1 /*
2  * Cryptographic API.
3  * Support for Nomadik hardware crypto engine.
4 
5  * Copyright (C) ST-Ericsson SA 2010
6  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11  * License terms: GNU General Public License (GPL) version 2
12  */
13 
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/platform_device.h>
26 #include <linux/crypto.h>
27 
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/bitops.h>
31 
32 #include <crypto/internal/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 
37 #include <linux/platform_data/crypto-ux500.h>
38 
39 #include "hash_alg.h"
40 
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44 
45 /* HMAC-SHA1, no key */
46 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
47 	0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
48 	0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
49 	0x70, 0x69, 0x0e, 0x1d
50 };
51 
52 /* HMAC-SHA256, no key */
53 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
54 	0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
55 	0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
56 	0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
57 	0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
58 };
59 
60 /**
61  * struct hash_driver_data - data specific to the driver.
62  *
63  * @device_list:	A list of registered devices to choose from.
64  * @device_allocation:	A semaphore initialized with number of devices.
65  */
66 struct hash_driver_data {
67 	struct klist		device_list;
68 	struct semaphore	device_allocation;
69 };
70 
71 static struct hash_driver_data	driver_data;
72 
73 /* Declaration of functions */
74 /**
75  * hash_messagepad - Pads a message and write the nblw bits.
76  * @device_data:	Structure for the hash device.
77  * @message:		Last word of a message
78  * @index_bytes:	The number of bytes in the last message
79  *
80  * This function manages the final part of the digest calculation, when less
81  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
82  *
83  */
84 static void hash_messagepad(struct hash_device_data *device_data,
85 			    const u32 *message, u8 index_bytes);
86 
87 /**
88  * release_hash_device - Releases a previously allocated hash device.
89  * @device_data:	Structure for the hash device.
90  *
91  */
release_hash_device(struct hash_device_data * device_data)92 static void release_hash_device(struct hash_device_data *device_data)
93 {
94 	spin_lock(&device_data->ctx_lock);
95 	device_data->current_ctx->device = NULL;
96 	device_data->current_ctx = NULL;
97 	spin_unlock(&device_data->ctx_lock);
98 
99 	/*
100 	 * The down_interruptible part for this semaphore is called in
101 	 * cryp_get_device_data.
102 	 */
103 	up(&driver_data.device_allocation);
104 }
105 
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)106 static void hash_dma_setup_channel(struct hash_device_data *device_data,
107 				   struct device *dev)
108 {
109 	struct hash_platform_data *platform_data = dev->platform_data;
110 	struct dma_slave_config conf = {
111 		.direction = DMA_MEM_TO_DEV,
112 		.dst_addr = device_data->phybase + HASH_DMA_FIFO,
113 		.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
114 		.dst_maxburst = 16,
115 	};
116 
117 	dma_cap_zero(device_data->dma.mask);
118 	dma_cap_set(DMA_SLAVE, device_data->dma.mask);
119 
120 	device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
121 	device_data->dma.chan_mem2hash =
122 		dma_request_channel(device_data->dma.mask,
123 				    platform_data->dma_filter,
124 				    device_data->dma.cfg_mem2hash);
125 
126 	dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
127 
128 	init_completion(&device_data->dma.complete);
129 }
130 
hash_dma_callback(void * data)131 static void hash_dma_callback(void *data)
132 {
133 	struct hash_ctx *ctx = data;
134 
135 	complete(&ctx->device->dma.complete);
136 }
137 
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)138 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
139 				 int len, enum dma_data_direction direction)
140 {
141 	struct dma_async_tx_descriptor *desc = NULL;
142 	struct dma_chan *channel = NULL;
143 	dma_cookie_t cookie;
144 
145 	if (direction != DMA_TO_DEVICE) {
146 		dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
147 			__func__);
148 		return -EFAULT;
149 	}
150 
151 	sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
152 
153 	channel = ctx->device->dma.chan_mem2hash;
154 	ctx->device->dma.sg = sg;
155 	ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
156 			ctx->device->dma.sg, ctx->device->dma.nents,
157 			direction);
158 
159 	if (!ctx->device->dma.sg_len) {
160 		dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
161 			__func__);
162 		return -EFAULT;
163 	}
164 
165 	dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166 		__func__);
167 	desc = dmaengine_prep_slave_sg(channel,
168 			ctx->device->dma.sg, ctx->device->dma.sg_len,
169 			direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
170 	if (!desc) {
171 		dev_err(ctx->device->dev,
172 			"%s: dmaengine_prep_slave_sg() failed!\n", __func__);
173 		return -EFAULT;
174 	}
175 
176 	desc->callback = hash_dma_callback;
177 	desc->callback_param = ctx;
178 
179 	cookie = dmaengine_submit(desc);
180 	dma_async_issue_pending(channel);
181 
182 	return 0;
183 }
184 
hash_dma_done(struct hash_ctx * ctx)185 static void hash_dma_done(struct hash_ctx *ctx)
186 {
187 	struct dma_chan *chan;
188 
189 	chan = ctx->device->dma.chan_mem2hash;
190 	dmaengine_terminate_all(chan);
191 	dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
192 		     ctx->device->dma.sg_len, DMA_TO_DEVICE);
193 }
194 
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)195 static int hash_dma_write(struct hash_ctx *ctx,
196 			  struct scatterlist *sg, int len)
197 {
198 	int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
199 	if (error) {
200 		dev_dbg(ctx->device->dev,
201 			"%s: hash_set_dma_transfer() failed\n", __func__);
202 		return error;
203 	}
204 
205 	return len;
206 }
207 
208 /**
209  * get_empty_message_digest - Returns a pre-calculated digest for
210  * the empty message.
211  * @device_data:	Structure for the hash device.
212  * @zero_hash:		Buffer to return the empty message digest.
213  * @zero_hash_size:	Hash size of the empty message digest.
214  * @zero_digest:	True if zero_digest returned.
215  */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)216 static int get_empty_message_digest(
217 		struct hash_device_data *device_data,
218 		u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
219 {
220 	int ret = 0;
221 	struct hash_ctx *ctx = device_data->current_ctx;
222 	*zero_digest = false;
223 
224 	/**
225 	 * Caller responsible for ctx != NULL.
226 	 */
227 
228 	if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
229 		if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
230 			memcpy(zero_hash, &sha1_zero_message_hash[0],
231 			       SHA1_DIGEST_SIZE);
232 			*zero_hash_size = SHA1_DIGEST_SIZE;
233 			*zero_digest = true;
234 		} else if (HASH_ALGO_SHA256 ==
235 				ctx->config.algorithm) {
236 			memcpy(zero_hash, &sha256_zero_message_hash[0],
237 			       SHA256_DIGEST_SIZE);
238 			*zero_hash_size = SHA256_DIGEST_SIZE;
239 			*zero_digest = true;
240 		} else {
241 			dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
242 				__func__);
243 			ret = -EINVAL;
244 			goto out;
245 		}
246 	} else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
247 		if (!ctx->keylen) {
248 			if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
249 				memcpy(zero_hash, &zero_message_hmac_sha1[0],
250 				       SHA1_DIGEST_SIZE);
251 				*zero_hash_size = SHA1_DIGEST_SIZE;
252 				*zero_digest = true;
253 			} else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
254 				memcpy(zero_hash, &zero_message_hmac_sha256[0],
255 				       SHA256_DIGEST_SIZE);
256 				*zero_hash_size = SHA256_DIGEST_SIZE;
257 				*zero_digest = true;
258 			} else {
259 				dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
260 					__func__);
261 				ret = -EINVAL;
262 				goto out;
263 			}
264 		} else {
265 			dev_dbg(device_data->dev,
266 				"%s: Continue hash calculation, since hmac key available\n",
267 				__func__);
268 		}
269 	}
270 out:
271 
272 	return ret;
273 }
274 
275 /**
276  * hash_disable_power - Request to disable power and clock.
277  * @device_data:	Structure for the hash device.
278  * @save_device_state:	If true, saves the current hw state.
279  *
280  * This function request for disabling power (regulator) and clock,
281  * and could also save current hw state.
282  */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)283 static int hash_disable_power(struct hash_device_data *device_data,
284 			      bool save_device_state)
285 {
286 	int ret = 0;
287 	struct device *dev = device_data->dev;
288 
289 	spin_lock(&device_data->power_state_lock);
290 	if (!device_data->power_state)
291 		goto out;
292 
293 	if (save_device_state) {
294 		hash_save_state(device_data,
295 				&device_data->state);
296 		device_data->restore_dev_state = true;
297 	}
298 
299 	clk_disable(device_data->clk);
300 	ret = regulator_disable(device_data->regulator);
301 	if (ret)
302 		dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
303 
304 	device_data->power_state = false;
305 
306 out:
307 	spin_unlock(&device_data->power_state_lock);
308 
309 	return ret;
310 }
311 
312 /**
313  * hash_enable_power - Request to enable power and clock.
314  * @device_data:		Structure for the hash device.
315  * @restore_device_state:	If true, restores a previous saved hw state.
316  *
317  * This function request for enabling power (regulator) and clock,
318  * and could also restore a previously saved hw state.
319  */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)320 static int hash_enable_power(struct hash_device_data *device_data,
321 			     bool restore_device_state)
322 {
323 	int ret = 0;
324 	struct device *dev = device_data->dev;
325 
326 	spin_lock(&device_data->power_state_lock);
327 	if (!device_data->power_state) {
328 		ret = regulator_enable(device_data->regulator);
329 		if (ret) {
330 			dev_err(dev, "%s: regulator_enable() failed!\n",
331 				__func__);
332 			goto out;
333 		}
334 		ret = clk_enable(device_data->clk);
335 		if (ret) {
336 			dev_err(dev, "%s: clk_enable() failed!\n", __func__);
337 			ret = regulator_disable(
338 					device_data->regulator);
339 			goto out;
340 		}
341 		device_data->power_state = true;
342 	}
343 
344 	if (device_data->restore_dev_state) {
345 		if (restore_device_state) {
346 			device_data->restore_dev_state = false;
347 			hash_resume_state(device_data, &device_data->state);
348 		}
349 	}
350 out:
351 	spin_unlock(&device_data->power_state_lock);
352 
353 	return ret;
354 }
355 
356 /**
357  * hash_get_device_data - Checks for an available hash device and return it.
358  * @hash_ctx:		Structure for the hash context.
359  * @device_data:	Structure for the hash device.
360  *
361  * This function check for an available hash device and return it to
362  * the caller.
363  * Note! Caller need to release the device, calling up().
364  */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)365 static int hash_get_device_data(struct hash_ctx *ctx,
366 				struct hash_device_data **device_data)
367 {
368 	int			ret;
369 	struct klist_iter	device_iterator;
370 	struct klist_node	*device_node;
371 	struct hash_device_data *local_device_data = NULL;
372 
373 	/* Wait until a device is available */
374 	ret = down_interruptible(&driver_data.device_allocation);
375 	if (ret)
376 		return ret;  /* Interrupted */
377 
378 	/* Select a device */
379 	klist_iter_init(&driver_data.device_list, &device_iterator);
380 	device_node = klist_next(&device_iterator);
381 	while (device_node) {
382 		local_device_data = container_of(device_node,
383 					   struct hash_device_data, list_node);
384 		spin_lock(&local_device_data->ctx_lock);
385 		/* current_ctx allocates a device, NULL = unallocated */
386 		if (local_device_data->current_ctx) {
387 			device_node = klist_next(&device_iterator);
388 		} else {
389 			local_device_data->current_ctx = ctx;
390 			ctx->device = local_device_data;
391 			spin_unlock(&local_device_data->ctx_lock);
392 			break;
393 		}
394 		spin_unlock(&local_device_data->ctx_lock);
395 	}
396 	klist_iter_exit(&device_iterator);
397 
398 	if (!device_node) {
399 		/**
400 		 * No free device found.
401 		 * Since we allocated a device with down_interruptible, this
402 		 * should not be able to happen.
403 		 * Number of available devices, which are contained in
404 		 * device_allocation, is therefore decremented by not doing
405 		 * an up(device_allocation).
406 		 */
407 		return -EBUSY;
408 	}
409 
410 	*device_data = local_device_data;
411 
412 	return 0;
413 }
414 
415 /**
416  * hash_hw_write_key - Writes the key to the hardware registries.
417  *
418  * @device_data:	Structure for the hash device.
419  * @key:		Key to be written.
420  * @keylen:		The lengt of the key.
421  *
422  * Note! This function DOES NOT write to the NBLW registry, even though
423  * specified in the the hw design spec. Either due to incorrect info in the
424  * spec or due to a bug in the hw.
425  */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)426 static void hash_hw_write_key(struct hash_device_data *device_data,
427 			      const u8 *key, unsigned int keylen)
428 {
429 	u32 word = 0;
430 	int nwords = 1;
431 
432 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
433 
434 	while (keylen >= 4) {
435 		u32 *key_word = (u32 *)key;
436 
437 		HASH_SET_DIN(key_word, nwords);
438 		keylen -= 4;
439 		key += 4;
440 	}
441 
442 	/* Take care of the remaining bytes in the last word */
443 	if (keylen) {
444 		word = 0;
445 		while (keylen) {
446 			word |= (key[keylen - 1] << (8 * (keylen - 1)));
447 			keylen--;
448 		}
449 
450 		HASH_SET_DIN(&word, nwords);
451 	}
452 
453 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
454 		cpu_relax();
455 
456 	HASH_SET_DCAL;
457 
458 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
459 		cpu_relax();
460 }
461 
462 /**
463  * init_hash_hw - Initialise the hash hardware for a new calculation.
464  * @device_data:	Structure for the hash device.
465  * @ctx:		The hash context.
466  *
467  * This function will enable the bits needed to clear and start a new
468  * calculation.
469  */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)470 static int init_hash_hw(struct hash_device_data *device_data,
471 			struct hash_ctx *ctx)
472 {
473 	int ret = 0;
474 
475 	ret = hash_setconfiguration(device_data, &ctx->config);
476 	if (ret) {
477 		dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
478 			__func__);
479 		return ret;
480 	}
481 
482 	hash_begin(device_data, ctx);
483 
484 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
485 		hash_hw_write_key(device_data, ctx->key, ctx->keylen);
486 
487 	return ret;
488 }
489 
490 /**
491  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
492  *
493  * @sg:		Scatterlist.
494  * @size:	Size in bytes.
495  * @aligned:	True if sg data aligned to work in DMA mode.
496  *
497  */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)498 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
499 {
500 	int nents = 0;
501 	bool aligned_data = true;
502 
503 	while (size > 0 && sg) {
504 		nents++;
505 		size -= sg->length;
506 
507 		/* hash_set_dma_transfer will align last nent */
508 		if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
509 		    (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
510 			aligned_data = false;
511 
512 		sg = sg_next(sg);
513 	}
514 
515 	if (aligned)
516 		*aligned = aligned_data;
517 
518 	if (size != 0)
519 		return -EFAULT;
520 
521 	return nents;
522 }
523 
524 /**
525  * hash_dma_valid_data - checks for dma valid sg data.
526  * @sg:		Scatterlist.
527  * @datasize:	Datasize in bytes.
528  *
529  * NOTE! This function checks for dma valid sg data, since dma
530  * only accept datasizes of even wordsize.
531  */
hash_dma_valid_data(struct scatterlist * sg,int datasize)532 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
533 {
534 	bool aligned;
535 
536 	/* Need to include at least one nent, else error */
537 	if (hash_get_nents(sg, datasize, &aligned) < 1)
538 		return false;
539 
540 	return aligned;
541 }
542 
543 /**
544  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
545  * @req: The hash request for the job.
546  *
547  * Initialize structures.
548  */
hash_init(struct ahash_request * req)549 static int hash_init(struct ahash_request *req)
550 {
551 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
553 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
554 
555 	if (!ctx->key)
556 		ctx->keylen = 0;
557 
558 	memset(&req_ctx->state, 0, sizeof(struct hash_state));
559 	req_ctx->updated = 0;
560 	if (hash_mode == HASH_MODE_DMA) {
561 		if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
562 			req_ctx->dma_mode = false; /* Don't use DMA */
563 
564 			pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
565 				 __func__, HASH_DMA_ALIGN_SIZE);
566 		} else {
567 			if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
568 			    hash_dma_valid_data(req->src, req->nbytes)) {
569 				req_ctx->dma_mode = true;
570 			} else {
571 				req_ctx->dma_mode = false;
572 				pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573 					 __func__,
574 					 HASH_DMA_PERFORMANCE_MIN_SIZE);
575 			}
576 		}
577 	}
578 	return 0;
579 }
580 
581 /**
582  * hash_processblock - This function processes a single block of 512 bits (64
583  *                     bytes), word aligned, starting at message.
584  * @device_data:	Structure for the hash device.
585  * @message:		Block (512 bits) of message to be written to
586  *			the HASH hardware.
587  *
588  */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)589 static void hash_processblock(struct hash_device_data *device_data,
590 			      const u32 *message, int length)
591 {
592 	int len = length / HASH_BYTES_PER_WORD;
593 	/*
594 	 * NBLW bits. Reset the number of bits in last word (NBLW).
595 	 */
596 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
597 
598 	/*
599 	 * Write message data to the HASH_DIN register.
600 	 */
601 	HASH_SET_DIN(message, len);
602 }
603 
604 /**
605  * hash_messagepad - Pads a message and write the nblw bits.
606  * @device_data:	Structure for the hash device.
607  * @message:		Last word of a message.
608  * @index_bytes:	The number of bytes in the last message.
609  *
610  * This function manages the final part of the digest calculation, when less
611  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
612  *
613  */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)614 static void hash_messagepad(struct hash_device_data *device_data,
615 			    const u32 *message, u8 index_bytes)
616 {
617 	int nwords = 1;
618 
619 	/*
620 	 * Clear hash str register, only clear NBLW
621 	 * since DCAL will be reset by hardware.
622 	 */
623 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
624 
625 	/* Main loop */
626 	while (index_bytes >= 4) {
627 		HASH_SET_DIN(message, nwords);
628 		index_bytes -= 4;
629 		message++;
630 	}
631 
632 	if (index_bytes)
633 		HASH_SET_DIN(message, nwords);
634 
635 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
636 		cpu_relax();
637 
638 	/* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
639 	HASH_SET_NBLW(index_bytes * 8);
640 	dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
641 		__func__, readl_relaxed(&device_data->base->din),
642 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
643 	HASH_SET_DCAL;
644 	dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
645 		__func__, readl_relaxed(&device_data->base->din),
646 		readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
647 
648 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
649 		cpu_relax();
650 }
651 
652 /**
653  * hash_incrementlength - Increments the length of the current message.
654  * @ctx: Hash context
655  * @incr: Length of message processed already
656  *
657  * Overflow cannot occur, because conditions for overflow are checked in
658  * hash_hw_update.
659  */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)660 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
661 {
662 	ctx->state.length.low_word += incr;
663 
664 	/* Check for wrap-around */
665 	if (ctx->state.length.low_word < incr)
666 		ctx->state.length.high_word++;
667 }
668 
669 /**
670  * hash_setconfiguration - Sets the required configuration for the hash
671  *                         hardware.
672  * @device_data:	Structure for the hash device.
673  * @config:		Pointer to a configuration structure.
674  */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)675 int hash_setconfiguration(struct hash_device_data *device_data,
676 			  struct hash_config *config)
677 {
678 	int ret = 0;
679 
680 	if (config->algorithm != HASH_ALGO_SHA1 &&
681 	    config->algorithm != HASH_ALGO_SHA256)
682 		return -EPERM;
683 
684 	/*
685 	 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
686 	 * to be written to HASH_DIN is considered as 32 bits.
687 	 */
688 	HASH_SET_DATA_FORMAT(config->data_format);
689 
690 	/*
691 	 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692 	 */
693 	switch (config->algorithm) {
694 	case HASH_ALGO_SHA1:
695 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
696 		break;
697 
698 	case HASH_ALGO_SHA256:
699 		HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
700 		break;
701 
702 	default:
703 		dev_err(device_data->dev, "%s: Incorrect algorithm\n",
704 			__func__);
705 		return -EPERM;
706 	}
707 
708 	/*
709 	 * MODE bit. This bit selects between HASH or HMAC mode for the
710 	 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711 	 */
712 	if (HASH_OPER_MODE_HASH == config->oper_mode)
713 		HASH_CLEAR_BITS(&device_data->base->cr,
714 				HASH_CR_MODE_MASK);
715 	else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
716 		HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
717 		if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
718 			/* Truncate key to blocksize */
719 			dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
720 			HASH_SET_BITS(&device_data->base->cr,
721 				      HASH_CR_LKEY_MASK);
722 		} else {
723 			dev_dbg(device_data->dev, "%s: LKEY cleared\n",
724 				__func__);
725 			HASH_CLEAR_BITS(&device_data->base->cr,
726 					HASH_CR_LKEY_MASK);
727 		}
728 	} else {	/* Wrong hash mode */
729 		ret = -EPERM;
730 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
731 			__func__);
732 	}
733 	return ret;
734 }
735 
736 /**
737  * hash_begin - This routine resets some globals and initializes the hash
738  *              hardware.
739  * @device_data:	Structure for the hash device.
740  * @ctx:		Hash context.
741  */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)742 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
743 {
744 	/* HW and SW initializations */
745 	/* Note: there is no need to initialize buffer and digest members */
746 
747 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
748 		cpu_relax();
749 
750 	/*
751 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
752 	 * prepare the initialize the HASH accelerator to compute the message
753 	 * digest of a new message.
754 	 */
755 	HASH_INITIALIZE;
756 
757 	/*
758 	 * NBLW bits. Reset the number of bits in last word (NBLW).
759 	 */
760 	HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
761 }
762 
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)763 static int hash_process_data(struct hash_device_data *device_data,
764 			     struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
765 			     int msg_length, u8 *data_buffer, u8 *buffer,
766 			     u8 *index)
767 {
768 	int ret = 0;
769 	u32 count;
770 
771 	do {
772 		if ((*index + msg_length) < HASH_BLOCK_SIZE) {
773 			for (count = 0; count < msg_length; count++) {
774 				buffer[*index + count] =
775 					*(data_buffer + count);
776 			}
777 			*index += msg_length;
778 			msg_length = 0;
779 		} else {
780 			if (req_ctx->updated) {
781 				ret = hash_resume_state(device_data,
782 						&device_data->state);
783 				memmove(req_ctx->state.buffer,
784 					device_data->state.buffer,
785 					HASH_BLOCK_SIZE);
786 				if (ret) {
787 					dev_err(device_data->dev,
788 						"%s: hash_resume_state() failed!\n",
789 						__func__);
790 					goto out;
791 				}
792 			} else {
793 				ret = init_hash_hw(device_data, ctx);
794 				if (ret) {
795 					dev_err(device_data->dev,
796 						"%s: init_hash_hw() failed!\n",
797 						__func__);
798 					goto out;
799 				}
800 				req_ctx->updated = 1;
801 			}
802 			/*
803 			 * If 'data_buffer' is four byte aligned and
804 			 * local buffer does not have any data, we can
805 			 * write data directly from 'data_buffer' to
806 			 * HW peripheral, otherwise we first copy data
807 			 * to a local buffer
808 			 */
809 			if ((0 == (((u32)data_buffer) % 4)) &&
810 			    (0 == *index))
811 				hash_processblock(device_data,
812 						  (const u32 *)data_buffer,
813 						  HASH_BLOCK_SIZE);
814 			else {
815 				for (count = 0;
816 				     count < (u32)(HASH_BLOCK_SIZE - *index);
817 				     count++) {
818 					buffer[*index + count] =
819 						*(data_buffer + count);
820 				}
821 				hash_processblock(device_data,
822 						  (const u32 *)buffer,
823 						  HASH_BLOCK_SIZE);
824 			}
825 			hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
826 			data_buffer += (HASH_BLOCK_SIZE - *index);
827 
828 			msg_length -= (HASH_BLOCK_SIZE - *index);
829 			*index = 0;
830 
831 			ret = hash_save_state(device_data,
832 					&device_data->state);
833 
834 			memmove(device_data->state.buffer,
835 				req_ctx->state.buffer,
836 				HASH_BLOCK_SIZE);
837 			if (ret) {
838 				dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
839 					__func__);
840 				goto out;
841 			}
842 		}
843 	} while (msg_length != 0);
844 out:
845 
846 	return ret;
847 }
848 
849 /**
850  * hash_dma_final - The hash dma final function for SHA1/SHA256.
851  * @req:	The hash request for the job.
852  */
hash_dma_final(struct ahash_request * req)853 static int hash_dma_final(struct ahash_request *req)
854 {
855 	int ret = 0;
856 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
858 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
859 	struct hash_device_data *device_data;
860 	u8 digest[SHA256_DIGEST_SIZE];
861 	int bytes_written = 0;
862 
863 	ret = hash_get_device_data(ctx, &device_data);
864 	if (ret)
865 		return ret;
866 
867 	dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
868 
869 	if (req_ctx->updated) {
870 		ret = hash_resume_state(device_data, &device_data->state);
871 
872 		if (ret) {
873 			dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
874 				__func__);
875 			goto out;
876 		}
877 	}
878 
879 	if (!req_ctx->updated) {
880 		ret = hash_setconfiguration(device_data, &ctx->config);
881 		if (ret) {
882 			dev_err(device_data->dev,
883 				"%s: hash_setconfiguration() failed!\n",
884 				__func__);
885 			goto out;
886 		}
887 
888 		/* Enable DMA input */
889 		if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
890 			HASH_CLEAR_BITS(&device_data->base->cr,
891 					HASH_CR_DMAE_MASK);
892 		} else {
893 			HASH_SET_BITS(&device_data->base->cr,
894 				      HASH_CR_DMAE_MASK);
895 			HASH_SET_BITS(&device_data->base->cr,
896 				      HASH_CR_PRIVN_MASK);
897 		}
898 
899 		HASH_INITIALIZE;
900 
901 		if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
902 			hash_hw_write_key(device_data, ctx->key, ctx->keylen);
903 
904 		/* Number of bits in last word = (nbytes * 8) % 32 */
905 		HASH_SET_NBLW((req->nbytes * 8) % 32);
906 		req_ctx->updated = 1;
907 	}
908 
909 	/* Store the nents in the dma struct. */
910 	ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
911 	if (!ctx->device->dma.nents) {
912 		dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
913 			__func__);
914 		ret = ctx->device->dma.nents;
915 		goto out;
916 	}
917 
918 	bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
919 	if (bytes_written != req->nbytes) {
920 		dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
921 			__func__);
922 		ret = bytes_written;
923 		goto out;
924 	}
925 
926 	wait_for_completion(&ctx->device->dma.complete);
927 	hash_dma_done(ctx);
928 
929 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
930 		cpu_relax();
931 
932 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
933 		unsigned int keylen = ctx->keylen;
934 		u8 *key = ctx->key;
935 
936 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
937 			__func__, ctx->keylen);
938 		hash_hw_write_key(device_data, key, keylen);
939 	}
940 
941 	hash_get_digest(device_data, digest, ctx->config.algorithm);
942 	memcpy(req->result, digest, ctx->digestsize);
943 
944 out:
945 	release_hash_device(device_data);
946 
947 	/**
948 	 * Allocated in setkey, and only used in HMAC.
949 	 */
950 	kfree(ctx->key);
951 
952 	return ret;
953 }
954 
955 /**
956  * hash_hw_final - The final hash calculation function
957  * @req:	The hash request for the job.
958  */
hash_hw_final(struct ahash_request * req)959 static int hash_hw_final(struct ahash_request *req)
960 {
961 	int ret = 0;
962 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
963 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
964 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
965 	struct hash_device_data *device_data;
966 	u8 digest[SHA256_DIGEST_SIZE];
967 
968 	ret = hash_get_device_data(ctx, &device_data);
969 	if (ret)
970 		return ret;
971 
972 	dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
973 
974 	if (req_ctx->updated) {
975 		ret = hash_resume_state(device_data, &device_data->state);
976 
977 		if (ret) {
978 			dev_err(device_data->dev,
979 				"%s: hash_resume_state() failed!\n", __func__);
980 			goto out;
981 		}
982 	} else if (req->nbytes == 0 && ctx->keylen == 0) {
983 		u8 zero_hash[SHA256_DIGEST_SIZE];
984 		u32 zero_hash_size = 0;
985 		bool zero_digest = false;
986 		/**
987 		 * Use a pre-calculated empty message digest
988 		 * (workaround since hw return zeroes, hw bug!?)
989 		 */
990 		ret = get_empty_message_digest(device_data, &zero_hash[0],
991 				&zero_hash_size, &zero_digest);
992 		if (!ret && likely(zero_hash_size == ctx->digestsize) &&
993 		    zero_digest) {
994 			memcpy(req->result, &zero_hash[0], ctx->digestsize);
995 			goto out;
996 		} else if (!ret && !zero_digest) {
997 			dev_dbg(device_data->dev,
998 				"%s: HMAC zero msg with key, continue...\n",
999 				__func__);
1000 		} else {
1001 			dev_err(device_data->dev,
1002 				"%s: ret=%d, or wrong digest size? %s\n",
1003 				__func__, ret,
1004 				zero_hash_size == ctx->digestsize ?
1005 				"true" : "false");
1006 			/* Return error */
1007 			goto out;
1008 		}
1009 	} else if (req->nbytes == 0 && ctx->keylen > 0) {
1010 		dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1011 			__func__);
1012 		goto out;
1013 	}
1014 
1015 	if (!req_ctx->updated) {
1016 		ret = init_hash_hw(device_data, ctx);
1017 		if (ret) {
1018 			dev_err(device_data->dev,
1019 				"%s: init_hash_hw() failed!\n", __func__);
1020 			goto out;
1021 		}
1022 	}
1023 
1024 	if (req_ctx->state.index) {
1025 		hash_messagepad(device_data, req_ctx->state.buffer,
1026 				req_ctx->state.index);
1027 	} else {
1028 		HASH_SET_DCAL;
1029 		while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1030 			cpu_relax();
1031 	}
1032 
1033 	if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1034 		unsigned int keylen = ctx->keylen;
1035 		u8 *key = ctx->key;
1036 
1037 		dev_dbg(device_data->dev, "%s: keylen: %d\n",
1038 			__func__, ctx->keylen);
1039 		hash_hw_write_key(device_data, key, keylen);
1040 	}
1041 
1042 	hash_get_digest(device_data, digest, ctx->config.algorithm);
1043 	memcpy(req->result, digest, ctx->digestsize);
1044 
1045 out:
1046 	release_hash_device(device_data);
1047 
1048 	/**
1049 	 * Allocated in setkey, and only used in HMAC.
1050 	 */
1051 	kfree(ctx->key);
1052 
1053 	return ret;
1054 }
1055 
1056 /**
1057  * hash_hw_update - Updates current HASH computation hashing another part of
1058  *                  the message.
1059  * @req:	Byte array containing the message to be hashed (caller
1060  *		allocated).
1061  */
hash_hw_update(struct ahash_request * req)1062 int hash_hw_update(struct ahash_request *req)
1063 {
1064 	int ret = 0;
1065 	u8 index = 0;
1066 	u8 *buffer;
1067 	struct hash_device_data *device_data;
1068 	u8 *data_buffer;
1069 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1070 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1071 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1072 	struct crypto_hash_walk walk;
1073 	int msg_length = crypto_hash_walk_first(req, &walk);
1074 
1075 	/* Empty message ("") is correct indata */
1076 	if (msg_length == 0)
1077 		return ret;
1078 
1079 	index = req_ctx->state.index;
1080 	buffer = (u8 *)req_ctx->state.buffer;
1081 
1082 	/* Check if ctx->state.length + msg_length
1083 	   overflows */
1084 	if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1085 	    HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1086 		pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1087 		return -EPERM;
1088 	}
1089 
1090 	ret = hash_get_device_data(ctx, &device_data);
1091 	if (ret)
1092 		return ret;
1093 
1094 	/* Main loop */
1095 	while (0 != msg_length) {
1096 		data_buffer = walk.data;
1097 		ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1098 				data_buffer, buffer, &index);
1099 
1100 		if (ret) {
1101 			dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1102 				__func__);
1103 			goto out;
1104 		}
1105 
1106 		msg_length = crypto_hash_walk_done(&walk, 0);
1107 	}
1108 
1109 	req_ctx->state.index = index;
1110 	dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1111 		__func__, req_ctx->state.index, req_ctx->state.bit_index);
1112 
1113 out:
1114 	release_hash_device(device_data);
1115 
1116 	return ret;
1117 }
1118 
1119 /**
1120  * hash_resume_state - Function that resumes the state of an calculation.
1121  * @device_data:	Pointer to the device structure.
1122  * @device_state:	The state to be restored in the hash hardware
1123  */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1124 int hash_resume_state(struct hash_device_data *device_data,
1125 		      const struct hash_state *device_state)
1126 {
1127 	u32 temp_cr;
1128 	s32 count;
1129 	int hash_mode = HASH_OPER_MODE_HASH;
1130 
1131 	if (NULL == device_state) {
1132 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1133 			__func__);
1134 		return -EPERM;
1135 	}
1136 
1137 	/* Check correctness of index and length members */
1138 	if (device_state->index > HASH_BLOCK_SIZE ||
1139 	    (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1140 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1141 			__func__);
1142 		return -EPERM;
1143 	}
1144 
1145 	/*
1146 	 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1147 	 * prepare the initialize the HASH accelerator to compute the message
1148 	 * digest of a new message.
1149 	 */
1150 	HASH_INITIALIZE;
1151 
1152 	temp_cr = device_state->temp_cr;
1153 	writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1154 
1155 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1156 		hash_mode = HASH_OPER_MODE_HMAC;
1157 	else
1158 		hash_mode = HASH_OPER_MODE_HASH;
1159 
1160 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1161 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1162 			break;
1163 
1164 		writel_relaxed(device_state->csr[count],
1165 			       &device_data->base->csrx[count]);
1166 	}
1167 
1168 	writel_relaxed(device_state->csfull, &device_data->base->csfull);
1169 	writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1170 
1171 	writel_relaxed(device_state->str_reg, &device_data->base->str);
1172 	writel_relaxed(temp_cr, &device_data->base->cr);
1173 
1174 	return 0;
1175 }
1176 
1177 /**
1178  * hash_save_state - Function that saves the state of hardware.
1179  * @device_data:	Pointer to the device structure.
1180  * @device_state:	The strucure where the hardware state should be saved.
1181  */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1182 int hash_save_state(struct hash_device_data *device_data,
1183 		    struct hash_state *device_state)
1184 {
1185 	u32 temp_cr;
1186 	u32 count;
1187 	int hash_mode = HASH_OPER_MODE_HASH;
1188 
1189 	if (NULL == device_state) {
1190 		dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1191 			__func__);
1192 		return -ENOTSUPP;
1193 	}
1194 
1195 	/* Write dummy value to force digest intermediate calculation. This
1196 	 * actually makes sure that there isn't any ongoing calculation in the
1197 	 * hardware.
1198 	 */
1199 	while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1200 		cpu_relax();
1201 
1202 	temp_cr = readl_relaxed(&device_data->base->cr);
1203 
1204 	device_state->str_reg = readl_relaxed(&device_data->base->str);
1205 
1206 	device_state->din_reg = readl_relaxed(&device_data->base->din);
1207 
1208 	if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1209 		hash_mode = HASH_OPER_MODE_HMAC;
1210 	else
1211 		hash_mode = HASH_OPER_MODE_HASH;
1212 
1213 	for (count = 0; count < HASH_CSR_COUNT; count++) {
1214 		if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1215 			break;
1216 
1217 		device_state->csr[count] =
1218 			readl_relaxed(&device_data->base->csrx[count]);
1219 	}
1220 
1221 	device_state->csfull = readl_relaxed(&device_data->base->csfull);
1222 	device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1223 
1224 	device_state->temp_cr = temp_cr;
1225 
1226 	return 0;
1227 }
1228 
1229 /**
1230  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1231  * @device_data:
1232  *
1233  */
hash_check_hw(struct hash_device_data * device_data)1234 int hash_check_hw(struct hash_device_data *device_data)
1235 {
1236 	/* Checking Peripheral Ids  */
1237 	if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1238 	    HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1239 	    HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1240 	    HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1241 	    HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1242 	    HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1243 	    HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1244 	    HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1245 		return 0;
1246 	}
1247 
1248 	dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1249 	return -ENOTSUPP;
1250 }
1251 
1252 /**
1253  * hash_get_digest - Gets the digest.
1254  * @device_data:	Pointer to the device structure.
1255  * @digest:		User allocated byte array for the calculated digest.
1256  * @algorithm:		The algorithm in use.
1257  */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1258 void hash_get_digest(struct hash_device_data *device_data,
1259 		     u8 *digest, int algorithm)
1260 {
1261 	u32 temp_hx_val, count;
1262 	int loop_ctr;
1263 
1264 	if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1265 		dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1266 			__func__, algorithm);
1267 		return;
1268 	}
1269 
1270 	if (algorithm == HASH_ALGO_SHA1)
1271 		loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1272 	else
1273 		loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1274 
1275 	dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1276 		__func__, (u32) digest);
1277 
1278 	/* Copy result into digest array */
1279 	for (count = 0; count < loop_ctr; count++) {
1280 		temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1281 		digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1282 		digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1283 		digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1284 		digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1285 	}
1286 }
1287 
1288 /**
1289  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1290  * @req: The hash request for the job.
1291  */
ahash_update(struct ahash_request * req)1292 static int ahash_update(struct ahash_request *req)
1293 {
1294 	int ret = 0;
1295 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1296 
1297 	if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1298 		ret = hash_hw_update(req);
1299 	/* Skip update for DMA, all data will be passed to DMA in final */
1300 
1301 	if (ret) {
1302 		pr_err("%s: hash_hw_update() failed!\n", __func__);
1303 	}
1304 
1305 	return ret;
1306 }
1307 
1308 /**
1309  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1310  * @req:	The hash request for the job.
1311  */
ahash_final(struct ahash_request * req)1312 static int ahash_final(struct ahash_request *req)
1313 {
1314 	int ret = 0;
1315 	struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1316 
1317 	pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1318 
1319 	if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1320 		ret = hash_dma_final(req);
1321 	else
1322 		ret = hash_hw_final(req);
1323 
1324 	if (ret) {
1325 		pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1326 	}
1327 
1328 	return ret;
1329 }
1330 
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1331 static int hash_setkey(struct crypto_ahash *tfm,
1332 		       const u8 *key, unsigned int keylen, int alg)
1333 {
1334 	int ret = 0;
1335 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1336 
1337 	/**
1338 	 * Freed in final.
1339 	 */
1340 	ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1341 	if (!ctx->key) {
1342 		pr_err("%s: Failed to allocate ctx->key for %d\n",
1343 		       __func__, alg);
1344 		return -ENOMEM;
1345 	}
1346 	ctx->keylen = keylen;
1347 
1348 	return ret;
1349 }
1350 
ahash_sha1_init(struct ahash_request * req)1351 static int ahash_sha1_init(struct ahash_request *req)
1352 {
1353 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1354 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1355 
1356 	ctx->config.data_format = HASH_DATA_8_BITS;
1357 	ctx->config.algorithm = HASH_ALGO_SHA1;
1358 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1359 	ctx->digestsize = SHA1_DIGEST_SIZE;
1360 
1361 	return hash_init(req);
1362 }
1363 
ahash_sha256_init(struct ahash_request * req)1364 static int ahash_sha256_init(struct ahash_request *req)
1365 {
1366 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1367 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1368 
1369 	ctx->config.data_format = HASH_DATA_8_BITS;
1370 	ctx->config.algorithm = HASH_ALGO_SHA256;
1371 	ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1372 	ctx->digestsize = SHA256_DIGEST_SIZE;
1373 
1374 	return hash_init(req);
1375 }
1376 
ahash_sha1_digest(struct ahash_request * req)1377 static int ahash_sha1_digest(struct ahash_request *req)
1378 {
1379 	int ret2, ret1;
1380 
1381 	ret1 = ahash_sha1_init(req);
1382 	if (ret1)
1383 		goto out;
1384 
1385 	ret1 = ahash_update(req);
1386 	ret2 = ahash_final(req);
1387 
1388 out:
1389 	return ret1 ? ret1 : ret2;
1390 }
1391 
ahash_sha256_digest(struct ahash_request * req)1392 static int ahash_sha256_digest(struct ahash_request *req)
1393 {
1394 	int ret2, ret1;
1395 
1396 	ret1 = ahash_sha256_init(req);
1397 	if (ret1)
1398 		goto out;
1399 
1400 	ret1 = ahash_update(req);
1401 	ret2 = ahash_final(req);
1402 
1403 out:
1404 	return ret1 ? ret1 : ret2;
1405 }
1406 
ahash_noimport(struct ahash_request * req,const void * in)1407 static int ahash_noimport(struct ahash_request *req, const void *in)
1408 {
1409 	return -ENOSYS;
1410 }
1411 
ahash_noexport(struct ahash_request * req,void * out)1412 static int ahash_noexport(struct ahash_request *req, void *out)
1413 {
1414 	return -ENOSYS;
1415 }
1416 
hmac_sha1_init(struct ahash_request * req)1417 static int hmac_sha1_init(struct ahash_request *req)
1418 {
1419 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1420 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1421 
1422 	ctx->config.data_format	= HASH_DATA_8_BITS;
1423 	ctx->config.algorithm	= HASH_ALGO_SHA1;
1424 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1425 	ctx->digestsize		= SHA1_DIGEST_SIZE;
1426 
1427 	return hash_init(req);
1428 }
1429 
hmac_sha256_init(struct ahash_request * req)1430 static int hmac_sha256_init(struct ahash_request *req)
1431 {
1432 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1433 	struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1434 
1435 	ctx->config.data_format	= HASH_DATA_8_BITS;
1436 	ctx->config.algorithm	= HASH_ALGO_SHA256;
1437 	ctx->config.oper_mode	= HASH_OPER_MODE_HMAC;
1438 	ctx->digestsize		= SHA256_DIGEST_SIZE;
1439 
1440 	return hash_init(req);
1441 }
1442 
hmac_sha1_digest(struct ahash_request * req)1443 static int hmac_sha1_digest(struct ahash_request *req)
1444 {
1445 	int ret2, ret1;
1446 
1447 	ret1 = hmac_sha1_init(req);
1448 	if (ret1)
1449 		goto out;
1450 
1451 	ret1 = ahash_update(req);
1452 	ret2 = ahash_final(req);
1453 
1454 out:
1455 	return ret1 ? ret1 : ret2;
1456 }
1457 
hmac_sha256_digest(struct ahash_request * req)1458 static int hmac_sha256_digest(struct ahash_request *req)
1459 {
1460 	int ret2, ret1;
1461 
1462 	ret1 = hmac_sha256_init(req);
1463 	if (ret1)
1464 		goto out;
1465 
1466 	ret1 = ahash_update(req);
1467 	ret2 = ahash_final(req);
1468 
1469 out:
1470 	return ret1 ? ret1 : ret2;
1471 }
1472 
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1473 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1474 			    const u8 *key, unsigned int keylen)
1475 {
1476 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1477 }
1478 
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1479 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1480 			      const u8 *key, unsigned int keylen)
1481 {
1482 	return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1483 }
1484 
1485 struct hash_algo_template {
1486 	struct hash_config conf;
1487 	struct ahash_alg hash;
1488 };
1489 
hash_cra_init(struct crypto_tfm * tfm)1490 static int hash_cra_init(struct crypto_tfm *tfm)
1491 {
1492 	struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1493 	struct crypto_alg *alg = tfm->__crt_alg;
1494 	struct hash_algo_template *hash_alg;
1495 
1496 	hash_alg = container_of(__crypto_ahash_alg(alg),
1497 			struct hash_algo_template,
1498 			hash);
1499 
1500 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1501 				 sizeof(struct hash_req_ctx));
1502 
1503 	ctx->config.data_format = HASH_DATA_8_BITS;
1504 	ctx->config.algorithm = hash_alg->conf.algorithm;
1505 	ctx->config.oper_mode = hash_alg->conf.oper_mode;
1506 
1507 	ctx->digestsize = hash_alg->hash.halg.digestsize;
1508 
1509 	return 0;
1510 }
1511 
1512 static struct hash_algo_template hash_algs[] = {
1513 	{
1514 		.conf.algorithm = HASH_ALGO_SHA1,
1515 		.conf.oper_mode = HASH_OPER_MODE_HASH,
1516 		.hash = {
1517 			.init = hash_init,
1518 			.update = ahash_update,
1519 			.final = ahash_final,
1520 			.digest = ahash_sha1_digest,
1521 			.export = ahash_noexport,
1522 			.import = ahash_noimport,
1523 			.halg.digestsize = SHA1_DIGEST_SIZE,
1524 			.halg.statesize = sizeof(struct hash_ctx),
1525 			.halg.base = {
1526 				.cra_name = "sha1",
1527 				.cra_driver_name = "sha1-ux500",
1528 				.cra_flags = CRYPTO_ALG_ASYNC,
1529 				.cra_blocksize = SHA1_BLOCK_SIZE,
1530 				.cra_ctxsize = sizeof(struct hash_ctx),
1531 				.cra_init = hash_cra_init,
1532 				.cra_module = THIS_MODULE,
1533 			}
1534 		}
1535 	},
1536 	{
1537 		.conf.algorithm	= HASH_ALGO_SHA256,
1538 		.conf.oper_mode	= HASH_OPER_MODE_HASH,
1539 		.hash = {
1540 			.init = hash_init,
1541 			.update	= ahash_update,
1542 			.final = ahash_final,
1543 			.digest = ahash_sha256_digest,
1544 			.export = ahash_noexport,
1545 			.import = ahash_noimport,
1546 			.halg.digestsize = SHA256_DIGEST_SIZE,
1547 			.halg.statesize = sizeof(struct hash_ctx),
1548 			.halg.base = {
1549 				.cra_name = "sha256",
1550 				.cra_driver_name = "sha256-ux500",
1551 				.cra_flags = CRYPTO_ALG_ASYNC,
1552 				.cra_blocksize = SHA256_BLOCK_SIZE,
1553 				.cra_ctxsize = sizeof(struct hash_ctx),
1554 				.cra_init = hash_cra_init,
1555 				.cra_module = THIS_MODULE,
1556 			}
1557 		}
1558 	},
1559 	{
1560 		.conf.algorithm = HASH_ALGO_SHA1,
1561 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1562 			.hash = {
1563 			.init = hash_init,
1564 			.update = ahash_update,
1565 			.final = ahash_final,
1566 			.digest = hmac_sha1_digest,
1567 			.setkey = hmac_sha1_setkey,
1568 			.export = ahash_noexport,
1569 			.import = ahash_noimport,
1570 			.halg.digestsize = SHA1_DIGEST_SIZE,
1571 			.halg.statesize = sizeof(struct hash_ctx),
1572 			.halg.base = {
1573 				.cra_name = "hmac(sha1)",
1574 				.cra_driver_name = "hmac-sha1-ux500",
1575 				.cra_flags = CRYPTO_ALG_ASYNC,
1576 				.cra_blocksize = SHA1_BLOCK_SIZE,
1577 				.cra_ctxsize = sizeof(struct hash_ctx),
1578 				.cra_init = hash_cra_init,
1579 				.cra_module = THIS_MODULE,
1580 			}
1581 		}
1582 	},
1583 	{
1584 		.conf.algorithm = HASH_ALGO_SHA256,
1585 		.conf.oper_mode = HASH_OPER_MODE_HMAC,
1586 		.hash = {
1587 			.init = hash_init,
1588 			.update = ahash_update,
1589 			.final = ahash_final,
1590 			.digest = hmac_sha256_digest,
1591 			.setkey = hmac_sha256_setkey,
1592 			.export = ahash_noexport,
1593 			.import = ahash_noimport,
1594 			.halg.digestsize = SHA256_DIGEST_SIZE,
1595 			.halg.statesize = sizeof(struct hash_ctx),
1596 			.halg.base = {
1597 				.cra_name = "hmac(sha256)",
1598 				.cra_driver_name = "hmac-sha256-ux500",
1599 				.cra_flags = CRYPTO_ALG_ASYNC,
1600 				.cra_blocksize = SHA256_BLOCK_SIZE,
1601 				.cra_ctxsize = sizeof(struct hash_ctx),
1602 				.cra_init = hash_cra_init,
1603 				.cra_module = THIS_MODULE,
1604 			}
1605 		}
1606 	}
1607 };
1608 
1609 /**
1610  * hash_algs_register_all -
1611  */
ahash_algs_register_all(struct hash_device_data * device_data)1612 static int ahash_algs_register_all(struct hash_device_data *device_data)
1613 {
1614 	int ret;
1615 	int i;
1616 	int count;
1617 
1618 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1619 		ret = crypto_register_ahash(&hash_algs[i].hash);
1620 		if (ret) {
1621 			count = i;
1622 			dev_err(device_data->dev, "%s: alg registration failed\n",
1623 				hash_algs[i].hash.halg.base.cra_driver_name);
1624 			goto unreg;
1625 		}
1626 	}
1627 	return 0;
1628 unreg:
1629 	for (i = 0; i < count; i++)
1630 		crypto_unregister_ahash(&hash_algs[i].hash);
1631 	return ret;
1632 }
1633 
1634 /**
1635  * hash_algs_unregister_all -
1636  */
ahash_algs_unregister_all(struct hash_device_data * device_data)1637 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1638 {
1639 	int i;
1640 
1641 	for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1642 		crypto_unregister_ahash(&hash_algs[i].hash);
1643 }
1644 
1645 /**
1646  * ux500_hash_probe - Function that probes the hash hardware.
1647  * @pdev: The platform device.
1648  */
ux500_hash_probe(struct platform_device * pdev)1649 static int ux500_hash_probe(struct platform_device *pdev)
1650 {
1651 	int			ret = 0;
1652 	struct resource		*res = NULL;
1653 	struct hash_device_data *device_data;
1654 	struct device		*dev = &pdev->dev;
1655 
1656 	device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1657 	if (!device_data) {
1658 		ret = -ENOMEM;
1659 		goto out;
1660 	}
1661 
1662 	device_data->dev = dev;
1663 	device_data->current_ctx = NULL;
1664 
1665 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1666 	if (!res) {
1667 		dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1668 		ret = -ENODEV;
1669 		goto out;
1670 	}
1671 
1672 	device_data->phybase = res->start;
1673 	device_data->base = devm_ioremap_resource(dev, res);
1674 	if (IS_ERR(device_data->base)) {
1675 		dev_err(dev, "%s: ioremap() failed!\n", __func__);
1676 		ret = PTR_ERR(device_data->base);
1677 		goto out;
1678 	}
1679 	spin_lock_init(&device_data->ctx_lock);
1680 	spin_lock_init(&device_data->power_state_lock);
1681 
1682 	/* Enable power for HASH1 hardware block */
1683 	device_data->regulator = regulator_get(dev, "v-ape");
1684 	if (IS_ERR(device_data->regulator)) {
1685 		dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1686 		ret = PTR_ERR(device_data->regulator);
1687 		device_data->regulator = NULL;
1688 		goto out;
1689 	}
1690 
1691 	/* Enable the clock for HASH1 hardware block */
1692 	device_data->clk = devm_clk_get(dev, NULL);
1693 	if (IS_ERR(device_data->clk)) {
1694 		dev_err(dev, "%s: clk_get() failed!\n", __func__);
1695 		ret = PTR_ERR(device_data->clk);
1696 		goto out_regulator;
1697 	}
1698 
1699 	ret = clk_prepare(device_data->clk);
1700 	if (ret) {
1701 		dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1702 		goto out_regulator;
1703 	}
1704 
1705 	/* Enable device power (and clock) */
1706 	ret = hash_enable_power(device_data, false);
1707 	if (ret) {
1708 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1709 		goto out_clk_unprepare;
1710 	}
1711 
1712 	ret = hash_check_hw(device_data);
1713 	if (ret) {
1714 		dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1715 		goto out_power;
1716 	}
1717 
1718 	if (hash_mode == HASH_MODE_DMA)
1719 		hash_dma_setup_channel(device_data, dev);
1720 
1721 	platform_set_drvdata(pdev, device_data);
1722 
1723 	/* Put the new device into the device list... */
1724 	klist_add_tail(&device_data->list_node, &driver_data.device_list);
1725 	/* ... and signal that a new device is available. */
1726 	up(&driver_data.device_allocation);
1727 
1728 	ret = ahash_algs_register_all(device_data);
1729 	if (ret) {
1730 		dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1731 			__func__);
1732 		goto out_power;
1733 	}
1734 
1735 	dev_info(dev, "successfully registered\n");
1736 	return 0;
1737 
1738 out_power:
1739 	hash_disable_power(device_data, false);
1740 
1741 out_clk_unprepare:
1742 	clk_unprepare(device_data->clk);
1743 
1744 out_regulator:
1745 	regulator_put(device_data->regulator);
1746 
1747 out:
1748 	return ret;
1749 }
1750 
1751 /**
1752  * ux500_hash_remove - Function that removes the hash device from the platform.
1753  * @pdev: The platform device.
1754  */
ux500_hash_remove(struct platform_device * pdev)1755 static int ux500_hash_remove(struct platform_device *pdev)
1756 {
1757 	struct hash_device_data *device_data;
1758 	struct device		*dev = &pdev->dev;
1759 
1760 	device_data = platform_get_drvdata(pdev);
1761 	if (!device_data) {
1762 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1763 		return -ENOMEM;
1764 	}
1765 
1766 	/* Try to decrease the number of available devices. */
1767 	if (down_trylock(&driver_data.device_allocation))
1768 		return -EBUSY;
1769 
1770 	/* Check that the device is free */
1771 	spin_lock(&device_data->ctx_lock);
1772 	/* current_ctx allocates a device, NULL = unallocated */
1773 	if (device_data->current_ctx) {
1774 		/* The device is busy */
1775 		spin_unlock(&device_data->ctx_lock);
1776 		/* Return the device to the pool. */
1777 		up(&driver_data.device_allocation);
1778 		return -EBUSY;
1779 	}
1780 
1781 	spin_unlock(&device_data->ctx_lock);
1782 
1783 	/* Remove the device from the list */
1784 	if (klist_node_attached(&device_data->list_node))
1785 		klist_remove(&device_data->list_node);
1786 
1787 	/* If this was the last device, remove the services */
1788 	if (list_empty(&driver_data.device_list.k_list))
1789 		ahash_algs_unregister_all(device_data);
1790 
1791 	if (hash_disable_power(device_data, false))
1792 		dev_err(dev, "%s: hash_disable_power() failed\n",
1793 			__func__);
1794 
1795 	clk_unprepare(device_data->clk);
1796 	regulator_put(device_data->regulator);
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * ux500_hash_shutdown - Function that shutdown the hash device.
1803  * @pdev: The platform device
1804  */
ux500_hash_shutdown(struct platform_device * pdev)1805 static void ux500_hash_shutdown(struct platform_device *pdev)
1806 {
1807 	struct hash_device_data *device_data;
1808 
1809 	device_data = platform_get_drvdata(pdev);
1810 	if (!device_data) {
1811 		dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1812 			__func__);
1813 		return;
1814 	}
1815 
1816 	/* Check that the device is free */
1817 	spin_lock(&device_data->ctx_lock);
1818 	/* current_ctx allocates a device, NULL = unallocated */
1819 	if (!device_data->current_ctx) {
1820 		if (down_trylock(&driver_data.device_allocation))
1821 			dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1822 				__func__);
1823 		/**
1824 		 * (Allocate the device)
1825 		 * Need to set this to non-null (dummy) value,
1826 		 * to avoid usage if context switching.
1827 		 */
1828 		device_data->current_ctx++;
1829 	}
1830 	spin_unlock(&device_data->ctx_lock);
1831 
1832 	/* Remove the device from the list */
1833 	if (klist_node_attached(&device_data->list_node))
1834 		klist_remove(&device_data->list_node);
1835 
1836 	/* If this was the last device, remove the services */
1837 	if (list_empty(&driver_data.device_list.k_list))
1838 		ahash_algs_unregister_all(device_data);
1839 
1840 	if (hash_disable_power(device_data, false))
1841 		dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1842 			__func__);
1843 }
1844 
1845 #ifdef CONFIG_PM_SLEEP
1846 /**
1847  * ux500_hash_suspend - Function that suspends the hash device.
1848  * @dev:	Device to suspend.
1849  */
ux500_hash_suspend(struct device * dev)1850 static int ux500_hash_suspend(struct device *dev)
1851 {
1852 	int ret;
1853 	struct hash_device_data *device_data;
1854 	struct hash_ctx *temp_ctx = NULL;
1855 
1856 	device_data = dev_get_drvdata(dev);
1857 	if (!device_data) {
1858 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1859 		return -ENOMEM;
1860 	}
1861 
1862 	spin_lock(&device_data->ctx_lock);
1863 	if (!device_data->current_ctx)
1864 		device_data->current_ctx++;
1865 	spin_unlock(&device_data->ctx_lock);
1866 
1867 	if (device_data->current_ctx == ++temp_ctx) {
1868 		if (down_interruptible(&driver_data.device_allocation))
1869 			dev_dbg(dev, "%s: down_interruptible() failed\n",
1870 				__func__);
1871 		ret = hash_disable_power(device_data, false);
1872 
1873 	} else {
1874 		ret = hash_disable_power(device_data, true);
1875 	}
1876 
1877 	if (ret)
1878 		dev_err(dev, "%s: hash_disable_power()\n", __func__);
1879 
1880 	return ret;
1881 }
1882 
1883 /**
1884  * ux500_hash_resume - Function that resume the hash device.
1885  * @dev:	Device to resume.
1886  */
ux500_hash_resume(struct device * dev)1887 static int ux500_hash_resume(struct device *dev)
1888 {
1889 	int ret = 0;
1890 	struct hash_device_data *device_data;
1891 	struct hash_ctx *temp_ctx = NULL;
1892 
1893 	device_data = dev_get_drvdata(dev);
1894 	if (!device_data) {
1895 		dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1896 		return -ENOMEM;
1897 	}
1898 
1899 	spin_lock(&device_data->ctx_lock);
1900 	if (device_data->current_ctx == ++temp_ctx)
1901 		device_data->current_ctx = NULL;
1902 	spin_unlock(&device_data->ctx_lock);
1903 
1904 	if (!device_data->current_ctx)
1905 		up(&driver_data.device_allocation);
1906 	else
1907 		ret = hash_enable_power(device_data, true);
1908 
1909 	if (ret)
1910 		dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1911 
1912 	return ret;
1913 }
1914 #endif
1915 
1916 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1917 
1918 static const struct of_device_id ux500_hash_match[] = {
1919 	{ .compatible = "stericsson,ux500-hash" },
1920 	{ },
1921 };
1922 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1923 
1924 static struct platform_driver hash_driver = {
1925 	.probe  = ux500_hash_probe,
1926 	.remove = ux500_hash_remove,
1927 	.shutdown = ux500_hash_shutdown,
1928 	.driver = {
1929 		.name  = "hash1",
1930 		.of_match_table = ux500_hash_match,
1931 		.pm    = &ux500_hash_pm,
1932 	}
1933 };
1934 
1935 /**
1936  * ux500_hash_mod_init - The kernel module init function.
1937  */
ux500_hash_mod_init(void)1938 static int __init ux500_hash_mod_init(void)
1939 {
1940 	klist_init(&driver_data.device_list, NULL, NULL);
1941 	/* Initialize the semaphore to 0 devices (locked state) */
1942 	sema_init(&driver_data.device_allocation, 0);
1943 
1944 	return platform_driver_register(&hash_driver);
1945 }
1946 
1947 /**
1948  * ux500_hash_mod_fini - The kernel module exit function.
1949  */
ux500_hash_mod_fini(void)1950 static void __exit ux500_hash_mod_fini(void)
1951 {
1952 	platform_driver_unregister(&hash_driver);
1953 }
1954 
1955 module_init(ux500_hash_mod_init);
1956 module_exit(ux500_hash_mod_fini);
1957 
1958 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1959 MODULE_LICENSE("GPL");
1960 
1961 MODULE_ALIAS_CRYPTO("sha1-all");
1962 MODULE_ALIAS_CRYPTO("sha256-all");
1963 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1964 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1965