1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
4 * Support for Nomadik hardware crypto engine.
5
6 * Copyright (C) ST-Ericsson SA 2010
7 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12 */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/platform_device.h>
26 #include <linux/crypto.h>
27
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/bitops.h>
31
32 #include <crypto/internal/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36
37 #include <linux/platform_data/crypto-ux500.h>
38
39 #include "hash_alg.h"
40
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45 /* HMAC-SHA1, no key */
46 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
47 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
48 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
49 0x70, 0x69, 0x0e, 0x1d
50 };
51
52 /* HMAC-SHA256, no key */
53 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
54 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
55 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
56 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
57 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
58 };
59
60 /**
61 * struct hash_driver_data - data specific to the driver.
62 *
63 * @device_list: A list of registered devices to choose from.
64 * @device_allocation: A semaphore initialized with number of devices.
65 */
66 struct hash_driver_data {
67 struct klist device_list;
68 struct semaphore device_allocation;
69 };
70
71 static struct hash_driver_data driver_data;
72
73 /* Declaration of functions */
74 /**
75 * hash_messagepad - Pads a message and write the nblw bits.
76 * @device_data: Structure for the hash device.
77 * @message: Last word of a message
78 * @index_bytes: The number of bytes in the last message
79 *
80 * This function manages the final part of the digest calculation, when less
81 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
82 *
83 */
84 static void hash_messagepad(struct hash_device_data *device_data,
85 const u32 *message, u8 index_bytes);
86
87 /**
88 * release_hash_device - Releases a previously allocated hash device.
89 * @device_data: Structure for the hash device.
90 *
91 */
release_hash_device(struct hash_device_data * device_data)92 static void release_hash_device(struct hash_device_data *device_data)
93 {
94 spin_lock(&device_data->ctx_lock);
95 device_data->current_ctx->device = NULL;
96 device_data->current_ctx = NULL;
97 spin_unlock(&device_data->ctx_lock);
98
99 /*
100 * The down_interruptible part for this semaphore is called in
101 * cryp_get_device_data.
102 */
103 up(&driver_data.device_allocation);
104 }
105
hash_dma_setup_channel(struct hash_device_data * device_data,struct device * dev)106 static void hash_dma_setup_channel(struct hash_device_data *device_data,
107 struct device *dev)
108 {
109 struct hash_platform_data *platform_data = dev->platform_data;
110 struct dma_slave_config conf = {
111 .direction = DMA_MEM_TO_DEV,
112 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
113 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
114 .dst_maxburst = 16,
115 };
116
117 dma_cap_zero(device_data->dma.mask);
118 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
119
120 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
121 device_data->dma.chan_mem2hash =
122 dma_request_channel(device_data->dma.mask,
123 platform_data->dma_filter,
124 device_data->dma.cfg_mem2hash);
125
126 dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
127
128 init_completion(&device_data->dma.complete);
129 }
130
hash_dma_callback(void * data)131 static void hash_dma_callback(void *data)
132 {
133 struct hash_ctx *ctx = data;
134
135 complete(&ctx->device->dma.complete);
136 }
137
hash_set_dma_transfer(struct hash_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)138 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
139 int len, enum dma_data_direction direction)
140 {
141 struct dma_async_tx_descriptor *desc = NULL;
142 struct dma_chan *channel = NULL;
143 dma_cookie_t cookie;
144
145 if (direction != DMA_TO_DEVICE) {
146 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
147 __func__);
148 return -EFAULT;
149 }
150
151 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
152
153 channel = ctx->device->dma.chan_mem2hash;
154 ctx->device->dma.sg = sg;
155 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
156 ctx->device->dma.sg, ctx->device->dma.nents,
157 direction);
158
159 if (!ctx->device->dma.sg_len) {
160 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
161 __func__);
162 return -EFAULT;
163 }
164
165 dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166 __func__);
167 desc = dmaengine_prep_slave_sg(channel,
168 ctx->device->dma.sg, ctx->device->dma.sg_len,
169 DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
170 if (!desc) {
171 dev_err(ctx->device->dev,
172 "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
173 return -EFAULT;
174 }
175
176 desc->callback = hash_dma_callback;
177 desc->callback_param = ctx;
178
179 cookie = dmaengine_submit(desc);
180 dma_async_issue_pending(channel);
181
182 return 0;
183 }
184
hash_dma_done(struct hash_ctx * ctx)185 static void hash_dma_done(struct hash_ctx *ctx)
186 {
187 struct dma_chan *chan;
188
189 chan = ctx->device->dma.chan_mem2hash;
190 dmaengine_terminate_all(chan);
191 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
192 ctx->device->dma.sg_len, DMA_TO_DEVICE);
193 }
194
hash_dma_write(struct hash_ctx * ctx,struct scatterlist * sg,int len)195 static int hash_dma_write(struct hash_ctx *ctx,
196 struct scatterlist *sg, int len)
197 {
198 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
199 if (error) {
200 dev_dbg(ctx->device->dev,
201 "%s: hash_set_dma_transfer() failed\n", __func__);
202 return error;
203 }
204
205 return len;
206 }
207
208 /**
209 * get_empty_message_digest - Returns a pre-calculated digest for
210 * the empty message.
211 * @device_data: Structure for the hash device.
212 * @zero_hash: Buffer to return the empty message digest.
213 * @zero_hash_size: Hash size of the empty message digest.
214 * @zero_digest: True if zero_digest returned.
215 */
get_empty_message_digest(struct hash_device_data * device_data,u8 * zero_hash,u32 * zero_hash_size,bool * zero_digest)216 static int get_empty_message_digest(
217 struct hash_device_data *device_data,
218 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
219 {
220 int ret = 0;
221 struct hash_ctx *ctx = device_data->current_ctx;
222 *zero_digest = false;
223
224 /**
225 * Caller responsible for ctx != NULL.
226 */
227
228 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
229 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
230 memcpy(zero_hash, &sha1_zero_message_hash[0],
231 SHA1_DIGEST_SIZE);
232 *zero_hash_size = SHA1_DIGEST_SIZE;
233 *zero_digest = true;
234 } else if (HASH_ALGO_SHA256 ==
235 ctx->config.algorithm) {
236 memcpy(zero_hash, &sha256_zero_message_hash[0],
237 SHA256_DIGEST_SIZE);
238 *zero_hash_size = SHA256_DIGEST_SIZE;
239 *zero_digest = true;
240 } else {
241 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
242 __func__);
243 ret = -EINVAL;
244 goto out;
245 }
246 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
247 if (!ctx->keylen) {
248 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
249 memcpy(zero_hash, &zero_message_hmac_sha1[0],
250 SHA1_DIGEST_SIZE);
251 *zero_hash_size = SHA1_DIGEST_SIZE;
252 *zero_digest = true;
253 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
254 memcpy(zero_hash, &zero_message_hmac_sha256[0],
255 SHA256_DIGEST_SIZE);
256 *zero_hash_size = SHA256_DIGEST_SIZE;
257 *zero_digest = true;
258 } else {
259 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
260 __func__);
261 ret = -EINVAL;
262 goto out;
263 }
264 } else {
265 dev_dbg(device_data->dev,
266 "%s: Continue hash calculation, since hmac key available\n",
267 __func__);
268 }
269 }
270 out:
271
272 return ret;
273 }
274
275 /**
276 * hash_disable_power - Request to disable power and clock.
277 * @device_data: Structure for the hash device.
278 * @save_device_state: If true, saves the current hw state.
279 *
280 * This function request for disabling power (regulator) and clock,
281 * and could also save current hw state.
282 */
hash_disable_power(struct hash_device_data * device_data,bool save_device_state)283 static int hash_disable_power(struct hash_device_data *device_data,
284 bool save_device_state)
285 {
286 int ret = 0;
287 struct device *dev = device_data->dev;
288
289 spin_lock(&device_data->power_state_lock);
290 if (!device_data->power_state)
291 goto out;
292
293 if (save_device_state) {
294 hash_save_state(device_data,
295 &device_data->state);
296 device_data->restore_dev_state = true;
297 }
298
299 clk_disable(device_data->clk);
300 ret = regulator_disable(device_data->regulator);
301 if (ret)
302 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
303
304 device_data->power_state = false;
305
306 out:
307 spin_unlock(&device_data->power_state_lock);
308
309 return ret;
310 }
311
312 /**
313 * hash_enable_power - Request to enable power and clock.
314 * @device_data: Structure for the hash device.
315 * @restore_device_state: If true, restores a previous saved hw state.
316 *
317 * This function request for enabling power (regulator) and clock,
318 * and could also restore a previously saved hw state.
319 */
hash_enable_power(struct hash_device_data * device_data,bool restore_device_state)320 static int hash_enable_power(struct hash_device_data *device_data,
321 bool restore_device_state)
322 {
323 int ret = 0;
324 struct device *dev = device_data->dev;
325
326 spin_lock(&device_data->power_state_lock);
327 if (!device_data->power_state) {
328 ret = regulator_enable(device_data->regulator);
329 if (ret) {
330 dev_err(dev, "%s: regulator_enable() failed!\n",
331 __func__);
332 goto out;
333 }
334 ret = clk_enable(device_data->clk);
335 if (ret) {
336 dev_err(dev, "%s: clk_enable() failed!\n", __func__);
337 ret = regulator_disable(
338 device_data->regulator);
339 goto out;
340 }
341 device_data->power_state = true;
342 }
343
344 if (device_data->restore_dev_state) {
345 if (restore_device_state) {
346 device_data->restore_dev_state = false;
347 hash_resume_state(device_data, &device_data->state);
348 }
349 }
350 out:
351 spin_unlock(&device_data->power_state_lock);
352
353 return ret;
354 }
355
356 /**
357 * hash_get_device_data - Checks for an available hash device and return it.
358 * @hash_ctx: Structure for the hash context.
359 * @device_data: Structure for the hash device.
360 *
361 * This function check for an available hash device and return it to
362 * the caller.
363 * Note! Caller need to release the device, calling up().
364 */
hash_get_device_data(struct hash_ctx * ctx,struct hash_device_data ** device_data)365 static int hash_get_device_data(struct hash_ctx *ctx,
366 struct hash_device_data **device_data)
367 {
368 int ret;
369 struct klist_iter device_iterator;
370 struct klist_node *device_node;
371 struct hash_device_data *local_device_data = NULL;
372
373 /* Wait until a device is available */
374 ret = down_interruptible(&driver_data.device_allocation);
375 if (ret)
376 return ret; /* Interrupted */
377
378 /* Select a device */
379 klist_iter_init(&driver_data.device_list, &device_iterator);
380 device_node = klist_next(&device_iterator);
381 while (device_node) {
382 local_device_data = container_of(device_node,
383 struct hash_device_data, list_node);
384 spin_lock(&local_device_data->ctx_lock);
385 /* current_ctx allocates a device, NULL = unallocated */
386 if (local_device_data->current_ctx) {
387 device_node = klist_next(&device_iterator);
388 } else {
389 local_device_data->current_ctx = ctx;
390 ctx->device = local_device_data;
391 spin_unlock(&local_device_data->ctx_lock);
392 break;
393 }
394 spin_unlock(&local_device_data->ctx_lock);
395 }
396 klist_iter_exit(&device_iterator);
397
398 if (!device_node) {
399 /**
400 * No free device found.
401 * Since we allocated a device with down_interruptible, this
402 * should not be able to happen.
403 * Number of available devices, which are contained in
404 * device_allocation, is therefore decremented by not doing
405 * an up(device_allocation).
406 */
407 return -EBUSY;
408 }
409
410 *device_data = local_device_data;
411
412 return 0;
413 }
414
415 /**
416 * hash_hw_write_key - Writes the key to the hardware registries.
417 *
418 * @device_data: Structure for the hash device.
419 * @key: Key to be written.
420 * @keylen: The lengt of the key.
421 *
422 * Note! This function DOES NOT write to the NBLW registry, even though
423 * specified in the the hw design spec. Either due to incorrect info in the
424 * spec or due to a bug in the hw.
425 */
hash_hw_write_key(struct hash_device_data * device_data,const u8 * key,unsigned int keylen)426 static void hash_hw_write_key(struct hash_device_data *device_data,
427 const u8 *key, unsigned int keylen)
428 {
429 u32 word = 0;
430 int nwords = 1;
431
432 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
433
434 while (keylen >= 4) {
435 u32 *key_word = (u32 *)key;
436
437 HASH_SET_DIN(key_word, nwords);
438 keylen -= 4;
439 key += 4;
440 }
441
442 /* Take care of the remaining bytes in the last word */
443 if (keylen) {
444 word = 0;
445 while (keylen) {
446 word |= (key[keylen - 1] << (8 * (keylen - 1)));
447 keylen--;
448 }
449
450 HASH_SET_DIN(&word, nwords);
451 }
452
453 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
454 cpu_relax();
455
456 HASH_SET_DCAL;
457
458 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
459 cpu_relax();
460 }
461
462 /**
463 * init_hash_hw - Initialise the hash hardware for a new calculation.
464 * @device_data: Structure for the hash device.
465 * @ctx: The hash context.
466 *
467 * This function will enable the bits needed to clear and start a new
468 * calculation.
469 */
init_hash_hw(struct hash_device_data * device_data,struct hash_ctx * ctx)470 static int init_hash_hw(struct hash_device_data *device_data,
471 struct hash_ctx *ctx)
472 {
473 int ret = 0;
474
475 ret = hash_setconfiguration(device_data, &ctx->config);
476 if (ret) {
477 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
478 __func__);
479 return ret;
480 }
481
482 hash_begin(device_data, ctx);
483
484 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
485 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
486
487 return ret;
488 }
489
490 /**
491 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
492 *
493 * @sg: Scatterlist.
494 * @size: Size in bytes.
495 * @aligned: True if sg data aligned to work in DMA mode.
496 *
497 */
hash_get_nents(struct scatterlist * sg,int size,bool * aligned)498 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
499 {
500 int nents = 0;
501 bool aligned_data = true;
502
503 while (size > 0 && sg) {
504 nents++;
505 size -= sg->length;
506
507 /* hash_set_dma_transfer will align last nent */
508 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
509 (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
510 aligned_data = false;
511
512 sg = sg_next(sg);
513 }
514
515 if (aligned)
516 *aligned = aligned_data;
517
518 if (size != 0)
519 return -EFAULT;
520
521 return nents;
522 }
523
524 /**
525 * hash_dma_valid_data - checks for dma valid sg data.
526 * @sg: Scatterlist.
527 * @datasize: Datasize in bytes.
528 *
529 * NOTE! This function checks for dma valid sg data, since dma
530 * only accept datasizes of even wordsize.
531 */
hash_dma_valid_data(struct scatterlist * sg,int datasize)532 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
533 {
534 bool aligned;
535
536 /* Need to include at least one nent, else error */
537 if (hash_get_nents(sg, datasize, &aligned) < 1)
538 return false;
539
540 return aligned;
541 }
542
543 /**
544 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
545 * @req: The hash request for the job.
546 *
547 * Initialize structures.
548 */
hash_init(struct ahash_request * req)549 static int hash_init(struct ahash_request *req)
550 {
551 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
553 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
554
555 if (!ctx->key)
556 ctx->keylen = 0;
557
558 memset(&req_ctx->state, 0, sizeof(struct hash_state));
559 req_ctx->updated = 0;
560 if (hash_mode == HASH_MODE_DMA) {
561 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
562 req_ctx->dma_mode = false; /* Don't use DMA */
563
564 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
565 __func__, HASH_DMA_ALIGN_SIZE);
566 } else {
567 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
568 hash_dma_valid_data(req->src, req->nbytes)) {
569 req_ctx->dma_mode = true;
570 } else {
571 req_ctx->dma_mode = false;
572 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573 __func__,
574 HASH_DMA_PERFORMANCE_MIN_SIZE);
575 }
576 }
577 }
578 return 0;
579 }
580
581 /**
582 * hash_processblock - This function processes a single block of 512 bits (64
583 * bytes), word aligned, starting at message.
584 * @device_data: Structure for the hash device.
585 * @message: Block (512 bits) of message to be written to
586 * the HASH hardware.
587 *
588 */
hash_processblock(struct hash_device_data * device_data,const u32 * message,int length)589 static void hash_processblock(struct hash_device_data *device_data,
590 const u32 *message, int length)
591 {
592 int len = length / HASH_BYTES_PER_WORD;
593 /*
594 * NBLW bits. Reset the number of bits in last word (NBLW).
595 */
596 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
597
598 /*
599 * Write message data to the HASH_DIN register.
600 */
601 HASH_SET_DIN(message, len);
602 }
603
604 /**
605 * hash_messagepad - Pads a message and write the nblw bits.
606 * @device_data: Structure for the hash device.
607 * @message: Last word of a message.
608 * @index_bytes: The number of bytes in the last message.
609 *
610 * This function manages the final part of the digest calculation, when less
611 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
612 *
613 */
hash_messagepad(struct hash_device_data * device_data,const u32 * message,u8 index_bytes)614 static void hash_messagepad(struct hash_device_data *device_data,
615 const u32 *message, u8 index_bytes)
616 {
617 int nwords = 1;
618
619 /*
620 * Clear hash str register, only clear NBLW
621 * since DCAL will be reset by hardware.
622 */
623 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
624
625 /* Main loop */
626 while (index_bytes >= 4) {
627 HASH_SET_DIN(message, nwords);
628 index_bytes -= 4;
629 message++;
630 }
631
632 if (index_bytes)
633 HASH_SET_DIN(message, nwords);
634
635 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
636 cpu_relax();
637
638 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
639 HASH_SET_NBLW(index_bytes * 8);
640 dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
641 __func__, readl_relaxed(&device_data->base->din),
642 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
643 HASH_SET_DCAL;
644 dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
645 __func__, readl_relaxed(&device_data->base->din),
646 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
647
648 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
649 cpu_relax();
650 }
651
652 /**
653 * hash_incrementlength - Increments the length of the current message.
654 * @ctx: Hash context
655 * @incr: Length of message processed already
656 *
657 * Overflow cannot occur, because conditions for overflow are checked in
658 * hash_hw_update.
659 */
hash_incrementlength(struct hash_req_ctx * ctx,u32 incr)660 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
661 {
662 ctx->state.length.low_word += incr;
663
664 /* Check for wrap-around */
665 if (ctx->state.length.low_word < incr)
666 ctx->state.length.high_word++;
667 }
668
669 /**
670 * hash_setconfiguration - Sets the required configuration for the hash
671 * hardware.
672 * @device_data: Structure for the hash device.
673 * @config: Pointer to a configuration structure.
674 */
hash_setconfiguration(struct hash_device_data * device_data,struct hash_config * config)675 int hash_setconfiguration(struct hash_device_data *device_data,
676 struct hash_config *config)
677 {
678 int ret = 0;
679
680 if (config->algorithm != HASH_ALGO_SHA1 &&
681 config->algorithm != HASH_ALGO_SHA256)
682 return -EPERM;
683
684 /*
685 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
686 * to be written to HASH_DIN is considered as 32 bits.
687 */
688 HASH_SET_DATA_FORMAT(config->data_format);
689
690 /*
691 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692 */
693 switch (config->algorithm) {
694 case HASH_ALGO_SHA1:
695 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
696 break;
697
698 case HASH_ALGO_SHA256:
699 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
700 break;
701
702 default:
703 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
704 __func__);
705 return -EPERM;
706 }
707
708 /*
709 * MODE bit. This bit selects between HASH or HMAC mode for the
710 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711 */
712 if (HASH_OPER_MODE_HASH == config->oper_mode)
713 HASH_CLEAR_BITS(&device_data->base->cr,
714 HASH_CR_MODE_MASK);
715 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
716 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
717 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
718 /* Truncate key to blocksize */
719 dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
720 HASH_SET_BITS(&device_data->base->cr,
721 HASH_CR_LKEY_MASK);
722 } else {
723 dev_dbg(device_data->dev, "%s: LKEY cleared\n",
724 __func__);
725 HASH_CLEAR_BITS(&device_data->base->cr,
726 HASH_CR_LKEY_MASK);
727 }
728 } else { /* Wrong hash mode */
729 ret = -EPERM;
730 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
731 __func__);
732 }
733 return ret;
734 }
735
736 /**
737 * hash_begin - This routine resets some globals and initializes the hash
738 * hardware.
739 * @device_data: Structure for the hash device.
740 * @ctx: Hash context.
741 */
hash_begin(struct hash_device_data * device_data,struct hash_ctx * ctx)742 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
743 {
744 /* HW and SW initializations */
745 /* Note: there is no need to initialize buffer and digest members */
746
747 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
748 cpu_relax();
749
750 /*
751 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
752 * prepare the initialize the HASH accelerator to compute the message
753 * digest of a new message.
754 */
755 HASH_INITIALIZE;
756
757 /*
758 * NBLW bits. Reset the number of bits in last word (NBLW).
759 */
760 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
761 }
762
hash_process_data(struct hash_device_data * device_data,struct hash_ctx * ctx,struct hash_req_ctx * req_ctx,int msg_length,u8 * data_buffer,u8 * buffer,u8 * index)763 static int hash_process_data(struct hash_device_data *device_data,
764 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
765 int msg_length, u8 *data_buffer, u8 *buffer,
766 u8 *index)
767 {
768 int ret = 0;
769 u32 count;
770
771 do {
772 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
773 for (count = 0; count < msg_length; count++) {
774 buffer[*index + count] =
775 *(data_buffer + count);
776 }
777 *index += msg_length;
778 msg_length = 0;
779 } else {
780 if (req_ctx->updated) {
781 ret = hash_resume_state(device_data,
782 &device_data->state);
783 memmove(req_ctx->state.buffer,
784 device_data->state.buffer,
785 HASH_BLOCK_SIZE);
786 if (ret) {
787 dev_err(device_data->dev,
788 "%s: hash_resume_state() failed!\n",
789 __func__);
790 goto out;
791 }
792 } else {
793 ret = init_hash_hw(device_data, ctx);
794 if (ret) {
795 dev_err(device_data->dev,
796 "%s: init_hash_hw() failed!\n",
797 __func__);
798 goto out;
799 }
800 req_ctx->updated = 1;
801 }
802 /*
803 * If 'data_buffer' is four byte aligned and
804 * local buffer does not have any data, we can
805 * write data directly from 'data_buffer' to
806 * HW peripheral, otherwise we first copy data
807 * to a local buffer
808 */
809 if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
810 (0 == *index))
811 hash_processblock(device_data,
812 (const u32 *)data_buffer,
813 HASH_BLOCK_SIZE);
814 else {
815 for (count = 0;
816 count < (u32)(HASH_BLOCK_SIZE - *index);
817 count++) {
818 buffer[*index + count] =
819 *(data_buffer + count);
820 }
821 hash_processblock(device_data,
822 (const u32 *)buffer,
823 HASH_BLOCK_SIZE);
824 }
825 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
826 data_buffer += (HASH_BLOCK_SIZE - *index);
827
828 msg_length -= (HASH_BLOCK_SIZE - *index);
829 *index = 0;
830
831 ret = hash_save_state(device_data,
832 &device_data->state);
833
834 memmove(device_data->state.buffer,
835 req_ctx->state.buffer,
836 HASH_BLOCK_SIZE);
837 if (ret) {
838 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
839 __func__);
840 goto out;
841 }
842 }
843 } while (msg_length != 0);
844 out:
845
846 return ret;
847 }
848
849 /**
850 * hash_dma_final - The hash dma final function for SHA1/SHA256.
851 * @req: The hash request for the job.
852 */
hash_dma_final(struct ahash_request * req)853 static int hash_dma_final(struct ahash_request *req)
854 {
855 int ret = 0;
856 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
858 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
859 struct hash_device_data *device_data;
860 u8 digest[SHA256_DIGEST_SIZE];
861 int bytes_written = 0;
862
863 ret = hash_get_device_data(ctx, &device_data);
864 if (ret)
865 return ret;
866
867 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
868 (unsigned long)ctx);
869
870 if (req_ctx->updated) {
871 ret = hash_resume_state(device_data, &device_data->state);
872
873 if (ret) {
874 dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
875 __func__);
876 goto out;
877 }
878 }
879
880 if (!req_ctx->updated) {
881 ret = hash_setconfiguration(device_data, &ctx->config);
882 if (ret) {
883 dev_err(device_data->dev,
884 "%s: hash_setconfiguration() failed!\n",
885 __func__);
886 goto out;
887 }
888
889 /* Enable DMA input */
890 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891 HASH_CLEAR_BITS(&device_data->base->cr,
892 HASH_CR_DMAE_MASK);
893 } else {
894 HASH_SET_BITS(&device_data->base->cr,
895 HASH_CR_DMAE_MASK);
896 HASH_SET_BITS(&device_data->base->cr,
897 HASH_CR_PRIVN_MASK);
898 }
899
900 HASH_INITIALIZE;
901
902 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904
905 /* Number of bits in last word = (nbytes * 8) % 32 */
906 HASH_SET_NBLW((req->nbytes * 8) % 32);
907 req_ctx->updated = 1;
908 }
909
910 /* Store the nents in the dma struct. */
911 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912 if (!ctx->device->dma.nents) {
913 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914 __func__);
915 ret = ctx->device->dma.nents;
916 goto out;
917 }
918
919 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920 if (bytes_written != req->nbytes) {
921 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922 __func__);
923 ret = bytes_written;
924 goto out;
925 }
926
927 wait_for_completion(&ctx->device->dma.complete);
928 hash_dma_done(ctx);
929
930 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931 cpu_relax();
932
933 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934 unsigned int keylen = ctx->keylen;
935 u8 *key = ctx->key;
936
937 dev_dbg(device_data->dev, "%s: keylen: %d\n",
938 __func__, ctx->keylen);
939 hash_hw_write_key(device_data, key, keylen);
940 }
941
942 hash_get_digest(device_data, digest, ctx->config.algorithm);
943 memcpy(req->result, digest, ctx->digestsize);
944
945 out:
946 release_hash_device(device_data);
947
948 /**
949 * Allocated in setkey, and only used in HMAC.
950 */
951 kfree(ctx->key);
952
953 return ret;
954 }
955
956 /**
957 * hash_hw_final - The final hash calculation function
958 * @req: The hash request for the job.
959 */
hash_hw_final(struct ahash_request * req)960 static int hash_hw_final(struct ahash_request *req)
961 {
962 int ret = 0;
963 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966 struct hash_device_data *device_data;
967 u8 digest[SHA256_DIGEST_SIZE];
968
969 ret = hash_get_device_data(ctx, &device_data);
970 if (ret)
971 return ret;
972
973 dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974 (unsigned long)ctx);
975
976 if (req_ctx->updated) {
977 ret = hash_resume_state(device_data, &device_data->state);
978
979 if (ret) {
980 dev_err(device_data->dev,
981 "%s: hash_resume_state() failed!\n", __func__);
982 goto out;
983 }
984 } else if (req->nbytes == 0 && ctx->keylen == 0) {
985 u8 zero_hash[SHA256_DIGEST_SIZE];
986 u32 zero_hash_size = 0;
987 bool zero_digest = false;
988 /**
989 * Use a pre-calculated empty message digest
990 * (workaround since hw return zeroes, hw bug!?)
991 */
992 ret = get_empty_message_digest(device_data, &zero_hash[0],
993 &zero_hash_size, &zero_digest);
994 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995 zero_digest) {
996 memcpy(req->result, &zero_hash[0], ctx->digestsize);
997 goto out;
998 } else if (!ret && !zero_digest) {
999 dev_dbg(device_data->dev,
1000 "%s: HMAC zero msg with key, continue...\n",
1001 __func__);
1002 } else {
1003 dev_err(device_data->dev,
1004 "%s: ret=%d, or wrong digest size? %s\n",
1005 __func__, ret,
1006 zero_hash_size == ctx->digestsize ?
1007 "true" : "false");
1008 /* Return error */
1009 goto out;
1010 }
1011 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1012 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1013 __func__);
1014 goto out;
1015 }
1016
1017 if (!req_ctx->updated) {
1018 ret = init_hash_hw(device_data, ctx);
1019 if (ret) {
1020 dev_err(device_data->dev,
1021 "%s: init_hash_hw() failed!\n", __func__);
1022 goto out;
1023 }
1024 }
1025
1026 if (req_ctx->state.index) {
1027 hash_messagepad(device_data, req_ctx->state.buffer,
1028 req_ctx->state.index);
1029 } else {
1030 HASH_SET_DCAL;
1031 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1032 cpu_relax();
1033 }
1034
1035 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1036 unsigned int keylen = ctx->keylen;
1037 u8 *key = ctx->key;
1038
1039 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1040 __func__, ctx->keylen);
1041 hash_hw_write_key(device_data, key, keylen);
1042 }
1043
1044 hash_get_digest(device_data, digest, ctx->config.algorithm);
1045 memcpy(req->result, digest, ctx->digestsize);
1046
1047 out:
1048 release_hash_device(device_data);
1049
1050 /**
1051 * Allocated in setkey, and only used in HMAC.
1052 */
1053 kfree(ctx->key);
1054
1055 return ret;
1056 }
1057
1058 /**
1059 * hash_hw_update - Updates current HASH computation hashing another part of
1060 * the message.
1061 * @req: Byte array containing the message to be hashed (caller
1062 * allocated).
1063 */
hash_hw_update(struct ahash_request * req)1064 int hash_hw_update(struct ahash_request *req)
1065 {
1066 int ret = 0;
1067 u8 index = 0;
1068 u8 *buffer;
1069 struct hash_device_data *device_data;
1070 u8 *data_buffer;
1071 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1072 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1073 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1074 struct crypto_hash_walk walk;
1075 int msg_length = crypto_hash_walk_first(req, &walk);
1076
1077 /* Empty message ("") is correct indata */
1078 if (msg_length == 0)
1079 return ret;
1080
1081 index = req_ctx->state.index;
1082 buffer = (u8 *)req_ctx->state.buffer;
1083
1084 /* Check if ctx->state.length + msg_length
1085 overflows */
1086 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1087 HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1088 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1089 return -EPERM;
1090 }
1091
1092 ret = hash_get_device_data(ctx, &device_data);
1093 if (ret)
1094 return ret;
1095
1096 /* Main loop */
1097 while (0 != msg_length) {
1098 data_buffer = walk.data;
1099 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1100 data_buffer, buffer, &index);
1101
1102 if (ret) {
1103 dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1104 __func__);
1105 goto out;
1106 }
1107
1108 msg_length = crypto_hash_walk_done(&walk, 0);
1109 }
1110
1111 req_ctx->state.index = index;
1112 dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1113 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1114
1115 out:
1116 release_hash_device(device_data);
1117
1118 return ret;
1119 }
1120
1121 /**
1122 * hash_resume_state - Function that resumes the state of an calculation.
1123 * @device_data: Pointer to the device structure.
1124 * @device_state: The state to be restored in the hash hardware
1125 */
hash_resume_state(struct hash_device_data * device_data,const struct hash_state * device_state)1126 int hash_resume_state(struct hash_device_data *device_data,
1127 const struct hash_state *device_state)
1128 {
1129 u32 temp_cr;
1130 s32 count;
1131 int hash_mode = HASH_OPER_MODE_HASH;
1132
1133 if (NULL == device_state) {
1134 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1135 __func__);
1136 return -EPERM;
1137 }
1138
1139 /* Check correctness of index and length members */
1140 if (device_state->index > HASH_BLOCK_SIZE ||
1141 (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1142 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1143 __func__);
1144 return -EPERM;
1145 }
1146
1147 /*
1148 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1149 * prepare the initialize the HASH accelerator to compute the message
1150 * digest of a new message.
1151 */
1152 HASH_INITIALIZE;
1153
1154 temp_cr = device_state->temp_cr;
1155 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1156
1157 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1158 hash_mode = HASH_OPER_MODE_HMAC;
1159 else
1160 hash_mode = HASH_OPER_MODE_HASH;
1161
1162 for (count = 0; count < HASH_CSR_COUNT; count++) {
1163 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1164 break;
1165
1166 writel_relaxed(device_state->csr[count],
1167 &device_data->base->csrx[count]);
1168 }
1169
1170 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1171 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1172
1173 writel_relaxed(device_state->str_reg, &device_data->base->str);
1174 writel_relaxed(temp_cr, &device_data->base->cr);
1175
1176 return 0;
1177 }
1178
1179 /**
1180 * hash_save_state - Function that saves the state of hardware.
1181 * @device_data: Pointer to the device structure.
1182 * @device_state: The strucure where the hardware state should be saved.
1183 */
hash_save_state(struct hash_device_data * device_data,struct hash_state * device_state)1184 int hash_save_state(struct hash_device_data *device_data,
1185 struct hash_state *device_state)
1186 {
1187 u32 temp_cr;
1188 u32 count;
1189 int hash_mode = HASH_OPER_MODE_HASH;
1190
1191 if (NULL == device_state) {
1192 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1193 __func__);
1194 return -ENOTSUPP;
1195 }
1196
1197 /* Write dummy value to force digest intermediate calculation. This
1198 * actually makes sure that there isn't any ongoing calculation in the
1199 * hardware.
1200 */
1201 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1202 cpu_relax();
1203
1204 temp_cr = readl_relaxed(&device_data->base->cr);
1205
1206 device_state->str_reg = readl_relaxed(&device_data->base->str);
1207
1208 device_state->din_reg = readl_relaxed(&device_data->base->din);
1209
1210 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1211 hash_mode = HASH_OPER_MODE_HMAC;
1212 else
1213 hash_mode = HASH_OPER_MODE_HASH;
1214
1215 for (count = 0; count < HASH_CSR_COUNT; count++) {
1216 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1217 break;
1218
1219 device_state->csr[count] =
1220 readl_relaxed(&device_data->base->csrx[count]);
1221 }
1222
1223 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1224 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1225
1226 device_state->temp_cr = temp_cr;
1227
1228 return 0;
1229 }
1230
1231 /**
1232 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1233 * @device_data:
1234 *
1235 */
hash_check_hw(struct hash_device_data * device_data)1236 int hash_check_hw(struct hash_device_data *device_data)
1237 {
1238 /* Checking Peripheral Ids */
1239 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1240 HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1241 HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1242 HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1243 HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1244 HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1245 HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1246 HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1247 return 0;
1248 }
1249
1250 dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1251 return -ENOTSUPP;
1252 }
1253
1254 /**
1255 * hash_get_digest - Gets the digest.
1256 * @device_data: Pointer to the device structure.
1257 * @digest: User allocated byte array for the calculated digest.
1258 * @algorithm: The algorithm in use.
1259 */
hash_get_digest(struct hash_device_data * device_data,u8 * digest,int algorithm)1260 void hash_get_digest(struct hash_device_data *device_data,
1261 u8 *digest, int algorithm)
1262 {
1263 u32 temp_hx_val, count;
1264 int loop_ctr;
1265
1266 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1267 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1268 __func__, algorithm);
1269 return;
1270 }
1271
1272 if (algorithm == HASH_ALGO_SHA1)
1273 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1274 else
1275 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1276
1277 dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1278 __func__, (unsigned long)digest);
1279
1280 /* Copy result into digest array */
1281 for (count = 0; count < loop_ctr; count++) {
1282 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1283 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1284 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1285 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1286 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1287 }
1288 }
1289
1290 /**
1291 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1292 * @req: The hash request for the job.
1293 */
ahash_update(struct ahash_request * req)1294 static int ahash_update(struct ahash_request *req)
1295 {
1296 int ret = 0;
1297 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1298
1299 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1300 ret = hash_hw_update(req);
1301 /* Skip update for DMA, all data will be passed to DMA in final */
1302
1303 if (ret) {
1304 pr_err("%s: hash_hw_update() failed!\n", __func__);
1305 }
1306
1307 return ret;
1308 }
1309
1310 /**
1311 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1312 * @req: The hash request for the job.
1313 */
ahash_final(struct ahash_request * req)1314 static int ahash_final(struct ahash_request *req)
1315 {
1316 int ret = 0;
1317 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1318
1319 pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1320
1321 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1322 ret = hash_dma_final(req);
1323 else
1324 ret = hash_hw_final(req);
1325
1326 if (ret) {
1327 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1328 }
1329
1330 return ret;
1331 }
1332
hash_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen,int alg)1333 static int hash_setkey(struct crypto_ahash *tfm,
1334 const u8 *key, unsigned int keylen, int alg)
1335 {
1336 int ret = 0;
1337 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1338
1339 /**
1340 * Freed in final.
1341 */
1342 ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1343 if (!ctx->key) {
1344 pr_err("%s: Failed to allocate ctx->key for %d\n",
1345 __func__, alg);
1346 return -ENOMEM;
1347 }
1348 ctx->keylen = keylen;
1349
1350 return ret;
1351 }
1352
ahash_sha1_init(struct ahash_request * req)1353 static int ahash_sha1_init(struct ahash_request *req)
1354 {
1355 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1356 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1357
1358 ctx->config.data_format = HASH_DATA_8_BITS;
1359 ctx->config.algorithm = HASH_ALGO_SHA1;
1360 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1361 ctx->digestsize = SHA1_DIGEST_SIZE;
1362
1363 return hash_init(req);
1364 }
1365
ahash_sha256_init(struct ahash_request * req)1366 static int ahash_sha256_init(struct ahash_request *req)
1367 {
1368 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1369 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1370
1371 ctx->config.data_format = HASH_DATA_8_BITS;
1372 ctx->config.algorithm = HASH_ALGO_SHA256;
1373 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1374 ctx->digestsize = SHA256_DIGEST_SIZE;
1375
1376 return hash_init(req);
1377 }
1378
ahash_sha1_digest(struct ahash_request * req)1379 static int ahash_sha1_digest(struct ahash_request *req)
1380 {
1381 int ret2, ret1;
1382
1383 ret1 = ahash_sha1_init(req);
1384 if (ret1)
1385 goto out;
1386
1387 ret1 = ahash_update(req);
1388 ret2 = ahash_final(req);
1389
1390 out:
1391 return ret1 ? ret1 : ret2;
1392 }
1393
ahash_sha256_digest(struct ahash_request * req)1394 static int ahash_sha256_digest(struct ahash_request *req)
1395 {
1396 int ret2, ret1;
1397
1398 ret1 = ahash_sha256_init(req);
1399 if (ret1)
1400 goto out;
1401
1402 ret1 = ahash_update(req);
1403 ret2 = ahash_final(req);
1404
1405 out:
1406 return ret1 ? ret1 : ret2;
1407 }
1408
ahash_noimport(struct ahash_request * req,const void * in)1409 static int ahash_noimport(struct ahash_request *req, const void *in)
1410 {
1411 return -ENOSYS;
1412 }
1413
ahash_noexport(struct ahash_request * req,void * out)1414 static int ahash_noexport(struct ahash_request *req, void *out)
1415 {
1416 return -ENOSYS;
1417 }
1418
hmac_sha1_init(struct ahash_request * req)1419 static int hmac_sha1_init(struct ahash_request *req)
1420 {
1421 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1422 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1423
1424 ctx->config.data_format = HASH_DATA_8_BITS;
1425 ctx->config.algorithm = HASH_ALGO_SHA1;
1426 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1427 ctx->digestsize = SHA1_DIGEST_SIZE;
1428
1429 return hash_init(req);
1430 }
1431
hmac_sha256_init(struct ahash_request * req)1432 static int hmac_sha256_init(struct ahash_request *req)
1433 {
1434 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1435 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1436
1437 ctx->config.data_format = HASH_DATA_8_BITS;
1438 ctx->config.algorithm = HASH_ALGO_SHA256;
1439 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1440 ctx->digestsize = SHA256_DIGEST_SIZE;
1441
1442 return hash_init(req);
1443 }
1444
hmac_sha1_digest(struct ahash_request * req)1445 static int hmac_sha1_digest(struct ahash_request *req)
1446 {
1447 int ret2, ret1;
1448
1449 ret1 = hmac_sha1_init(req);
1450 if (ret1)
1451 goto out;
1452
1453 ret1 = ahash_update(req);
1454 ret2 = ahash_final(req);
1455
1456 out:
1457 return ret1 ? ret1 : ret2;
1458 }
1459
hmac_sha256_digest(struct ahash_request * req)1460 static int hmac_sha256_digest(struct ahash_request *req)
1461 {
1462 int ret2, ret1;
1463
1464 ret1 = hmac_sha256_init(req);
1465 if (ret1)
1466 goto out;
1467
1468 ret1 = ahash_update(req);
1469 ret2 = ahash_final(req);
1470
1471 out:
1472 return ret1 ? ret1 : ret2;
1473 }
1474
hmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1475 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1476 const u8 *key, unsigned int keylen)
1477 {
1478 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1479 }
1480
hmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1481 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1482 const u8 *key, unsigned int keylen)
1483 {
1484 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1485 }
1486
1487 struct hash_algo_template {
1488 struct hash_config conf;
1489 struct ahash_alg hash;
1490 };
1491
hash_cra_init(struct crypto_tfm * tfm)1492 static int hash_cra_init(struct crypto_tfm *tfm)
1493 {
1494 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1495 struct crypto_alg *alg = tfm->__crt_alg;
1496 struct hash_algo_template *hash_alg;
1497
1498 hash_alg = container_of(__crypto_ahash_alg(alg),
1499 struct hash_algo_template,
1500 hash);
1501
1502 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1503 sizeof(struct hash_req_ctx));
1504
1505 ctx->config.data_format = HASH_DATA_8_BITS;
1506 ctx->config.algorithm = hash_alg->conf.algorithm;
1507 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1508
1509 ctx->digestsize = hash_alg->hash.halg.digestsize;
1510
1511 return 0;
1512 }
1513
1514 static struct hash_algo_template hash_algs[] = {
1515 {
1516 .conf.algorithm = HASH_ALGO_SHA1,
1517 .conf.oper_mode = HASH_OPER_MODE_HASH,
1518 .hash = {
1519 .init = hash_init,
1520 .update = ahash_update,
1521 .final = ahash_final,
1522 .digest = ahash_sha1_digest,
1523 .export = ahash_noexport,
1524 .import = ahash_noimport,
1525 .halg.digestsize = SHA1_DIGEST_SIZE,
1526 .halg.statesize = sizeof(struct hash_ctx),
1527 .halg.base = {
1528 .cra_name = "sha1",
1529 .cra_driver_name = "sha1-ux500",
1530 .cra_flags = CRYPTO_ALG_ASYNC,
1531 .cra_blocksize = SHA1_BLOCK_SIZE,
1532 .cra_ctxsize = sizeof(struct hash_ctx),
1533 .cra_init = hash_cra_init,
1534 .cra_module = THIS_MODULE,
1535 }
1536 }
1537 },
1538 {
1539 .conf.algorithm = HASH_ALGO_SHA256,
1540 .conf.oper_mode = HASH_OPER_MODE_HASH,
1541 .hash = {
1542 .init = hash_init,
1543 .update = ahash_update,
1544 .final = ahash_final,
1545 .digest = ahash_sha256_digest,
1546 .export = ahash_noexport,
1547 .import = ahash_noimport,
1548 .halg.digestsize = SHA256_DIGEST_SIZE,
1549 .halg.statesize = sizeof(struct hash_ctx),
1550 .halg.base = {
1551 .cra_name = "sha256",
1552 .cra_driver_name = "sha256-ux500",
1553 .cra_flags = CRYPTO_ALG_ASYNC,
1554 .cra_blocksize = SHA256_BLOCK_SIZE,
1555 .cra_ctxsize = sizeof(struct hash_ctx),
1556 .cra_init = hash_cra_init,
1557 .cra_module = THIS_MODULE,
1558 }
1559 }
1560 },
1561 {
1562 .conf.algorithm = HASH_ALGO_SHA1,
1563 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1564 .hash = {
1565 .init = hash_init,
1566 .update = ahash_update,
1567 .final = ahash_final,
1568 .digest = hmac_sha1_digest,
1569 .setkey = hmac_sha1_setkey,
1570 .export = ahash_noexport,
1571 .import = ahash_noimport,
1572 .halg.digestsize = SHA1_DIGEST_SIZE,
1573 .halg.statesize = sizeof(struct hash_ctx),
1574 .halg.base = {
1575 .cra_name = "hmac(sha1)",
1576 .cra_driver_name = "hmac-sha1-ux500",
1577 .cra_flags = CRYPTO_ALG_ASYNC,
1578 .cra_blocksize = SHA1_BLOCK_SIZE,
1579 .cra_ctxsize = sizeof(struct hash_ctx),
1580 .cra_init = hash_cra_init,
1581 .cra_module = THIS_MODULE,
1582 }
1583 }
1584 },
1585 {
1586 .conf.algorithm = HASH_ALGO_SHA256,
1587 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1588 .hash = {
1589 .init = hash_init,
1590 .update = ahash_update,
1591 .final = ahash_final,
1592 .digest = hmac_sha256_digest,
1593 .setkey = hmac_sha256_setkey,
1594 .export = ahash_noexport,
1595 .import = ahash_noimport,
1596 .halg.digestsize = SHA256_DIGEST_SIZE,
1597 .halg.statesize = sizeof(struct hash_ctx),
1598 .halg.base = {
1599 .cra_name = "hmac(sha256)",
1600 .cra_driver_name = "hmac-sha256-ux500",
1601 .cra_flags = CRYPTO_ALG_ASYNC,
1602 .cra_blocksize = SHA256_BLOCK_SIZE,
1603 .cra_ctxsize = sizeof(struct hash_ctx),
1604 .cra_init = hash_cra_init,
1605 .cra_module = THIS_MODULE,
1606 }
1607 }
1608 }
1609 };
1610
1611 /**
1612 * hash_algs_register_all -
1613 */
ahash_algs_register_all(struct hash_device_data * device_data)1614 static int ahash_algs_register_all(struct hash_device_data *device_data)
1615 {
1616 int ret;
1617 int i;
1618 int count;
1619
1620 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1621 ret = crypto_register_ahash(&hash_algs[i].hash);
1622 if (ret) {
1623 count = i;
1624 dev_err(device_data->dev, "%s: alg registration failed\n",
1625 hash_algs[i].hash.halg.base.cra_driver_name);
1626 goto unreg;
1627 }
1628 }
1629 return 0;
1630 unreg:
1631 for (i = 0; i < count; i++)
1632 crypto_unregister_ahash(&hash_algs[i].hash);
1633 return ret;
1634 }
1635
1636 /**
1637 * hash_algs_unregister_all -
1638 */
ahash_algs_unregister_all(struct hash_device_data * device_data)1639 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1640 {
1641 int i;
1642
1643 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1644 crypto_unregister_ahash(&hash_algs[i].hash);
1645 }
1646
1647 /**
1648 * ux500_hash_probe - Function that probes the hash hardware.
1649 * @pdev: The platform device.
1650 */
ux500_hash_probe(struct platform_device * pdev)1651 static int ux500_hash_probe(struct platform_device *pdev)
1652 {
1653 int ret = 0;
1654 struct resource *res = NULL;
1655 struct hash_device_data *device_data;
1656 struct device *dev = &pdev->dev;
1657
1658 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1659 if (!device_data) {
1660 ret = -ENOMEM;
1661 goto out;
1662 }
1663
1664 device_data->dev = dev;
1665 device_data->current_ctx = NULL;
1666
1667 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1668 if (!res) {
1669 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1670 ret = -ENODEV;
1671 goto out;
1672 }
1673
1674 device_data->phybase = res->start;
1675 device_data->base = devm_ioremap_resource(dev, res);
1676 if (IS_ERR(device_data->base)) {
1677 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1678 ret = PTR_ERR(device_data->base);
1679 goto out;
1680 }
1681 spin_lock_init(&device_data->ctx_lock);
1682 spin_lock_init(&device_data->power_state_lock);
1683
1684 /* Enable power for HASH1 hardware block */
1685 device_data->regulator = regulator_get(dev, "v-ape");
1686 if (IS_ERR(device_data->regulator)) {
1687 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1688 ret = PTR_ERR(device_data->regulator);
1689 device_data->regulator = NULL;
1690 goto out;
1691 }
1692
1693 /* Enable the clock for HASH1 hardware block */
1694 device_data->clk = devm_clk_get(dev, NULL);
1695 if (IS_ERR(device_data->clk)) {
1696 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1697 ret = PTR_ERR(device_data->clk);
1698 goto out_regulator;
1699 }
1700
1701 ret = clk_prepare(device_data->clk);
1702 if (ret) {
1703 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1704 goto out_regulator;
1705 }
1706
1707 /* Enable device power (and clock) */
1708 ret = hash_enable_power(device_data, false);
1709 if (ret) {
1710 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1711 goto out_clk_unprepare;
1712 }
1713
1714 ret = hash_check_hw(device_data);
1715 if (ret) {
1716 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1717 goto out_power;
1718 }
1719
1720 if (hash_mode == HASH_MODE_DMA)
1721 hash_dma_setup_channel(device_data, dev);
1722
1723 platform_set_drvdata(pdev, device_data);
1724
1725 /* Put the new device into the device list... */
1726 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1727 /* ... and signal that a new device is available. */
1728 up(&driver_data.device_allocation);
1729
1730 ret = ahash_algs_register_all(device_data);
1731 if (ret) {
1732 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1733 __func__);
1734 goto out_power;
1735 }
1736
1737 dev_info(dev, "successfully registered\n");
1738 return 0;
1739
1740 out_power:
1741 hash_disable_power(device_data, false);
1742
1743 out_clk_unprepare:
1744 clk_unprepare(device_data->clk);
1745
1746 out_regulator:
1747 regulator_put(device_data->regulator);
1748
1749 out:
1750 return ret;
1751 }
1752
1753 /**
1754 * ux500_hash_remove - Function that removes the hash device from the platform.
1755 * @pdev: The platform device.
1756 */
ux500_hash_remove(struct platform_device * pdev)1757 static int ux500_hash_remove(struct platform_device *pdev)
1758 {
1759 struct hash_device_data *device_data;
1760 struct device *dev = &pdev->dev;
1761
1762 device_data = platform_get_drvdata(pdev);
1763 if (!device_data) {
1764 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1765 return -ENOMEM;
1766 }
1767
1768 /* Try to decrease the number of available devices. */
1769 if (down_trylock(&driver_data.device_allocation))
1770 return -EBUSY;
1771
1772 /* Check that the device is free */
1773 spin_lock(&device_data->ctx_lock);
1774 /* current_ctx allocates a device, NULL = unallocated */
1775 if (device_data->current_ctx) {
1776 /* The device is busy */
1777 spin_unlock(&device_data->ctx_lock);
1778 /* Return the device to the pool. */
1779 up(&driver_data.device_allocation);
1780 return -EBUSY;
1781 }
1782
1783 spin_unlock(&device_data->ctx_lock);
1784
1785 /* Remove the device from the list */
1786 if (klist_node_attached(&device_data->list_node))
1787 klist_remove(&device_data->list_node);
1788
1789 /* If this was the last device, remove the services */
1790 if (list_empty(&driver_data.device_list.k_list))
1791 ahash_algs_unregister_all(device_data);
1792
1793 if (hash_disable_power(device_data, false))
1794 dev_err(dev, "%s: hash_disable_power() failed\n",
1795 __func__);
1796
1797 clk_unprepare(device_data->clk);
1798 regulator_put(device_data->regulator);
1799
1800 return 0;
1801 }
1802
1803 /**
1804 * ux500_hash_shutdown - Function that shutdown the hash device.
1805 * @pdev: The platform device
1806 */
ux500_hash_shutdown(struct platform_device * pdev)1807 static void ux500_hash_shutdown(struct platform_device *pdev)
1808 {
1809 struct hash_device_data *device_data;
1810
1811 device_data = platform_get_drvdata(pdev);
1812 if (!device_data) {
1813 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1814 __func__);
1815 return;
1816 }
1817
1818 /* Check that the device is free */
1819 spin_lock(&device_data->ctx_lock);
1820 /* current_ctx allocates a device, NULL = unallocated */
1821 if (!device_data->current_ctx) {
1822 if (down_trylock(&driver_data.device_allocation))
1823 dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1824 __func__);
1825 /**
1826 * (Allocate the device)
1827 * Need to set this to non-null (dummy) value,
1828 * to avoid usage if context switching.
1829 */
1830 device_data->current_ctx++;
1831 }
1832 spin_unlock(&device_data->ctx_lock);
1833
1834 /* Remove the device from the list */
1835 if (klist_node_attached(&device_data->list_node))
1836 klist_remove(&device_data->list_node);
1837
1838 /* If this was the last device, remove the services */
1839 if (list_empty(&driver_data.device_list.k_list))
1840 ahash_algs_unregister_all(device_data);
1841
1842 if (hash_disable_power(device_data, false))
1843 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1844 __func__);
1845 }
1846
1847 #ifdef CONFIG_PM_SLEEP
1848 /**
1849 * ux500_hash_suspend - Function that suspends the hash device.
1850 * @dev: Device to suspend.
1851 */
ux500_hash_suspend(struct device * dev)1852 static int ux500_hash_suspend(struct device *dev)
1853 {
1854 int ret;
1855 struct hash_device_data *device_data;
1856 struct hash_ctx *temp_ctx = NULL;
1857
1858 device_data = dev_get_drvdata(dev);
1859 if (!device_data) {
1860 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1861 return -ENOMEM;
1862 }
1863
1864 spin_lock(&device_data->ctx_lock);
1865 if (!device_data->current_ctx)
1866 device_data->current_ctx++;
1867 spin_unlock(&device_data->ctx_lock);
1868
1869 if (device_data->current_ctx == ++temp_ctx) {
1870 if (down_interruptible(&driver_data.device_allocation))
1871 dev_dbg(dev, "%s: down_interruptible() failed\n",
1872 __func__);
1873 ret = hash_disable_power(device_data, false);
1874
1875 } else {
1876 ret = hash_disable_power(device_data, true);
1877 }
1878
1879 if (ret)
1880 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1881
1882 return ret;
1883 }
1884
1885 /**
1886 * ux500_hash_resume - Function that resume the hash device.
1887 * @dev: Device to resume.
1888 */
ux500_hash_resume(struct device * dev)1889 static int ux500_hash_resume(struct device *dev)
1890 {
1891 int ret = 0;
1892 struct hash_device_data *device_data;
1893 struct hash_ctx *temp_ctx = NULL;
1894
1895 device_data = dev_get_drvdata(dev);
1896 if (!device_data) {
1897 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1898 return -ENOMEM;
1899 }
1900
1901 spin_lock(&device_data->ctx_lock);
1902 if (device_data->current_ctx == ++temp_ctx)
1903 device_data->current_ctx = NULL;
1904 spin_unlock(&device_data->ctx_lock);
1905
1906 if (!device_data->current_ctx)
1907 up(&driver_data.device_allocation);
1908 else
1909 ret = hash_enable_power(device_data, true);
1910
1911 if (ret)
1912 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1913
1914 return ret;
1915 }
1916 #endif
1917
1918 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1919
1920 static const struct of_device_id ux500_hash_match[] = {
1921 { .compatible = "stericsson,ux500-hash" },
1922 { },
1923 };
1924 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1925
1926 static struct platform_driver hash_driver = {
1927 .probe = ux500_hash_probe,
1928 .remove = ux500_hash_remove,
1929 .shutdown = ux500_hash_shutdown,
1930 .driver = {
1931 .name = "hash1",
1932 .of_match_table = ux500_hash_match,
1933 .pm = &ux500_hash_pm,
1934 }
1935 };
1936
1937 /**
1938 * ux500_hash_mod_init - The kernel module init function.
1939 */
ux500_hash_mod_init(void)1940 static int __init ux500_hash_mod_init(void)
1941 {
1942 klist_init(&driver_data.device_list, NULL, NULL);
1943 /* Initialize the semaphore to 0 devices (locked state) */
1944 sema_init(&driver_data.device_allocation, 0);
1945
1946 return platform_driver_register(&hash_driver);
1947 }
1948
1949 /**
1950 * ux500_hash_mod_fini - The kernel module exit function.
1951 */
ux500_hash_mod_fini(void)1952 static void __exit ux500_hash_mod_fini(void)
1953 {
1954 platform_driver_unregister(&hash_driver);
1955 }
1956
1957 module_init(ux500_hash_mod_init);
1958 module_exit(ux500_hash_mod_fini);
1959
1960 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1961 MODULE_LICENSE("GPL");
1962
1963 MODULE_ALIAS_CRYPTO("sha1-all");
1964 MODULE_ALIAS_CRYPTO("sha256-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
1967