1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
4 Copyright (C) 2011 ProFUSION Embedded Systems
5
6 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License version 2 as
10 published by the Free Software Foundation;
11
12 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
14 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
15 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
16 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
17 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20
21 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
22 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
23 SOFTWARE IS DISCLAIMED.
24 */
25
26 /* Bluetooth HCI core. */
27
28 #include <linux/export.h>
29 #include <linux/rfkill.h>
30 #include <linux/debugfs.h>
31 #include <linux/crypto.h>
32 #include <linux/property.h>
33 #include <linux/suspend.h>
34 #include <linux/wait.h>
35 #include <asm/unaligned.h>
36
37 #include <net/bluetooth/bluetooth.h>
38 #include <net/bluetooth/hci_core.h>
39 #include <net/bluetooth/l2cap.h>
40 #include <net/bluetooth/mgmt.h>
41
42 #include "hci_request.h"
43 #include "hci_debugfs.h"
44 #include "smp.h"
45 #include "leds.h"
46 #include "msft.h"
47
48 static void hci_rx_work(struct work_struct *work);
49 static void hci_cmd_work(struct work_struct *work);
50 static void hci_tx_work(struct work_struct *work);
51
52 /* HCI device list */
53 LIST_HEAD(hci_dev_list);
54 DEFINE_RWLOCK(hci_dev_list_lock);
55
56 /* HCI callback list */
57 LIST_HEAD(hci_cb_list);
58 DEFINE_MUTEX(hci_cb_list_lock);
59
60 /* HCI ID Numbering */
61 static DEFINE_IDA(hci_index_ida);
62
63 /* ---- HCI debugfs entries ---- */
64
dut_mode_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)65 static ssize_t dut_mode_read(struct file *file, char __user *user_buf,
66 size_t count, loff_t *ppos)
67 {
68 struct hci_dev *hdev = file->private_data;
69 char buf[3];
70
71 buf[0] = hci_dev_test_flag(hdev, HCI_DUT_MODE) ? 'Y' : 'N';
72 buf[1] = '\n';
73 buf[2] = '\0';
74 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
75 }
76
dut_mode_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)77 static ssize_t dut_mode_write(struct file *file, const char __user *user_buf,
78 size_t count, loff_t *ppos)
79 {
80 struct hci_dev *hdev = file->private_data;
81 struct sk_buff *skb;
82 bool enable;
83 int err;
84
85 if (!test_bit(HCI_UP, &hdev->flags))
86 return -ENETDOWN;
87
88 err = kstrtobool_from_user(user_buf, count, &enable);
89 if (err)
90 return err;
91
92 if (enable == hci_dev_test_flag(hdev, HCI_DUT_MODE))
93 return -EALREADY;
94
95 hci_req_sync_lock(hdev);
96 if (enable)
97 skb = __hci_cmd_sync(hdev, HCI_OP_ENABLE_DUT_MODE, 0, NULL,
98 HCI_CMD_TIMEOUT);
99 else
100 skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL,
101 HCI_CMD_TIMEOUT);
102 hci_req_sync_unlock(hdev);
103
104 if (IS_ERR(skb))
105 return PTR_ERR(skb);
106
107 kfree_skb(skb);
108
109 hci_dev_change_flag(hdev, HCI_DUT_MODE);
110
111 return count;
112 }
113
114 static const struct file_operations dut_mode_fops = {
115 .open = simple_open,
116 .read = dut_mode_read,
117 .write = dut_mode_write,
118 .llseek = default_llseek,
119 };
120
vendor_diag_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)121 static ssize_t vendor_diag_read(struct file *file, char __user *user_buf,
122 size_t count, loff_t *ppos)
123 {
124 struct hci_dev *hdev = file->private_data;
125 char buf[3];
126
127 buf[0] = hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) ? 'Y' : 'N';
128 buf[1] = '\n';
129 buf[2] = '\0';
130 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
131 }
132
vendor_diag_write(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)133 static ssize_t vendor_diag_write(struct file *file, const char __user *user_buf,
134 size_t count, loff_t *ppos)
135 {
136 struct hci_dev *hdev = file->private_data;
137 bool enable;
138 int err;
139
140 err = kstrtobool_from_user(user_buf, count, &enable);
141 if (err)
142 return err;
143
144 /* When the diagnostic flags are not persistent and the transport
145 * is not active or in user channel operation, then there is no need
146 * for the vendor callback. Instead just store the desired value and
147 * the setting will be programmed when the controller gets powered on.
148 */
149 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
150 (!test_bit(HCI_RUNNING, &hdev->flags) ||
151 hci_dev_test_flag(hdev, HCI_USER_CHANNEL)))
152 goto done;
153
154 hci_req_sync_lock(hdev);
155 err = hdev->set_diag(hdev, enable);
156 hci_req_sync_unlock(hdev);
157
158 if (err < 0)
159 return err;
160
161 done:
162 if (enable)
163 hci_dev_set_flag(hdev, HCI_VENDOR_DIAG);
164 else
165 hci_dev_clear_flag(hdev, HCI_VENDOR_DIAG);
166
167 return count;
168 }
169
170 static const struct file_operations vendor_diag_fops = {
171 .open = simple_open,
172 .read = vendor_diag_read,
173 .write = vendor_diag_write,
174 .llseek = default_llseek,
175 };
176
hci_debugfs_create_basic(struct hci_dev * hdev)177 static void hci_debugfs_create_basic(struct hci_dev *hdev)
178 {
179 debugfs_create_file("dut_mode", 0644, hdev->debugfs, hdev,
180 &dut_mode_fops);
181
182 if (hdev->set_diag)
183 debugfs_create_file("vendor_diag", 0644, hdev->debugfs, hdev,
184 &vendor_diag_fops);
185 }
186
hci_reset_req(struct hci_request * req,unsigned long opt)187 static int hci_reset_req(struct hci_request *req, unsigned long opt)
188 {
189 BT_DBG("%s %ld", req->hdev->name, opt);
190
191 /* Reset device */
192 set_bit(HCI_RESET, &req->hdev->flags);
193 hci_req_add(req, HCI_OP_RESET, 0, NULL);
194 return 0;
195 }
196
bredr_init(struct hci_request * req)197 static void bredr_init(struct hci_request *req)
198 {
199 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_PACKET_BASED;
200
201 /* Read Local Supported Features */
202 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
203
204 /* Read Local Version */
205 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
206
207 /* Read BD Address */
208 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
209 }
210
amp_init1(struct hci_request * req)211 static void amp_init1(struct hci_request *req)
212 {
213 req->hdev->flow_ctl_mode = HCI_FLOW_CTL_MODE_BLOCK_BASED;
214
215 /* Read Local Version */
216 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
217
218 /* Read Local Supported Commands */
219 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
220
221 /* Read Local AMP Info */
222 hci_req_add(req, HCI_OP_READ_LOCAL_AMP_INFO, 0, NULL);
223
224 /* Read Data Blk size */
225 hci_req_add(req, HCI_OP_READ_DATA_BLOCK_SIZE, 0, NULL);
226
227 /* Read Flow Control Mode */
228 hci_req_add(req, HCI_OP_READ_FLOW_CONTROL_MODE, 0, NULL);
229
230 /* Read Location Data */
231 hci_req_add(req, HCI_OP_READ_LOCATION_DATA, 0, NULL);
232 }
233
amp_init2(struct hci_request * req)234 static int amp_init2(struct hci_request *req)
235 {
236 /* Read Local Supported Features. Not all AMP controllers
237 * support this so it's placed conditionally in the second
238 * stage init.
239 */
240 if (req->hdev->commands[14] & 0x20)
241 hci_req_add(req, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
242
243 return 0;
244 }
245
hci_init1_req(struct hci_request * req,unsigned long opt)246 static int hci_init1_req(struct hci_request *req, unsigned long opt)
247 {
248 struct hci_dev *hdev = req->hdev;
249
250 BT_DBG("%s %ld", hdev->name, opt);
251
252 /* Reset */
253 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
254 hci_reset_req(req, 0);
255
256 switch (hdev->dev_type) {
257 case HCI_PRIMARY:
258 bredr_init(req);
259 break;
260 case HCI_AMP:
261 amp_init1(req);
262 break;
263 default:
264 bt_dev_err(hdev, "Unknown device type %d", hdev->dev_type);
265 break;
266 }
267
268 return 0;
269 }
270
bredr_setup(struct hci_request * req)271 static void bredr_setup(struct hci_request *req)
272 {
273 __le16 param;
274 __u8 flt_type;
275
276 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
277 hci_req_add(req, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
278
279 /* Read Class of Device */
280 hci_req_add(req, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
281
282 /* Read Local Name */
283 hci_req_add(req, HCI_OP_READ_LOCAL_NAME, 0, NULL);
284
285 /* Read Voice Setting */
286 hci_req_add(req, HCI_OP_READ_VOICE_SETTING, 0, NULL);
287
288 /* Read Number of Supported IAC */
289 hci_req_add(req, HCI_OP_READ_NUM_SUPPORTED_IAC, 0, NULL);
290
291 /* Read Current IAC LAP */
292 hci_req_add(req, HCI_OP_READ_CURRENT_IAC_LAP, 0, NULL);
293
294 /* Clear Event Filters */
295 flt_type = HCI_FLT_CLEAR_ALL;
296 hci_req_add(req, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
297
298 /* Connection accept timeout ~20 secs */
299 param = cpu_to_le16(0x7d00);
300 hci_req_add(req, HCI_OP_WRITE_CA_TIMEOUT, 2, ¶m);
301 }
302
le_setup(struct hci_request * req)303 static void le_setup(struct hci_request *req)
304 {
305 struct hci_dev *hdev = req->hdev;
306
307 /* Read LE Buffer Size */
308 hci_req_add(req, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
309
310 /* Read LE Local Supported Features */
311 hci_req_add(req, HCI_OP_LE_READ_LOCAL_FEATURES, 0, NULL);
312
313 /* Read LE Supported States */
314 hci_req_add(req, HCI_OP_LE_READ_SUPPORTED_STATES, 0, NULL);
315
316 /* LE-only controllers have LE implicitly enabled */
317 if (!lmp_bredr_capable(hdev))
318 hci_dev_set_flag(hdev, HCI_LE_ENABLED);
319 }
320
hci_setup_event_mask(struct hci_request * req)321 static void hci_setup_event_mask(struct hci_request *req)
322 {
323 struct hci_dev *hdev = req->hdev;
324
325 /* The second byte is 0xff instead of 0x9f (two reserved bits
326 * disabled) since a Broadcom 1.2 dongle doesn't respond to the
327 * command otherwise.
328 */
329 u8 events[8] = { 0xff, 0xff, 0xfb, 0xff, 0x00, 0x00, 0x00, 0x00 };
330
331 /* CSR 1.1 dongles does not accept any bitfield so don't try to set
332 * any event mask for pre 1.2 devices.
333 */
334 if (hdev->hci_ver < BLUETOOTH_VER_1_2)
335 return;
336
337 if (lmp_bredr_capable(hdev)) {
338 events[4] |= 0x01; /* Flow Specification Complete */
339 } else {
340 /* Use a different default for LE-only devices */
341 memset(events, 0, sizeof(events));
342 events[1] |= 0x20; /* Command Complete */
343 events[1] |= 0x40; /* Command Status */
344 events[1] |= 0x80; /* Hardware Error */
345
346 /* If the controller supports the Disconnect command, enable
347 * the corresponding event. In addition enable packet flow
348 * control related events.
349 */
350 if (hdev->commands[0] & 0x20) {
351 events[0] |= 0x10; /* Disconnection Complete */
352 events[2] |= 0x04; /* Number of Completed Packets */
353 events[3] |= 0x02; /* Data Buffer Overflow */
354 }
355
356 /* If the controller supports the Read Remote Version
357 * Information command, enable the corresponding event.
358 */
359 if (hdev->commands[2] & 0x80)
360 events[1] |= 0x08; /* Read Remote Version Information
361 * Complete
362 */
363
364 if (hdev->le_features[0] & HCI_LE_ENCRYPTION) {
365 events[0] |= 0x80; /* Encryption Change */
366 events[5] |= 0x80; /* Encryption Key Refresh Complete */
367 }
368 }
369
370 if (lmp_inq_rssi_capable(hdev) ||
371 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks))
372 events[4] |= 0x02; /* Inquiry Result with RSSI */
373
374 if (lmp_ext_feat_capable(hdev))
375 events[4] |= 0x04; /* Read Remote Extended Features Complete */
376
377 if (lmp_esco_capable(hdev)) {
378 events[5] |= 0x08; /* Synchronous Connection Complete */
379 events[5] |= 0x10; /* Synchronous Connection Changed */
380 }
381
382 if (lmp_sniffsubr_capable(hdev))
383 events[5] |= 0x20; /* Sniff Subrating */
384
385 if (lmp_pause_enc_capable(hdev))
386 events[5] |= 0x80; /* Encryption Key Refresh Complete */
387
388 if (lmp_ext_inq_capable(hdev))
389 events[5] |= 0x40; /* Extended Inquiry Result */
390
391 if (lmp_no_flush_capable(hdev))
392 events[7] |= 0x01; /* Enhanced Flush Complete */
393
394 if (lmp_lsto_capable(hdev))
395 events[6] |= 0x80; /* Link Supervision Timeout Changed */
396
397 if (lmp_ssp_capable(hdev)) {
398 events[6] |= 0x01; /* IO Capability Request */
399 events[6] |= 0x02; /* IO Capability Response */
400 events[6] |= 0x04; /* User Confirmation Request */
401 events[6] |= 0x08; /* User Passkey Request */
402 events[6] |= 0x10; /* Remote OOB Data Request */
403 events[6] |= 0x20; /* Simple Pairing Complete */
404 events[7] |= 0x04; /* User Passkey Notification */
405 events[7] |= 0x08; /* Keypress Notification */
406 events[7] |= 0x10; /* Remote Host Supported
407 * Features Notification
408 */
409 }
410
411 if (lmp_le_capable(hdev))
412 events[7] |= 0x20; /* LE Meta-Event */
413
414 hci_req_add(req, HCI_OP_SET_EVENT_MASK, sizeof(events), events);
415 }
416
hci_init2_req(struct hci_request * req,unsigned long opt)417 static int hci_init2_req(struct hci_request *req, unsigned long opt)
418 {
419 struct hci_dev *hdev = req->hdev;
420
421 if (hdev->dev_type == HCI_AMP)
422 return amp_init2(req);
423
424 if (lmp_bredr_capable(hdev))
425 bredr_setup(req);
426 else
427 hci_dev_clear_flag(hdev, HCI_BREDR_ENABLED);
428
429 if (lmp_le_capable(hdev))
430 le_setup(req);
431
432 /* All Bluetooth 1.2 and later controllers should support the
433 * HCI command for reading the local supported commands.
434 *
435 * Unfortunately some controllers indicate Bluetooth 1.2 support,
436 * but do not have support for this command. If that is the case,
437 * the driver can quirk the behavior and skip reading the local
438 * supported commands.
439 */
440 if (hdev->hci_ver > BLUETOOTH_VER_1_1 &&
441 !test_bit(HCI_QUIRK_BROKEN_LOCAL_COMMANDS, &hdev->quirks))
442 hci_req_add(req, HCI_OP_READ_LOCAL_COMMANDS, 0, NULL);
443
444 if (lmp_ssp_capable(hdev)) {
445 /* When SSP is available, then the host features page
446 * should also be available as well. However some
447 * controllers list the max_page as 0 as long as SSP
448 * has not been enabled. To achieve proper debugging
449 * output, force the minimum max_page to 1 at least.
450 */
451 hdev->max_page = 0x01;
452
453 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) {
454 u8 mode = 0x01;
455
456 hci_req_add(req, HCI_OP_WRITE_SSP_MODE,
457 sizeof(mode), &mode);
458 } else {
459 struct hci_cp_write_eir cp;
460
461 memset(hdev->eir, 0, sizeof(hdev->eir));
462 memset(&cp, 0, sizeof(cp));
463
464 hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp);
465 }
466 }
467
468 if (lmp_inq_rssi_capable(hdev) ||
469 test_bit(HCI_QUIRK_FIXUP_INQUIRY_MODE, &hdev->quirks)) {
470 u8 mode;
471
472 /* If Extended Inquiry Result events are supported, then
473 * they are clearly preferred over Inquiry Result with RSSI
474 * events.
475 */
476 mode = lmp_ext_inq_capable(hdev) ? 0x02 : 0x01;
477
478 hci_req_add(req, HCI_OP_WRITE_INQUIRY_MODE, 1, &mode);
479 }
480
481 if (lmp_inq_tx_pwr_capable(hdev))
482 hci_req_add(req, HCI_OP_READ_INQ_RSP_TX_POWER, 0, NULL);
483
484 if (lmp_ext_feat_capable(hdev)) {
485 struct hci_cp_read_local_ext_features cp;
486
487 cp.page = 0x01;
488 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
489 sizeof(cp), &cp);
490 }
491
492 if (hci_dev_test_flag(hdev, HCI_LINK_SECURITY)) {
493 u8 enable = 1;
494 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, sizeof(enable),
495 &enable);
496 }
497
498 return 0;
499 }
500
hci_setup_link_policy(struct hci_request * req)501 static void hci_setup_link_policy(struct hci_request *req)
502 {
503 struct hci_dev *hdev = req->hdev;
504 struct hci_cp_write_def_link_policy cp;
505 u16 link_policy = 0;
506
507 if (lmp_rswitch_capable(hdev))
508 link_policy |= HCI_LP_RSWITCH;
509 if (lmp_hold_capable(hdev))
510 link_policy |= HCI_LP_HOLD;
511 if (lmp_sniff_capable(hdev))
512 link_policy |= HCI_LP_SNIFF;
513 if (lmp_park_capable(hdev))
514 link_policy |= HCI_LP_PARK;
515
516 cp.policy = cpu_to_le16(link_policy);
517 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, sizeof(cp), &cp);
518 }
519
hci_set_le_support(struct hci_request * req)520 static void hci_set_le_support(struct hci_request *req)
521 {
522 struct hci_dev *hdev = req->hdev;
523 struct hci_cp_write_le_host_supported cp;
524
525 /* LE-only devices do not support explicit enablement */
526 if (!lmp_bredr_capable(hdev))
527 return;
528
529 memset(&cp, 0, sizeof(cp));
530
531 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) {
532 cp.le = 0x01;
533 cp.simul = 0x00;
534 }
535
536 if (cp.le != lmp_host_le_capable(hdev))
537 hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, sizeof(cp),
538 &cp);
539 }
540
hci_set_event_mask_page_2(struct hci_request * req)541 static void hci_set_event_mask_page_2(struct hci_request *req)
542 {
543 struct hci_dev *hdev = req->hdev;
544 u8 events[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
545 bool changed = false;
546
547 /* If Connectionless Slave Broadcast master role is supported
548 * enable all necessary events for it.
549 */
550 if (lmp_csb_master_capable(hdev)) {
551 events[1] |= 0x40; /* Triggered Clock Capture */
552 events[1] |= 0x80; /* Synchronization Train Complete */
553 events[2] |= 0x10; /* Slave Page Response Timeout */
554 events[2] |= 0x20; /* CSB Channel Map Change */
555 changed = true;
556 }
557
558 /* If Connectionless Slave Broadcast slave role is supported
559 * enable all necessary events for it.
560 */
561 if (lmp_csb_slave_capable(hdev)) {
562 events[2] |= 0x01; /* Synchronization Train Received */
563 events[2] |= 0x02; /* CSB Receive */
564 events[2] |= 0x04; /* CSB Timeout */
565 events[2] |= 0x08; /* Truncated Page Complete */
566 changed = true;
567 }
568
569 /* Enable Authenticated Payload Timeout Expired event if supported */
570 if (lmp_ping_capable(hdev) || hdev->le_features[0] & HCI_LE_PING) {
571 events[2] |= 0x80;
572 changed = true;
573 }
574
575 /* Some Broadcom based controllers indicate support for Set Event
576 * Mask Page 2 command, but then actually do not support it. Since
577 * the default value is all bits set to zero, the command is only
578 * required if the event mask has to be changed. In case no change
579 * to the event mask is needed, skip this command.
580 */
581 if (changed)
582 hci_req_add(req, HCI_OP_SET_EVENT_MASK_PAGE_2,
583 sizeof(events), events);
584 }
585
hci_init3_req(struct hci_request * req,unsigned long opt)586 static int hci_init3_req(struct hci_request *req, unsigned long opt)
587 {
588 struct hci_dev *hdev = req->hdev;
589 u8 p;
590
591 hci_setup_event_mask(req);
592
593 if (hdev->commands[6] & 0x20 &&
594 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
595 struct hci_cp_read_stored_link_key cp;
596
597 bacpy(&cp.bdaddr, BDADDR_ANY);
598 cp.read_all = 0x01;
599 hci_req_add(req, HCI_OP_READ_STORED_LINK_KEY, sizeof(cp), &cp);
600 }
601
602 if (hdev->commands[5] & 0x10)
603 hci_setup_link_policy(req);
604
605 if (hdev->commands[8] & 0x01)
606 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_ACTIVITY, 0, NULL);
607
608 if (hdev->commands[18] & 0x04 &&
609 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks))
610 hci_req_add(req, HCI_OP_READ_DEF_ERR_DATA_REPORTING, 0, NULL);
611
612 /* Some older Broadcom based Bluetooth 1.2 controllers do not
613 * support the Read Page Scan Type command. Check support for
614 * this command in the bit mask of supported commands.
615 */
616 if (hdev->commands[13] & 0x01)
617 hci_req_add(req, HCI_OP_READ_PAGE_SCAN_TYPE, 0, NULL);
618
619 if (lmp_le_capable(hdev)) {
620 u8 events[8];
621
622 memset(events, 0, sizeof(events));
623
624 if (hdev->le_features[0] & HCI_LE_ENCRYPTION)
625 events[0] |= 0x10; /* LE Long Term Key Request */
626
627 /* If controller supports the Connection Parameters Request
628 * Link Layer Procedure, enable the corresponding event.
629 */
630 if (hdev->le_features[0] & HCI_LE_CONN_PARAM_REQ_PROC)
631 events[0] |= 0x20; /* LE Remote Connection
632 * Parameter Request
633 */
634
635 /* If the controller supports the Data Length Extension
636 * feature, enable the corresponding event.
637 */
638 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT)
639 events[0] |= 0x40; /* LE Data Length Change */
640
641 /* If the controller supports LL Privacy feature, enable
642 * the corresponding event.
643 */
644 if (hdev->le_features[0] & HCI_LE_LL_PRIVACY)
645 events[1] |= 0x02; /* LE Enhanced Connection
646 * Complete
647 */
648
649 /* If the controller supports Extended Scanner Filter
650 * Policies, enable the correspondig event.
651 */
652 if (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)
653 events[1] |= 0x04; /* LE Direct Advertising
654 * Report
655 */
656
657 /* If the controller supports Channel Selection Algorithm #2
658 * feature, enable the corresponding event.
659 */
660 if (hdev->le_features[1] & HCI_LE_CHAN_SEL_ALG2)
661 events[2] |= 0x08; /* LE Channel Selection
662 * Algorithm
663 */
664
665 /* If the controller supports the LE Set Scan Enable command,
666 * enable the corresponding advertising report event.
667 */
668 if (hdev->commands[26] & 0x08)
669 events[0] |= 0x02; /* LE Advertising Report */
670
671 /* If the controller supports the LE Create Connection
672 * command, enable the corresponding event.
673 */
674 if (hdev->commands[26] & 0x10)
675 events[0] |= 0x01; /* LE Connection Complete */
676
677 /* If the controller supports the LE Connection Update
678 * command, enable the corresponding event.
679 */
680 if (hdev->commands[27] & 0x04)
681 events[0] |= 0x04; /* LE Connection Update
682 * Complete
683 */
684
685 /* If the controller supports the LE Read Remote Used Features
686 * command, enable the corresponding event.
687 */
688 if (hdev->commands[27] & 0x20)
689 events[0] |= 0x08; /* LE Read Remote Used
690 * Features Complete
691 */
692
693 /* If the controller supports the LE Read Local P-256
694 * Public Key command, enable the corresponding event.
695 */
696 if (hdev->commands[34] & 0x02)
697 events[0] |= 0x80; /* LE Read Local P-256
698 * Public Key Complete
699 */
700
701 /* If the controller supports the LE Generate DHKey
702 * command, enable the corresponding event.
703 */
704 if (hdev->commands[34] & 0x04)
705 events[1] |= 0x01; /* LE Generate DHKey Complete */
706
707 /* If the controller supports the LE Set Default PHY or
708 * LE Set PHY commands, enable the corresponding event.
709 */
710 if (hdev->commands[35] & (0x20 | 0x40))
711 events[1] |= 0x08; /* LE PHY Update Complete */
712
713 /* If the controller supports LE Set Extended Scan Parameters
714 * and LE Set Extended Scan Enable commands, enable the
715 * corresponding event.
716 */
717 if (use_ext_scan(hdev))
718 events[1] |= 0x10; /* LE Extended Advertising
719 * Report
720 */
721
722 /* If the controller supports the LE Extended Advertising
723 * command, enable the corresponding event.
724 */
725 if (ext_adv_capable(hdev))
726 events[2] |= 0x02; /* LE Advertising Set
727 * Terminated
728 */
729
730 hci_req_add(req, HCI_OP_LE_SET_EVENT_MASK, sizeof(events),
731 events);
732
733 /* Read LE Advertising Channel TX Power */
734 if ((hdev->commands[25] & 0x40) && !ext_adv_capable(hdev)) {
735 /* HCI TS spec forbids mixing of legacy and extended
736 * advertising commands wherein READ_ADV_TX_POWER is
737 * also included. So do not call it if extended adv
738 * is supported otherwise controller will return
739 * COMMAND_DISALLOWED for extended commands.
740 */
741 hci_req_add(req, HCI_OP_LE_READ_ADV_TX_POWER, 0, NULL);
742 }
743
744 if (hdev->commands[26] & 0x40) {
745 /* Read LE White List Size */
746 hci_req_add(req, HCI_OP_LE_READ_WHITE_LIST_SIZE,
747 0, NULL);
748 }
749
750 if (hdev->commands[26] & 0x80) {
751 /* Clear LE White List */
752 hci_req_add(req, HCI_OP_LE_CLEAR_WHITE_LIST, 0, NULL);
753 }
754
755 if (hdev->commands[34] & 0x40) {
756 /* Read LE Resolving List Size */
757 hci_req_add(req, HCI_OP_LE_READ_RESOLV_LIST_SIZE,
758 0, NULL);
759 }
760
761 if (hdev->commands[34] & 0x20) {
762 /* Clear LE Resolving List */
763 hci_req_add(req, HCI_OP_LE_CLEAR_RESOLV_LIST, 0, NULL);
764 }
765
766 if (hdev->commands[35] & 0x40) {
767 __le16 rpa_timeout = cpu_to_le16(hdev->rpa_timeout);
768
769 /* Set RPA timeout */
770 hci_req_add(req, HCI_OP_LE_SET_RPA_TIMEOUT, 2,
771 &rpa_timeout);
772 }
773
774 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
775 /* Read LE Maximum Data Length */
776 hci_req_add(req, HCI_OP_LE_READ_MAX_DATA_LEN, 0, NULL);
777
778 /* Read LE Suggested Default Data Length */
779 hci_req_add(req, HCI_OP_LE_READ_DEF_DATA_LEN, 0, NULL);
780 }
781
782 if (ext_adv_capable(hdev)) {
783 /* Read LE Number of Supported Advertising Sets */
784 hci_req_add(req, HCI_OP_LE_READ_NUM_SUPPORTED_ADV_SETS,
785 0, NULL);
786 }
787
788 hci_set_le_support(req);
789 }
790
791 /* Read features beyond page 1 if available */
792 for (p = 2; p < HCI_MAX_PAGES && p <= hdev->max_page; p++) {
793 struct hci_cp_read_local_ext_features cp;
794
795 cp.page = p;
796 hci_req_add(req, HCI_OP_READ_LOCAL_EXT_FEATURES,
797 sizeof(cp), &cp);
798 }
799
800 return 0;
801 }
802
hci_init4_req(struct hci_request * req,unsigned long opt)803 static int hci_init4_req(struct hci_request *req, unsigned long opt)
804 {
805 struct hci_dev *hdev = req->hdev;
806
807 /* Some Broadcom based Bluetooth controllers do not support the
808 * Delete Stored Link Key command. They are clearly indicating its
809 * absence in the bit mask of supported commands.
810 *
811 * Check the supported commands and only if the command is marked
812 * as supported send it. If not supported assume that the controller
813 * does not have actual support for stored link keys which makes this
814 * command redundant anyway.
815 *
816 * Some controllers indicate that they support handling deleting
817 * stored link keys, but they don't. The quirk lets a driver
818 * just disable this command.
819 */
820 if (hdev->commands[6] & 0x80 &&
821 !test_bit(HCI_QUIRK_BROKEN_STORED_LINK_KEY, &hdev->quirks)) {
822 struct hci_cp_delete_stored_link_key cp;
823
824 bacpy(&cp.bdaddr, BDADDR_ANY);
825 cp.delete_all = 0x01;
826 hci_req_add(req, HCI_OP_DELETE_STORED_LINK_KEY,
827 sizeof(cp), &cp);
828 }
829
830 /* Set event mask page 2 if the HCI command for it is supported */
831 if (hdev->commands[22] & 0x04)
832 hci_set_event_mask_page_2(req);
833
834 /* Read local codec list if the HCI command is supported */
835 if (hdev->commands[29] & 0x20)
836 hci_req_add(req, HCI_OP_READ_LOCAL_CODECS, 0, NULL);
837
838 /* Read local pairing options if the HCI command is supported */
839 if (hdev->commands[41] & 0x08)
840 hci_req_add(req, HCI_OP_READ_LOCAL_PAIRING_OPTS, 0, NULL);
841
842 /* Get MWS transport configuration if the HCI command is supported */
843 if (hdev->commands[30] & 0x08)
844 hci_req_add(req, HCI_OP_GET_MWS_TRANSPORT_CONFIG, 0, NULL);
845
846 /* Check for Synchronization Train support */
847 if (lmp_sync_train_capable(hdev))
848 hci_req_add(req, HCI_OP_READ_SYNC_TRAIN_PARAMS, 0, NULL);
849
850 /* Enable Secure Connections if supported and configured */
851 if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) &&
852 bredr_sc_enabled(hdev)) {
853 u8 support = 0x01;
854
855 hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT,
856 sizeof(support), &support);
857 }
858
859 /* Set erroneous data reporting if supported to the wideband speech
860 * setting value
861 */
862 if (hdev->commands[18] & 0x08 &&
863 !test_bit(HCI_QUIRK_BROKEN_ERR_DATA_REPORTING, &hdev->quirks)) {
864 bool enabled = hci_dev_test_flag(hdev,
865 HCI_WIDEBAND_SPEECH_ENABLED);
866
867 if (enabled !=
868 (hdev->err_data_reporting == ERR_DATA_REPORTING_ENABLED)) {
869 struct hci_cp_write_def_err_data_reporting cp;
870
871 cp.err_data_reporting = enabled ?
872 ERR_DATA_REPORTING_ENABLED :
873 ERR_DATA_REPORTING_DISABLED;
874
875 hci_req_add(req, HCI_OP_WRITE_DEF_ERR_DATA_REPORTING,
876 sizeof(cp), &cp);
877 }
878 }
879
880 /* Set Suggested Default Data Length to maximum if supported */
881 if (hdev->le_features[0] & HCI_LE_DATA_LEN_EXT) {
882 struct hci_cp_le_write_def_data_len cp;
883
884 cp.tx_len = cpu_to_le16(hdev->le_max_tx_len);
885 cp.tx_time = cpu_to_le16(hdev->le_max_tx_time);
886 hci_req_add(req, HCI_OP_LE_WRITE_DEF_DATA_LEN, sizeof(cp), &cp);
887 }
888
889 /* Set Default PHY parameters if command is supported */
890 if (hdev->commands[35] & 0x20) {
891 struct hci_cp_le_set_default_phy cp;
892
893 cp.all_phys = 0x00;
894 cp.tx_phys = hdev->le_tx_def_phys;
895 cp.rx_phys = hdev->le_rx_def_phys;
896
897 hci_req_add(req, HCI_OP_LE_SET_DEFAULT_PHY, sizeof(cp), &cp);
898 }
899
900 return 0;
901 }
902
__hci_init(struct hci_dev * hdev)903 static int __hci_init(struct hci_dev *hdev)
904 {
905 int err;
906
907 err = __hci_req_sync(hdev, hci_init1_req, 0, HCI_INIT_TIMEOUT, NULL);
908 if (err < 0)
909 return err;
910
911 if (hci_dev_test_flag(hdev, HCI_SETUP))
912 hci_debugfs_create_basic(hdev);
913
914 err = __hci_req_sync(hdev, hci_init2_req, 0, HCI_INIT_TIMEOUT, NULL);
915 if (err < 0)
916 return err;
917
918 /* HCI_PRIMARY covers both single-mode LE, BR/EDR and dual-mode
919 * BR/EDR/LE type controllers. AMP controllers only need the
920 * first two stages of init.
921 */
922 if (hdev->dev_type != HCI_PRIMARY)
923 return 0;
924
925 err = __hci_req_sync(hdev, hci_init3_req, 0, HCI_INIT_TIMEOUT, NULL);
926 if (err < 0)
927 return err;
928
929 err = __hci_req_sync(hdev, hci_init4_req, 0, HCI_INIT_TIMEOUT, NULL);
930 if (err < 0)
931 return err;
932
933 /* This function is only called when the controller is actually in
934 * configured state. When the controller is marked as unconfigured,
935 * this initialization procedure is not run.
936 *
937 * It means that it is possible that a controller runs through its
938 * setup phase and then discovers missing settings. If that is the
939 * case, then this function will not be called. It then will only
940 * be called during the config phase.
941 *
942 * So only when in setup phase or config phase, create the debugfs
943 * entries and register the SMP channels.
944 */
945 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
946 !hci_dev_test_flag(hdev, HCI_CONFIG))
947 return 0;
948
949 hci_debugfs_create_common(hdev);
950
951 if (lmp_bredr_capable(hdev))
952 hci_debugfs_create_bredr(hdev);
953
954 if (lmp_le_capable(hdev))
955 hci_debugfs_create_le(hdev);
956
957 return 0;
958 }
959
hci_init0_req(struct hci_request * req,unsigned long opt)960 static int hci_init0_req(struct hci_request *req, unsigned long opt)
961 {
962 struct hci_dev *hdev = req->hdev;
963
964 BT_DBG("%s %ld", hdev->name, opt);
965
966 /* Reset */
967 if (!test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks))
968 hci_reset_req(req, 0);
969
970 /* Read Local Version */
971 hci_req_add(req, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
972
973 /* Read BD Address */
974 if (hdev->set_bdaddr)
975 hci_req_add(req, HCI_OP_READ_BD_ADDR, 0, NULL);
976
977 return 0;
978 }
979
__hci_unconf_init(struct hci_dev * hdev)980 static int __hci_unconf_init(struct hci_dev *hdev)
981 {
982 int err;
983
984 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
985 return 0;
986
987 err = __hci_req_sync(hdev, hci_init0_req, 0, HCI_INIT_TIMEOUT, NULL);
988 if (err < 0)
989 return err;
990
991 if (hci_dev_test_flag(hdev, HCI_SETUP))
992 hci_debugfs_create_basic(hdev);
993
994 return 0;
995 }
996
hci_scan_req(struct hci_request * req,unsigned long opt)997 static int hci_scan_req(struct hci_request *req, unsigned long opt)
998 {
999 __u8 scan = opt;
1000
1001 BT_DBG("%s %x", req->hdev->name, scan);
1002
1003 /* Inquiry and Page scans */
1004 hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
1005 return 0;
1006 }
1007
hci_auth_req(struct hci_request * req,unsigned long opt)1008 static int hci_auth_req(struct hci_request *req, unsigned long opt)
1009 {
1010 __u8 auth = opt;
1011
1012 BT_DBG("%s %x", req->hdev->name, auth);
1013
1014 /* Authentication */
1015 hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
1016 return 0;
1017 }
1018
hci_encrypt_req(struct hci_request * req,unsigned long opt)1019 static int hci_encrypt_req(struct hci_request *req, unsigned long opt)
1020 {
1021 __u8 encrypt = opt;
1022
1023 BT_DBG("%s %x", req->hdev->name, encrypt);
1024
1025 /* Encryption */
1026 hci_req_add(req, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
1027 return 0;
1028 }
1029
hci_linkpol_req(struct hci_request * req,unsigned long opt)1030 static int hci_linkpol_req(struct hci_request *req, unsigned long opt)
1031 {
1032 __le16 policy = cpu_to_le16(opt);
1033
1034 BT_DBG("%s %x", req->hdev->name, policy);
1035
1036 /* Default link policy */
1037 hci_req_add(req, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
1038 return 0;
1039 }
1040
1041 /* Get HCI device by index.
1042 * Device is held on return. */
hci_dev_get(int index)1043 struct hci_dev *hci_dev_get(int index)
1044 {
1045 struct hci_dev *hdev = NULL, *d;
1046
1047 BT_DBG("%d", index);
1048
1049 if (index < 0)
1050 return NULL;
1051
1052 read_lock(&hci_dev_list_lock);
1053 list_for_each_entry(d, &hci_dev_list, list) {
1054 if (d->id == index) {
1055 hdev = hci_dev_hold(d);
1056 break;
1057 }
1058 }
1059 read_unlock(&hci_dev_list_lock);
1060 return hdev;
1061 }
1062
1063 /* ---- Inquiry support ---- */
1064
hci_discovery_active(struct hci_dev * hdev)1065 bool hci_discovery_active(struct hci_dev *hdev)
1066 {
1067 struct discovery_state *discov = &hdev->discovery;
1068
1069 switch (discov->state) {
1070 case DISCOVERY_FINDING:
1071 case DISCOVERY_RESOLVING:
1072 return true;
1073
1074 default:
1075 return false;
1076 }
1077 }
1078
hci_discovery_set_state(struct hci_dev * hdev,int state)1079 void hci_discovery_set_state(struct hci_dev *hdev, int state)
1080 {
1081 int old_state = hdev->discovery.state;
1082
1083 BT_DBG("%s state %u -> %u", hdev->name, hdev->discovery.state, state);
1084
1085 if (old_state == state)
1086 return;
1087
1088 hdev->discovery.state = state;
1089
1090 switch (state) {
1091 case DISCOVERY_STOPPED:
1092 hci_update_background_scan(hdev);
1093
1094 if (old_state != DISCOVERY_STARTING)
1095 mgmt_discovering(hdev, 0);
1096 break;
1097 case DISCOVERY_STARTING:
1098 break;
1099 case DISCOVERY_FINDING:
1100 mgmt_discovering(hdev, 1);
1101 break;
1102 case DISCOVERY_RESOLVING:
1103 break;
1104 case DISCOVERY_STOPPING:
1105 break;
1106 }
1107 }
1108
hci_inquiry_cache_flush(struct hci_dev * hdev)1109 void hci_inquiry_cache_flush(struct hci_dev *hdev)
1110 {
1111 struct discovery_state *cache = &hdev->discovery;
1112 struct inquiry_entry *p, *n;
1113
1114 list_for_each_entry_safe(p, n, &cache->all, all) {
1115 list_del(&p->all);
1116 kfree(p);
1117 }
1118
1119 INIT_LIST_HEAD(&cache->unknown);
1120 INIT_LIST_HEAD(&cache->resolve);
1121 }
1122
hci_inquiry_cache_lookup(struct hci_dev * hdev,bdaddr_t * bdaddr)1123 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev,
1124 bdaddr_t *bdaddr)
1125 {
1126 struct discovery_state *cache = &hdev->discovery;
1127 struct inquiry_entry *e;
1128
1129 BT_DBG("cache %p, %pMR", cache, bdaddr);
1130
1131 list_for_each_entry(e, &cache->all, all) {
1132 if (!bacmp(&e->data.bdaddr, bdaddr))
1133 return e;
1134 }
1135
1136 return NULL;
1137 }
1138
hci_inquiry_cache_lookup_unknown(struct hci_dev * hdev,bdaddr_t * bdaddr)1139 struct inquiry_entry *hci_inquiry_cache_lookup_unknown(struct hci_dev *hdev,
1140 bdaddr_t *bdaddr)
1141 {
1142 struct discovery_state *cache = &hdev->discovery;
1143 struct inquiry_entry *e;
1144
1145 BT_DBG("cache %p, %pMR", cache, bdaddr);
1146
1147 list_for_each_entry(e, &cache->unknown, list) {
1148 if (!bacmp(&e->data.bdaddr, bdaddr))
1149 return e;
1150 }
1151
1152 return NULL;
1153 }
1154
hci_inquiry_cache_lookup_resolve(struct hci_dev * hdev,bdaddr_t * bdaddr,int state)1155 struct inquiry_entry *hci_inquiry_cache_lookup_resolve(struct hci_dev *hdev,
1156 bdaddr_t *bdaddr,
1157 int state)
1158 {
1159 struct discovery_state *cache = &hdev->discovery;
1160 struct inquiry_entry *e;
1161
1162 BT_DBG("cache %p bdaddr %pMR state %d", cache, bdaddr, state);
1163
1164 list_for_each_entry(e, &cache->resolve, list) {
1165 if (!bacmp(bdaddr, BDADDR_ANY) && e->name_state == state)
1166 return e;
1167 if (!bacmp(&e->data.bdaddr, bdaddr))
1168 return e;
1169 }
1170
1171 return NULL;
1172 }
1173
hci_inquiry_cache_update_resolve(struct hci_dev * hdev,struct inquiry_entry * ie)1174 void hci_inquiry_cache_update_resolve(struct hci_dev *hdev,
1175 struct inquiry_entry *ie)
1176 {
1177 struct discovery_state *cache = &hdev->discovery;
1178 struct list_head *pos = &cache->resolve;
1179 struct inquiry_entry *p;
1180
1181 list_del(&ie->list);
1182
1183 list_for_each_entry(p, &cache->resolve, list) {
1184 if (p->name_state != NAME_PENDING &&
1185 abs(p->data.rssi) >= abs(ie->data.rssi))
1186 break;
1187 pos = &p->list;
1188 }
1189
1190 list_add(&ie->list, pos);
1191 }
1192
hci_inquiry_cache_update(struct hci_dev * hdev,struct inquiry_data * data,bool name_known)1193 u32 hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data,
1194 bool name_known)
1195 {
1196 struct discovery_state *cache = &hdev->discovery;
1197 struct inquiry_entry *ie;
1198 u32 flags = 0;
1199
1200 BT_DBG("cache %p, %pMR", cache, &data->bdaddr);
1201
1202 hci_remove_remote_oob_data(hdev, &data->bdaddr, BDADDR_BREDR);
1203
1204 if (!data->ssp_mode)
1205 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1206
1207 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
1208 if (ie) {
1209 if (!ie->data.ssp_mode)
1210 flags |= MGMT_DEV_FOUND_LEGACY_PAIRING;
1211
1212 if (ie->name_state == NAME_NEEDED &&
1213 data->rssi != ie->data.rssi) {
1214 ie->data.rssi = data->rssi;
1215 hci_inquiry_cache_update_resolve(hdev, ie);
1216 }
1217
1218 goto update;
1219 }
1220
1221 /* Entry not in the cache. Add new one. */
1222 ie = kzalloc(sizeof(*ie), GFP_KERNEL);
1223 if (!ie) {
1224 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1225 goto done;
1226 }
1227
1228 list_add(&ie->all, &cache->all);
1229
1230 if (name_known) {
1231 ie->name_state = NAME_KNOWN;
1232 } else {
1233 ie->name_state = NAME_NOT_KNOWN;
1234 list_add(&ie->list, &cache->unknown);
1235 }
1236
1237 update:
1238 if (name_known && ie->name_state != NAME_KNOWN &&
1239 ie->name_state != NAME_PENDING) {
1240 ie->name_state = NAME_KNOWN;
1241 list_del(&ie->list);
1242 }
1243
1244 memcpy(&ie->data, data, sizeof(*data));
1245 ie->timestamp = jiffies;
1246 cache->timestamp = jiffies;
1247
1248 if (ie->name_state == NAME_NOT_KNOWN)
1249 flags |= MGMT_DEV_FOUND_CONFIRM_NAME;
1250
1251 done:
1252 return flags;
1253 }
1254
inquiry_cache_dump(struct hci_dev * hdev,int num,__u8 * buf)1255 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
1256 {
1257 struct discovery_state *cache = &hdev->discovery;
1258 struct inquiry_info *info = (struct inquiry_info *) buf;
1259 struct inquiry_entry *e;
1260 int copied = 0;
1261
1262 list_for_each_entry(e, &cache->all, all) {
1263 struct inquiry_data *data = &e->data;
1264
1265 if (copied >= num)
1266 break;
1267
1268 bacpy(&info->bdaddr, &data->bdaddr);
1269 info->pscan_rep_mode = data->pscan_rep_mode;
1270 info->pscan_period_mode = data->pscan_period_mode;
1271 info->pscan_mode = data->pscan_mode;
1272 memcpy(info->dev_class, data->dev_class, 3);
1273 info->clock_offset = data->clock_offset;
1274
1275 info++;
1276 copied++;
1277 }
1278
1279 BT_DBG("cache %p, copied %d", cache, copied);
1280 return copied;
1281 }
1282
hci_inq_req(struct hci_request * req,unsigned long opt)1283 static int hci_inq_req(struct hci_request *req, unsigned long opt)
1284 {
1285 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
1286 struct hci_dev *hdev = req->hdev;
1287 struct hci_cp_inquiry cp;
1288
1289 BT_DBG("%s", hdev->name);
1290
1291 if (test_bit(HCI_INQUIRY, &hdev->flags))
1292 return 0;
1293
1294 /* Start Inquiry */
1295 memcpy(&cp.lap, &ir->lap, 3);
1296 cp.length = ir->length;
1297 cp.num_rsp = ir->num_rsp;
1298 hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp);
1299
1300 return 0;
1301 }
1302
hci_inquiry(void __user * arg)1303 int hci_inquiry(void __user *arg)
1304 {
1305 __u8 __user *ptr = arg;
1306 struct hci_inquiry_req ir;
1307 struct hci_dev *hdev;
1308 int err = 0, do_inquiry = 0, max_rsp;
1309 long timeo;
1310 __u8 *buf;
1311
1312 if (copy_from_user(&ir, ptr, sizeof(ir)))
1313 return -EFAULT;
1314
1315 hdev = hci_dev_get(ir.dev_id);
1316 if (!hdev)
1317 return -ENODEV;
1318
1319 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1320 err = -EBUSY;
1321 goto done;
1322 }
1323
1324 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1325 err = -EOPNOTSUPP;
1326 goto done;
1327 }
1328
1329 if (hdev->dev_type != HCI_PRIMARY) {
1330 err = -EOPNOTSUPP;
1331 goto done;
1332 }
1333
1334 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
1335 err = -EOPNOTSUPP;
1336 goto done;
1337 }
1338
1339 hci_dev_lock(hdev);
1340 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
1341 inquiry_cache_empty(hdev) || ir.flags & IREQ_CACHE_FLUSH) {
1342 hci_inquiry_cache_flush(hdev);
1343 do_inquiry = 1;
1344 }
1345 hci_dev_unlock(hdev);
1346
1347 timeo = ir.length * msecs_to_jiffies(2000);
1348
1349 if (do_inquiry) {
1350 err = hci_req_sync(hdev, hci_inq_req, (unsigned long) &ir,
1351 timeo, NULL);
1352 if (err < 0)
1353 goto done;
1354
1355 /* Wait until Inquiry procedure finishes (HCI_INQUIRY flag is
1356 * cleared). If it is interrupted by a signal, return -EINTR.
1357 */
1358 if (wait_on_bit(&hdev->flags, HCI_INQUIRY,
1359 TASK_INTERRUPTIBLE))
1360 return -EINTR;
1361 }
1362
1363 /* for unlimited number of responses we will use buffer with
1364 * 255 entries
1365 */
1366 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
1367
1368 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
1369 * copy it to the user space.
1370 */
1371 buf = kmalloc_array(max_rsp, sizeof(struct inquiry_info), GFP_KERNEL);
1372 if (!buf) {
1373 err = -ENOMEM;
1374 goto done;
1375 }
1376
1377 hci_dev_lock(hdev);
1378 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
1379 hci_dev_unlock(hdev);
1380
1381 BT_DBG("num_rsp %d", ir.num_rsp);
1382
1383 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
1384 ptr += sizeof(ir);
1385 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
1386 ir.num_rsp))
1387 err = -EFAULT;
1388 } else
1389 err = -EFAULT;
1390
1391 kfree(buf);
1392
1393 done:
1394 hci_dev_put(hdev);
1395 return err;
1396 }
1397
1398 /**
1399 * hci_dev_get_bd_addr_from_property - Get the Bluetooth Device Address
1400 * (BD_ADDR) for a HCI device from
1401 * a firmware node property.
1402 * @hdev: The HCI device
1403 *
1404 * Search the firmware node for 'local-bd-address'.
1405 *
1406 * All-zero BD addresses are rejected, because those could be properties
1407 * that exist in the firmware tables, but were not updated by the firmware. For
1408 * example, the DTS could define 'local-bd-address', with zero BD addresses.
1409 */
hci_dev_get_bd_addr_from_property(struct hci_dev * hdev)1410 static void hci_dev_get_bd_addr_from_property(struct hci_dev *hdev)
1411 {
1412 struct fwnode_handle *fwnode = dev_fwnode(hdev->dev.parent);
1413 bdaddr_t ba;
1414 int ret;
1415
1416 ret = fwnode_property_read_u8_array(fwnode, "local-bd-address",
1417 (u8 *)&ba, sizeof(ba));
1418 if (ret < 0 || !bacmp(&ba, BDADDR_ANY))
1419 return;
1420
1421 bacpy(&hdev->public_addr, &ba);
1422 }
1423
hci_dev_do_open(struct hci_dev * hdev)1424 static int hci_dev_do_open(struct hci_dev *hdev)
1425 {
1426 int ret = 0;
1427
1428 BT_DBG("%s %p", hdev->name, hdev);
1429
1430 hci_req_sync_lock(hdev);
1431
1432 if (hci_dev_test_flag(hdev, HCI_UNREGISTER)) {
1433 ret = -ENODEV;
1434 goto done;
1435 }
1436
1437 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1438 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
1439 /* Check for rfkill but allow the HCI setup stage to
1440 * proceed (which in itself doesn't cause any RF activity).
1441 */
1442 if (hci_dev_test_flag(hdev, HCI_RFKILLED)) {
1443 ret = -ERFKILL;
1444 goto done;
1445 }
1446
1447 /* Check for valid public address or a configured static
1448 * random adddress, but let the HCI setup proceed to
1449 * be able to determine if there is a public address
1450 * or not.
1451 *
1452 * In case of user channel usage, it is not important
1453 * if a public address or static random address is
1454 * available.
1455 *
1456 * This check is only valid for BR/EDR controllers
1457 * since AMP controllers do not have an address.
1458 */
1459 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1460 hdev->dev_type == HCI_PRIMARY &&
1461 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
1462 !bacmp(&hdev->static_addr, BDADDR_ANY)) {
1463 ret = -EADDRNOTAVAIL;
1464 goto done;
1465 }
1466 }
1467
1468 if (test_bit(HCI_UP, &hdev->flags)) {
1469 ret = -EALREADY;
1470 goto done;
1471 }
1472
1473 if (hdev->open(hdev)) {
1474 ret = -EIO;
1475 goto done;
1476 }
1477
1478 set_bit(HCI_RUNNING, &hdev->flags);
1479 hci_sock_dev_event(hdev, HCI_DEV_OPEN);
1480
1481 atomic_set(&hdev->cmd_cnt, 1);
1482 set_bit(HCI_INIT, &hdev->flags);
1483
1484 if (hci_dev_test_flag(hdev, HCI_SETUP) ||
1485 test_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks)) {
1486 bool invalid_bdaddr;
1487
1488 hci_sock_dev_event(hdev, HCI_DEV_SETUP);
1489
1490 if (hdev->setup)
1491 ret = hdev->setup(hdev);
1492
1493 /* The transport driver can set the quirk to mark the
1494 * BD_ADDR invalid before creating the HCI device or in
1495 * its setup callback.
1496 */
1497 invalid_bdaddr = test_bit(HCI_QUIRK_INVALID_BDADDR,
1498 &hdev->quirks);
1499
1500 if (ret)
1501 goto setup_failed;
1502
1503 if (test_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks)) {
1504 if (!bacmp(&hdev->public_addr, BDADDR_ANY))
1505 hci_dev_get_bd_addr_from_property(hdev);
1506
1507 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1508 hdev->set_bdaddr) {
1509 ret = hdev->set_bdaddr(hdev,
1510 &hdev->public_addr);
1511
1512 /* If setting of the BD_ADDR from the device
1513 * property succeeds, then treat the address
1514 * as valid even if the invalid BD_ADDR
1515 * quirk indicates otherwise.
1516 */
1517 if (!ret)
1518 invalid_bdaddr = false;
1519 }
1520 }
1521
1522 setup_failed:
1523 /* The transport driver can set these quirks before
1524 * creating the HCI device or in its setup callback.
1525 *
1526 * For the invalid BD_ADDR quirk it is possible that
1527 * it becomes a valid address if the bootloader does
1528 * provide it (see above).
1529 *
1530 * In case any of them is set, the controller has to
1531 * start up as unconfigured.
1532 */
1533 if (test_bit(HCI_QUIRK_EXTERNAL_CONFIG, &hdev->quirks) ||
1534 invalid_bdaddr)
1535 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
1536
1537 /* For an unconfigured controller it is required to
1538 * read at least the version information provided by
1539 * the Read Local Version Information command.
1540 *
1541 * If the set_bdaddr driver callback is provided, then
1542 * also the original Bluetooth public device address
1543 * will be read using the Read BD Address command.
1544 */
1545 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
1546 ret = __hci_unconf_init(hdev);
1547 }
1548
1549 if (hci_dev_test_flag(hdev, HCI_CONFIG)) {
1550 /* If public address change is configured, ensure that
1551 * the address gets programmed. If the driver does not
1552 * support changing the public address, fail the power
1553 * on procedure.
1554 */
1555 if (bacmp(&hdev->public_addr, BDADDR_ANY) &&
1556 hdev->set_bdaddr)
1557 ret = hdev->set_bdaddr(hdev, &hdev->public_addr);
1558 else
1559 ret = -EADDRNOTAVAIL;
1560 }
1561
1562 if (!ret) {
1563 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1564 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1565 ret = __hci_init(hdev);
1566 if (!ret && hdev->post_init)
1567 ret = hdev->post_init(hdev);
1568 }
1569 }
1570
1571 /* If the HCI Reset command is clearing all diagnostic settings,
1572 * then they need to be reprogrammed after the init procedure
1573 * completed.
1574 */
1575 if (test_bit(HCI_QUIRK_NON_PERSISTENT_DIAG, &hdev->quirks) &&
1576 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1577 hci_dev_test_flag(hdev, HCI_VENDOR_DIAG) && hdev->set_diag)
1578 ret = hdev->set_diag(hdev, true);
1579
1580 msft_do_open(hdev);
1581
1582 clear_bit(HCI_INIT, &hdev->flags);
1583
1584 if (!ret) {
1585 hci_dev_hold(hdev);
1586 hci_dev_set_flag(hdev, HCI_RPA_EXPIRED);
1587 hci_adv_instances_set_rpa_expired(hdev, true);
1588 set_bit(HCI_UP, &hdev->flags);
1589 hci_sock_dev_event(hdev, HCI_DEV_UP);
1590 hci_leds_update_powered(hdev, true);
1591 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
1592 !hci_dev_test_flag(hdev, HCI_CONFIG) &&
1593 !hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1594 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1595 hci_dev_test_flag(hdev, HCI_MGMT) &&
1596 hdev->dev_type == HCI_PRIMARY) {
1597 ret = __hci_req_hci_power_on(hdev);
1598 mgmt_power_on(hdev, ret);
1599 }
1600 } else {
1601 /* Init failed, cleanup */
1602 flush_work(&hdev->tx_work);
1603 flush_work(&hdev->cmd_work);
1604 flush_work(&hdev->rx_work);
1605
1606 skb_queue_purge(&hdev->cmd_q);
1607 skb_queue_purge(&hdev->rx_q);
1608
1609 if (hdev->flush)
1610 hdev->flush(hdev);
1611
1612 if (hdev->sent_cmd) {
1613 kfree_skb(hdev->sent_cmd);
1614 hdev->sent_cmd = NULL;
1615 }
1616
1617 clear_bit(HCI_RUNNING, &hdev->flags);
1618 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1619
1620 hdev->close(hdev);
1621 hdev->flags &= BIT(HCI_RAW);
1622 }
1623
1624 done:
1625 hci_req_sync_unlock(hdev);
1626 return ret;
1627 }
1628
1629 /* ---- HCI ioctl helpers ---- */
1630
hci_dev_open(__u16 dev)1631 int hci_dev_open(__u16 dev)
1632 {
1633 struct hci_dev *hdev;
1634 int err;
1635
1636 hdev = hci_dev_get(dev);
1637 if (!hdev)
1638 return -ENODEV;
1639
1640 /* Devices that are marked as unconfigured can only be powered
1641 * up as user channel. Trying to bring them up as normal devices
1642 * will result into a failure. Only user channel operation is
1643 * possible.
1644 *
1645 * When this function is called for a user channel, the flag
1646 * HCI_USER_CHANNEL will be set first before attempting to
1647 * open the device.
1648 */
1649 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED) &&
1650 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1651 err = -EOPNOTSUPP;
1652 goto done;
1653 }
1654
1655 /* We need to ensure that no other power on/off work is pending
1656 * before proceeding to call hci_dev_do_open. This is
1657 * particularly important if the setup procedure has not yet
1658 * completed.
1659 */
1660 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1661 cancel_delayed_work(&hdev->power_off);
1662
1663 /* After this call it is guaranteed that the setup procedure
1664 * has finished. This means that error conditions like RFKILL
1665 * or no valid public or static random address apply.
1666 */
1667 flush_workqueue(hdev->req_workqueue);
1668
1669 /* For controllers not using the management interface and that
1670 * are brought up using legacy ioctl, set the HCI_BONDABLE bit
1671 * so that pairing works for them. Once the management interface
1672 * is in use this bit will be cleared again and userspace has
1673 * to explicitly enable it.
1674 */
1675 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1676 !hci_dev_test_flag(hdev, HCI_MGMT))
1677 hci_dev_set_flag(hdev, HCI_BONDABLE);
1678
1679 err = hci_dev_do_open(hdev);
1680
1681 done:
1682 hci_dev_put(hdev);
1683 return err;
1684 }
1685
1686 /* This function requires the caller holds hdev->lock */
hci_pend_le_actions_clear(struct hci_dev * hdev)1687 static void hci_pend_le_actions_clear(struct hci_dev *hdev)
1688 {
1689 struct hci_conn_params *p;
1690
1691 list_for_each_entry(p, &hdev->le_conn_params, list) {
1692 if (p->conn) {
1693 hci_conn_drop(p->conn);
1694 hci_conn_put(p->conn);
1695 p->conn = NULL;
1696 }
1697 list_del_init(&p->action);
1698 }
1699
1700 BT_DBG("All LE pending actions cleared");
1701 }
1702
hci_dev_do_close(struct hci_dev * hdev)1703 int hci_dev_do_close(struct hci_dev *hdev)
1704 {
1705 bool auto_off;
1706
1707 BT_DBG("%s %p", hdev->name, hdev);
1708
1709 if (!hci_dev_test_flag(hdev, HCI_UNREGISTER) &&
1710 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1711 test_bit(HCI_UP, &hdev->flags)) {
1712 /* Execute vendor specific shutdown routine */
1713 if (hdev->shutdown)
1714 hdev->shutdown(hdev);
1715 }
1716
1717 cancel_delayed_work(&hdev->power_off);
1718
1719 hci_request_cancel_all(hdev);
1720 hci_req_sync_lock(hdev);
1721
1722 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
1723 cancel_delayed_work_sync(&hdev->cmd_timer);
1724 hci_req_sync_unlock(hdev);
1725 return 0;
1726 }
1727
1728 hci_leds_update_powered(hdev, false);
1729
1730 /* Flush RX and TX works */
1731 flush_work(&hdev->tx_work);
1732 flush_work(&hdev->rx_work);
1733
1734 if (hdev->discov_timeout > 0) {
1735 hdev->discov_timeout = 0;
1736 hci_dev_clear_flag(hdev, HCI_DISCOVERABLE);
1737 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1738 }
1739
1740 if (hci_dev_test_and_clear_flag(hdev, HCI_SERVICE_CACHE))
1741 cancel_delayed_work(&hdev->service_cache);
1742
1743 if (hci_dev_test_flag(hdev, HCI_MGMT)) {
1744 struct adv_info *adv_instance;
1745
1746 cancel_delayed_work_sync(&hdev->rpa_expired);
1747
1748 list_for_each_entry(adv_instance, &hdev->adv_instances, list)
1749 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
1750 }
1751
1752 /* Avoid potential lockdep warnings from the *_flush() calls by
1753 * ensuring the workqueue is empty up front.
1754 */
1755 drain_workqueue(hdev->workqueue);
1756
1757 hci_dev_lock(hdev);
1758
1759 hci_discovery_set_state(hdev, DISCOVERY_STOPPED);
1760
1761 auto_off = hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF);
1762
1763 if (!auto_off && hdev->dev_type == HCI_PRIMARY &&
1764 !hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
1765 hci_dev_test_flag(hdev, HCI_MGMT))
1766 __mgmt_power_off(hdev);
1767
1768 hci_inquiry_cache_flush(hdev);
1769 hci_pend_le_actions_clear(hdev);
1770 hci_conn_hash_flush(hdev);
1771 hci_dev_unlock(hdev);
1772
1773 smp_unregister(hdev);
1774
1775 hci_sock_dev_event(hdev, HCI_DEV_DOWN);
1776
1777 msft_do_close(hdev);
1778
1779 if (hdev->flush)
1780 hdev->flush(hdev);
1781
1782 /* Reset device */
1783 skb_queue_purge(&hdev->cmd_q);
1784 atomic_set(&hdev->cmd_cnt, 1);
1785 if (test_bit(HCI_QUIRK_RESET_ON_CLOSE, &hdev->quirks) &&
1786 !auto_off && !hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1787 set_bit(HCI_INIT, &hdev->flags);
1788 __hci_req_sync(hdev, hci_reset_req, 0, HCI_CMD_TIMEOUT, NULL);
1789 clear_bit(HCI_INIT, &hdev->flags);
1790 }
1791
1792 /* flush cmd work */
1793 flush_work(&hdev->cmd_work);
1794
1795 /* Drop queues */
1796 skb_queue_purge(&hdev->rx_q);
1797 skb_queue_purge(&hdev->cmd_q);
1798 skb_queue_purge(&hdev->raw_q);
1799
1800 /* Drop last sent command */
1801 if (hdev->sent_cmd) {
1802 cancel_delayed_work_sync(&hdev->cmd_timer);
1803 kfree_skb(hdev->sent_cmd);
1804 hdev->sent_cmd = NULL;
1805 }
1806
1807 clear_bit(HCI_RUNNING, &hdev->flags);
1808 hci_sock_dev_event(hdev, HCI_DEV_CLOSE);
1809
1810 if (test_and_clear_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks))
1811 wake_up(&hdev->suspend_wait_q);
1812
1813 /* After this point our queues are empty
1814 * and no tasks are scheduled. */
1815 hdev->close(hdev);
1816
1817 /* Clear flags */
1818 hdev->flags &= BIT(HCI_RAW);
1819 hci_dev_clear_volatile_flags(hdev);
1820
1821 /* Controller radio is available but is currently powered down */
1822 hdev->amp_status = AMP_STATUS_POWERED_DOWN;
1823
1824 memset(hdev->eir, 0, sizeof(hdev->eir));
1825 memset(hdev->dev_class, 0, sizeof(hdev->dev_class));
1826 bacpy(&hdev->random_addr, BDADDR_ANY);
1827
1828 hci_req_sync_unlock(hdev);
1829
1830 hci_dev_put(hdev);
1831 return 0;
1832 }
1833
hci_dev_close(__u16 dev)1834 int hci_dev_close(__u16 dev)
1835 {
1836 struct hci_dev *hdev;
1837 int err;
1838
1839 hdev = hci_dev_get(dev);
1840 if (!hdev)
1841 return -ENODEV;
1842
1843 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1844 err = -EBUSY;
1845 goto done;
1846 }
1847
1848 if (hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF))
1849 cancel_delayed_work(&hdev->power_off);
1850
1851 err = hci_dev_do_close(hdev);
1852
1853 done:
1854 hci_dev_put(hdev);
1855 return err;
1856 }
1857
hci_dev_do_reset(struct hci_dev * hdev)1858 static int hci_dev_do_reset(struct hci_dev *hdev)
1859 {
1860 int ret;
1861
1862 BT_DBG("%s %p", hdev->name, hdev);
1863
1864 hci_req_sync_lock(hdev);
1865
1866 /* Drop queues */
1867 skb_queue_purge(&hdev->rx_q);
1868 skb_queue_purge(&hdev->cmd_q);
1869
1870 /* Avoid potential lockdep warnings from the *_flush() calls by
1871 * ensuring the workqueue is empty up front.
1872 */
1873 drain_workqueue(hdev->workqueue);
1874
1875 hci_dev_lock(hdev);
1876 hci_inquiry_cache_flush(hdev);
1877 hci_conn_hash_flush(hdev);
1878 hci_dev_unlock(hdev);
1879
1880 if (hdev->flush)
1881 hdev->flush(hdev);
1882
1883 atomic_set(&hdev->cmd_cnt, 1);
1884 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
1885
1886 ret = __hci_req_sync(hdev, hci_reset_req, 0, HCI_INIT_TIMEOUT, NULL);
1887
1888 hci_req_sync_unlock(hdev);
1889 return ret;
1890 }
1891
hci_dev_reset(__u16 dev)1892 int hci_dev_reset(__u16 dev)
1893 {
1894 struct hci_dev *hdev;
1895 int err;
1896
1897 hdev = hci_dev_get(dev);
1898 if (!hdev)
1899 return -ENODEV;
1900
1901 if (!test_bit(HCI_UP, &hdev->flags)) {
1902 err = -ENETDOWN;
1903 goto done;
1904 }
1905
1906 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1907 err = -EBUSY;
1908 goto done;
1909 }
1910
1911 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1912 err = -EOPNOTSUPP;
1913 goto done;
1914 }
1915
1916 err = hci_dev_do_reset(hdev);
1917
1918 done:
1919 hci_dev_put(hdev);
1920 return err;
1921 }
1922
hci_dev_reset_stat(__u16 dev)1923 int hci_dev_reset_stat(__u16 dev)
1924 {
1925 struct hci_dev *hdev;
1926 int ret = 0;
1927
1928 hdev = hci_dev_get(dev);
1929 if (!hdev)
1930 return -ENODEV;
1931
1932 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1933 ret = -EBUSY;
1934 goto done;
1935 }
1936
1937 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
1938 ret = -EOPNOTSUPP;
1939 goto done;
1940 }
1941
1942 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1943
1944 done:
1945 hci_dev_put(hdev);
1946 return ret;
1947 }
1948
hci_update_scan_state(struct hci_dev * hdev,u8 scan)1949 static void hci_update_scan_state(struct hci_dev *hdev, u8 scan)
1950 {
1951 bool conn_changed, discov_changed;
1952
1953 BT_DBG("%s scan 0x%02x", hdev->name, scan);
1954
1955 if ((scan & SCAN_PAGE))
1956 conn_changed = !hci_dev_test_and_set_flag(hdev,
1957 HCI_CONNECTABLE);
1958 else
1959 conn_changed = hci_dev_test_and_clear_flag(hdev,
1960 HCI_CONNECTABLE);
1961
1962 if ((scan & SCAN_INQUIRY)) {
1963 discov_changed = !hci_dev_test_and_set_flag(hdev,
1964 HCI_DISCOVERABLE);
1965 } else {
1966 hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE);
1967 discov_changed = hci_dev_test_and_clear_flag(hdev,
1968 HCI_DISCOVERABLE);
1969 }
1970
1971 if (!hci_dev_test_flag(hdev, HCI_MGMT))
1972 return;
1973
1974 if (conn_changed || discov_changed) {
1975 /* In case this was disabled through mgmt */
1976 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
1977
1978 if (hci_dev_test_flag(hdev, HCI_LE_ENABLED))
1979 hci_req_update_adv_data(hdev, hdev->cur_adv_instance);
1980
1981 mgmt_new_settings(hdev);
1982 }
1983 }
1984
hci_dev_cmd(unsigned int cmd,void __user * arg)1985 int hci_dev_cmd(unsigned int cmd, void __user *arg)
1986 {
1987 struct hci_dev *hdev;
1988 struct hci_dev_req dr;
1989 int err = 0;
1990
1991 if (copy_from_user(&dr, arg, sizeof(dr)))
1992 return -EFAULT;
1993
1994 hdev = hci_dev_get(dr.dev_id);
1995 if (!hdev)
1996 return -ENODEV;
1997
1998 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
1999 err = -EBUSY;
2000 goto done;
2001 }
2002
2003 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
2004 err = -EOPNOTSUPP;
2005 goto done;
2006 }
2007
2008 if (hdev->dev_type != HCI_PRIMARY) {
2009 err = -EOPNOTSUPP;
2010 goto done;
2011 }
2012
2013 if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) {
2014 err = -EOPNOTSUPP;
2015 goto done;
2016 }
2017
2018 switch (cmd) {
2019 case HCISETAUTH:
2020 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2021 HCI_INIT_TIMEOUT, NULL);
2022 break;
2023
2024 case HCISETENCRYPT:
2025 if (!lmp_encrypt_capable(hdev)) {
2026 err = -EOPNOTSUPP;
2027 break;
2028 }
2029
2030 if (!test_bit(HCI_AUTH, &hdev->flags)) {
2031 /* Auth must be enabled first */
2032 err = hci_req_sync(hdev, hci_auth_req, dr.dev_opt,
2033 HCI_INIT_TIMEOUT, NULL);
2034 if (err)
2035 break;
2036 }
2037
2038 err = hci_req_sync(hdev, hci_encrypt_req, dr.dev_opt,
2039 HCI_INIT_TIMEOUT, NULL);
2040 break;
2041
2042 case HCISETSCAN:
2043 err = hci_req_sync(hdev, hci_scan_req, dr.dev_opt,
2044 HCI_INIT_TIMEOUT, NULL);
2045
2046 /* Ensure that the connectable and discoverable states
2047 * get correctly modified as this was a non-mgmt change.
2048 */
2049 if (!err)
2050 hci_update_scan_state(hdev, dr.dev_opt);
2051 break;
2052
2053 case HCISETLINKPOL:
2054 err = hci_req_sync(hdev, hci_linkpol_req, dr.dev_opt,
2055 HCI_INIT_TIMEOUT, NULL);
2056 break;
2057
2058 case HCISETLINKMODE:
2059 hdev->link_mode = ((__u16) dr.dev_opt) &
2060 (HCI_LM_MASTER | HCI_LM_ACCEPT);
2061 break;
2062
2063 case HCISETPTYPE:
2064 if (hdev->pkt_type == (__u16) dr.dev_opt)
2065 break;
2066
2067 hdev->pkt_type = (__u16) dr.dev_opt;
2068 mgmt_phy_configuration_changed(hdev, NULL);
2069 break;
2070
2071 case HCISETACLMTU:
2072 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
2073 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
2074 break;
2075
2076 case HCISETSCOMTU:
2077 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
2078 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
2079 break;
2080
2081 default:
2082 err = -EINVAL;
2083 break;
2084 }
2085
2086 done:
2087 hci_dev_put(hdev);
2088 return err;
2089 }
2090
hci_get_dev_list(void __user * arg)2091 int hci_get_dev_list(void __user *arg)
2092 {
2093 struct hci_dev *hdev;
2094 struct hci_dev_list_req *dl;
2095 struct hci_dev_req *dr;
2096 int n = 0, size, err;
2097 __u16 dev_num;
2098
2099 if (get_user(dev_num, (__u16 __user *) arg))
2100 return -EFAULT;
2101
2102 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
2103 return -EINVAL;
2104
2105 size = sizeof(*dl) + dev_num * sizeof(*dr);
2106
2107 dl = kzalloc(size, GFP_KERNEL);
2108 if (!dl)
2109 return -ENOMEM;
2110
2111 dr = dl->dev_req;
2112
2113 read_lock(&hci_dev_list_lock);
2114 list_for_each_entry(hdev, &hci_dev_list, list) {
2115 unsigned long flags = hdev->flags;
2116
2117 /* When the auto-off is configured it means the transport
2118 * is running, but in that case still indicate that the
2119 * device is actually down.
2120 */
2121 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2122 flags &= ~BIT(HCI_UP);
2123
2124 (dr + n)->dev_id = hdev->id;
2125 (dr + n)->dev_opt = flags;
2126
2127 if (++n >= dev_num)
2128 break;
2129 }
2130 read_unlock(&hci_dev_list_lock);
2131
2132 dl->dev_num = n;
2133 size = sizeof(*dl) + n * sizeof(*dr);
2134
2135 err = copy_to_user(arg, dl, size);
2136 kfree(dl);
2137
2138 return err ? -EFAULT : 0;
2139 }
2140
hci_get_dev_info(void __user * arg)2141 int hci_get_dev_info(void __user *arg)
2142 {
2143 struct hci_dev *hdev;
2144 struct hci_dev_info di;
2145 unsigned long flags;
2146 int err = 0;
2147
2148 if (copy_from_user(&di, arg, sizeof(di)))
2149 return -EFAULT;
2150
2151 hdev = hci_dev_get(di.dev_id);
2152 if (!hdev)
2153 return -ENODEV;
2154
2155 /* When the auto-off is configured it means the transport
2156 * is running, but in that case still indicate that the
2157 * device is actually down.
2158 */
2159 if (hci_dev_test_flag(hdev, HCI_AUTO_OFF))
2160 flags = hdev->flags & ~BIT(HCI_UP);
2161 else
2162 flags = hdev->flags;
2163
2164 strcpy(di.name, hdev->name);
2165 di.bdaddr = hdev->bdaddr;
2166 di.type = (hdev->bus & 0x0f) | ((hdev->dev_type & 0x03) << 4);
2167 di.flags = flags;
2168 di.pkt_type = hdev->pkt_type;
2169 if (lmp_bredr_capable(hdev)) {
2170 di.acl_mtu = hdev->acl_mtu;
2171 di.acl_pkts = hdev->acl_pkts;
2172 di.sco_mtu = hdev->sco_mtu;
2173 di.sco_pkts = hdev->sco_pkts;
2174 } else {
2175 di.acl_mtu = hdev->le_mtu;
2176 di.acl_pkts = hdev->le_pkts;
2177 di.sco_mtu = 0;
2178 di.sco_pkts = 0;
2179 }
2180 di.link_policy = hdev->link_policy;
2181 di.link_mode = hdev->link_mode;
2182
2183 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
2184 memcpy(&di.features, &hdev->features, sizeof(di.features));
2185
2186 if (copy_to_user(arg, &di, sizeof(di)))
2187 err = -EFAULT;
2188
2189 hci_dev_put(hdev);
2190
2191 return err;
2192 }
2193
2194 /* ---- Interface to HCI drivers ---- */
2195
hci_rfkill_set_block(void * data,bool blocked)2196 static int hci_rfkill_set_block(void *data, bool blocked)
2197 {
2198 struct hci_dev *hdev = data;
2199
2200 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
2201
2202 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL))
2203 return -EBUSY;
2204
2205 if (blocked) {
2206 hci_dev_set_flag(hdev, HCI_RFKILLED);
2207 if (!hci_dev_test_flag(hdev, HCI_SETUP) &&
2208 !hci_dev_test_flag(hdev, HCI_CONFIG))
2209 hci_dev_do_close(hdev);
2210 } else {
2211 hci_dev_clear_flag(hdev, HCI_RFKILLED);
2212 }
2213
2214 return 0;
2215 }
2216
2217 static const struct rfkill_ops hci_rfkill_ops = {
2218 .set_block = hci_rfkill_set_block,
2219 };
2220
hci_power_on(struct work_struct * work)2221 static void hci_power_on(struct work_struct *work)
2222 {
2223 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
2224 int err;
2225
2226 BT_DBG("%s", hdev->name);
2227
2228 if (test_bit(HCI_UP, &hdev->flags) &&
2229 hci_dev_test_flag(hdev, HCI_MGMT) &&
2230 hci_dev_test_and_clear_flag(hdev, HCI_AUTO_OFF)) {
2231 cancel_delayed_work(&hdev->power_off);
2232 hci_req_sync_lock(hdev);
2233 err = __hci_req_hci_power_on(hdev);
2234 hci_req_sync_unlock(hdev);
2235 mgmt_power_on(hdev, err);
2236 return;
2237 }
2238
2239 err = hci_dev_do_open(hdev);
2240 if (err < 0) {
2241 hci_dev_lock(hdev);
2242 mgmt_set_powered_failed(hdev, err);
2243 hci_dev_unlock(hdev);
2244 return;
2245 }
2246
2247 /* During the HCI setup phase, a few error conditions are
2248 * ignored and they need to be checked now. If they are still
2249 * valid, it is important to turn the device back off.
2250 */
2251 if (hci_dev_test_flag(hdev, HCI_RFKILLED) ||
2252 hci_dev_test_flag(hdev, HCI_UNCONFIGURED) ||
2253 (hdev->dev_type == HCI_PRIMARY &&
2254 !bacmp(&hdev->bdaddr, BDADDR_ANY) &&
2255 !bacmp(&hdev->static_addr, BDADDR_ANY))) {
2256 hci_dev_clear_flag(hdev, HCI_AUTO_OFF);
2257 hci_dev_do_close(hdev);
2258 } else if (hci_dev_test_flag(hdev, HCI_AUTO_OFF)) {
2259 queue_delayed_work(hdev->req_workqueue, &hdev->power_off,
2260 HCI_AUTO_OFF_TIMEOUT);
2261 }
2262
2263 if (hci_dev_test_and_clear_flag(hdev, HCI_SETUP)) {
2264 /* For unconfigured devices, set the HCI_RAW flag
2265 * so that userspace can easily identify them.
2266 */
2267 if (hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2268 set_bit(HCI_RAW, &hdev->flags);
2269
2270 /* For fully configured devices, this will send
2271 * the Index Added event. For unconfigured devices,
2272 * it will send Unconfigued Index Added event.
2273 *
2274 * Devices with HCI_QUIRK_RAW_DEVICE are ignored
2275 * and no event will be send.
2276 */
2277 mgmt_index_added(hdev);
2278 } else if (hci_dev_test_and_clear_flag(hdev, HCI_CONFIG)) {
2279 /* When the controller is now configured, then it
2280 * is important to clear the HCI_RAW flag.
2281 */
2282 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED))
2283 clear_bit(HCI_RAW, &hdev->flags);
2284
2285 /* Powering on the controller with HCI_CONFIG set only
2286 * happens with the transition from unconfigured to
2287 * configured. This will send the Index Added event.
2288 */
2289 mgmt_index_added(hdev);
2290 }
2291 }
2292
hci_power_off(struct work_struct * work)2293 static void hci_power_off(struct work_struct *work)
2294 {
2295 struct hci_dev *hdev = container_of(work, struct hci_dev,
2296 power_off.work);
2297
2298 BT_DBG("%s", hdev->name);
2299
2300 hci_dev_do_close(hdev);
2301 }
2302
hci_error_reset(struct work_struct * work)2303 static void hci_error_reset(struct work_struct *work)
2304 {
2305 struct hci_dev *hdev = container_of(work, struct hci_dev, error_reset);
2306
2307 BT_DBG("%s", hdev->name);
2308
2309 if (hdev->hw_error)
2310 hdev->hw_error(hdev, hdev->hw_error_code);
2311 else
2312 bt_dev_err(hdev, "hardware error 0x%2.2x", hdev->hw_error_code);
2313
2314 if (hci_dev_do_close(hdev))
2315 return;
2316
2317 hci_dev_do_open(hdev);
2318 }
2319
hci_uuids_clear(struct hci_dev * hdev)2320 void hci_uuids_clear(struct hci_dev *hdev)
2321 {
2322 struct bt_uuid *uuid, *tmp;
2323
2324 list_for_each_entry_safe(uuid, tmp, &hdev->uuids, list) {
2325 list_del(&uuid->list);
2326 kfree(uuid);
2327 }
2328 }
2329
hci_link_keys_clear(struct hci_dev * hdev)2330 void hci_link_keys_clear(struct hci_dev *hdev)
2331 {
2332 struct link_key *key;
2333
2334 list_for_each_entry(key, &hdev->link_keys, list) {
2335 list_del_rcu(&key->list);
2336 kfree_rcu(key, rcu);
2337 }
2338 }
2339
hci_smp_ltks_clear(struct hci_dev * hdev)2340 void hci_smp_ltks_clear(struct hci_dev *hdev)
2341 {
2342 struct smp_ltk *k;
2343
2344 list_for_each_entry(k, &hdev->long_term_keys, list) {
2345 list_del_rcu(&k->list);
2346 kfree_rcu(k, rcu);
2347 }
2348 }
2349
hci_smp_irks_clear(struct hci_dev * hdev)2350 void hci_smp_irks_clear(struct hci_dev *hdev)
2351 {
2352 struct smp_irk *k;
2353
2354 list_for_each_entry(k, &hdev->identity_resolving_keys, list) {
2355 list_del_rcu(&k->list);
2356 kfree_rcu(k, rcu);
2357 }
2358 }
2359
hci_blocked_keys_clear(struct hci_dev * hdev)2360 void hci_blocked_keys_clear(struct hci_dev *hdev)
2361 {
2362 struct blocked_key *b;
2363
2364 list_for_each_entry(b, &hdev->blocked_keys, list) {
2365 list_del_rcu(&b->list);
2366 kfree_rcu(b, rcu);
2367 }
2368 }
2369
hci_is_blocked_key(struct hci_dev * hdev,u8 type,u8 val[16])2370 bool hci_is_blocked_key(struct hci_dev *hdev, u8 type, u8 val[16])
2371 {
2372 bool blocked = false;
2373 struct blocked_key *b;
2374
2375 rcu_read_lock();
2376 list_for_each_entry_rcu(b, &hdev->blocked_keys, list) {
2377 if (b->type == type && !memcmp(b->val, val, sizeof(b->val))) {
2378 blocked = true;
2379 break;
2380 }
2381 }
2382
2383 rcu_read_unlock();
2384 return blocked;
2385 }
2386
hci_find_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2387 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2388 {
2389 struct link_key *k;
2390
2391 rcu_read_lock();
2392 list_for_each_entry_rcu(k, &hdev->link_keys, list) {
2393 if (bacmp(bdaddr, &k->bdaddr) == 0) {
2394 rcu_read_unlock();
2395
2396 if (hci_is_blocked_key(hdev,
2397 HCI_BLOCKED_KEY_TYPE_LINKKEY,
2398 k->val)) {
2399 bt_dev_warn_ratelimited(hdev,
2400 "Link key blocked for %pMR",
2401 &k->bdaddr);
2402 return NULL;
2403 }
2404
2405 return k;
2406 }
2407 }
2408 rcu_read_unlock();
2409
2410 return NULL;
2411 }
2412
hci_persistent_key(struct hci_dev * hdev,struct hci_conn * conn,u8 key_type,u8 old_key_type)2413 static bool hci_persistent_key(struct hci_dev *hdev, struct hci_conn *conn,
2414 u8 key_type, u8 old_key_type)
2415 {
2416 /* Legacy key */
2417 if (key_type < 0x03)
2418 return true;
2419
2420 /* Debug keys are insecure so don't store them persistently */
2421 if (key_type == HCI_LK_DEBUG_COMBINATION)
2422 return false;
2423
2424 /* Changed combination key and there's no previous one */
2425 if (key_type == HCI_LK_CHANGED_COMBINATION && old_key_type == 0xff)
2426 return false;
2427
2428 /* Security mode 3 case */
2429 if (!conn)
2430 return true;
2431
2432 /* BR/EDR key derived using SC from an LE link */
2433 if (conn->type == LE_LINK)
2434 return true;
2435
2436 /* Neither local nor remote side had no-bonding as requirement */
2437 if (conn->auth_type > 0x01 && conn->remote_auth > 0x01)
2438 return true;
2439
2440 /* Local side had dedicated bonding as requirement */
2441 if (conn->auth_type == 0x02 || conn->auth_type == 0x03)
2442 return true;
2443
2444 /* Remote side had dedicated bonding as requirement */
2445 if (conn->remote_auth == 0x02 || conn->remote_auth == 0x03)
2446 return true;
2447
2448 /* If none of the above criteria match, then don't store the key
2449 * persistently */
2450 return false;
2451 }
2452
ltk_role(u8 type)2453 static u8 ltk_role(u8 type)
2454 {
2455 if (type == SMP_LTK)
2456 return HCI_ROLE_MASTER;
2457
2458 return HCI_ROLE_SLAVE;
2459 }
2460
hci_find_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 role)2461 struct smp_ltk *hci_find_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2462 u8 addr_type, u8 role)
2463 {
2464 struct smp_ltk *k;
2465
2466 rcu_read_lock();
2467 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2468 if (addr_type != k->bdaddr_type || bacmp(bdaddr, &k->bdaddr))
2469 continue;
2470
2471 if (smp_ltk_is_sc(k) || ltk_role(k->type) == role) {
2472 rcu_read_unlock();
2473
2474 if (hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_LTK,
2475 k->val)) {
2476 bt_dev_warn_ratelimited(hdev,
2477 "LTK blocked for %pMR",
2478 &k->bdaddr);
2479 return NULL;
2480 }
2481
2482 return k;
2483 }
2484 }
2485 rcu_read_unlock();
2486
2487 return NULL;
2488 }
2489
hci_find_irk_by_rpa(struct hci_dev * hdev,bdaddr_t * rpa)2490 struct smp_irk *hci_find_irk_by_rpa(struct hci_dev *hdev, bdaddr_t *rpa)
2491 {
2492 struct smp_irk *irk_to_return = NULL;
2493 struct smp_irk *irk;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2497 if (!bacmp(&irk->rpa, rpa)) {
2498 irk_to_return = irk;
2499 goto done;
2500 }
2501 }
2502
2503 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2504 if (smp_irk_matches(hdev, irk->val, rpa)) {
2505 bacpy(&irk->rpa, rpa);
2506 irk_to_return = irk;
2507 goto done;
2508 }
2509 }
2510
2511 done:
2512 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2513 irk_to_return->val)) {
2514 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2515 &irk_to_return->bdaddr);
2516 irk_to_return = NULL;
2517 }
2518
2519 rcu_read_unlock();
2520
2521 return irk_to_return;
2522 }
2523
hci_find_irk_by_addr(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2524 struct smp_irk *hci_find_irk_by_addr(struct hci_dev *hdev, bdaddr_t *bdaddr,
2525 u8 addr_type)
2526 {
2527 struct smp_irk *irk_to_return = NULL;
2528 struct smp_irk *irk;
2529
2530 /* Identity Address must be public or static random */
2531 if (addr_type == ADDR_LE_DEV_RANDOM && (bdaddr->b[5] & 0xc0) != 0xc0)
2532 return NULL;
2533
2534 rcu_read_lock();
2535 list_for_each_entry_rcu(irk, &hdev->identity_resolving_keys, list) {
2536 if (addr_type == irk->addr_type &&
2537 bacmp(bdaddr, &irk->bdaddr) == 0) {
2538 irk_to_return = irk;
2539 goto done;
2540 }
2541 }
2542
2543 done:
2544
2545 if (irk_to_return && hci_is_blocked_key(hdev, HCI_BLOCKED_KEY_TYPE_IRK,
2546 irk_to_return->val)) {
2547 bt_dev_warn_ratelimited(hdev, "Identity key blocked for %pMR",
2548 &irk_to_return->bdaddr);
2549 irk_to_return = NULL;
2550 }
2551
2552 rcu_read_unlock();
2553
2554 return irk_to_return;
2555 }
2556
hci_add_link_key(struct hci_dev * hdev,struct hci_conn * conn,bdaddr_t * bdaddr,u8 * val,u8 type,u8 pin_len,bool * persistent)2557 struct link_key *hci_add_link_key(struct hci_dev *hdev, struct hci_conn *conn,
2558 bdaddr_t *bdaddr, u8 *val, u8 type,
2559 u8 pin_len, bool *persistent)
2560 {
2561 struct link_key *key, *old_key;
2562 u8 old_key_type;
2563
2564 old_key = hci_find_link_key(hdev, bdaddr);
2565 if (old_key) {
2566 old_key_type = old_key->type;
2567 key = old_key;
2568 } else {
2569 old_key_type = conn ? conn->key_type : 0xff;
2570 key = kzalloc(sizeof(*key), GFP_KERNEL);
2571 if (!key)
2572 return NULL;
2573 list_add_rcu(&key->list, &hdev->link_keys);
2574 }
2575
2576 BT_DBG("%s key for %pMR type %u", hdev->name, bdaddr, type);
2577
2578 /* Some buggy controller combinations generate a changed
2579 * combination key for legacy pairing even when there's no
2580 * previous key */
2581 if (type == HCI_LK_CHANGED_COMBINATION &&
2582 (!conn || conn->remote_auth == 0xff) && old_key_type == 0xff) {
2583 type = HCI_LK_COMBINATION;
2584 if (conn)
2585 conn->key_type = type;
2586 }
2587
2588 bacpy(&key->bdaddr, bdaddr);
2589 memcpy(key->val, val, HCI_LINK_KEY_SIZE);
2590 key->pin_len = pin_len;
2591
2592 if (type == HCI_LK_CHANGED_COMBINATION)
2593 key->type = old_key_type;
2594 else
2595 key->type = type;
2596
2597 if (persistent)
2598 *persistent = hci_persistent_key(hdev, conn, type,
2599 old_key_type);
2600
2601 return key;
2602 }
2603
hci_add_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 type,u8 authenticated,u8 tk[16],u8 enc_size,__le16 ediv,__le64 rand)2604 struct smp_ltk *hci_add_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2605 u8 addr_type, u8 type, u8 authenticated,
2606 u8 tk[16], u8 enc_size, __le16 ediv, __le64 rand)
2607 {
2608 struct smp_ltk *key, *old_key;
2609 u8 role = ltk_role(type);
2610
2611 old_key = hci_find_ltk(hdev, bdaddr, addr_type, role);
2612 if (old_key)
2613 key = old_key;
2614 else {
2615 key = kzalloc(sizeof(*key), GFP_KERNEL);
2616 if (!key)
2617 return NULL;
2618 list_add_rcu(&key->list, &hdev->long_term_keys);
2619 }
2620
2621 bacpy(&key->bdaddr, bdaddr);
2622 key->bdaddr_type = addr_type;
2623 memcpy(key->val, tk, sizeof(key->val));
2624 key->authenticated = authenticated;
2625 key->ediv = ediv;
2626 key->rand = rand;
2627 key->enc_size = enc_size;
2628 key->type = type;
2629
2630 return key;
2631 }
2632
hci_add_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type,u8 val[16],bdaddr_t * rpa)2633 struct smp_irk *hci_add_irk(struct hci_dev *hdev, bdaddr_t *bdaddr,
2634 u8 addr_type, u8 val[16], bdaddr_t *rpa)
2635 {
2636 struct smp_irk *irk;
2637
2638 irk = hci_find_irk_by_addr(hdev, bdaddr, addr_type);
2639 if (!irk) {
2640 irk = kzalloc(sizeof(*irk), GFP_KERNEL);
2641 if (!irk)
2642 return NULL;
2643
2644 bacpy(&irk->bdaddr, bdaddr);
2645 irk->addr_type = addr_type;
2646
2647 list_add_rcu(&irk->list, &hdev->identity_resolving_keys);
2648 }
2649
2650 memcpy(irk->val, val, 16);
2651 bacpy(&irk->rpa, rpa);
2652
2653 return irk;
2654 }
2655
hci_remove_link_key(struct hci_dev * hdev,bdaddr_t * bdaddr)2656 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
2657 {
2658 struct link_key *key;
2659
2660 key = hci_find_link_key(hdev, bdaddr);
2661 if (!key)
2662 return -ENOENT;
2663
2664 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2665
2666 list_del_rcu(&key->list);
2667 kfree_rcu(key, rcu);
2668
2669 return 0;
2670 }
2671
hci_remove_ltk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2672 int hci_remove_ltk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 bdaddr_type)
2673 {
2674 struct smp_ltk *k;
2675 int removed = 0;
2676
2677 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2678 if (bacmp(bdaddr, &k->bdaddr) || k->bdaddr_type != bdaddr_type)
2679 continue;
2680
2681 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2682
2683 list_del_rcu(&k->list);
2684 kfree_rcu(k, rcu);
2685 removed++;
2686 }
2687
2688 return removed ? 0 : -ENOENT;
2689 }
2690
hci_remove_irk(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 addr_type)2691 void hci_remove_irk(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 addr_type)
2692 {
2693 struct smp_irk *k;
2694
2695 list_for_each_entry_rcu(k, &hdev->identity_resolving_keys, list) {
2696 if (bacmp(bdaddr, &k->bdaddr) || k->addr_type != addr_type)
2697 continue;
2698
2699 BT_DBG("%s removing %pMR", hdev->name, bdaddr);
2700
2701 list_del_rcu(&k->list);
2702 kfree_rcu(k, rcu);
2703 }
2704 }
2705
hci_bdaddr_is_paired(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 type)2706 bool hci_bdaddr_is_paired(struct hci_dev *hdev, bdaddr_t *bdaddr, u8 type)
2707 {
2708 struct smp_ltk *k;
2709 struct smp_irk *irk;
2710 u8 addr_type;
2711
2712 if (type == BDADDR_BREDR) {
2713 if (hci_find_link_key(hdev, bdaddr))
2714 return true;
2715 return false;
2716 }
2717
2718 /* Convert to HCI addr type which struct smp_ltk uses */
2719 if (type == BDADDR_LE_PUBLIC)
2720 addr_type = ADDR_LE_DEV_PUBLIC;
2721 else
2722 addr_type = ADDR_LE_DEV_RANDOM;
2723
2724 irk = hci_get_irk(hdev, bdaddr, addr_type);
2725 if (irk) {
2726 bdaddr = &irk->bdaddr;
2727 addr_type = irk->addr_type;
2728 }
2729
2730 rcu_read_lock();
2731 list_for_each_entry_rcu(k, &hdev->long_term_keys, list) {
2732 if (k->bdaddr_type == addr_type && !bacmp(bdaddr, &k->bdaddr)) {
2733 rcu_read_unlock();
2734 return true;
2735 }
2736 }
2737 rcu_read_unlock();
2738
2739 return false;
2740 }
2741
2742 /* HCI command timer function */
hci_cmd_timeout(struct work_struct * work)2743 static void hci_cmd_timeout(struct work_struct *work)
2744 {
2745 struct hci_dev *hdev = container_of(work, struct hci_dev,
2746 cmd_timer.work);
2747
2748 if (hdev->sent_cmd) {
2749 struct hci_command_hdr *sent = (void *) hdev->sent_cmd->data;
2750 u16 opcode = __le16_to_cpu(sent->opcode);
2751
2752 bt_dev_err(hdev, "command 0x%4.4x tx timeout", opcode);
2753 } else {
2754 bt_dev_err(hdev, "command tx timeout");
2755 }
2756
2757 if (hdev->cmd_timeout)
2758 hdev->cmd_timeout(hdev);
2759
2760 atomic_set(&hdev->cmd_cnt, 1);
2761 queue_work(hdev->workqueue, &hdev->cmd_work);
2762 }
2763
hci_find_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2764 struct oob_data *hci_find_remote_oob_data(struct hci_dev *hdev,
2765 bdaddr_t *bdaddr, u8 bdaddr_type)
2766 {
2767 struct oob_data *data;
2768
2769 list_for_each_entry(data, &hdev->remote_oob_data, list) {
2770 if (bacmp(bdaddr, &data->bdaddr) != 0)
2771 continue;
2772 if (data->bdaddr_type != bdaddr_type)
2773 continue;
2774 return data;
2775 }
2776
2777 return NULL;
2778 }
2779
hci_remove_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type)2780 int hci_remove_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2781 u8 bdaddr_type)
2782 {
2783 struct oob_data *data;
2784
2785 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2786 if (!data)
2787 return -ENOENT;
2788
2789 BT_DBG("%s removing %pMR (%u)", hdev->name, bdaddr, bdaddr_type);
2790
2791 list_del(&data->list);
2792 kfree(data);
2793
2794 return 0;
2795 }
2796
hci_remote_oob_data_clear(struct hci_dev * hdev)2797 void hci_remote_oob_data_clear(struct hci_dev *hdev)
2798 {
2799 struct oob_data *data, *n;
2800
2801 list_for_each_entry_safe(data, n, &hdev->remote_oob_data, list) {
2802 list_del(&data->list);
2803 kfree(data);
2804 }
2805 }
2806
hci_add_remote_oob_data(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 bdaddr_type,u8 * hash192,u8 * rand192,u8 * hash256,u8 * rand256)2807 int hci_add_remote_oob_data(struct hci_dev *hdev, bdaddr_t *bdaddr,
2808 u8 bdaddr_type, u8 *hash192, u8 *rand192,
2809 u8 *hash256, u8 *rand256)
2810 {
2811 struct oob_data *data;
2812
2813 data = hci_find_remote_oob_data(hdev, bdaddr, bdaddr_type);
2814 if (!data) {
2815 data = kmalloc(sizeof(*data), GFP_KERNEL);
2816 if (!data)
2817 return -ENOMEM;
2818
2819 bacpy(&data->bdaddr, bdaddr);
2820 data->bdaddr_type = bdaddr_type;
2821 list_add(&data->list, &hdev->remote_oob_data);
2822 }
2823
2824 if (hash192 && rand192) {
2825 memcpy(data->hash192, hash192, sizeof(data->hash192));
2826 memcpy(data->rand192, rand192, sizeof(data->rand192));
2827 if (hash256 && rand256)
2828 data->present = 0x03;
2829 } else {
2830 memset(data->hash192, 0, sizeof(data->hash192));
2831 memset(data->rand192, 0, sizeof(data->rand192));
2832 if (hash256 && rand256)
2833 data->present = 0x02;
2834 else
2835 data->present = 0x00;
2836 }
2837
2838 if (hash256 && rand256) {
2839 memcpy(data->hash256, hash256, sizeof(data->hash256));
2840 memcpy(data->rand256, rand256, sizeof(data->rand256));
2841 } else {
2842 memset(data->hash256, 0, sizeof(data->hash256));
2843 memset(data->rand256, 0, sizeof(data->rand256));
2844 if (hash192 && rand192)
2845 data->present = 0x01;
2846 }
2847
2848 BT_DBG("%s for %pMR", hdev->name, bdaddr);
2849
2850 return 0;
2851 }
2852
2853 /* This function requires the caller holds hdev->lock */
hci_find_adv_instance(struct hci_dev * hdev,u8 instance)2854 struct adv_info *hci_find_adv_instance(struct hci_dev *hdev, u8 instance)
2855 {
2856 struct adv_info *adv_instance;
2857
2858 list_for_each_entry(adv_instance, &hdev->adv_instances, list) {
2859 if (adv_instance->instance == instance)
2860 return adv_instance;
2861 }
2862
2863 return NULL;
2864 }
2865
2866 /* This function requires the caller holds hdev->lock */
hci_get_next_instance(struct hci_dev * hdev,u8 instance)2867 struct adv_info *hci_get_next_instance(struct hci_dev *hdev, u8 instance)
2868 {
2869 struct adv_info *cur_instance;
2870
2871 cur_instance = hci_find_adv_instance(hdev, instance);
2872 if (!cur_instance)
2873 return NULL;
2874
2875 if (cur_instance == list_last_entry(&hdev->adv_instances,
2876 struct adv_info, list))
2877 return list_first_entry(&hdev->adv_instances,
2878 struct adv_info, list);
2879 else
2880 return list_next_entry(cur_instance, list);
2881 }
2882
2883 /* This function requires the caller holds hdev->lock */
hci_remove_adv_instance(struct hci_dev * hdev,u8 instance)2884 int hci_remove_adv_instance(struct hci_dev *hdev, u8 instance)
2885 {
2886 struct adv_info *adv_instance;
2887
2888 adv_instance = hci_find_adv_instance(hdev, instance);
2889 if (!adv_instance)
2890 return -ENOENT;
2891
2892 BT_DBG("%s removing %dMR", hdev->name, instance);
2893
2894 if (hdev->cur_adv_instance == instance) {
2895 if (hdev->adv_instance_timeout) {
2896 cancel_delayed_work(&hdev->adv_instance_expire);
2897 hdev->adv_instance_timeout = 0;
2898 }
2899 hdev->cur_adv_instance = 0x00;
2900 }
2901
2902 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2903
2904 list_del(&adv_instance->list);
2905 kfree(adv_instance);
2906
2907 hdev->adv_instance_cnt--;
2908
2909 return 0;
2910 }
2911
hci_adv_instances_set_rpa_expired(struct hci_dev * hdev,bool rpa_expired)2912 void hci_adv_instances_set_rpa_expired(struct hci_dev *hdev, bool rpa_expired)
2913 {
2914 struct adv_info *adv_instance, *n;
2915
2916 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list)
2917 adv_instance->rpa_expired = rpa_expired;
2918 }
2919
2920 /* This function requires the caller holds hdev->lock */
hci_adv_instances_clear(struct hci_dev * hdev)2921 void hci_adv_instances_clear(struct hci_dev *hdev)
2922 {
2923 struct adv_info *adv_instance, *n;
2924
2925 if (hdev->adv_instance_timeout) {
2926 cancel_delayed_work(&hdev->adv_instance_expire);
2927 hdev->adv_instance_timeout = 0;
2928 }
2929
2930 list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, list) {
2931 cancel_delayed_work_sync(&adv_instance->rpa_expired_cb);
2932 list_del(&adv_instance->list);
2933 kfree(adv_instance);
2934 }
2935
2936 hdev->adv_instance_cnt = 0;
2937 hdev->cur_adv_instance = 0x00;
2938 }
2939
adv_instance_rpa_expired(struct work_struct * work)2940 static void adv_instance_rpa_expired(struct work_struct *work)
2941 {
2942 struct adv_info *adv_instance = container_of(work, struct adv_info,
2943 rpa_expired_cb.work);
2944
2945 BT_DBG("");
2946
2947 adv_instance->rpa_expired = true;
2948 }
2949
2950 /* This function requires the caller holds hdev->lock */
hci_add_adv_instance(struct hci_dev * hdev,u8 instance,u32 flags,u16 adv_data_len,u8 * adv_data,u16 scan_rsp_len,u8 * scan_rsp_data,u16 timeout,u16 duration)2951 int hci_add_adv_instance(struct hci_dev *hdev, u8 instance, u32 flags,
2952 u16 adv_data_len, u8 *adv_data,
2953 u16 scan_rsp_len, u8 *scan_rsp_data,
2954 u16 timeout, u16 duration)
2955 {
2956 struct adv_info *adv_instance;
2957
2958 adv_instance = hci_find_adv_instance(hdev, instance);
2959 if (adv_instance) {
2960 memset(adv_instance->adv_data, 0,
2961 sizeof(adv_instance->adv_data));
2962 memset(adv_instance->scan_rsp_data, 0,
2963 sizeof(adv_instance->scan_rsp_data));
2964 } else {
2965 if (hdev->adv_instance_cnt >= hdev->le_num_of_adv_sets ||
2966 instance < 1 || instance > hdev->le_num_of_adv_sets)
2967 return -EOVERFLOW;
2968
2969 adv_instance = kzalloc(sizeof(*adv_instance), GFP_KERNEL);
2970 if (!adv_instance)
2971 return -ENOMEM;
2972
2973 adv_instance->pending = true;
2974 adv_instance->instance = instance;
2975 list_add(&adv_instance->list, &hdev->adv_instances);
2976 hdev->adv_instance_cnt++;
2977 }
2978
2979 adv_instance->flags = flags;
2980 adv_instance->adv_data_len = adv_data_len;
2981 adv_instance->scan_rsp_len = scan_rsp_len;
2982
2983 if (adv_data_len)
2984 memcpy(adv_instance->adv_data, adv_data, adv_data_len);
2985
2986 if (scan_rsp_len)
2987 memcpy(adv_instance->scan_rsp_data,
2988 scan_rsp_data, scan_rsp_len);
2989
2990 adv_instance->timeout = timeout;
2991 adv_instance->remaining_time = timeout;
2992
2993 if (duration == 0)
2994 adv_instance->duration = hdev->def_multi_adv_rotation_duration;
2995 else
2996 adv_instance->duration = duration;
2997
2998 adv_instance->tx_power = HCI_TX_POWER_INVALID;
2999
3000 INIT_DELAYED_WORK(&adv_instance->rpa_expired_cb,
3001 adv_instance_rpa_expired);
3002
3003 BT_DBG("%s for %dMR", hdev->name, instance);
3004
3005 return 0;
3006 }
3007
3008 /* This function requires the caller holds hdev->lock */
hci_adv_monitors_clear(struct hci_dev * hdev)3009 void hci_adv_monitors_clear(struct hci_dev *hdev)
3010 {
3011 struct adv_monitor *monitor;
3012 int handle;
3013
3014 idr_for_each_entry(&hdev->adv_monitors_idr, monitor, handle)
3015 hci_free_adv_monitor(monitor);
3016
3017 idr_destroy(&hdev->adv_monitors_idr);
3018 }
3019
hci_free_adv_monitor(struct adv_monitor * monitor)3020 void hci_free_adv_monitor(struct adv_monitor *monitor)
3021 {
3022 struct adv_pattern *pattern;
3023 struct adv_pattern *tmp;
3024
3025 if (!monitor)
3026 return;
3027
3028 list_for_each_entry_safe(pattern, tmp, &monitor->patterns, list)
3029 kfree(pattern);
3030
3031 kfree(monitor);
3032 }
3033
3034 /* This function requires the caller holds hdev->lock */
hci_add_adv_monitor(struct hci_dev * hdev,struct adv_monitor * monitor)3035 int hci_add_adv_monitor(struct hci_dev *hdev, struct adv_monitor *monitor)
3036 {
3037 int min, max, handle;
3038
3039 if (!monitor)
3040 return -EINVAL;
3041
3042 min = HCI_MIN_ADV_MONITOR_HANDLE;
3043 max = HCI_MIN_ADV_MONITOR_HANDLE + HCI_MAX_ADV_MONITOR_NUM_HANDLES;
3044 handle = idr_alloc(&hdev->adv_monitors_idr, monitor, min, max,
3045 GFP_KERNEL);
3046 if (handle < 0)
3047 return handle;
3048
3049 hdev->adv_monitors_cnt++;
3050 monitor->handle = handle;
3051
3052 hci_update_background_scan(hdev);
3053
3054 return 0;
3055 }
3056
free_adv_monitor(int id,void * ptr,void * data)3057 static int free_adv_monitor(int id, void *ptr, void *data)
3058 {
3059 struct hci_dev *hdev = data;
3060 struct adv_monitor *monitor = ptr;
3061
3062 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3063 hci_free_adv_monitor(monitor);
3064 hdev->adv_monitors_cnt--;
3065
3066 return 0;
3067 }
3068
3069 /* This function requires the caller holds hdev->lock */
hci_remove_adv_monitor(struct hci_dev * hdev,u16 handle)3070 int hci_remove_adv_monitor(struct hci_dev *hdev, u16 handle)
3071 {
3072 struct adv_monitor *monitor;
3073
3074 if (handle) {
3075 monitor = idr_find(&hdev->adv_monitors_idr, handle);
3076 if (!monitor)
3077 return -ENOENT;
3078
3079 idr_remove(&hdev->adv_monitors_idr, monitor->handle);
3080 hci_free_adv_monitor(monitor);
3081 hdev->adv_monitors_cnt--;
3082 } else {
3083 /* Remove all monitors if handle is 0. */
3084 idr_for_each(&hdev->adv_monitors_idr, &free_adv_monitor, hdev);
3085 }
3086
3087 hci_update_background_scan(hdev);
3088
3089 return 0;
3090 }
3091
3092 /* This function requires the caller holds hdev->lock */
hci_is_adv_monitoring(struct hci_dev * hdev)3093 bool hci_is_adv_monitoring(struct hci_dev *hdev)
3094 {
3095 return !idr_is_empty(&hdev->adv_monitors_idr);
3096 }
3097
hci_bdaddr_list_lookup(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3098 struct bdaddr_list *hci_bdaddr_list_lookup(struct list_head *bdaddr_list,
3099 bdaddr_t *bdaddr, u8 type)
3100 {
3101 struct bdaddr_list *b;
3102
3103 list_for_each_entry(b, bdaddr_list, list) {
3104 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3105 return b;
3106 }
3107
3108 return NULL;
3109 }
3110
hci_bdaddr_list_lookup_with_irk(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3111 struct bdaddr_list_with_irk *hci_bdaddr_list_lookup_with_irk(
3112 struct list_head *bdaddr_list, bdaddr_t *bdaddr,
3113 u8 type)
3114 {
3115 struct bdaddr_list_with_irk *b;
3116
3117 list_for_each_entry(b, bdaddr_list, list) {
3118 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3119 return b;
3120 }
3121
3122 return NULL;
3123 }
3124
3125 struct bdaddr_list_with_flags *
hci_bdaddr_list_lookup_with_flags(struct list_head * bdaddr_list,bdaddr_t * bdaddr,u8 type)3126 hci_bdaddr_list_lookup_with_flags(struct list_head *bdaddr_list,
3127 bdaddr_t *bdaddr, u8 type)
3128 {
3129 struct bdaddr_list_with_flags *b;
3130
3131 list_for_each_entry(b, bdaddr_list, list) {
3132 if (!bacmp(&b->bdaddr, bdaddr) && b->bdaddr_type == type)
3133 return b;
3134 }
3135
3136 return NULL;
3137 }
3138
hci_bdaddr_list_clear(struct list_head * bdaddr_list)3139 void hci_bdaddr_list_clear(struct list_head *bdaddr_list)
3140 {
3141 struct bdaddr_list *b, *n;
3142
3143 list_for_each_entry_safe(b, n, bdaddr_list, list) {
3144 list_del(&b->list);
3145 kfree(b);
3146 }
3147 }
3148
hci_bdaddr_list_add(struct list_head * list,bdaddr_t * bdaddr,u8 type)3149 int hci_bdaddr_list_add(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3150 {
3151 struct bdaddr_list *entry;
3152
3153 if (!bacmp(bdaddr, BDADDR_ANY))
3154 return -EBADF;
3155
3156 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3157 return -EEXIST;
3158
3159 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3160 if (!entry)
3161 return -ENOMEM;
3162
3163 bacpy(&entry->bdaddr, bdaddr);
3164 entry->bdaddr_type = type;
3165
3166 list_add(&entry->list, list);
3167
3168 return 0;
3169 }
3170
hci_bdaddr_list_add_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type,u8 * peer_irk,u8 * local_irk)3171 int hci_bdaddr_list_add_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3172 u8 type, u8 *peer_irk, u8 *local_irk)
3173 {
3174 struct bdaddr_list_with_irk *entry;
3175
3176 if (!bacmp(bdaddr, BDADDR_ANY))
3177 return -EBADF;
3178
3179 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3180 return -EEXIST;
3181
3182 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3183 if (!entry)
3184 return -ENOMEM;
3185
3186 bacpy(&entry->bdaddr, bdaddr);
3187 entry->bdaddr_type = type;
3188
3189 if (peer_irk)
3190 memcpy(entry->peer_irk, peer_irk, 16);
3191
3192 if (local_irk)
3193 memcpy(entry->local_irk, local_irk, 16);
3194
3195 list_add(&entry->list, list);
3196
3197 return 0;
3198 }
3199
hci_bdaddr_list_add_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type,u32 flags)3200 int hci_bdaddr_list_add_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3201 u8 type, u32 flags)
3202 {
3203 struct bdaddr_list_with_flags *entry;
3204
3205 if (!bacmp(bdaddr, BDADDR_ANY))
3206 return -EBADF;
3207
3208 if (hci_bdaddr_list_lookup(list, bdaddr, type))
3209 return -EEXIST;
3210
3211 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
3212 if (!entry)
3213 return -ENOMEM;
3214
3215 bacpy(&entry->bdaddr, bdaddr);
3216 entry->bdaddr_type = type;
3217 entry->current_flags = flags;
3218
3219 list_add(&entry->list, list);
3220
3221 return 0;
3222 }
3223
hci_bdaddr_list_del(struct list_head * list,bdaddr_t * bdaddr,u8 type)3224 int hci_bdaddr_list_del(struct list_head *list, bdaddr_t *bdaddr, u8 type)
3225 {
3226 struct bdaddr_list *entry;
3227
3228 if (!bacmp(bdaddr, BDADDR_ANY)) {
3229 hci_bdaddr_list_clear(list);
3230 return 0;
3231 }
3232
3233 entry = hci_bdaddr_list_lookup(list, bdaddr, type);
3234 if (!entry)
3235 return -ENOENT;
3236
3237 list_del(&entry->list);
3238 kfree(entry);
3239
3240 return 0;
3241 }
3242
hci_bdaddr_list_del_with_irk(struct list_head * list,bdaddr_t * bdaddr,u8 type)3243 int hci_bdaddr_list_del_with_irk(struct list_head *list, bdaddr_t *bdaddr,
3244 u8 type)
3245 {
3246 struct bdaddr_list_with_irk *entry;
3247
3248 if (!bacmp(bdaddr, BDADDR_ANY)) {
3249 hci_bdaddr_list_clear(list);
3250 return 0;
3251 }
3252
3253 entry = hci_bdaddr_list_lookup_with_irk(list, bdaddr, type);
3254 if (!entry)
3255 return -ENOENT;
3256
3257 list_del(&entry->list);
3258 kfree(entry);
3259
3260 return 0;
3261 }
3262
hci_bdaddr_list_del_with_flags(struct list_head * list,bdaddr_t * bdaddr,u8 type)3263 int hci_bdaddr_list_del_with_flags(struct list_head *list, bdaddr_t *bdaddr,
3264 u8 type)
3265 {
3266 struct bdaddr_list_with_flags *entry;
3267
3268 if (!bacmp(bdaddr, BDADDR_ANY)) {
3269 hci_bdaddr_list_clear(list);
3270 return 0;
3271 }
3272
3273 entry = hci_bdaddr_list_lookup_with_flags(list, bdaddr, type);
3274 if (!entry)
3275 return -ENOENT;
3276
3277 list_del(&entry->list);
3278 kfree(entry);
3279
3280 return 0;
3281 }
3282
3283 /* This function requires the caller holds hdev->lock */
hci_conn_params_lookup(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3284 struct hci_conn_params *hci_conn_params_lookup(struct hci_dev *hdev,
3285 bdaddr_t *addr, u8 addr_type)
3286 {
3287 struct hci_conn_params *params;
3288
3289 list_for_each_entry(params, &hdev->le_conn_params, list) {
3290 if (bacmp(¶ms->addr, addr) == 0 &&
3291 params->addr_type == addr_type) {
3292 return params;
3293 }
3294 }
3295
3296 return NULL;
3297 }
3298
3299 /* This function requires the caller holds hdev->lock */
hci_pend_le_action_lookup(struct list_head * list,bdaddr_t * addr,u8 addr_type)3300 struct hci_conn_params *hci_pend_le_action_lookup(struct list_head *list,
3301 bdaddr_t *addr, u8 addr_type)
3302 {
3303 struct hci_conn_params *param;
3304
3305 switch (addr_type) {
3306 case ADDR_LE_DEV_PUBLIC_RESOLVED:
3307 addr_type = ADDR_LE_DEV_PUBLIC;
3308 break;
3309 case ADDR_LE_DEV_RANDOM_RESOLVED:
3310 addr_type = ADDR_LE_DEV_RANDOM;
3311 break;
3312 }
3313
3314 list_for_each_entry(param, list, action) {
3315 if (bacmp(¶m->addr, addr) == 0 &&
3316 param->addr_type == addr_type)
3317 return param;
3318 }
3319
3320 return NULL;
3321 }
3322
3323 /* This function requires the caller holds hdev->lock */
hci_conn_params_add(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3324 struct hci_conn_params *hci_conn_params_add(struct hci_dev *hdev,
3325 bdaddr_t *addr, u8 addr_type)
3326 {
3327 struct hci_conn_params *params;
3328
3329 params = hci_conn_params_lookup(hdev, addr, addr_type);
3330 if (params)
3331 return params;
3332
3333 params = kzalloc(sizeof(*params), GFP_KERNEL);
3334 if (!params) {
3335 bt_dev_err(hdev, "out of memory");
3336 return NULL;
3337 }
3338
3339 bacpy(¶ms->addr, addr);
3340 params->addr_type = addr_type;
3341
3342 list_add(¶ms->list, &hdev->le_conn_params);
3343 INIT_LIST_HEAD(¶ms->action);
3344
3345 params->conn_min_interval = hdev->le_conn_min_interval;
3346 params->conn_max_interval = hdev->le_conn_max_interval;
3347 params->conn_latency = hdev->le_conn_latency;
3348 params->supervision_timeout = hdev->le_supv_timeout;
3349 params->auto_connect = HCI_AUTO_CONN_DISABLED;
3350
3351 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3352
3353 return params;
3354 }
3355
hci_conn_params_free(struct hci_conn_params * params)3356 static void hci_conn_params_free(struct hci_conn_params *params)
3357 {
3358 if (params->conn) {
3359 hci_conn_drop(params->conn);
3360 hci_conn_put(params->conn);
3361 }
3362
3363 list_del(¶ms->action);
3364 list_del(¶ms->list);
3365 kfree(params);
3366 }
3367
3368 /* This function requires the caller holds hdev->lock */
hci_conn_params_del(struct hci_dev * hdev,bdaddr_t * addr,u8 addr_type)3369 void hci_conn_params_del(struct hci_dev *hdev, bdaddr_t *addr, u8 addr_type)
3370 {
3371 struct hci_conn_params *params;
3372
3373 params = hci_conn_params_lookup(hdev, addr, addr_type);
3374 if (!params)
3375 return;
3376
3377 hci_conn_params_free(params);
3378
3379 hci_update_background_scan(hdev);
3380
3381 BT_DBG("addr %pMR (type %u)", addr, addr_type);
3382 }
3383
3384 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_disabled(struct hci_dev * hdev)3385 void hci_conn_params_clear_disabled(struct hci_dev *hdev)
3386 {
3387 struct hci_conn_params *params, *tmp;
3388
3389 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list) {
3390 if (params->auto_connect != HCI_AUTO_CONN_DISABLED)
3391 continue;
3392
3393 /* If trying to estabilish one time connection to disabled
3394 * device, leave the params, but mark them as just once.
3395 */
3396 if (params->explicit_connect) {
3397 params->auto_connect = HCI_AUTO_CONN_EXPLICIT;
3398 continue;
3399 }
3400
3401 list_del(¶ms->list);
3402 kfree(params);
3403 }
3404
3405 BT_DBG("All LE disabled connection parameters were removed");
3406 }
3407
3408 /* This function requires the caller holds hdev->lock */
hci_conn_params_clear_all(struct hci_dev * hdev)3409 static void hci_conn_params_clear_all(struct hci_dev *hdev)
3410 {
3411 struct hci_conn_params *params, *tmp;
3412
3413 list_for_each_entry_safe(params, tmp, &hdev->le_conn_params, list)
3414 hci_conn_params_free(params);
3415
3416 BT_DBG("All LE connection parameters were removed");
3417 }
3418
3419 /* Copy the Identity Address of the controller.
3420 *
3421 * If the controller has a public BD_ADDR, then by default use that one.
3422 * If this is a LE only controller without a public address, default to
3423 * the static random address.
3424 *
3425 * For debugging purposes it is possible to force controllers with a
3426 * public address to use the static random address instead.
3427 *
3428 * In case BR/EDR has been disabled on a dual-mode controller and
3429 * userspace has configured a static address, then that address
3430 * becomes the identity address instead of the public BR/EDR address.
3431 */
hci_copy_identity_address(struct hci_dev * hdev,bdaddr_t * bdaddr,u8 * bdaddr_type)3432 void hci_copy_identity_address(struct hci_dev *hdev, bdaddr_t *bdaddr,
3433 u8 *bdaddr_type)
3434 {
3435 if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) ||
3436 !bacmp(&hdev->bdaddr, BDADDR_ANY) ||
3437 (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) &&
3438 bacmp(&hdev->static_addr, BDADDR_ANY))) {
3439 bacpy(bdaddr, &hdev->static_addr);
3440 *bdaddr_type = ADDR_LE_DEV_RANDOM;
3441 } else {
3442 bacpy(bdaddr, &hdev->bdaddr);
3443 *bdaddr_type = ADDR_LE_DEV_PUBLIC;
3444 }
3445 }
3446
hci_suspend_clear_tasks(struct hci_dev * hdev)3447 static void hci_suspend_clear_tasks(struct hci_dev *hdev)
3448 {
3449 int i;
3450
3451 for (i = 0; i < __SUSPEND_NUM_TASKS; i++)
3452 clear_bit(i, hdev->suspend_tasks);
3453
3454 wake_up(&hdev->suspend_wait_q);
3455 }
3456
hci_suspend_wait_event(struct hci_dev * hdev)3457 static int hci_suspend_wait_event(struct hci_dev *hdev)
3458 {
3459 #define WAKE_COND \
3460 (find_first_bit(hdev->suspend_tasks, __SUSPEND_NUM_TASKS) == \
3461 __SUSPEND_NUM_TASKS)
3462
3463 int i;
3464 int ret = wait_event_timeout(hdev->suspend_wait_q,
3465 WAKE_COND, SUSPEND_NOTIFIER_TIMEOUT);
3466
3467 if (ret == 0) {
3468 bt_dev_err(hdev, "Timed out waiting for suspend events");
3469 for (i = 0; i < __SUSPEND_NUM_TASKS; ++i) {
3470 if (test_bit(i, hdev->suspend_tasks))
3471 bt_dev_err(hdev, "Suspend timeout bit: %d", i);
3472 clear_bit(i, hdev->suspend_tasks);
3473 }
3474
3475 ret = -ETIMEDOUT;
3476 } else {
3477 ret = 0;
3478 }
3479
3480 return ret;
3481 }
3482
hci_prepare_suspend(struct work_struct * work)3483 static void hci_prepare_suspend(struct work_struct *work)
3484 {
3485 struct hci_dev *hdev =
3486 container_of(work, struct hci_dev, suspend_prepare);
3487
3488 hci_dev_lock(hdev);
3489 hci_req_prepare_suspend(hdev, hdev->suspend_state_next);
3490 hci_dev_unlock(hdev);
3491 }
3492
hci_change_suspend_state(struct hci_dev * hdev,enum suspended_state next)3493 static int hci_change_suspend_state(struct hci_dev *hdev,
3494 enum suspended_state next)
3495 {
3496 hdev->suspend_state_next = next;
3497 set_bit(SUSPEND_PREPARE_NOTIFIER, hdev->suspend_tasks);
3498 queue_work(hdev->req_workqueue, &hdev->suspend_prepare);
3499 return hci_suspend_wait_event(hdev);
3500 }
3501
hci_clear_wake_reason(struct hci_dev * hdev)3502 static void hci_clear_wake_reason(struct hci_dev *hdev)
3503 {
3504 hci_dev_lock(hdev);
3505
3506 hdev->wake_reason = 0;
3507 bacpy(&hdev->wake_addr, BDADDR_ANY);
3508 hdev->wake_addr_type = 0;
3509
3510 hci_dev_unlock(hdev);
3511 }
3512
hci_suspend_notifier(struct notifier_block * nb,unsigned long action,void * data)3513 static int hci_suspend_notifier(struct notifier_block *nb, unsigned long action,
3514 void *data)
3515 {
3516 struct hci_dev *hdev =
3517 container_of(nb, struct hci_dev, suspend_notifier);
3518 int ret = 0;
3519 u8 state = BT_RUNNING;
3520
3521 /* If powering down, wait for completion. */
3522 if (mgmt_powering_down(hdev)) {
3523 set_bit(SUSPEND_POWERING_DOWN, hdev->suspend_tasks);
3524 ret = hci_suspend_wait_event(hdev);
3525 if (ret)
3526 goto done;
3527 }
3528
3529 /* Suspend notifier should only act on events when powered. */
3530 if (!hdev_is_powered(hdev))
3531 goto done;
3532
3533 if (action == PM_SUSPEND_PREPARE) {
3534 /* Suspend consists of two actions:
3535 * - First, disconnect everything and make the controller not
3536 * connectable (disabling scanning)
3537 * - Second, program event filter/whitelist and enable scan
3538 */
3539 ret = hci_change_suspend_state(hdev, BT_SUSPEND_DISCONNECT);
3540 if (!ret)
3541 state = BT_SUSPEND_DISCONNECT;
3542
3543 /* Only configure whitelist if disconnect succeeded and wake
3544 * isn't being prevented.
3545 */
3546 if (!ret && !(hdev->prevent_wake && hdev->prevent_wake(hdev))) {
3547 ret = hci_change_suspend_state(hdev,
3548 BT_SUSPEND_CONFIGURE_WAKE);
3549 if (!ret)
3550 state = BT_SUSPEND_CONFIGURE_WAKE;
3551 }
3552
3553 hci_clear_wake_reason(hdev);
3554 mgmt_suspending(hdev, state);
3555
3556 } else if (action == PM_POST_SUSPEND) {
3557 ret = hci_change_suspend_state(hdev, BT_RUNNING);
3558
3559 mgmt_resuming(hdev, hdev->wake_reason, &hdev->wake_addr,
3560 hdev->wake_addr_type);
3561 }
3562
3563 done:
3564 /* We always allow suspend even if suspend preparation failed and
3565 * attempt to recover in resume.
3566 */
3567 if (ret)
3568 bt_dev_err(hdev, "Suspend notifier action (%lu) failed: %d",
3569 action, ret);
3570
3571 return NOTIFY_DONE;
3572 }
3573
3574 /* Alloc HCI device */
hci_alloc_dev(void)3575 struct hci_dev *hci_alloc_dev(void)
3576 {
3577 struct hci_dev *hdev;
3578
3579 hdev = kzalloc(sizeof(*hdev), GFP_KERNEL);
3580 if (!hdev)
3581 return NULL;
3582
3583 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
3584 hdev->esco_type = (ESCO_HV1);
3585 hdev->link_mode = (HCI_LM_ACCEPT);
3586 hdev->num_iac = 0x01; /* One IAC support is mandatory */
3587 hdev->io_capability = 0x03; /* No Input No Output */
3588 hdev->manufacturer = 0xffff; /* Default to internal use */
3589 hdev->inq_tx_power = HCI_TX_POWER_INVALID;
3590 hdev->adv_tx_power = HCI_TX_POWER_INVALID;
3591 hdev->adv_instance_cnt = 0;
3592 hdev->cur_adv_instance = 0x00;
3593 hdev->adv_instance_timeout = 0;
3594
3595 hdev->sniff_max_interval = 800;
3596 hdev->sniff_min_interval = 80;
3597
3598 hdev->le_adv_channel_map = 0x07;
3599 hdev->le_adv_min_interval = 0x0800;
3600 hdev->le_adv_max_interval = 0x0800;
3601 hdev->le_scan_interval = 0x0060;
3602 hdev->le_scan_window = 0x0030;
3603 hdev->le_scan_int_suspend = 0x0400;
3604 hdev->le_scan_window_suspend = 0x0012;
3605 hdev->le_scan_int_discovery = DISCOV_LE_SCAN_INT;
3606 hdev->le_scan_window_discovery = DISCOV_LE_SCAN_WIN;
3607 hdev->le_scan_int_connect = 0x0060;
3608 hdev->le_scan_window_connect = 0x0060;
3609 hdev->le_conn_min_interval = 0x0018;
3610 hdev->le_conn_max_interval = 0x0028;
3611 hdev->le_conn_latency = 0x0000;
3612 hdev->le_supv_timeout = 0x002a;
3613 hdev->le_def_tx_len = 0x001b;
3614 hdev->le_def_tx_time = 0x0148;
3615 hdev->le_max_tx_len = 0x001b;
3616 hdev->le_max_tx_time = 0x0148;
3617 hdev->le_max_rx_len = 0x001b;
3618 hdev->le_max_rx_time = 0x0148;
3619 hdev->le_max_key_size = SMP_MAX_ENC_KEY_SIZE;
3620 hdev->le_min_key_size = SMP_MIN_ENC_KEY_SIZE;
3621 hdev->le_tx_def_phys = HCI_LE_SET_PHY_1M;
3622 hdev->le_rx_def_phys = HCI_LE_SET_PHY_1M;
3623 hdev->le_num_of_adv_sets = HCI_MAX_ADV_INSTANCES;
3624 hdev->def_multi_adv_rotation_duration = HCI_DEFAULT_ADV_DURATION;
3625 hdev->def_le_autoconnect_timeout = HCI_LE_AUTOCONN_TIMEOUT;
3626
3627 hdev->rpa_timeout = HCI_DEFAULT_RPA_TIMEOUT;
3628 hdev->discov_interleaved_timeout = DISCOV_INTERLEAVED_TIMEOUT;
3629 hdev->conn_info_min_age = DEFAULT_CONN_INFO_MIN_AGE;
3630 hdev->conn_info_max_age = DEFAULT_CONN_INFO_MAX_AGE;
3631 hdev->auth_payload_timeout = DEFAULT_AUTH_PAYLOAD_TIMEOUT;
3632 hdev->min_enc_key_size = HCI_MIN_ENC_KEY_SIZE;
3633
3634 /* default 1.28 sec page scan */
3635 hdev->def_page_scan_type = PAGE_SCAN_TYPE_STANDARD;
3636 hdev->def_page_scan_int = 0x0800;
3637 hdev->def_page_scan_window = 0x0012;
3638
3639 mutex_init(&hdev->lock);
3640 mutex_init(&hdev->req_lock);
3641
3642 INIT_LIST_HEAD(&hdev->mgmt_pending);
3643 INIT_LIST_HEAD(&hdev->blacklist);
3644 INIT_LIST_HEAD(&hdev->whitelist);
3645 INIT_LIST_HEAD(&hdev->uuids);
3646 INIT_LIST_HEAD(&hdev->link_keys);
3647 INIT_LIST_HEAD(&hdev->long_term_keys);
3648 INIT_LIST_HEAD(&hdev->identity_resolving_keys);
3649 INIT_LIST_HEAD(&hdev->remote_oob_data);
3650 INIT_LIST_HEAD(&hdev->le_white_list);
3651 INIT_LIST_HEAD(&hdev->le_resolv_list);
3652 INIT_LIST_HEAD(&hdev->le_conn_params);
3653 INIT_LIST_HEAD(&hdev->pend_le_conns);
3654 INIT_LIST_HEAD(&hdev->pend_le_reports);
3655 INIT_LIST_HEAD(&hdev->conn_hash.list);
3656 INIT_LIST_HEAD(&hdev->adv_instances);
3657 INIT_LIST_HEAD(&hdev->blocked_keys);
3658
3659 INIT_WORK(&hdev->rx_work, hci_rx_work);
3660 INIT_WORK(&hdev->cmd_work, hci_cmd_work);
3661 INIT_WORK(&hdev->tx_work, hci_tx_work);
3662 INIT_WORK(&hdev->power_on, hci_power_on);
3663 INIT_WORK(&hdev->error_reset, hci_error_reset);
3664 INIT_WORK(&hdev->suspend_prepare, hci_prepare_suspend);
3665
3666 INIT_DELAYED_WORK(&hdev->power_off, hci_power_off);
3667
3668 skb_queue_head_init(&hdev->rx_q);
3669 skb_queue_head_init(&hdev->cmd_q);
3670 skb_queue_head_init(&hdev->raw_q);
3671
3672 init_waitqueue_head(&hdev->req_wait_q);
3673 init_waitqueue_head(&hdev->suspend_wait_q);
3674
3675 INIT_DELAYED_WORK(&hdev->cmd_timer, hci_cmd_timeout);
3676
3677 hci_request_setup(hdev);
3678
3679 hci_init_sysfs(hdev);
3680 discovery_init(hdev);
3681
3682 return hdev;
3683 }
3684 EXPORT_SYMBOL(hci_alloc_dev);
3685
3686 /* Free HCI device */
hci_free_dev(struct hci_dev * hdev)3687 void hci_free_dev(struct hci_dev *hdev)
3688 {
3689 /* will free via device release */
3690 put_device(&hdev->dev);
3691 }
3692 EXPORT_SYMBOL(hci_free_dev);
3693
3694 /* Register HCI device */
hci_register_dev(struct hci_dev * hdev)3695 int hci_register_dev(struct hci_dev *hdev)
3696 {
3697 int id, error;
3698
3699 if (!hdev->open || !hdev->close || !hdev->send)
3700 return -EINVAL;
3701
3702 /* Do not allow HCI_AMP devices to register at index 0,
3703 * so the index can be used as the AMP controller ID.
3704 */
3705 switch (hdev->dev_type) {
3706 case HCI_PRIMARY:
3707 id = ida_simple_get(&hci_index_ida, 0, 0, GFP_KERNEL);
3708 break;
3709 case HCI_AMP:
3710 id = ida_simple_get(&hci_index_ida, 1, 0, GFP_KERNEL);
3711 break;
3712 default:
3713 return -EINVAL;
3714 }
3715
3716 if (id < 0)
3717 return id;
3718
3719 sprintf(hdev->name, "hci%d", id);
3720 hdev->id = id;
3721
3722 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3723
3724 hdev->workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI, hdev->name);
3725 if (!hdev->workqueue) {
3726 error = -ENOMEM;
3727 goto err;
3728 }
3729
3730 hdev->req_workqueue = alloc_ordered_workqueue("%s", WQ_HIGHPRI,
3731 hdev->name);
3732 if (!hdev->req_workqueue) {
3733 destroy_workqueue(hdev->workqueue);
3734 error = -ENOMEM;
3735 goto err;
3736 }
3737
3738 if (!IS_ERR_OR_NULL(bt_debugfs))
3739 hdev->debugfs = debugfs_create_dir(hdev->name, bt_debugfs);
3740
3741 dev_set_name(&hdev->dev, "%s", hdev->name);
3742
3743 error = device_add(&hdev->dev);
3744 if (error < 0)
3745 goto err_wqueue;
3746
3747 hci_leds_init(hdev);
3748
3749 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
3750 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops,
3751 hdev);
3752 if (hdev->rfkill) {
3753 if (rfkill_register(hdev->rfkill) < 0) {
3754 rfkill_destroy(hdev->rfkill);
3755 hdev->rfkill = NULL;
3756 }
3757 }
3758
3759 if (hdev->rfkill && rfkill_blocked(hdev->rfkill))
3760 hci_dev_set_flag(hdev, HCI_RFKILLED);
3761
3762 hci_dev_set_flag(hdev, HCI_SETUP);
3763 hci_dev_set_flag(hdev, HCI_AUTO_OFF);
3764
3765 if (hdev->dev_type == HCI_PRIMARY) {
3766 /* Assume BR/EDR support until proven otherwise (such as
3767 * through reading supported features during init.
3768 */
3769 hci_dev_set_flag(hdev, HCI_BREDR_ENABLED);
3770 }
3771
3772 write_lock(&hci_dev_list_lock);
3773 list_add(&hdev->list, &hci_dev_list);
3774 write_unlock(&hci_dev_list_lock);
3775
3776 /* Devices that are marked for raw-only usage are unconfigured
3777 * and should not be included in normal operation.
3778 */
3779 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
3780 hci_dev_set_flag(hdev, HCI_UNCONFIGURED);
3781
3782 hci_sock_dev_event(hdev, HCI_DEV_REG);
3783 hci_dev_hold(hdev);
3784
3785 hdev->suspend_notifier.notifier_call = hci_suspend_notifier;
3786 error = register_pm_notifier(&hdev->suspend_notifier);
3787 if (error)
3788 goto err_wqueue;
3789
3790 queue_work(hdev->req_workqueue, &hdev->power_on);
3791
3792 idr_init(&hdev->adv_monitors_idr);
3793
3794 return id;
3795
3796 err_wqueue:
3797 destroy_workqueue(hdev->workqueue);
3798 destroy_workqueue(hdev->req_workqueue);
3799 err:
3800 ida_simple_remove(&hci_index_ida, hdev->id);
3801
3802 return error;
3803 }
3804 EXPORT_SYMBOL(hci_register_dev);
3805
3806 /* Unregister HCI device */
hci_unregister_dev(struct hci_dev * hdev)3807 void hci_unregister_dev(struct hci_dev *hdev)
3808 {
3809 int id;
3810
3811 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
3812
3813 hci_dev_set_flag(hdev, HCI_UNREGISTER);
3814
3815 id = hdev->id;
3816
3817 write_lock(&hci_dev_list_lock);
3818 list_del(&hdev->list);
3819 write_unlock(&hci_dev_list_lock);
3820
3821 cancel_work_sync(&hdev->power_on);
3822
3823 hci_suspend_clear_tasks(hdev);
3824 unregister_pm_notifier(&hdev->suspend_notifier);
3825 cancel_work_sync(&hdev->suspend_prepare);
3826
3827 hci_dev_do_close(hdev);
3828
3829 if (!test_bit(HCI_INIT, &hdev->flags) &&
3830 !hci_dev_test_flag(hdev, HCI_SETUP) &&
3831 !hci_dev_test_flag(hdev, HCI_CONFIG)) {
3832 hci_dev_lock(hdev);
3833 mgmt_index_removed(hdev);
3834 hci_dev_unlock(hdev);
3835 }
3836
3837 /* mgmt_index_removed should take care of emptying the
3838 * pending list */
3839 BUG_ON(!list_empty(&hdev->mgmt_pending));
3840
3841 hci_sock_dev_event(hdev, HCI_DEV_UNREG);
3842
3843 if (hdev->rfkill) {
3844 rfkill_unregister(hdev->rfkill);
3845 rfkill_destroy(hdev->rfkill);
3846 }
3847
3848 device_del(&hdev->dev);
3849
3850 debugfs_remove_recursive(hdev->debugfs);
3851 kfree_const(hdev->hw_info);
3852 kfree_const(hdev->fw_info);
3853
3854 destroy_workqueue(hdev->workqueue);
3855 destroy_workqueue(hdev->req_workqueue);
3856
3857 hci_dev_lock(hdev);
3858 hci_bdaddr_list_clear(&hdev->blacklist);
3859 hci_bdaddr_list_clear(&hdev->whitelist);
3860 hci_uuids_clear(hdev);
3861 hci_link_keys_clear(hdev);
3862 hci_smp_ltks_clear(hdev);
3863 hci_smp_irks_clear(hdev);
3864 hci_remote_oob_data_clear(hdev);
3865 hci_adv_instances_clear(hdev);
3866 hci_adv_monitors_clear(hdev);
3867 hci_bdaddr_list_clear(&hdev->le_white_list);
3868 hci_bdaddr_list_clear(&hdev->le_resolv_list);
3869 hci_conn_params_clear_all(hdev);
3870 hci_discovery_filter_clear(hdev);
3871 hci_blocked_keys_clear(hdev);
3872 hci_dev_unlock(hdev);
3873
3874 hci_dev_put(hdev);
3875
3876 ida_simple_remove(&hci_index_ida, id);
3877 }
3878 EXPORT_SYMBOL(hci_unregister_dev);
3879
3880 /* Suspend HCI device */
hci_suspend_dev(struct hci_dev * hdev)3881 int hci_suspend_dev(struct hci_dev *hdev)
3882 {
3883 hci_sock_dev_event(hdev, HCI_DEV_SUSPEND);
3884 return 0;
3885 }
3886 EXPORT_SYMBOL(hci_suspend_dev);
3887
3888 /* Resume HCI device */
hci_resume_dev(struct hci_dev * hdev)3889 int hci_resume_dev(struct hci_dev *hdev)
3890 {
3891 hci_sock_dev_event(hdev, HCI_DEV_RESUME);
3892 return 0;
3893 }
3894 EXPORT_SYMBOL(hci_resume_dev);
3895
3896 /* Reset HCI device */
hci_reset_dev(struct hci_dev * hdev)3897 int hci_reset_dev(struct hci_dev *hdev)
3898 {
3899 static const u8 hw_err[] = { HCI_EV_HARDWARE_ERROR, 0x01, 0x00 };
3900 struct sk_buff *skb;
3901
3902 skb = bt_skb_alloc(3, GFP_ATOMIC);
3903 if (!skb)
3904 return -ENOMEM;
3905
3906 hci_skb_pkt_type(skb) = HCI_EVENT_PKT;
3907 skb_put_data(skb, hw_err, 3);
3908
3909 /* Send Hardware Error to upper stack */
3910 return hci_recv_frame(hdev, skb);
3911 }
3912 EXPORT_SYMBOL(hci_reset_dev);
3913
3914 /* Receive frame from HCI drivers */
hci_recv_frame(struct hci_dev * hdev,struct sk_buff * skb)3915 int hci_recv_frame(struct hci_dev *hdev, struct sk_buff *skb)
3916 {
3917 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
3918 && !test_bit(HCI_INIT, &hdev->flags))) {
3919 kfree_skb(skb);
3920 return -ENXIO;
3921 }
3922
3923 if (hci_skb_pkt_type(skb) != HCI_EVENT_PKT &&
3924 hci_skb_pkt_type(skb) != HCI_ACLDATA_PKT &&
3925 hci_skb_pkt_type(skb) != HCI_SCODATA_PKT &&
3926 hci_skb_pkt_type(skb) != HCI_ISODATA_PKT) {
3927 kfree_skb(skb);
3928 return -EINVAL;
3929 }
3930
3931 /* Incoming skb */
3932 bt_cb(skb)->incoming = 1;
3933
3934 /* Time stamp */
3935 __net_timestamp(skb);
3936
3937 skb_queue_tail(&hdev->rx_q, skb);
3938 queue_work(hdev->workqueue, &hdev->rx_work);
3939
3940 return 0;
3941 }
3942 EXPORT_SYMBOL(hci_recv_frame);
3943
3944 /* Receive diagnostic message from HCI drivers */
hci_recv_diag(struct hci_dev * hdev,struct sk_buff * skb)3945 int hci_recv_diag(struct hci_dev *hdev, struct sk_buff *skb)
3946 {
3947 /* Mark as diagnostic packet */
3948 hci_skb_pkt_type(skb) = HCI_DIAG_PKT;
3949
3950 /* Time stamp */
3951 __net_timestamp(skb);
3952
3953 skb_queue_tail(&hdev->rx_q, skb);
3954 queue_work(hdev->workqueue, &hdev->rx_work);
3955
3956 return 0;
3957 }
3958 EXPORT_SYMBOL(hci_recv_diag);
3959
hci_set_hw_info(struct hci_dev * hdev,const char * fmt,...)3960 void hci_set_hw_info(struct hci_dev *hdev, const char *fmt, ...)
3961 {
3962 va_list vargs;
3963
3964 va_start(vargs, fmt);
3965 kfree_const(hdev->hw_info);
3966 hdev->hw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3967 va_end(vargs);
3968 }
3969 EXPORT_SYMBOL(hci_set_hw_info);
3970
hci_set_fw_info(struct hci_dev * hdev,const char * fmt,...)3971 void hci_set_fw_info(struct hci_dev *hdev, const char *fmt, ...)
3972 {
3973 va_list vargs;
3974
3975 va_start(vargs, fmt);
3976 kfree_const(hdev->fw_info);
3977 hdev->fw_info = kvasprintf_const(GFP_KERNEL, fmt, vargs);
3978 va_end(vargs);
3979 }
3980 EXPORT_SYMBOL(hci_set_fw_info);
3981
3982 /* ---- Interface to upper protocols ---- */
3983
hci_register_cb(struct hci_cb * cb)3984 int hci_register_cb(struct hci_cb *cb)
3985 {
3986 BT_DBG("%p name %s", cb, cb->name);
3987
3988 mutex_lock(&hci_cb_list_lock);
3989 list_add_tail(&cb->list, &hci_cb_list);
3990 mutex_unlock(&hci_cb_list_lock);
3991
3992 return 0;
3993 }
3994 EXPORT_SYMBOL(hci_register_cb);
3995
hci_unregister_cb(struct hci_cb * cb)3996 int hci_unregister_cb(struct hci_cb *cb)
3997 {
3998 BT_DBG("%p name %s", cb, cb->name);
3999
4000 mutex_lock(&hci_cb_list_lock);
4001 list_del(&cb->list);
4002 mutex_unlock(&hci_cb_list_lock);
4003
4004 return 0;
4005 }
4006 EXPORT_SYMBOL(hci_unregister_cb);
4007
hci_send_frame(struct hci_dev * hdev,struct sk_buff * skb)4008 static void hci_send_frame(struct hci_dev *hdev, struct sk_buff *skb)
4009 {
4010 int err;
4011
4012 BT_DBG("%s type %d len %d", hdev->name, hci_skb_pkt_type(skb),
4013 skb->len);
4014
4015 /* Time stamp */
4016 __net_timestamp(skb);
4017
4018 /* Send copy to monitor */
4019 hci_send_to_monitor(hdev, skb);
4020
4021 if (atomic_read(&hdev->promisc)) {
4022 /* Send copy to the sockets */
4023 hci_send_to_sock(hdev, skb);
4024 }
4025
4026 /* Get rid of skb owner, prior to sending to the driver. */
4027 skb_orphan(skb);
4028
4029 if (!test_bit(HCI_RUNNING, &hdev->flags)) {
4030 kfree_skb(skb);
4031 return;
4032 }
4033
4034 err = hdev->send(hdev, skb);
4035 if (err < 0) {
4036 bt_dev_err(hdev, "sending frame failed (%d)", err);
4037 kfree_skb(skb);
4038 }
4039 }
4040
4041 /* Send HCI command */
hci_send_cmd(struct hci_dev * hdev,__u16 opcode,__u32 plen,const void * param)4042 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen,
4043 const void *param)
4044 {
4045 struct sk_buff *skb;
4046
4047 BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen);
4048
4049 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4050 if (!skb) {
4051 bt_dev_err(hdev, "no memory for command");
4052 return -ENOMEM;
4053 }
4054
4055 /* Stand-alone HCI commands must be flagged as
4056 * single-command requests.
4057 */
4058 bt_cb(skb)->hci.req_flags |= HCI_REQ_START;
4059
4060 skb_queue_tail(&hdev->cmd_q, skb);
4061 queue_work(hdev->workqueue, &hdev->cmd_work);
4062
4063 return 0;
4064 }
4065
__hci_cmd_send(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param)4066 int __hci_cmd_send(struct hci_dev *hdev, u16 opcode, u32 plen,
4067 const void *param)
4068 {
4069 struct sk_buff *skb;
4070
4071 if (hci_opcode_ogf(opcode) != 0x3f) {
4072 /* A controller receiving a command shall respond with either
4073 * a Command Status Event or a Command Complete Event.
4074 * Therefore, all standard HCI commands must be sent via the
4075 * standard API, using hci_send_cmd or hci_cmd_sync helpers.
4076 * Some vendors do not comply with this rule for vendor-specific
4077 * commands and do not return any event. We want to support
4078 * unresponded commands for such cases only.
4079 */
4080 bt_dev_err(hdev, "unresponded command not supported");
4081 return -EINVAL;
4082 }
4083
4084 skb = hci_prepare_cmd(hdev, opcode, plen, param);
4085 if (!skb) {
4086 bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)",
4087 opcode);
4088 return -ENOMEM;
4089 }
4090
4091 hci_send_frame(hdev, skb);
4092
4093 return 0;
4094 }
4095 EXPORT_SYMBOL(__hci_cmd_send);
4096
4097 /* Get data from the previously sent command */
hci_sent_cmd_data(struct hci_dev * hdev,__u16 opcode)4098 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
4099 {
4100 struct hci_command_hdr *hdr;
4101
4102 if (!hdev->sent_cmd)
4103 return NULL;
4104
4105 hdr = (void *) hdev->sent_cmd->data;
4106
4107 if (hdr->opcode != cpu_to_le16(opcode))
4108 return NULL;
4109
4110 BT_DBG("%s opcode 0x%4.4x", hdev->name, opcode);
4111
4112 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
4113 }
4114
4115 /* Send HCI command and wait for command commplete event */
hci_cmd_sync(struct hci_dev * hdev,u16 opcode,u32 plen,const void * param,u32 timeout)4116 struct sk_buff *hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen,
4117 const void *param, u32 timeout)
4118 {
4119 struct sk_buff *skb;
4120
4121 if (!test_bit(HCI_UP, &hdev->flags))
4122 return ERR_PTR(-ENETDOWN);
4123
4124 bt_dev_dbg(hdev, "opcode 0x%4.4x plen %d", opcode, plen);
4125
4126 hci_req_sync_lock(hdev);
4127 skb = __hci_cmd_sync(hdev, opcode, plen, param, timeout);
4128 hci_req_sync_unlock(hdev);
4129
4130 return skb;
4131 }
4132 EXPORT_SYMBOL(hci_cmd_sync);
4133
4134 /* Send ACL data */
hci_add_acl_hdr(struct sk_buff * skb,__u16 handle,__u16 flags)4135 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
4136 {
4137 struct hci_acl_hdr *hdr;
4138 int len = skb->len;
4139
4140 skb_push(skb, HCI_ACL_HDR_SIZE);
4141 skb_reset_transport_header(skb);
4142 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
4143 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
4144 hdr->dlen = cpu_to_le16(len);
4145 }
4146
hci_queue_acl(struct hci_chan * chan,struct sk_buff_head * queue,struct sk_buff * skb,__u16 flags)4147 static void hci_queue_acl(struct hci_chan *chan, struct sk_buff_head *queue,
4148 struct sk_buff *skb, __u16 flags)
4149 {
4150 struct hci_conn *conn = chan->conn;
4151 struct hci_dev *hdev = conn->hdev;
4152 struct sk_buff *list;
4153
4154 skb->len = skb_headlen(skb);
4155 skb->data_len = 0;
4156
4157 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4158
4159 switch (hdev->dev_type) {
4160 case HCI_PRIMARY:
4161 hci_add_acl_hdr(skb, conn->handle, flags);
4162 break;
4163 case HCI_AMP:
4164 hci_add_acl_hdr(skb, chan->handle, flags);
4165 break;
4166 default:
4167 bt_dev_err(hdev, "unknown dev_type %d", hdev->dev_type);
4168 return;
4169 }
4170
4171 list = skb_shinfo(skb)->frag_list;
4172 if (!list) {
4173 /* Non fragmented */
4174 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
4175
4176 skb_queue_tail(queue, skb);
4177 } else {
4178 /* Fragmented */
4179 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4180
4181 skb_shinfo(skb)->frag_list = NULL;
4182
4183 /* Queue all fragments atomically. We need to use spin_lock_bh
4184 * here because of 6LoWPAN links, as there this function is
4185 * called from softirq and using normal spin lock could cause
4186 * deadlocks.
4187 */
4188 spin_lock_bh(&queue->lock);
4189
4190 __skb_queue_tail(queue, skb);
4191
4192 flags &= ~ACL_START;
4193 flags |= ACL_CONT;
4194 do {
4195 skb = list; list = list->next;
4196
4197 hci_skb_pkt_type(skb) = HCI_ACLDATA_PKT;
4198 hci_add_acl_hdr(skb, conn->handle, flags);
4199
4200 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
4201
4202 __skb_queue_tail(queue, skb);
4203 } while (list);
4204
4205 spin_unlock_bh(&queue->lock);
4206 }
4207 }
4208
hci_send_acl(struct hci_chan * chan,struct sk_buff * skb,__u16 flags)4209 void hci_send_acl(struct hci_chan *chan, struct sk_buff *skb, __u16 flags)
4210 {
4211 struct hci_dev *hdev = chan->conn->hdev;
4212
4213 BT_DBG("%s chan %p flags 0x%4.4x", hdev->name, chan, flags);
4214
4215 hci_queue_acl(chan, &chan->data_q, skb, flags);
4216
4217 queue_work(hdev->workqueue, &hdev->tx_work);
4218 }
4219
4220 /* Send SCO data */
hci_send_sco(struct hci_conn * conn,struct sk_buff * skb)4221 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
4222 {
4223 struct hci_dev *hdev = conn->hdev;
4224 struct hci_sco_hdr hdr;
4225
4226 BT_DBG("%s len %d", hdev->name, skb->len);
4227
4228 hdr.handle = cpu_to_le16(conn->handle);
4229 hdr.dlen = skb->len;
4230
4231 skb_push(skb, HCI_SCO_HDR_SIZE);
4232 skb_reset_transport_header(skb);
4233 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
4234
4235 hci_skb_pkt_type(skb) = HCI_SCODATA_PKT;
4236
4237 skb_queue_tail(&conn->data_q, skb);
4238 queue_work(hdev->workqueue, &hdev->tx_work);
4239 }
4240
4241 /* ---- HCI TX task (outgoing data) ---- */
4242
4243 /* HCI Connection scheduler */
hci_low_sent(struct hci_dev * hdev,__u8 type,int * quote)4244 static struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type,
4245 int *quote)
4246 {
4247 struct hci_conn_hash *h = &hdev->conn_hash;
4248 struct hci_conn *conn = NULL, *c;
4249 unsigned int num = 0, min = ~0;
4250
4251 /* We don't have to lock device here. Connections are always
4252 * added and removed with TX task disabled. */
4253
4254 rcu_read_lock();
4255
4256 list_for_each_entry_rcu(c, &h->list, list) {
4257 if (c->type != type || skb_queue_empty(&c->data_q))
4258 continue;
4259
4260 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
4261 continue;
4262
4263 num++;
4264
4265 if (c->sent < min) {
4266 min = c->sent;
4267 conn = c;
4268 }
4269
4270 if (hci_conn_num(hdev, type) == num)
4271 break;
4272 }
4273
4274 rcu_read_unlock();
4275
4276 if (conn) {
4277 int cnt, q;
4278
4279 switch (conn->type) {
4280 case ACL_LINK:
4281 cnt = hdev->acl_cnt;
4282 break;
4283 case SCO_LINK:
4284 case ESCO_LINK:
4285 cnt = hdev->sco_cnt;
4286 break;
4287 case LE_LINK:
4288 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4289 break;
4290 default:
4291 cnt = 0;
4292 bt_dev_err(hdev, "unknown link type %d", conn->type);
4293 }
4294
4295 q = cnt / num;
4296 *quote = q ? q : 1;
4297 } else
4298 *quote = 0;
4299
4300 BT_DBG("conn %p quote %d", conn, *quote);
4301 return conn;
4302 }
4303
hci_link_tx_to(struct hci_dev * hdev,__u8 type)4304 static void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
4305 {
4306 struct hci_conn_hash *h = &hdev->conn_hash;
4307 struct hci_conn *c;
4308
4309 bt_dev_err(hdev, "link tx timeout");
4310
4311 rcu_read_lock();
4312
4313 /* Kill stalled connections */
4314 list_for_each_entry_rcu(c, &h->list, list) {
4315 if (c->type == type && c->sent) {
4316 bt_dev_err(hdev, "killing stalled connection %pMR",
4317 &c->dst);
4318 hci_disconnect(c, HCI_ERROR_REMOTE_USER_TERM);
4319 }
4320 }
4321
4322 rcu_read_unlock();
4323 }
4324
hci_chan_sent(struct hci_dev * hdev,__u8 type,int * quote)4325 static struct hci_chan *hci_chan_sent(struct hci_dev *hdev, __u8 type,
4326 int *quote)
4327 {
4328 struct hci_conn_hash *h = &hdev->conn_hash;
4329 struct hci_chan *chan = NULL;
4330 unsigned int num = 0, min = ~0, cur_prio = 0;
4331 struct hci_conn *conn;
4332 int cnt, q, conn_num = 0;
4333
4334 BT_DBG("%s", hdev->name);
4335
4336 rcu_read_lock();
4337
4338 list_for_each_entry_rcu(conn, &h->list, list) {
4339 struct hci_chan *tmp;
4340
4341 if (conn->type != type)
4342 continue;
4343
4344 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4345 continue;
4346
4347 conn_num++;
4348
4349 list_for_each_entry_rcu(tmp, &conn->chan_list, list) {
4350 struct sk_buff *skb;
4351
4352 if (skb_queue_empty(&tmp->data_q))
4353 continue;
4354
4355 skb = skb_peek(&tmp->data_q);
4356 if (skb->priority < cur_prio)
4357 continue;
4358
4359 if (skb->priority > cur_prio) {
4360 num = 0;
4361 min = ~0;
4362 cur_prio = skb->priority;
4363 }
4364
4365 num++;
4366
4367 if (conn->sent < min) {
4368 min = conn->sent;
4369 chan = tmp;
4370 }
4371 }
4372
4373 if (hci_conn_num(hdev, type) == conn_num)
4374 break;
4375 }
4376
4377 rcu_read_unlock();
4378
4379 if (!chan)
4380 return NULL;
4381
4382 switch (chan->conn->type) {
4383 case ACL_LINK:
4384 cnt = hdev->acl_cnt;
4385 break;
4386 case AMP_LINK:
4387 cnt = hdev->block_cnt;
4388 break;
4389 case SCO_LINK:
4390 case ESCO_LINK:
4391 cnt = hdev->sco_cnt;
4392 break;
4393 case LE_LINK:
4394 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
4395 break;
4396 default:
4397 cnt = 0;
4398 bt_dev_err(hdev, "unknown link type %d", chan->conn->type);
4399 }
4400
4401 q = cnt / num;
4402 *quote = q ? q : 1;
4403 BT_DBG("chan %p quote %d", chan, *quote);
4404 return chan;
4405 }
4406
hci_prio_recalculate(struct hci_dev * hdev,__u8 type)4407 static void hci_prio_recalculate(struct hci_dev *hdev, __u8 type)
4408 {
4409 struct hci_conn_hash *h = &hdev->conn_hash;
4410 struct hci_conn *conn;
4411 int num = 0;
4412
4413 BT_DBG("%s", hdev->name);
4414
4415 rcu_read_lock();
4416
4417 list_for_each_entry_rcu(conn, &h->list, list) {
4418 struct hci_chan *chan;
4419
4420 if (conn->type != type)
4421 continue;
4422
4423 if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG)
4424 continue;
4425
4426 num++;
4427
4428 list_for_each_entry_rcu(chan, &conn->chan_list, list) {
4429 struct sk_buff *skb;
4430
4431 if (chan->sent) {
4432 chan->sent = 0;
4433 continue;
4434 }
4435
4436 if (skb_queue_empty(&chan->data_q))
4437 continue;
4438
4439 skb = skb_peek(&chan->data_q);
4440 if (skb->priority >= HCI_PRIO_MAX - 1)
4441 continue;
4442
4443 skb->priority = HCI_PRIO_MAX - 1;
4444
4445 BT_DBG("chan %p skb %p promoted to %d", chan, skb,
4446 skb->priority);
4447 }
4448
4449 if (hci_conn_num(hdev, type) == num)
4450 break;
4451 }
4452
4453 rcu_read_unlock();
4454
4455 }
4456
__get_blocks(struct hci_dev * hdev,struct sk_buff * skb)4457 static inline int __get_blocks(struct hci_dev *hdev, struct sk_buff *skb)
4458 {
4459 /* Calculate count of blocks used by this packet */
4460 return DIV_ROUND_UP(skb->len - HCI_ACL_HDR_SIZE, hdev->block_len);
4461 }
4462
__check_timeout(struct hci_dev * hdev,unsigned int cnt)4463 static void __check_timeout(struct hci_dev *hdev, unsigned int cnt)
4464 {
4465 if (!hci_dev_test_flag(hdev, HCI_UNCONFIGURED)) {
4466 /* ACL tx timeout must be longer than maximum
4467 * link supervision timeout (40.9 seconds) */
4468 if (!cnt && time_after(jiffies, hdev->acl_last_tx +
4469 HCI_ACL_TX_TIMEOUT))
4470 hci_link_tx_to(hdev, ACL_LINK);
4471 }
4472 }
4473
4474 /* Schedule SCO */
hci_sched_sco(struct hci_dev * hdev)4475 static void hci_sched_sco(struct hci_dev *hdev)
4476 {
4477 struct hci_conn *conn;
4478 struct sk_buff *skb;
4479 int quote;
4480
4481 BT_DBG("%s", hdev->name);
4482
4483 if (!hci_conn_num(hdev, SCO_LINK))
4484 return;
4485
4486 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, "e))) {
4487 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4488 BT_DBG("skb %p len %d", skb, skb->len);
4489 hci_send_frame(hdev, skb);
4490
4491 conn->sent++;
4492 if (conn->sent == ~0)
4493 conn->sent = 0;
4494 }
4495 }
4496 }
4497
hci_sched_esco(struct hci_dev * hdev)4498 static void hci_sched_esco(struct hci_dev *hdev)
4499 {
4500 struct hci_conn *conn;
4501 struct sk_buff *skb;
4502 int quote;
4503
4504 BT_DBG("%s", hdev->name);
4505
4506 if (!hci_conn_num(hdev, ESCO_LINK))
4507 return;
4508
4509 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK,
4510 "e))) {
4511 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
4512 BT_DBG("skb %p len %d", skb, skb->len);
4513 hci_send_frame(hdev, skb);
4514
4515 conn->sent++;
4516 if (conn->sent == ~0)
4517 conn->sent = 0;
4518 }
4519 }
4520 }
4521
hci_sched_acl_pkt(struct hci_dev * hdev)4522 static void hci_sched_acl_pkt(struct hci_dev *hdev)
4523 {
4524 unsigned int cnt = hdev->acl_cnt;
4525 struct hci_chan *chan;
4526 struct sk_buff *skb;
4527 int quote;
4528
4529 __check_timeout(hdev, cnt);
4530
4531 while (hdev->acl_cnt &&
4532 (chan = hci_chan_sent(hdev, ACL_LINK, "e))) {
4533 u32 priority = (skb_peek(&chan->data_q))->priority;
4534 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4535 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4536 skb->len, skb->priority);
4537
4538 /* Stop if priority has changed */
4539 if (skb->priority < priority)
4540 break;
4541
4542 skb = skb_dequeue(&chan->data_q);
4543
4544 hci_conn_enter_active_mode(chan->conn,
4545 bt_cb(skb)->force_active);
4546
4547 hci_send_frame(hdev, skb);
4548 hdev->acl_last_tx = jiffies;
4549
4550 hdev->acl_cnt--;
4551 chan->sent++;
4552 chan->conn->sent++;
4553
4554 /* Send pending SCO packets right away */
4555 hci_sched_sco(hdev);
4556 hci_sched_esco(hdev);
4557 }
4558 }
4559
4560 if (cnt != hdev->acl_cnt)
4561 hci_prio_recalculate(hdev, ACL_LINK);
4562 }
4563
hci_sched_acl_blk(struct hci_dev * hdev)4564 static void hci_sched_acl_blk(struct hci_dev *hdev)
4565 {
4566 unsigned int cnt = hdev->block_cnt;
4567 struct hci_chan *chan;
4568 struct sk_buff *skb;
4569 int quote;
4570 u8 type;
4571
4572 __check_timeout(hdev, cnt);
4573
4574 BT_DBG("%s", hdev->name);
4575
4576 if (hdev->dev_type == HCI_AMP)
4577 type = AMP_LINK;
4578 else
4579 type = ACL_LINK;
4580
4581 while (hdev->block_cnt > 0 &&
4582 (chan = hci_chan_sent(hdev, type, "e))) {
4583 u32 priority = (skb_peek(&chan->data_q))->priority;
4584 while (quote > 0 && (skb = skb_peek(&chan->data_q))) {
4585 int blocks;
4586
4587 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4588 skb->len, skb->priority);
4589
4590 /* Stop if priority has changed */
4591 if (skb->priority < priority)
4592 break;
4593
4594 skb = skb_dequeue(&chan->data_q);
4595
4596 blocks = __get_blocks(hdev, skb);
4597 if (blocks > hdev->block_cnt)
4598 return;
4599
4600 hci_conn_enter_active_mode(chan->conn,
4601 bt_cb(skb)->force_active);
4602
4603 hci_send_frame(hdev, skb);
4604 hdev->acl_last_tx = jiffies;
4605
4606 hdev->block_cnt -= blocks;
4607 quote -= blocks;
4608
4609 chan->sent += blocks;
4610 chan->conn->sent += blocks;
4611 }
4612 }
4613
4614 if (cnt != hdev->block_cnt)
4615 hci_prio_recalculate(hdev, type);
4616 }
4617
hci_sched_acl(struct hci_dev * hdev)4618 static void hci_sched_acl(struct hci_dev *hdev)
4619 {
4620 BT_DBG("%s", hdev->name);
4621
4622 /* No ACL link over BR/EDR controller */
4623 if (!hci_conn_num(hdev, ACL_LINK) && hdev->dev_type == HCI_PRIMARY)
4624 return;
4625
4626 /* No AMP link over AMP controller */
4627 if (!hci_conn_num(hdev, AMP_LINK) && hdev->dev_type == HCI_AMP)
4628 return;
4629
4630 switch (hdev->flow_ctl_mode) {
4631 case HCI_FLOW_CTL_MODE_PACKET_BASED:
4632 hci_sched_acl_pkt(hdev);
4633 break;
4634
4635 case HCI_FLOW_CTL_MODE_BLOCK_BASED:
4636 hci_sched_acl_blk(hdev);
4637 break;
4638 }
4639 }
4640
hci_sched_le(struct hci_dev * hdev)4641 static void hci_sched_le(struct hci_dev *hdev)
4642 {
4643 struct hci_chan *chan;
4644 struct sk_buff *skb;
4645 int quote, cnt, tmp;
4646
4647 BT_DBG("%s", hdev->name);
4648
4649 if (!hci_conn_num(hdev, LE_LINK))
4650 return;
4651
4652 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
4653
4654 __check_timeout(hdev, cnt);
4655
4656 tmp = cnt;
4657 while (cnt && (chan = hci_chan_sent(hdev, LE_LINK, "e))) {
4658 u32 priority = (skb_peek(&chan->data_q))->priority;
4659 while (quote-- && (skb = skb_peek(&chan->data_q))) {
4660 BT_DBG("chan %p skb %p len %d priority %u", chan, skb,
4661 skb->len, skb->priority);
4662
4663 /* Stop if priority has changed */
4664 if (skb->priority < priority)
4665 break;
4666
4667 skb = skb_dequeue(&chan->data_q);
4668
4669 hci_send_frame(hdev, skb);
4670 hdev->le_last_tx = jiffies;
4671
4672 cnt--;
4673 chan->sent++;
4674 chan->conn->sent++;
4675
4676 /* Send pending SCO packets right away */
4677 hci_sched_sco(hdev);
4678 hci_sched_esco(hdev);
4679 }
4680 }
4681
4682 if (hdev->le_pkts)
4683 hdev->le_cnt = cnt;
4684 else
4685 hdev->acl_cnt = cnt;
4686
4687 if (cnt != tmp)
4688 hci_prio_recalculate(hdev, LE_LINK);
4689 }
4690
hci_tx_work(struct work_struct * work)4691 static void hci_tx_work(struct work_struct *work)
4692 {
4693 struct hci_dev *hdev = container_of(work, struct hci_dev, tx_work);
4694 struct sk_buff *skb;
4695
4696 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
4697 hdev->sco_cnt, hdev->le_cnt);
4698
4699 if (!hci_dev_test_flag(hdev, HCI_USER_CHANNEL)) {
4700 /* Schedule queues and send stuff to HCI driver */
4701 hci_sched_sco(hdev);
4702 hci_sched_esco(hdev);
4703 hci_sched_acl(hdev);
4704 hci_sched_le(hdev);
4705 }
4706
4707 /* Send next queued raw (unknown type) packet */
4708 while ((skb = skb_dequeue(&hdev->raw_q)))
4709 hci_send_frame(hdev, skb);
4710 }
4711
4712 /* ----- HCI RX task (incoming data processing) ----- */
4713
4714 /* ACL data packet */
hci_acldata_packet(struct hci_dev * hdev,struct sk_buff * skb)4715 static void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4716 {
4717 struct hci_acl_hdr *hdr = (void *) skb->data;
4718 struct hci_conn *conn;
4719 __u16 handle, flags;
4720
4721 skb_pull(skb, HCI_ACL_HDR_SIZE);
4722
4723 handle = __le16_to_cpu(hdr->handle);
4724 flags = hci_flags(handle);
4725 handle = hci_handle(handle);
4726
4727 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4728 handle, flags);
4729
4730 hdev->stat.acl_rx++;
4731
4732 hci_dev_lock(hdev);
4733 conn = hci_conn_hash_lookup_handle(hdev, handle);
4734 hci_dev_unlock(hdev);
4735
4736 if (conn) {
4737 hci_conn_enter_active_mode(conn, BT_POWER_FORCE_ACTIVE_OFF);
4738
4739 /* Send to upper protocol */
4740 l2cap_recv_acldata(conn, skb, flags);
4741 return;
4742 } else {
4743 bt_dev_err(hdev, "ACL packet for unknown connection handle %d",
4744 handle);
4745 }
4746
4747 kfree_skb(skb);
4748 }
4749
4750 /* SCO data packet */
hci_scodata_packet(struct hci_dev * hdev,struct sk_buff * skb)4751 static void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
4752 {
4753 struct hci_sco_hdr *hdr = (void *) skb->data;
4754 struct hci_conn *conn;
4755 __u16 handle, flags;
4756
4757 skb_pull(skb, HCI_SCO_HDR_SIZE);
4758
4759 handle = __le16_to_cpu(hdr->handle);
4760 flags = hci_flags(handle);
4761 handle = hci_handle(handle);
4762
4763 BT_DBG("%s len %d handle 0x%4.4x flags 0x%4.4x", hdev->name, skb->len,
4764 handle, flags);
4765
4766 hdev->stat.sco_rx++;
4767
4768 hci_dev_lock(hdev);
4769 conn = hci_conn_hash_lookup_handle(hdev, handle);
4770 hci_dev_unlock(hdev);
4771
4772 if (conn) {
4773 /* Send to upper protocol */
4774 bt_cb(skb)->sco.pkt_status = flags & 0x03;
4775 sco_recv_scodata(conn, skb);
4776 return;
4777 } else {
4778 bt_dev_err(hdev, "SCO packet for unknown connection handle %d",
4779 handle);
4780 }
4781
4782 kfree_skb(skb);
4783 }
4784
hci_req_is_complete(struct hci_dev * hdev)4785 static bool hci_req_is_complete(struct hci_dev *hdev)
4786 {
4787 struct sk_buff *skb;
4788
4789 skb = skb_peek(&hdev->cmd_q);
4790 if (!skb)
4791 return true;
4792
4793 return (bt_cb(skb)->hci.req_flags & HCI_REQ_START);
4794 }
4795
hci_resend_last(struct hci_dev * hdev)4796 static void hci_resend_last(struct hci_dev *hdev)
4797 {
4798 struct hci_command_hdr *sent;
4799 struct sk_buff *skb;
4800 u16 opcode;
4801
4802 if (!hdev->sent_cmd)
4803 return;
4804
4805 sent = (void *) hdev->sent_cmd->data;
4806 opcode = __le16_to_cpu(sent->opcode);
4807 if (opcode == HCI_OP_RESET)
4808 return;
4809
4810 skb = skb_clone(hdev->sent_cmd, GFP_KERNEL);
4811 if (!skb)
4812 return;
4813
4814 skb_queue_head(&hdev->cmd_q, skb);
4815 queue_work(hdev->workqueue, &hdev->cmd_work);
4816 }
4817
hci_req_cmd_complete(struct hci_dev * hdev,u16 opcode,u8 status,hci_req_complete_t * req_complete,hci_req_complete_skb_t * req_complete_skb)4818 void hci_req_cmd_complete(struct hci_dev *hdev, u16 opcode, u8 status,
4819 hci_req_complete_t *req_complete,
4820 hci_req_complete_skb_t *req_complete_skb)
4821 {
4822 struct sk_buff *skb;
4823 unsigned long flags;
4824
4825 BT_DBG("opcode 0x%04x status 0x%02x", opcode, status);
4826
4827 /* If the completed command doesn't match the last one that was
4828 * sent we need to do special handling of it.
4829 */
4830 if (!hci_sent_cmd_data(hdev, opcode)) {
4831 /* Some CSR based controllers generate a spontaneous
4832 * reset complete event during init and any pending
4833 * command will never be completed. In such a case we
4834 * need to resend whatever was the last sent
4835 * command.
4836 */
4837 if (test_bit(HCI_INIT, &hdev->flags) && opcode == HCI_OP_RESET)
4838 hci_resend_last(hdev);
4839
4840 return;
4841 }
4842
4843 /* If we reach this point this event matches the last command sent */
4844 hci_dev_clear_flag(hdev, HCI_CMD_PENDING);
4845
4846 /* If the command succeeded and there's still more commands in
4847 * this request the request is not yet complete.
4848 */
4849 if (!status && !hci_req_is_complete(hdev))
4850 return;
4851
4852 /* If this was the last command in a request the complete
4853 * callback would be found in hdev->sent_cmd instead of the
4854 * command queue (hdev->cmd_q).
4855 */
4856 if (bt_cb(hdev->sent_cmd)->hci.req_flags & HCI_REQ_SKB) {
4857 *req_complete_skb = bt_cb(hdev->sent_cmd)->hci.req_complete_skb;
4858 return;
4859 }
4860
4861 if (bt_cb(hdev->sent_cmd)->hci.req_complete) {
4862 *req_complete = bt_cb(hdev->sent_cmd)->hci.req_complete;
4863 return;
4864 }
4865
4866 /* Remove all pending commands belonging to this request */
4867 spin_lock_irqsave(&hdev->cmd_q.lock, flags);
4868 while ((skb = __skb_dequeue(&hdev->cmd_q))) {
4869 if (bt_cb(skb)->hci.req_flags & HCI_REQ_START) {
4870 __skb_queue_head(&hdev->cmd_q, skb);
4871 break;
4872 }
4873
4874 if (bt_cb(skb)->hci.req_flags & HCI_REQ_SKB)
4875 *req_complete_skb = bt_cb(skb)->hci.req_complete_skb;
4876 else
4877 *req_complete = bt_cb(skb)->hci.req_complete;
4878 kfree_skb(skb);
4879 }
4880 spin_unlock_irqrestore(&hdev->cmd_q.lock, flags);
4881 }
4882
hci_rx_work(struct work_struct * work)4883 static void hci_rx_work(struct work_struct *work)
4884 {
4885 struct hci_dev *hdev = container_of(work, struct hci_dev, rx_work);
4886 struct sk_buff *skb;
4887
4888 BT_DBG("%s", hdev->name);
4889
4890 while ((skb = skb_dequeue(&hdev->rx_q))) {
4891 /* Send copy to monitor */
4892 hci_send_to_monitor(hdev, skb);
4893
4894 if (atomic_read(&hdev->promisc)) {
4895 /* Send copy to the sockets */
4896 hci_send_to_sock(hdev, skb);
4897 }
4898
4899 /* If the device has been opened in HCI_USER_CHANNEL,
4900 * the userspace has exclusive access to device.
4901 * When device is HCI_INIT, we still need to process
4902 * the data packets to the driver in order
4903 * to complete its setup().
4904 */
4905 if (hci_dev_test_flag(hdev, HCI_USER_CHANNEL) &&
4906 !test_bit(HCI_INIT, &hdev->flags)) {
4907 kfree_skb(skb);
4908 continue;
4909 }
4910
4911 if (test_bit(HCI_INIT, &hdev->flags)) {
4912 /* Don't process data packets in this states. */
4913 switch (hci_skb_pkt_type(skb)) {
4914 case HCI_ACLDATA_PKT:
4915 case HCI_SCODATA_PKT:
4916 case HCI_ISODATA_PKT:
4917 kfree_skb(skb);
4918 continue;
4919 }
4920 }
4921
4922 /* Process frame */
4923 switch (hci_skb_pkt_type(skb)) {
4924 case HCI_EVENT_PKT:
4925 BT_DBG("%s Event packet", hdev->name);
4926 hci_event_packet(hdev, skb);
4927 break;
4928
4929 case HCI_ACLDATA_PKT:
4930 BT_DBG("%s ACL data packet", hdev->name);
4931 hci_acldata_packet(hdev, skb);
4932 break;
4933
4934 case HCI_SCODATA_PKT:
4935 BT_DBG("%s SCO data packet", hdev->name);
4936 hci_scodata_packet(hdev, skb);
4937 break;
4938
4939 default:
4940 kfree_skb(skb);
4941 break;
4942 }
4943 }
4944 }
4945
hci_cmd_work(struct work_struct * work)4946 static void hci_cmd_work(struct work_struct *work)
4947 {
4948 struct hci_dev *hdev = container_of(work, struct hci_dev, cmd_work);
4949 struct sk_buff *skb;
4950
4951 BT_DBG("%s cmd_cnt %d cmd queued %d", hdev->name,
4952 atomic_read(&hdev->cmd_cnt), skb_queue_len(&hdev->cmd_q));
4953
4954 /* Send queued commands */
4955 if (atomic_read(&hdev->cmd_cnt)) {
4956 skb = skb_dequeue(&hdev->cmd_q);
4957 if (!skb)
4958 return;
4959
4960 kfree_skb(hdev->sent_cmd);
4961
4962 hdev->sent_cmd = skb_clone(skb, GFP_KERNEL);
4963 if (hdev->sent_cmd) {
4964 if (hci_req_status_pend(hdev))
4965 hci_dev_set_flag(hdev, HCI_CMD_PENDING);
4966 atomic_dec(&hdev->cmd_cnt);
4967 hci_send_frame(hdev, skb);
4968 if (test_bit(HCI_RESET, &hdev->flags))
4969 cancel_delayed_work(&hdev->cmd_timer);
4970 else
4971 schedule_delayed_work(&hdev->cmd_timer,
4972 HCI_CMD_TIMEOUT);
4973 } else {
4974 skb_queue_head(&hdev->cmd_q, skb);
4975 queue_work(hdev->workqueue, &hdev->cmd_work);
4976 }
4977 }
4978 }
4979