scan_window, own_addr_type, filter_policy);
896 }
897
get_adv_instance_scan_rsp_len(struct hci_dev * hdev,u8 instance)898 static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance)
899 {
900 struct adv_info *adv_instance;
901
902 /* Ignore instance 0 */
903 if (instance == 0x00)
904 return 0;
905
906 adv_instance = hci_find_adv_instance(hdev, instance);
907 if (!adv_instance)
908 return 0;
909
910 /* TODO: Take into account the "appearance" and "local-name" flags here.
911 * These are currently being ignored as they are not supported.
912 */
913 return adv_instance->scan_rsp_len;
914 }
915
get_cur_adv_instance_scan_rsp_len(struct hci_dev * hdev)916 static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev)
917 {
918 u8 instance = hdev->cur_adv_instance;
919 struct adv_info *adv_instance;
920
921 /* Ignore instance 0 */
922 if (instance == 0x00)
923 return 0;
924
925 adv_instance = hci_find_adv_instance(hdev, instance);
926 if (!adv_instance)
927 return 0;
928
929 /* TODO: Take into account the "appearance" and "local-name" flags here.
930 * These are currently being ignored as they are not supported.
931 */
932 return adv_instance->scan_rsp_len;
933 }
934
__hci_req_disable_advertising(struct hci_request * req)935 void __hci_req_disable_advertising(struct hci_request *req)
936 {
937 if (ext_adv_capable(req->hdev)) {
938 struct hci_cp_le_set_ext_adv_enable cp;
939
940 cp.enable = 0x00;
941 /* Disable all sets since we only support one set at the moment */
942 cp.num_of_sets = 0x00;
943
944 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp);
945 } else {
946 u8 enable = 0x00;
947
948 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
949 }
950 }
951
get_adv_instance_flags(struct hci_dev * hdev,u8 instance)952 static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance)
953 {
954 u32 flags;
955 struct adv_info *adv_instance;
956
957 if (instance == 0x00) {
958 /* Instance 0 always manages the "Tx Power" and "Flags"
959 * fields
960 */
961 flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS;
962
963 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
964 * corresponds to the "connectable" instance flag.
965 */
966 if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE))
967 flags |= MGMT_ADV_FLAG_CONNECTABLE;
968
969 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
970 flags |= MGMT_ADV_FLAG_LIMITED_DISCOV;
971 else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
972 flags |= MGMT_ADV_FLAG_DISCOV;
973
974 return flags;
975 }
976
977 adv_instance = hci_find_adv_instance(hdev, instance);
978
979 /* Return 0 when we got an invalid instance identifier. */
980 if (!adv_instance)
981 return 0;
982
983 return adv_instance->flags;
984 }
985
adv_use_rpa(struct hci_dev * hdev,uint32_t flags)986 static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags)
987 {
988 /* If privacy is not enabled don't use RPA */
989 if (!hci_dev_test_flag(hdev, HCI_PRIVACY))
990 return false;
991
992 /* If basic privacy mode is enabled use RPA */
993 if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY))
994 return true;
995
996 /* If limited privacy mode is enabled don't use RPA if we're
997 * both discoverable and bondable.
998 */
999 if ((flags & MGMT_ADV_FLAG_DISCOV) &&
1000 hci_dev_test_flag(hdev, HCI_BONDABLE))
1001 return false;
1002
1003 /* We're neither bondable nor discoverable in the limited
1004 * privacy mode, therefore use RPA.
1005 */
1006 return true;
1007 }
1008
is_advertising_allowed(struct hci_dev * hdev,bool connectable)1009 static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable)
1010 {
1011 /* If there is no connection we are OK to advertise. */
1012 if (hci_conn_num(hdev, LE_LINK) == 0)
1013 return true;
1014
1015 /* Check le_states if there is any connection in slave role. */
1016 if (hdev->conn_hash.le_num_slave > 0) {
1017 /* Slave connection state and non connectable mode bit 20. */
1018 if (!connectable && !(hdev->le_states[2] & 0x10))
1019 return false;
1020
1021 /* Slave connection state and connectable mode bit 38
1022 * and scannable bit 21.
1023 */
1024 if (connectable && (!(hdev->le_states[4] & 0x40) ||
1025 !(hdev->le_states[2] & 0x20)))
1026 return false;
1027 }
1028
1029 /* Check le_states if there is any connection in master role. */
1030 if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) {
1031 /* Master connection state and non connectable mode bit 18. */
1032 if (!connectable && !(hdev->le_states[2] & 0x02))
1033 return false;
1034
1035 /* Master connection state and connectable mode bit 35 and
1036 * scannable 19.
1037 */
1038 if (connectable && (!(hdev->le_states[4] & 0x08) ||
1039 !(hdev->le_states[2] & 0x08)))
1040 return false;
1041 }
1042
1043 return true;
1044 }
1045
__hci_req_enable_advertising(struct hci_request * req)1046 void __hci_req_enable_advertising(struct hci_request *req)
1047 {
1048 struct hci_dev *hdev = req->hdev;
1049 struct hci_cp_le_set_adv_param cp;
1050 u8 own_addr_type, enable = 0x01;
1051 bool connectable;
1052 u32 flags;
1053
1054 flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance);
1055
1056 /* If the "connectable" instance flag was not set, then choose between
1057 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1058 */
1059 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1060 mgmt_get_connectable(hdev);
1061
1062 if (!is_advertising_allowed(hdev, connectable))
1063 return;
1064
1065 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1066 __hci_req_disable_advertising(req);
1067
1068 /* Clear the HCI_LE_ADV bit temporarily so that the
1069 * hci_update_random_address knows that it's safe to go ahead
1070 * and write a new random address. The flag will be set back on
1071 * as soon as the SET_ADV_ENABLE HCI command completes.
1072 */
1073 hci_dev_clear_flag(hdev, HCI_LE_ADV);
1074
1075 /* Set require_privacy to true only when non-connectable
1076 * advertising is used. In that case it is fine to use a
1077 * non-resolvable private address.
1078 */
1079 if (hci_update_random_address(req, !connectable,
1080 adv_use_rpa(hdev, flags),
1081 &own_addr_type) < 0)
1082 return;
1083
1084 memset(&cp, 0, sizeof(cp));
1085 cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval);
1086 cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval);
1087
1088 if (connectable)
1089 cp.type = LE_ADV_IND;
1090 else if (get_cur_adv_instance_scan_rsp_len(hdev))
1091 cp.type = LE_ADV_SCAN_IND;
1092 else
1093 cp.type = LE_ADV_NONCONN_IND;
1094
1095 cp.own_address_type = own_addr_type;
1096 cp.channel_map = hdev->le_adv_channel_map;
1097
1098 hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp);
1099
1100 hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable);
1101 }
1102
append_local_name(struct hci_dev * hdev,u8 * ptr,u8 ad_len)1103 u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1104 {
1105 size_t short_len;
1106 size_t complete_len;
1107
1108 /* no space left for name (+ NULL + type + len) */
1109 if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3)
1110 return ad_len;
1111
1112 /* use complete name if present and fits */
1113 complete_len = strlen(hdev->dev_name);
1114 if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH)
1115 return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE,
1116 hdev->dev_name, complete_len + 1);
1117
1118 /* use short name if present */
1119 short_len = strlen(hdev->short_name);
1120 if (short_len)
1121 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT,
1122 hdev->short_name, short_len + 1);
1123
1124 /* use shortened full name if present, we already know that name
1125 * is longer then HCI_MAX_SHORT_NAME_LENGTH
1126 */
1127 if (complete_len) {
1128 u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1];
1129
1130 memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH);
1131 name[HCI_MAX_SHORT_NAME_LENGTH] = '\0';
1132
1133 return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name,
1134 sizeof(name));
1135 }
1136
1137 return ad_len;
1138 }
1139
append_appearance(struct hci_dev * hdev,u8 * ptr,u8 ad_len)1140 static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len)
1141 {
1142 return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance);
1143 }
1144
create_default_scan_rsp_data(struct hci_dev * hdev,u8 * ptr)1145 static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr)
1146 {
1147 u8 scan_rsp_len = 0;
1148
1149 if (hdev->appearance) {
1150 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1151 }
1152
1153 return append_local_name(hdev, ptr, scan_rsp_len);
1154 }
1155
create_instance_scan_rsp_data(struct hci_dev * hdev,u8 instance,u8 * ptr)1156 static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance,
1157 u8 *ptr)
1158 {
1159 struct adv_info *adv_instance;
1160 u32 instance_flags;
1161 u8 scan_rsp_len = 0;
1162
1163 adv_instance = hci_find_adv_instance(hdev, instance);
1164 if (!adv_instance)
1165 return 0;
1166
1167 instance_flags = adv_instance->flags;
1168
1169 if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) {
1170 scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len);
1171 }
1172
1173 memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data,
1174 adv_instance->scan_rsp_len);
1175
1176 scan_rsp_len += adv_instance->scan_rsp_len;
1177
1178 if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME)
1179 scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len);
1180
1181 return scan_rsp_len;
1182 }
1183
__hci_req_update_scan_rsp_data(struct hci_request * req,u8 instance)1184 void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance)
1185 {
1186 struct hci_dev *hdev = req->hdev;
1187 u8 len;
1188
1189 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1190 return;
1191
1192 if (ext_adv_capable(hdev)) {
1193 struct hci_cp_le_set_ext_scan_rsp_data cp;
1194
1195 memset(&cp, 0, sizeof(cp));
1196
1197 if (instance)
1198 len = create_instance_scan_rsp_data(hdev, instance,
1199 cp.data);
1200 else
1201 len = create_default_scan_rsp_data(hdev, cp.data);
1202
1203 if (hdev->scan_rsp_data_len == len &&
1204 !memcmp(cp.data, hdev->scan_rsp_data, len))
1205 return;
1206
1207 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1208 hdev->scan_rsp_data_len = len;
1209
1210 cp.handle = 0;
1211 cp.length = len;
1212 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1213 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1214
1215 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp),
1216 &cp);
1217 } else {
1218 struct hci_cp_le_set_scan_rsp_data cp;
1219
1220 memset(&cp, 0, sizeof(cp));
1221
1222 if (instance)
1223 len = create_instance_scan_rsp_data(hdev, instance,
1224 cp.data);
1225 else
1226 len = create_default_scan_rsp_data(hdev, cp.data);
1227
1228 if (hdev->scan_rsp_data_len == len &&
1229 !memcmp(cp.data, hdev->scan_rsp_data, len))
1230 return;
1231
1232 memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data));
1233 hdev->scan_rsp_data_len = len;
1234
1235 cp.length = len;
1236
1237 hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp);
1238 }
1239 }
1240
create_instance_adv_data(struct hci_dev * hdev,u8 instance,u8 * ptr)1241 static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr)
1242 {
1243 struct adv_info *adv_instance = NULL;
1244 u8 ad_len = 0, flags = 0;
1245 u32 instance_flags;
1246
1247 /* Return 0 when the current instance identifier is invalid. */
1248 if (instance) {
1249 adv_instance = hci_find_adv_instance(hdev, instance);
1250 if (!adv_instance)
1251 return 0;
1252 }
1253
1254 instance_flags = get_adv_instance_flags(hdev, instance);
1255
1256 /* The Add Advertising command allows userspace to set both the general
1257 * and limited discoverable flags.
1258 */
1259 if (instance_flags & MGMT_ADV_FLAG_DISCOV)
1260 flags |= LE_AD_GENERAL;
1261
1262 if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV)
1263 flags |= LE_AD_LIMITED;
1264
1265 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1266 flags |= LE_AD_NO_BREDR;
1267
1268 if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) {
1269 /* If a discovery flag wasn't provided, simply use the global
1270 * settings.
1271 */
1272 if (!flags)
1273 flags |= mgmt_get_adv_discov_flags(hdev);
1274
1275 /* If flags would still be empty, then there is no need to
1276 * include the "Flags" AD field".
1277 */
1278 if (flags) {
1279 ptr[0] = 0x02;
1280 ptr[1] = EIR_FLAGS;
1281 ptr[2] = flags;
1282
1283 ad_len += 3;
1284 ptr += 3;
1285 }
1286 }
1287
1288 if (adv_instance) {
1289 memcpy(ptr, adv_instance->adv_data,
1290 adv_instance->adv_data_len);
1291 ad_len += adv_instance->adv_data_len;
1292 ptr += adv_instance->adv_data_len;
1293 }
1294
1295 if (instance_flags & MGMT_ADV_FLAG_TX_POWER) {
1296 s8 adv_tx_power;
1297
1298 if (ext_adv_capable(hdev)) {
1299 if (adv_instance)
1300 adv_tx_power = adv_instance->tx_power;
1301 else
1302 adv_tx_power = hdev->adv_tx_power;
1303 } else {
1304 adv_tx_power = hdev->adv_tx_power;
1305 }
1306
1307 /* Provide Tx Power only if we can provide a valid value for it */
1308 if (adv_tx_power != HCI_TX_POWER_INVALID) {
1309 ptr[0] = 0x02;
1310 ptr[1] = EIR_TX_POWER;
1311 ptr[2] = (u8)adv_tx_power;
1312
1313 ad_len += 3;
1314 ptr += 3;
1315 }
1316 }
1317
1318 return ad_len;
1319 }
1320
__hci_req_update_adv_data(struct hci_request * req,u8 instance)1321 void __hci_req_update_adv_data(struct hci_request *req, u8 instance)
1322 {
1323 struct hci_dev *hdev = req->hdev;
1324 u8 len;
1325
1326 if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1327 return;
1328
1329 if (ext_adv_capable(hdev)) {
1330 struct hci_cp_le_set_ext_adv_data cp;
1331
1332 memset(&cp, 0, sizeof(cp));
1333
1334 len = create_instance_adv_data(hdev, instance, cp.data);
1335
1336 /* There's nothing to do if the data hasn't changed */
1337 if (hdev->adv_data_len == len &&
1338 memcmp(cp.data, hdev->adv_data, len) == 0)
1339 return;
1340
1341 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1342 hdev->adv_data_len = len;
1343
1344 cp.length = len;
1345 cp.handle = 0;
1346 cp.operation = LE_SET_ADV_DATA_OP_COMPLETE;
1347 cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG;
1348
1349 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp);
1350 } else {
1351 struct hci_cp_le_set_adv_data cp;
1352
1353 memset(&cp, 0, sizeof(cp));
1354
1355 len = create_instance_adv_data(hdev, instance, cp.data);
1356
1357 /* There's nothing to do if the data hasn't changed */
1358 if (hdev->adv_data_len == len &&
1359 memcmp(cp.data, hdev->adv_data, len) == 0)
1360 return;
1361
1362 memcpy(hdev->adv_data, cp.data, sizeof(cp.data));
1363 hdev->adv_data_len = len;
1364
1365 cp.length = len;
1366
1367 hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp);
1368 }
1369 }
1370
hci_req_update_adv_data(struct hci_dev * hdev,u8 instance)1371 int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance)
1372 {
1373 struct hci_request req;
1374
1375 hci_req_init(&req, hdev);
1376 __hci_req_update_adv_data(&req, instance);
1377
1378 return hci_req_run(&req, NULL);
1379 }
1380
adv_enable_complete(struct hci_dev * hdev,u8 status,u16 opcode)1381 static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode)
1382 {
1383 BT_DBG("%s status %u", hdev->name, status);
1384 }
1385
hci_req_reenable_advertising(struct hci_dev * hdev)1386 void hci_req_reenable_advertising(struct hci_dev *hdev)
1387 {
1388 struct hci_request req;
1389
1390 if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) &&
1391 list_empty(&hdev->adv_instances))
1392 return;
1393
1394 hci_req_init(&req, hdev);
1395
1396 if (hdev->cur_adv_instance) {
1397 __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance,
1398 true);
1399 } else {
1400 if (ext_adv_capable(hdev)) {
1401 __hci_req_start_ext_adv(&req, 0x00);
1402 } else {
1403 __hci_req_update_adv_data(&req, 0x00);
1404 __hci_req_update_scan_rsp_data(&req, 0x00);
1405 __hci_req_enable_advertising(&req);
1406 }
1407 }
1408
1409 hci_req_run(&req, adv_enable_complete);
1410 }
1411
adv_timeout_expire(struct work_struct * work)1412 static void adv_timeout_expire(struct work_struct *work)
1413 {
1414 struct hci_dev *hdev = container_of(work, struct hci_dev,
1415 adv_instance_expire.work);
1416
1417 struct hci_request req;
1418 u8 instance;
1419
1420 BT_DBG("%s", hdev->name);
1421
1422 hci_dev_lock(hdev);
1423
1424 hdev->adv_instance_timeout = 0;
1425
1426 instance = hdev->cur_adv_instance;
1427 if (instance == 0x00)
1428 goto unlock;
1429
1430 hci_req_init(&req, hdev);
1431
1432 hci_req_clear_adv_instance(hdev, NULL, &req, instance, false);
1433
1434 if (list_empty(&hdev->adv_instances))
1435 __hci_req_disable_advertising(&req);
1436
1437 hci_req_run(&req, NULL);
1438
1439 unlock:
1440 hci_dev_unlock(hdev);
1441 }
1442
hci_get_random_address(struct hci_dev * hdev,bool require_privacy,bool use_rpa,struct adv_info * adv_instance,u8 * own_addr_type,bdaddr_t * rand_addr)1443 int hci_get_random_address(struct hci_dev *hdev, bool require_privacy,
1444 bool use_rpa, struct adv_info *adv_instance,
1445 u8 *own_addr_type, bdaddr_t *rand_addr)
1446 {
1447 int err;
1448
1449 bacpy(rand_addr, BDADDR_ANY);
1450
1451 /* If privacy is enabled use a resolvable private address. If
1452 * current RPA has expired then generate a new one.
1453 */
1454 if (use_rpa) {
1455 int to;
1456
1457 *own_addr_type = ADDR_LE_DEV_RANDOM;
1458
1459 if (adv_instance) {
1460 if (!adv_instance->rpa_expired &&
1461 !bacmp(&adv_instance->random_addr, &hdev->rpa))
1462 return 0;
1463
1464 adv_instance->rpa_expired = false;
1465 } else {
1466 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1467 !bacmp(&hdev->random_addr, &hdev->rpa))
1468 return 0;
1469 }
1470
1471 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1472 if (err < 0) {
1473 BT_ERR("%s failed to generate new RPA", hdev->name);
1474 return err;
1475 }
1476
1477 bacpy(rand_addr, &hdev->rpa);
1478
1479 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1480 if (adv_instance)
1481 queue_delayed_work(hdev->workqueue,
1482 &adv_instance->rpa_expired_cb, to);
1483 else
1484 queue_delayed_work(hdev->workqueue,
1485 &hdev->rpa_expired, to);
1486
1487 return 0;
1488 }
1489
1490 /* In case of required privacy without resolvable private address,
1491 * use an non-resolvable private address. This is useful for
1492 * non-connectable advertising.
1493 */
1494 if (require_privacy) {
1495 bdaddr_t nrpa;
1496
1497 while (true) {
1498 /* The non-resolvable private address is generated
1499 * from random six bytes with the two most significant
1500 * bits cleared.
1501 */
1502 get_random_bytes(&nrpa, 6);
1503 nrpa.b[5] &= 0x3f;
1504
1505 /* The non-resolvable private address shall not be
1506 * equal to the public address.
1507 */
1508 if (bacmp(&hdev->bdaddr, &nrpa))
1509 break;
1510 }
1511
1512 *own_addr_type = ADDR_LE_DEV_RANDOM;
1513 bacpy(rand_addr, &nrpa);
1514
1515 return 0;
1516 }
1517
1518 /* No privacy so use a public address. */
1519 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1520
1521 return 0;
1522 }
1523
__hci_req_clear_ext_adv_sets(struct hci_request * req)1524 void __hci_req_clear_ext_adv_sets(struct hci_request *req)
1525 {
1526 hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL);
1527 }
1528
__hci_req_setup_ext_adv_instance(struct hci_request * req,u8 instance)1529 int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance)
1530 {
1531 struct hci_cp_le_set_ext_adv_params cp;
1532 struct hci_dev *hdev = req->hdev;
1533 bool connectable;
1534 u32 flags;
1535 bdaddr_t random_addr;
1536 u8 own_addr_type;
1537 int err;
1538 struct adv_info *adv_instance;
1539 bool secondary_adv;
1540 /* In ext adv set param interval is 3 octets */
1541 const u8 adv_interval[3] = { 0x00, 0x08, 0x00 };
1542
1543 if (instance > 0) {
1544 adv_instance = hci_find_adv_instance(hdev, instance);
1545 if (!adv_instance)
1546 return -EINVAL;
1547 } else {
1548 adv_instance = NULL;
1549 }
1550
1551 flags = get_adv_instance_flags(hdev, instance);
1552
1553 /* If the "connectable" instance flag was not set, then choose between
1554 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
1555 */
1556 connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) ||
1557 mgmt_get_connectable(hdev);
1558
1559 if (!is_advertising_allowed(hdev, connectable))
1560 return -EPERM;
1561
1562 /* Set require_privacy to true only when non-connectable
1563 * advertising is used. In that case it is fine to use a
1564 * non-resolvable private address.
1565 */
1566 err = hci_get_random_address(hdev, !connectable,
1567 adv_use_rpa(hdev, flags), adv_instance,
1568 &own_addr_type, &random_addr);
1569 if (err < 0)
1570 return err;
1571
1572 memset(&cp, 0, sizeof(cp));
1573
1574 memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval));
1575 memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval));
1576
1577 secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK);
1578
1579 if (connectable) {
1580 if (secondary_adv)
1581 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND);
1582 else
1583 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND);
1584 } else if (get_adv_instance_scan_rsp_len(hdev, instance)) {
1585 if (secondary_adv)
1586 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND);
1587 else
1588 cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND);
1589 } else {
1590 if (secondary_adv)
1591 cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND);
1592 else
1593 cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND);
1594 }
1595
1596 cp.own_addr_type = own_addr_type;
1597 cp.channel_map = hdev->le_adv_channel_map;
1598 cp.tx_power = 127;
1599 cp.handle = 0;
1600
1601 if (flags & MGMT_ADV_FLAG_SEC_2M) {
1602 cp.primary_phy = HCI_ADV_PHY_1M;
1603 cp.secondary_phy = HCI_ADV_PHY_2M;
1604 } else if (flags & MGMT_ADV_FLAG_SEC_CODED) {
1605 cp.primary_phy = HCI_ADV_PHY_CODED;
1606 cp.secondary_phy = HCI_ADV_PHY_CODED;
1607 } else {
1608 /* In all other cases use 1M */
1609 cp.primary_phy = HCI_ADV_PHY_1M;
1610 cp.secondary_phy = HCI_ADV_PHY_1M;
1611 }
1612
1613 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp);
1614
1615 if (own_addr_type == ADDR_LE_DEV_RANDOM &&
1616 bacmp(&random_addr, BDADDR_ANY)) {
1617 struct hci_cp_le_set_adv_set_rand_addr cp;
1618
1619 /* Check if random address need to be updated */
1620 if (adv_instance) {
1621 if (!bacmp(&random_addr, &adv_instance->random_addr))
1622 return 0;
1623 } else {
1624 if (!bacmp(&random_addr, &hdev->random_addr))
1625 return 0;
1626 }
1627
1628 memset(&cp, 0, sizeof(cp));
1629
1630 cp.handle = 0;
1631 bacpy(&cp.bdaddr, &random_addr);
1632
1633 hci_req_add(req,
1634 HCI_OP_LE_SET_ADV_SET_RAND_ADDR,
1635 sizeof(cp), &cp);
1636 }
1637
1638 return 0;
1639 }
1640
__hci_req_enable_ext_advertising(struct hci_request * req)1641 void __hci_req_enable_ext_advertising(struct hci_request *req)
1642 {
1643 struct hci_cp_le_set_ext_adv_enable *cp;
1644 struct hci_cp_ext_adv_set *adv_set;
1645 u8 data[sizeof(*cp) + sizeof(*adv_set) * 1];
1646
1647 cp = (void *) data;
1648 adv_set = (void *) cp->data;
1649
1650 memset(cp, 0, sizeof(*cp));
1651
1652 cp->enable = 0x01;
1653 cp->num_of_sets = 0x01;
1654
1655 memset(adv_set, 0, sizeof(*adv_set));
1656
1657 adv_set->handle = 0;
1658
1659 hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE,
1660 sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets,
1661 data);
1662 }
1663
__hci_req_start_ext_adv(struct hci_request * req,u8 instance)1664 int __hci_req_start_ext_adv(struct hci_request *req, u8 instance)
1665 {
1666 struct hci_dev *hdev = req->hdev;
1667 int err;
1668
1669 if (hci_dev_test_flag(hdev, HCI_LE_ADV))
1670 __hci_req_disable_advertising(req);
1671
1672 err = __hci_req_setup_ext_adv_instance(req, instance);
1673 if (err < 0)
1674 return err;
1675
1676 __hci_req_update_scan_rsp_data(req, instance);
1677 __hci_req_enable_ext_advertising(req);
1678
1679 return 0;
1680 }
1681
__hci_req_schedule_adv_instance(struct hci_request * req,u8 instance,bool force)1682 int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance,
1683 bool force)
1684 {
1685 struct hci_dev *hdev = req->hdev;
1686 struct adv_info *adv_instance = NULL;
1687 u16 timeout;
1688
1689 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
1690 list_empty(&hdev->adv_instances))
1691 return -EPERM;
1692
1693 if (hdev->adv_instance_timeout)
1694 return -EBUSY;
1695
1696 adv_instance = hci_find_adv_instance(hdev, instance);
1697 if (!adv_instance)
1698 return -ENOENT;
1699
1700 /* A zero timeout means unlimited advertising. As long as there is
1701 * only one instance, duration should be ignored. We still set a timeout
1702 * in case further instances are being added later on.
1703 *
1704 * If the remaining lifetime of the instance is more than the duration
1705 * then the timeout corresponds to the duration, otherwise it will be
1706 * reduced to the remaining instance lifetime.
1707 */
1708 if (adv_instance->timeout == 0 ||
1709 adv_instance->duration <= adv_instance->remaining_time)
1710 timeout = adv_instance->duration;
1711 else
1712 timeout = adv_instance->remaining_time;
1713
1714 /* The remaining time is being reduced unless the instance is being
1715 * advertised without time limit.
1716 */
1717 if (adv_instance->timeout)
1718 adv_instance->remaining_time =
1719 adv_instance->remaining_time - timeout;
1720
1721 hdev->adv_instance_timeout = timeout;
1722 queue_delayed_work(hdev->req_workqueue,
1723 &hdev->adv_instance_expire,
1724 msecs_to_jiffies(timeout * 1000));
1725
1726 /* If we're just re-scheduling the same instance again then do not
1727 * execute any HCI commands. This happens when a single instance is
1728 * being advertised.
1729 */
1730 if (!force && hdev->cur_adv_instance == instance &&
1731 hci_dev_test_flag(hdev, HCI_LE_ADV))
1732 return 0;
1733
1734 hdev->cur_adv_instance = instance;
1735 if (ext_adv_capable(hdev)) {
1736 __hci_req_start_ext_adv(req, instance);
1737 } else {
1738 __hci_req_update_adv_data(req, instance);
1739 __hci_req_update_scan_rsp_data(req, instance);
1740 __hci_req_enable_advertising(req);
1741 }
1742
1743 return 0;
1744 }
1745
cancel_adv_timeout(struct hci_dev * hdev)1746 static void cancel_adv_timeout(struct hci_dev *hdev)
1747 {
1748 if (hdev->adv_instance_timeout) {
1749 hdev->adv_instance_timeout = 0;
1750 cancel_delayed_work(&hdev->adv_instance_expire);
1751 }
1752 }
1753
1754 /* For a single instance:
1755 * - force == true: The instance will be removed even when its remaining
1756 * lifetime is not zero.
1757 * - force == false: the instance will be deactivated but kept stored unless
1758 * the remaining lifetime is zero.
1759 *
1760 * For instance == 0x00:
1761 * - force == true: All instances will be removed regardless of their timeout
1762 * setting.
1763 * - force == false: Only instances that have a timeout will be removed.
1764 */
hci_req_clear_adv_instance(struct hci_dev * hdev,struct sock * sk,struct hci_request * req,u8 instance,bool force)1765 void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk,
1766 struct hci_request *req, u8 instance,
1767 bool force)
1768 {
1769 struct adv_info *adv_instance, *n, *next_instance = NULL;
1770 int err;
1771 u8 rem_inst;
1772
1773 /* Cancel any timeout concerning the removed instance(s). */
1774 if (!instance || hdev->cur_adv_instance == instance)
1775 cancel_adv_timeout(hdev);
1776
1777 /* Get the next instance to advertise BEFORE we remove
1778 * the current one. This can be the same instance again
1779 * if there is only one instance.
1780 */
1781 if (instance && hdev->cur_adv_instance == instance)
1782 next_instance = hci_get_next_instance(hdev, instance);
1783
1784 if (instance == 0x00) {
1785 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances,
1786 list) {
1787 if (!(force || adv_instance->timeout))
1788 continue;
1789
1790 rem_inst = adv_instance->instance;
1791 err = hci_remove_adv_instance(hdev, rem_inst);
1792 if (!err)
1793 mgmt_advertising_removed(sk, hdev, rem_inst);
1794 }
1795 } else {
1796 adv_instance = hci_find_adv_instance(hdev, instance);
1797
1798 if (force || (adv_instance && adv_instance->timeout &&
1799 !adv_instance->remaining_time)) {
1800 /* Don't advertise a removed instance. */
1801 if (next_instance &&
1802 next_instance->instance == instance)
1803 next_instance = NULL;
1804
1805 err = hci_remove_adv_instance(hdev, instance);
1806 if (!err)
1807 mgmt_advertising_removed(sk, hdev, instance);
1808 }
1809 }
1810
1811 if (!req || !hdev_is_powered(hdev) ||
1812 hci_dev_test_flag(hdev, HCI_ADVERTISING))
1813 return;
1814
1815 if (next_instance)
1816 __hci_req_schedule_adv_instance(req, next_instance->instance,
1817 false);
1818 }
1819
set_random_addr(struct hci_request * req,bdaddr_t * rpa)1820 static void set_random_addr(struct hci_request *req, bdaddr_t *rpa)
1821 {
1822 struct hci_dev *hdev = req->hdev;
1823
1824 /* If we're advertising or initiating an LE connection we can't
1825 * go ahead and change the random address at this time. This is
1826 * because the eventual initiator address used for the
1827 * subsequently created connection will be undefined (some
1828 * controllers use the new address and others the one we had
1829 * when the operation started).
1830 *
1831 * In this kind of scenario skip the update and let the random
1832 * address be updated at the next cycle.
1833 */
1834 if (hci_dev_test_flag(hdev, HCI_LE_ADV) ||
1835 hci_lookup_le_connect(hdev)) {
1836 BT_DBG("Deferring random address update");
1837 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1838 return;
1839 }
1840
1841 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa);
1842 }
1843
hci_update_random_address(struct hci_request * req,bool require_privacy,bool use_rpa,u8 * own_addr_type)1844 int hci_update_random_address(struct hci_request *req, bool require_privacy,
1845 bool use_rpa, u8 *own_addr_type)
1846 {
1847 struct hci_dev *hdev = req->hdev;
1848 int err;
1849
1850 /* If privacy is enabled use a resolvable private address. If
1851 * current RPA has expired or there is something else than
1852 * the current RPA in use, then generate a new one.
1853 */
1854 if (use_rpa) {
1855 int to;
1856
1857 *own_addr_type = ADDR_LE_DEV_RANDOM;
1858
1859 if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) &&
1860 !bacmp(&hdev->random_addr, &hdev->rpa))
1861 return 0;
1862
1863 err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa);
1864 if (err < 0) {
1865 bt_dev_err(hdev, "failed to generate new RPA");
1866 return err;
1867 }
1868
1869 set_random_addr(req, &hdev->rpa);
1870
1871 to = msecs_to_jiffies(hdev->rpa_timeout * 1000);
1872 queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to);
1873
1874 return 0;
1875 }
1876
1877 /* In case of required privacy without resolvable private address,
1878 * use an non-resolvable private address. This is useful for active
1879 * scanning and non-connectable advertising.
1880 */
1881 if (require_privacy) {
1882 bdaddr_t nrpa;
1883
1884 while (true) {
1885 /* The non-resolvable private address is generated
1886 * from random six bytes with the two most significant
1887 * bits cleared.
1888 */
1889 get_random_bytes(&nrpa, 6);
1890 nrpa.b[5] &= 0x3f;
1891
1892 /* The non-resolvable private address shall not be
1893 * equal to the public address.
1894 */
1895 if (bacmp(&hdev->bdaddr, &nrpa))
1896 break;
1897 }
1898
1899 *own_addr_type = ADDR_LE_DEV_RANDOM;
1900 set_random_addr(req, &nrpa);
1901 return 0;
1902 }
1903
1904 /* If forcing static address is in use or there is no public
1905 * address use the static address as random address (but skip
1906 * the HCI command if the current random address is already the
1907 * static one.
1908 *
1909 * In case BR/EDR has been disabled on a dual-mode controller
1910 * and a static address has been configured, then use that
1911 * address instead of the public BR/EDR address.
1912 */
1913 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
1914 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
1915 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
1916 bacmp(&hdev->static_addr, BDADDR_ANY))) {
1917 *own_addr_type = ADDR_LE_DEV_RANDOM;
1918 if (bacmp(&hdev->static_addr, &hdev->random_addr))
1919 hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6,
1920 &hdev->static_addr);
1921 return 0;
1922 }
1923
1924 /* Neither privacy nor static address is being used so use a
1925 * public address.
1926 */
1927 *own_addr_type = ADDR_LE_DEV_PUBLIC;
1928
1929 return 0;
1930 }
1931
disconnected_whitelist_entries(struct hci_dev * hdev)1932 static bool disconnected_whitelist_entries(struct hci_dev *hdev)
1933 {
1934 struct bdaddr_list *b;
1935
1936 list_for_each_entry(b, &hdev->whitelist, list) {
1937 struct hci_conn *conn;
1938
1939 conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr);
1940 if (!conn)
1941 return true;
1942
1943 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
1944 return true;
1945 }
1946
1947 return false;
1948 }
1949
__hci_req_update_scan(struct hci_request * req)1950 void __hci_req_update_scan(struct hci_request *req)
1951 {
1952 struct hci_dev *hdev = req->hdev;
1953 u8 scan;
1954
1955 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
1956 return;
1957
1958 if (!hdev_is_powered(hdev))
1959 return;
1960
1961 if (mgmt_powering_down(hdev))
1962 return;
1963
1964 if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) ||
1965 disconnected_whitelist_entries(hdev))
1966 scan = SCAN_PAGE;
1967 else
1968 scan = SCAN_DISABLED;
1969
1970 if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
1971 scan |= SCAN_INQUIRY;
1972
1973 if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) &&
1974 test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY))
1975 return;
1976
1977 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1978 }
1979
update_scan(struct hci_request * req,unsigned long opt)1980 static int update_scan(struct hci_request *req, unsigned long opt)
1981 {
1982 hci_dev_lock(req->hdev);
1983 __hci_req_update_scan(req);
1984 hci_dev_unlock(req->hdev);
1985 return 0;
1986 }
1987
scan_update_work(struct work_struct * work)1988 static void scan_update_work(struct work_struct *work)
1989 {
1990 struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update);
1991
1992 hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL);
1993 }
1994
connectable_update(struct hci_request * req,unsigned long opt)1995 static int connectable_update(struct hci_request *req, unsigned long opt)
1996 {
1997 struct hci_dev *hdev = req->hdev;
1998
1999 hci_dev_lock(hdev);
2000
2001 __hci_req_update_scan(req);
2002
2003 /* If BR/EDR is not enabled and we disable advertising as a
2004 * by-product of disabling connectable, we need to update the
2005 * advertising flags.
2006 */
2007 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2008 __hci_req_update_adv_data(req, hdev->cur_adv_instance);
2009
2010 /* Update the advertising parameters if necessary */
2011 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2012 !list_empty(&hdev->adv_instances)) {
2013 if (ext_adv_capable(hdev))
2014 __hci_req_start_ext_adv(req, hdev->cur_adv_instance);
2015 else
2016 __hci_req_enable_advertising(req);
2017 }
2018
2019 __hci_update_background_scan(req);
2020
2021 hci_dev_unlock(hdev);
2022
2023 return 0;
2024 }
2025
connectable_update_work(struct work_struct * work)2026 static void connectable_update_work(struct work_struct *work)
2027 {
2028 struct hci_dev *hdev = container_of(work, struct hci_dev,
2029 connectable_update);
2030 u8 status;
2031
2032 hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status);
2033 mgmt_set_connectable_complete(hdev, status);
2034 }
2035
get_service_classes(struct hci_dev * hdev)2036 static u8 get_service_classes(struct hci_dev *hdev)
2037 {
2038 struct bt_uuid *uuid;
2039 u8 val = 0;
2040
2041 list_for_each_entry(uuid, &hdev->uuids, list)
2042 val |= uuid->svc_hint;
2043
2044 return val;
2045 }
2046
__hci_req_update_class(struct hci_request * req)2047 void __hci_req_update_class(struct hci_request *req)
2048 {
2049 struct hci_dev *hdev = req->hdev;
2050 u8 cod[3];
2051
2052 BT_DBG("%s", hdev->name);
2053
2054 if (!hdev_is_powered(hdev))
2055 return;
2056
2057 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED))
2058 return;
2059
2060 if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE))
2061 return;
2062
2063 cod[0] = hdev->minor_class;
2064 cod[1] = hdev->major_class;
2065 cod[2] = get_service_classes(hdev);
2066
2067 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE))
2068 cod[1] |= 0x20;
2069
2070 if (memcmp(cod, hdev->dev_class, 3) == 0)
2071 return;
2072
2073 hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod);
2074 }
2075
write_iac(struct hci_request * req)2076 static void write_iac(struct hci_request *req)
2077 {
2078 struct hci_dev *hdev = req->hdev;
2079 struct hci_cp_write_current_iac_lap cp;
2080
2081 if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE))
2082 return;
2083
2084 if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) {
2085 /* Limited discoverable mode */
2086 cp.num_iac = min_t(u8, hdev->num_iac, 2);
2087 cp.iac_lap[0] = 0x00; /* LIAC */
2088 cp.iac_lap[1] = 0x8b;
2089 cp.iac_lap[2] = 0x9e;
2090 cp.iac_lap[3] = 0x33; /* GIAC */
2091 cp.iac_lap[4] = 0x8b;
2092 cp.iac_lap[5] = 0x9e;
2093 } else {
2094 /* General discoverable mode */
2095 cp.num_iac = 1;
2096 cp.iac_lap[0] = 0x33; /* GIAC */
2097 cp.iac_lap[1] = 0x8b;
2098 cp.iac_lap[2] = 0x9e;
2099 }
2100
2101 hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP,
2102 (cp.num_iac * 3) + 1, &cp);
2103 }
2104
discoverable_update(struct hci_request * req,unsigned long opt)2105 static int discoverable_update(struct hci_request *req, unsigned long opt)
2106 {
2107 struct hci_dev *hdev = req->hdev;
2108
2109 hci_dev_lock(hdev);
2110
2111 if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2112 write_iac(req);
2113 __hci_req_update_scan(req);
2114 __hci_req_update_class(req);
2115 }
2116
2117 /* Advertising instances don't use the global discoverable setting, so
2118 * only update AD if advertising was enabled using Set Advertising.
2119 */
2120 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2121 __hci_req_update_adv_data(req, 0x00);
2122
2123 /* Discoverable mode affects the local advertising
2124 * address in limited privacy mode.
2125 */
2126 if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) {
2127 if (ext_adv_capable(hdev))
2128 __hci_req_start_ext_adv(req, 0x00);
2129 else
2130 __hci_req_enable_advertising(req);
2131 }
2132 }
2133
2134 hci_dev_unlock(hdev);
2135
2136 return 0;
2137 }
2138
discoverable_update_work(struct work_struct * work)2139 static void discoverable_update_work(struct work_struct *work)
2140 {
2141 struct hci_dev *hdev = container_of(work, struct hci_dev,
2142 discoverable_update);
2143 u8 status;
2144
2145 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status);
2146 mgmt_set_discoverable_complete(hdev, status);
2147 }
2148
__hci_abort_conn(struct hci_request * req,struct hci_conn * conn,u8 reason)2149 void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn,
2150 u8 reason)
2151 {
2152 switch (conn->state) {
2153 case BT_CONNECTED:
2154 case BT_CONFIG:
2155 if (conn->type == AMP_LINK) {
2156 struct hci_cp_disconn_phy_link cp;
2157
2158 cp.phy_handle = HCI_PHY_HANDLE(conn->handle);
2159 cp.reason = reason;
2160 hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp),
2161 &cp);
2162 } else {
2163 struct hci_cp_disconnect dc;
2164
2165 dc.handle = cpu_to_le16(conn->handle);
2166 dc.reason = reason;
2167 hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc);
2168 }
2169
2170 conn->state = BT_DISCONN;
2171
2172 break;
2173 case BT_CONNECT:
2174 if (conn->type == LE_LINK) {
2175 if (test_bit(HCI_CONN_SCANNING, &conn->flags))
2176 break;
2177 hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL,
2178 0, NULL);
2179 } else if (conn->type == ACL_LINK) {
2180 if (req->hdev->hci_ver < BLUETOOTH_VER_1_2)
2181 break;
2182 hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL,
2183 6, &conn->dst);
2184 }
2185 break;
2186 case BT_CONNECT2:
2187 if (conn->type == ACL_LINK) {
2188 struct hci_cp_reject_conn_req rej;
2189
2190 bacpy(&rej.bdaddr, &conn->dst);
2191 rej.reason = reason;
2192
2193 hci_req_add(req, HCI_OP_REJECT_CONN_REQ,
2194 sizeof(rej), &rej);
2195 } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) {
2196 struct hci_cp_reject_sync_conn_req rej;
2197
2198 bacpy(&rej.bdaddr, &conn->dst);
2199
2200 /* SCO rejection has its own limited set of
2201 * allowed error values (0x0D-0x0F) which isn't
2202 * compatible with most values passed to this
2203 * function. To be safe hard-code one of the
2204 * values that's suitable for SCO.
2205 */
2206 rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES;
2207
2208 hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ,
2209 sizeof(rej), &rej);
2210 }
2211 break;
2212 default:
2213 conn->state = BT_CLOSED;
2214 break;
2215 }
2216 }
2217
abort_conn_complete(struct hci_dev * hdev,u8 status,u16 opcode)2218 static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode)
2219 {
2220 if (status)
2221 BT_DBG("Failed to abort connection: status 0x%2.2x", status);
2222 }
2223
hci_abort_conn(struct hci_conn * conn,u8 reason)2224 int hci_abort_conn(struct hci_conn *conn, u8 reason)
2225 {
2226 struct hci_request req;
2227 int err;
2228
2229 hci_req_init(&req, conn->hdev);
2230
2231 __hci_abort_conn(&req, conn, reason);
2232
2233 err = hci_req_run(&req, abort_conn_complete);
2234 if (err && err != -ENODATA) {
2235 bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err);
2236 return err;
2237 }
2238
2239 return 0;
2240 }
2241
update_bg_scan(struct hci_request * req,unsigned long opt)2242 static int update_bg_scan(struct hci_request *req, unsigned long opt)
2243 {
2244 hci_dev_lock(req->hdev);
2245 __hci_update_background_scan(req);
2246 hci_dev_unlock(req->hdev);
2247 return 0;
2248 }
2249
bg_scan_update(struct work_struct * work)2250 static void bg_scan_update(struct work_struct *work)
2251 {
2252 struct hci_dev *hdev = container_of(work, struct hci_dev,
2253 bg_scan_update);
2254 struct hci_conn *conn;
2255 u8 status;
2256 int err;
2257
2258 err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status);
2259 if (!err)
2260 return;
2261
2262 hci_dev_lock(hdev);
2263
2264 conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT);
2265 if (conn)
2266 hci_le_conn_failed(conn, status);
2267
2268 hci_dev_unlock(hdev);
2269 }
2270
le_scan_disable(struct hci_request * req,unsigned long opt)2271 static int le_scan_disable(struct hci_request *req, unsigned long opt)
2272 {
2273 hci_req_add_le_scan_disable(req);
2274 return 0;
2275 }
2276
bredr_inquiry(struct hci_request * req,unsigned long opt)2277 static int bredr_inquiry(struct hci_request *req, unsigned long opt)
2278 {
2279 u8 length = opt;
2280 const u8 giac[3] = { 0x33, 0x8b, 0x9e };
2281 const u8 liac[3] = { 0x00, 0x8b, 0x9e };
2282 struct hci_cp_inquiry cp;
2283
2284 BT_DBG("%s", req->hdev->name);
2285
2286 hci_dev_lock(req->hdev);
2287 hci_inquiry_cache_flush(req->hdev);
2288 hci_dev_unlock(req->hdev);
2289
2290 memset(&cp, 0, sizeof(cp));
2291
2292 if (req->hdev->discovery.limited)
2293 memcpy(&cp.lap, liac, sizeof(cp.lap));
2294 else
2295 memcpy(&cp.lap, giac, sizeof(cp.lap));
2296
2297 cp.length = length;
2298
2299 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
2300
2301 return 0;
2302 }
2303
le_scan_disable_work(struct work_struct * work)2304 static void le_scan_disable_work(struct work_struct *work)
2305 {
2306 struct hci_dev *hdev = container_of(work, struct hci_dev,
2307 le_scan_disable.work);
2308 u8 status;
2309
2310 BT_DBG("%s", hdev->name);
2311
2312 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2313 return;
2314
2315 cancel_delayed_work(&hdev->le_scan_restart);
2316
2317 hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status);
2318 if (status) {
2319 bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x",
2320 status);
2321 return;
2322 }
2323
2324 hdev->discovery.scan_start = 0;
2325
2326 /* If we were running LE only scan, change discovery state. If
2327 * we were running both LE and BR/EDR inquiry simultaneously,
2328 * and BR/EDR inquiry is already finished, stop discovery,
2329 * otherwise BR/EDR inquiry will stop discovery when finished.
2330 * If we will resolve remote device name, do not change
2331 * discovery state.
2332 */
2333
2334 if (hdev->discovery.type == DISCOV_TYPE_LE)
2335 goto discov_stopped;
2336
2337 if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED)
2338 return;
2339
2340 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) {
2341 if (!test_bit(HCI_INQUIRY, &hdev->flags) &&
2342 hdev->discovery.state != DISCOVERY_RESOLVING)
2343 goto discov_stopped;
2344
2345 return;
2346 }
2347
2348 hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN,
2349 HCI_CMD_TIMEOUT, &status);
2350 if (status) {
2351 bt_dev_err(hdev, "inquiry failed: status 0x%02x", status);
2352 goto discov_stopped;
2353 }
2354
2355 return;
2356
2357 discov_stopped:
2358 hci_dev_lock(hdev);
2359 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2360 hci_dev_unlock(hdev);
2361 }
2362
le_scan_restart(struct hci_request * req,unsigned long opt)2363 static int le_scan_restart(struct hci_request *req, unsigned long opt)
2364 {
2365 struct hci_dev *hdev = req->hdev;
2366
2367 /* If controller is not scanning we are done. */
2368 if (!hci_dev_test_flag(hdev, HCI_LE_SCAN))
2369 return 0;
2370
2371 hci_req_add_le_scan_disable(req);
2372
2373 if (use_ext_scan(hdev)) {
2374 struct hci_cp_le_set_ext_scan_enable ext_enable_cp;
2375
2376 memset(&ext_enable_cp, 0, sizeof(ext_enable_cp));
2377 ext_enable_cp.enable = LE_SCAN_ENABLE;
2378 ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2379
2380 hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE,
2381 sizeof(ext_enable_cp), &ext_enable_cp);
2382 } else {
2383 struct hci_cp_le_set_scan_enable cp;
2384
2385 memset(&cp, 0, sizeof(cp));
2386 cp.enable = LE_SCAN_ENABLE;
2387 cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE;
2388 hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp);
2389 }
2390
2391 return 0;
2392 }
2393
le_scan_restart_work(struct work_struct * work)2394 static void le_scan_restart_work(struct work_struct *work)
2395 {
2396 struct hci_dev *hdev = container_of(work, struct hci_dev,
2397 le_scan_restart.work);
2398 unsigned long timeout, duration, scan_start, now;
2399 u8 status;
2400
2401 BT_DBG("%s", hdev->name);
2402
2403 hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status);
2404 if (status) {
2405 bt_dev_err(hdev, "failed to restart LE scan: status %d",
2406 status);
2407 return;
2408 }
2409
2410 hci_dev_lock(hdev);
2411
2412 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) ||
2413 !hdev->discovery.scan_start)
2414 goto unlock;
2415
2416 /* When the scan was started, hdev->le_scan_disable has been queued
2417 * after duration from scan_start. During scan restart this job
2418 * has been canceled, and we need to queue it again after proper
2419 * timeout, to make sure that scan does not run indefinitely.
2420 */
2421 duration = hdev->discovery.scan_duration;
2422 scan_start = hdev->discovery.scan_start;
2423 now = jiffies;
2424 if (now - scan_start <= duration) {
2425 int elapsed;
2426
2427 if (now >= scan_start)
2428 elapsed = now - scan_start;
2429 else
2430 elapsed = ULONG_MAX - scan_start + now;
2431
2432 timeout = duration - elapsed;
2433 } else {
2434 timeout = 0;
2435 }
2436
2437 queue_delayed_work(hdev->req_workqueue,
2438 &hdev->le_scan_disable, timeout);
2439
2440 unlock:
2441 hci_dev_unlock(hdev);
2442 }
2443
active_scan(struct hci_request * req,unsigned long opt)2444 static int active_scan(struct hci_request *req, unsigned long opt)
2445 {
2446 uint16_t interval = opt;
2447 struct hci_dev *hdev = req->hdev;
2448 u8 own_addr_type;
2449 int err;
2450
2451 BT_DBG("%s", hdev->name);
2452
2453 if (hci_dev_test_flag(hdev, HCI_LE_ADV)) {
2454 hci_dev_lock(hdev);
2455
2456 /* Don't let discovery abort an outgoing connection attempt
2457 * that's using directed advertising.
2458 */
2459 if (hci_lookup_le_connect(hdev)) {
2460 hci_dev_unlock(hdev);
2461 return -EBUSY;
2462 }
2463
2464 cancel_adv_timeout(hdev);
2465 hci_dev_unlock(hdev);
2466
2467 __hci_req_disable_advertising(req);
2468 }
2469
2470 /* If controller is scanning, it means the background scanning is
2471 * running. Thus, we should temporarily stop it in order to set the
2472 * discovery scanning parameters.
2473 */
2474 if (hci_dev_test_flag(hdev, HCI_LE_SCAN))
2475 hci_req_add_le_scan_disable(req);
2476
2477 /* All active scans will be done with either a resolvable private
2478 * address (when privacy feature has been enabled) or non-resolvable
2479 * private address.
2480 */
2481 err = hci_update_random_address(req, true, scan_use_rpa(hdev),
2482 &own_addr_type);
2483 if (err < 0)
2484 own_addr_type = ADDR_LE_DEV_PUBLIC;
2485
2486 hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN,
2487 own_addr_type, 0);
2488 return 0;
2489 }
2490
interleaved_discov(struct hci_request * req,unsigned long opt)2491 static int interleaved_discov(struct hci_request *req, unsigned long opt)
2492 {
2493 int err;
2494
2495 BT_DBG("%s", req->hdev->name);
2496
2497 err = active_scan(req, opt);
2498 if (err)
2499 return err;
2500
2501 return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN);
2502 }
2503
start_discovery(struct hci_dev * hdev,u8 * status)2504 static void start_discovery(struct hci_dev *hdev, u8 *status)
2505 {
2506 unsigned long timeout;
2507
2508 BT_DBG("%s type %u", hdev->name, hdev->discovery.type);
2509
2510 switch (hdev->discovery.type) {
2511 case DISCOV_TYPE_BREDR:
2512 if (!hci_dev_test_flag(hdev, HCI_INQUIRY))
2513 hci_req_sync(hdev, bredr_inquiry,
2514 DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT,
2515 status);
2516 return;
2517 case DISCOV_TYPE_INTERLEAVED:
2518 /* When running simultaneous discovery, the LE scanning time
2519 * should occupy the whole discovery time sine BR/EDR inquiry
2520 * and LE scanning are scheduled by the controller.
2521 *
2522 * For interleaving discovery in comparison, BR/EDR inquiry
2523 * and LE scanning are done sequentially with separate
2524 * timeouts.
2525 */
2526 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY,
2527 &hdev->quirks)) {
2528 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2529 /* During simultaneous discovery, we double LE scan
2530 * interval. We must leave some time for the controller
2531 * to do BR/EDR inquiry.
2532 */
2533 hci_req_sync(hdev, interleaved_discov,
2534 DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT,
2535 status);
2536 break;
2537 }
2538
2539 timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout);
2540 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2541 HCI_CMD_TIMEOUT, status);
2542 break;
2543 case DISCOV_TYPE_LE:
2544 timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT);
2545 hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT,
2546 HCI_CMD_TIMEOUT, status);
2547 break;
2548 default:
2549 *status = HCI_ERROR_UNSPECIFIED;
2550 return;
2551 }
2552
2553 if (*status)
2554 return;
2555
2556 BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout));
2557
2558 /* When service discovery is used and the controller has a
2559 * strict duplicate filter, it is important to remember the
2560 * start and duration of the scan. This is required for
2561 * restarting scanning during the discovery phase.
2562 */
2563 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) &&
2564 hdev->discovery.result_filtering) {
2565 hdev->discovery.scan_start = jiffies;
2566 hdev->discovery.scan_duration = timeout;
2567 }
2568
2569 queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable,
2570 timeout);
2571 }
2572
hci_req_stop_discovery(struct hci_request * req)2573 bool hci_req_stop_discovery(struct hci_request *req)
2574 {
2575 struct hci_dev *hdev = req->hdev;
2576 struct discovery_state *d = &hdev->discovery;
2577 struct hci_cp_remote_name_req_cancel cp;
2578 struct inquiry_entry *e;
2579 bool ret = false;
2580
2581 BT_DBG("%s state %u", hdev->name, hdev->discovery.state);
2582
2583 if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) {
2584 if (test_bit(HCI_INQUIRY, &hdev->flags))
2585 hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL);
2586
2587 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2588 cancel_delayed_work(&hdev->le_scan_disable);
2589 hci_req_add_le_scan_disable(req);
2590 }
2591
2592 ret = true;
2593 } else {
2594 /* Passive scanning */
2595 if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) {
2596 hci_req_add_le_scan_disable(req);
2597 ret = true;
2598 }
2599 }
2600
2601 /* No further actions needed for LE-only discovery */
2602 if (d->type == DISCOV_TYPE_LE)
2603 return ret;
2604
2605 if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) {
2606 e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY,
2607 NAME_PENDING);
2608 if (!e)
2609 return ret;
2610
2611 bacpy(&cp.bdaddr, &e->data.bdaddr);
2612 hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp),
2613 &cp);
2614 ret = true;
2615 }
2616
2617 return ret;
2618 }
2619
stop_discovery(struct hci_request * req,unsigned long opt)2620 static int stop_discovery(struct hci_request *req, unsigned long opt)
2621 {
2622 hci_dev_lock(req->hdev);
2623 hci_req_stop_discovery(req);
2624 hci_dev_unlock(req->hdev);
2625
2626 return 0;
2627 }
2628
discov_update(struct work_struct * work)2629 static void discov_update(struct work_struct *work)
2630 {
2631 struct hci_dev *hdev = container_of(work, struct hci_dev,
2632 discov_update);
2633 u8 status = 0;
2634
2635 switch (hdev->discovery.state) {
2636 case DISCOVERY_STARTING:
2637 start_discovery(hdev, &status);
2638 mgmt_start_discovery_complete(hdev, status);
2639 if (status)
2640 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2641 else
2642 hci_discovery_set_state(hdev, DISCOVERY_FINDING);
2643 break;
2644 case DISCOVERY_STOPPING:
2645 hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status);
2646 mgmt_stop_discovery_complete(hdev, status);
2647 if (!status)
2648 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
2649 break;
2650 case DISCOVERY_STOPPED:
2651 default:
2652 return;
2653 }
2654 }
2655
discov_off(struct work_struct * work)2656 static void discov_off(struct work_struct *work)
2657 {
2658 struct hci_dev *hdev = container_of(work, struct hci_dev,
2659 discov_off.work);
2660
2661 BT_DBG("%s", hdev->name);
2662
2663 hci_dev_lock(hdev);
2664
2665 /* When discoverable timeout triggers, then just make sure
2666 * the limited discoverable flag is cleared. Even in the case
2667 * of a timeout triggered from general discoverable, it is
2668 * safe to unconditionally clear the flag.
2669 */
2670 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
2671 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
2672 hdev->discov_timeout = 0;
2673
2674 hci_dev_unlock(hdev);
2675
2676 hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL);
2677 mgmt_new_settings(hdev);
2678 }
2679
powered_update_hci(struct hci_request * req,unsigned long opt)2680 static int powered_update_hci(struct hci_request *req, unsigned long opt)
2681 {
2682 struct hci_dev *hdev = req->hdev;
2683 u8 link_sec;
2684
2685 hci_dev_lock(hdev);
2686
2687 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
2688 !lmp_host_ssp_capable(hdev)) {
2689 u8 mode = 0x01;
2690
2691 hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode);
2692
2693 if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) {
2694 u8 support = 0x01;
2695
2696 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
2697 sizeof(support), &support);
2698 }
2699 }
2700
2701 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) &&
2702 lmp_bredr_capable(hdev)) {
2703 struct hci_cp_write_le_host_supported cp;
2704
2705 cp.le = 0x01;
2706 cp.simul = 0x00;
2707
2708 /* Check first if we already have the right
2709 * host state (host features set)
2710 */
2711 if (cp.le != lmp_host_le_capable(hdev) ||
2712 cp.simul != lmp_host_le_br_capable(hdev))
2713 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED,
2714 sizeof(cp), &cp);
2715 }
2716
2717 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
2718 /* Make sure the controller has a good default for
2719 * advertising data. This also applies to the case
2720 * where BR/EDR was toggled during the AUTO_OFF phase.
2721 */
2722 if (hci_dev_test_flag(hdev, HCI_ADVERTISING) ||
2723 list_empty(&hdev->adv_instances)) {
2724 int err;
2725
2726 if (ext_adv_capable(hdev)) {
2727 err = __hci_req_setup_ext_adv_instance(req,
2728 0x00);
2729 if (!err)
2730 __hci_req_update_scan_rsp_data(req,
2731 0x00);
2732 } else {
2733 err = 0;
2734 __hci_req_update_adv_data(req, 0x00);
2735 __hci_req_update_scan_rsp_data(req, 0x00);
2736 }
2737
2738 if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) {
2739 if (!ext_adv_capable(hdev))
2740 __hci_req_enable_advertising(req);
2741 else if (!err)
2742 __hci_req_enable_ext_advertising(req);
2743 }
2744 } else if (!list_empty(&hdev->adv_instances)) {
2745 struct adv_info *adv_instance;
2746
2747 adv_instance = list_first_entry(&hdev->adv_instances,
2748 struct adv_info, list);
2749 __hci_req_schedule_adv_instance(req,
2750 adv_instance->instance,
2751 true);
2752 }
2753 }
2754
2755 link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY);
2756 if (link_sec != test_bit(HCI_AUTH, &hdev->flags))
2757 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE,
2758 sizeof(link_sec), &link_sec);
2759
2760 if (lmp_bredr_capable(hdev)) {
2761 if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE))
2762 __hci_req_write_fast_connectable(req, true);
2763 else
2764 __hci_req_write_fast_connectable(req, false);
2765 __hci_req_update_scan(req);
2766 __hci_req_update_class(req);
2767 __hci_req_update_name(req);
2768 __hci_req_update_eir(req);
2769 }
2770
2771 hci_dev_unlock(hdev);
2772 return 0;
2773 }
2774
__hci_req_hci_power_on(struct hci_dev * hdev)2775 int __hci_req_hci_power_on(struct hci_dev *hdev)
2776 {
2777 /* Register the available SMP channels (BR/EDR and LE) only when
2778 * successfully powering on the controller. This late
2779 * registration is required so that LE SMP can clearly decide if
2780 * the public address or static address is used.
2781 */
2782 smp_register(hdev);
2783
2784 return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT,
2785 NULL);
2786 }
2787
hci_request_setup(struct hci_dev * hdev)2788 void hci_request_setup(struct hci_dev *hdev)
2789 {
2790 INIT_WORK(&hdev->discov_update, discov_update);
2791 INIT_WORK(&hdev->bg_scan_update, bg_scan_update);
2792 INIT_WORK(&hdev->scan_update, scan_update_work);
2793 INIT_WORK(&hdev->connectable_update, connectable_update_work);
2794 INIT_WORK(&hdev->discoverable_update, discoverable_update_work);
2795 INIT_DELAYED_WORK(&hdev->discov_off, discov_off);
2796 INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work);
2797 INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work);
2798 INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire);
2799 }
2800
hci_request_cancel_all(struct hci_dev * hdev)2801 void hci_request_cancel_all(struct hci_dev *hdev)
2802 {
2803 hci_req_sync_cancel(hdev, ENODEV);
2804
2805 cancel_work_sync(&hdev->discov_update);
2806 cancel_work_sync(&hdev->bg_scan_update);
2807 cancel_work_sync(&hdev->scan_update);
2808 cancel_work_sync(&hdev->connectable_update);
2809 cancel_work_sync(&hdev->discoverable_update);
2810 cancel_delayed_work_sync(&hdev->discov_off);
2811 cancel_delayed_work_sync(&hdev->le_scan_disable);
2812 cancel_delayed_work_sync(&hdev->le_scan_restart);
2813
2814 if (hdev->adv_instance_timeout) {
2815 cancel_delayed_work_sync(&hdev->adv_instance_expire);
2816 hdev->adv_instance_timeout = 0;
2817 }
2818 }
2819