1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
4 *
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6 *
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
11 *
12 * Description:
13 * PowerPC Hashed Page Table functions
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
40
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
44 #include <asm/mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/page.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
50 #include <asm/prom.h>
51 #include <asm/io.h>
52 #include <asm/eeh.h>
53 #include <asm/tlb.h>
54 #include <asm/cacheflush.h>
55 #include <asm/cputable.h>
56 #include <asm/sections.h>
57 #include <asm/copro.h>
58 #include <asm/udbg.h>
59 #include <asm/code-patching.h>
60 #include <asm/fadump.h>
61 #include <asm/firmware.h>
62 #include <asm/tm.h>
63 #include <asm/trace.h>
64 #include <asm/ps3.h>
65 #include <asm/pte-walk.h>
66 #include <asm/asm-prototypes.h>
67
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73
74 #ifdef DEBUG_LOW
75 #define DBG_LOW(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG_LOW(fmt...)
78 #endif
79
80 #define KB (1024)
81 #define MB (1024*KB)
82 #define GB (1024L*MB)
83
84 /*
85 * Note: pte --> Linux PTE
86 * HPTE --> PowerPC Hashed Page Table Entry
87 *
88 * Execution context:
89 * htab_initialize is called with the MMU off (of course), but
90 * the kernel has been copied down to zero so it can directly
91 * reference global data. At this point it is very difficult
92 * to print debug info.
93 *
94 */
95
96 static unsigned long _SDR1;
97 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
98 EXPORT_SYMBOL_GPL(mmu_psize_defs);
99
100 u8 hpte_page_sizes[1 << LP_BITS];
101 EXPORT_SYMBOL_GPL(hpte_page_sizes);
102
103 struct hash_pte *htab_address;
104 unsigned long htab_size_bytes;
105 unsigned long htab_hash_mask;
106 EXPORT_SYMBOL_GPL(htab_hash_mask);
107 int mmu_linear_psize = MMU_PAGE_4K;
108 EXPORT_SYMBOL_GPL(mmu_linear_psize);
109 int mmu_virtual_psize = MMU_PAGE_4K;
110 int mmu_vmalloc_psize = MMU_PAGE_4K;
111 #ifdef CONFIG_SPARSEMEM_VMEMMAP
112 int mmu_vmemmap_psize = MMU_PAGE_4K;
113 #endif
114 int mmu_io_psize = MMU_PAGE_4K;
115 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
116 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
117 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
118 u16 mmu_slb_size = 64;
119 EXPORT_SYMBOL_GPL(mmu_slb_size);
120 #ifdef CONFIG_PPC_64K_PAGES
121 int mmu_ci_restrictions;
122 #endif
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124 static u8 *linear_map_hash_slots;
125 static unsigned long linear_map_hash_count;
126 static DEFINE_SPINLOCK(linear_map_hash_lock);
127 #endif /* CONFIG_DEBUG_PAGEALLOC */
128 struct mmu_hash_ops mmu_hash_ops;
129 EXPORT_SYMBOL(mmu_hash_ops);
130
131 /* There are definitions of page sizes arrays to be used when none
132 * is provided by the firmware.
133 */
134
135 /*
136 * Fallback (4k pages only)
137 */
138 static struct mmu_psize_def mmu_psize_defaults[] = {
139 [MMU_PAGE_4K] = {
140 .shift = 12,
141 .sllp = 0,
142 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
143 .avpnm = 0,
144 .tlbiel = 0,
145 },
146 };
147
148 /* POWER4, GPUL, POWER5
149 *
150 * Support for 16Mb large pages
151 */
152 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
153 [MMU_PAGE_4K] = {
154 .shift = 12,
155 .sllp = 0,
156 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
157 .avpnm = 0,
158 .tlbiel = 1,
159 },
160 [MMU_PAGE_16M] = {
161 .shift = 24,
162 .sllp = SLB_VSID_L,
163 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
164 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
165 .avpnm = 0x1UL,
166 .tlbiel = 0,
167 },
168 };
169
170 /*
171 * 'R' and 'C' update notes:
172 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
173 * create writeable HPTEs without C set, because the hcall H_PROTECT
174 * that we use in that case will not update C
175 * - The above is however not a problem, because we also don't do that
176 * fancy "no flush" variant of eviction and we use H_REMOVE which will
177 * do the right thing and thus we don't have the race I described earlier
178 *
179 * - Under bare metal, we do have the race, so we need R and C set
180 * - We make sure R is always set and never lost
181 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
182 */
htab_convert_pte_flags(unsigned long pteflags)183 unsigned long htab_convert_pte_flags(unsigned long pteflags)
184 {
185 unsigned long rflags = 0;
186
187 /* _PAGE_EXEC -> NOEXEC */
188 if ((pteflags & _PAGE_EXEC) == 0)
189 rflags |= HPTE_R_N;
190 /*
191 * PPP bits:
192 * Linux uses slb key 0 for kernel and 1 for user.
193 * kernel RW areas are mapped with PPP=0b000
194 * User area is mapped with PPP=0b010 for read/write
195 * or PPP=0b011 for read-only (including writeable but clean pages).
196 */
197 if (pteflags & _PAGE_PRIVILEGED) {
198 /*
199 * Kernel read only mapped with ppp bits 0b110
200 */
201 if (!(pteflags & _PAGE_WRITE)) {
202 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
203 rflags |= (HPTE_R_PP0 | 0x2);
204 else
205 rflags |= 0x3;
206 }
207 } else {
208 if (pteflags & _PAGE_RWX)
209 rflags |= 0x2;
210 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
211 rflags |= 0x1;
212 }
213 /*
214 * We can't allow hardware to update hpte bits. Hence always
215 * set 'R' bit and set 'C' if it is a write fault
216 */
217 rflags |= HPTE_R_R;
218
219 if (pteflags & _PAGE_DIRTY)
220 rflags |= HPTE_R_C;
221 /*
222 * Add in WIG bits
223 */
224
225 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
226 rflags |= HPTE_R_I;
227 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
228 rflags |= (HPTE_R_I | HPTE_R_G);
229 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
230 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
231 else
232 /*
233 * Add memory coherence if cache inhibited is not set
234 */
235 rflags |= HPTE_R_M;
236
237 rflags |= pte_to_hpte_pkey_bits(pteflags);
238 return rflags;
239 }
240
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)241 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
242 unsigned long pstart, unsigned long prot,
243 int psize, int ssize)
244 {
245 unsigned long vaddr, paddr;
246 unsigned int step, shift;
247 int ret = 0;
248
249 shift = mmu_psize_defs[psize].shift;
250 step = 1 << shift;
251
252 prot = htab_convert_pte_flags(prot);
253
254 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
255 vstart, vend, pstart, prot, psize, ssize);
256
257 for (vaddr = vstart, paddr = pstart; vaddr < vend;
258 vaddr += step, paddr += step) {
259 unsigned long hash, hpteg;
260 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
261 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
262 unsigned long tprot = prot;
263
264 /*
265 * If we hit a bad address return error.
266 */
267 if (!vsid)
268 return -1;
269 /* Make kernel text executable */
270 if (overlaps_kernel_text(vaddr, vaddr + step))
271 tprot &= ~HPTE_R_N;
272
273 /* Make kvm guest trampolines executable */
274 if (overlaps_kvm_tmp(vaddr, vaddr + step))
275 tprot &= ~HPTE_R_N;
276
277 /*
278 * If relocatable, check if it overlaps interrupt vectors that
279 * are copied down to real 0. For relocatable kernel
280 * (e.g. kdump case) we copy interrupt vectors down to real
281 * address 0. Mark that region as executable. This is
282 * because on p8 system with relocation on exception feature
283 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
284 * in order to execute the interrupt handlers in virtual
285 * mode the vector region need to be marked as executable.
286 */
287 if ((PHYSICAL_START > MEMORY_START) &&
288 overlaps_interrupt_vector_text(vaddr, vaddr + step))
289 tprot &= ~HPTE_R_N;
290
291 hash = hpt_hash(vpn, shift, ssize);
292 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
293
294 BUG_ON(!mmu_hash_ops.hpte_insert);
295 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
296 HPTE_V_BOLTED, psize, psize,
297 ssize);
298
299 if (ret < 0)
300 break;
301
302 #ifdef CONFIG_DEBUG_PAGEALLOC
303 if (debug_pagealloc_enabled() &&
304 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
305 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
306 #endif /* CONFIG_DEBUG_PAGEALLOC */
307 }
308 return ret < 0 ? ret : 0;
309 }
310
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)311 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
312 int psize, int ssize)
313 {
314 unsigned long vaddr;
315 unsigned int step, shift;
316 int rc;
317 int ret = 0;
318
319 shift = mmu_psize_defs[psize].shift;
320 step = 1 << shift;
321
322 if (!mmu_hash_ops.hpte_removebolted)
323 return -ENODEV;
324
325 for (vaddr = vstart; vaddr < vend; vaddr += step) {
326 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
327 if (rc == -ENOENT) {
328 ret = -ENOENT;
329 continue;
330 }
331 if (rc < 0)
332 return rc;
333 }
334
335 return ret;
336 }
337
338 static bool disable_1tb_segments = false;
339
parse_disable_1tb_segments(char * p)340 static int __init parse_disable_1tb_segments(char *p)
341 {
342 disable_1tb_segments = true;
343 return 0;
344 }
345 early_param("disable_1tb_segments", parse_disable_1tb_segments);
346
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)347 static int __init htab_dt_scan_seg_sizes(unsigned long node,
348 const char *uname, int depth,
349 void *data)
350 {
351 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
352 const __be32 *prop;
353 int size = 0;
354
355 /* We are scanning "cpu" nodes only */
356 if (type == NULL || strcmp(type, "cpu") != 0)
357 return 0;
358
359 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
360 if (prop == NULL)
361 return 0;
362 for (; size >= 4; size -= 4, ++prop) {
363 if (be32_to_cpu(prop[0]) == 40) {
364 DBG("1T segment support detected\n");
365
366 if (disable_1tb_segments) {
367 DBG("1T segments disabled by command line\n");
368 break;
369 }
370
371 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
372 return 1;
373 }
374 }
375 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
376 return 0;
377 }
378
get_idx_from_shift(unsigned int shift)379 static int __init get_idx_from_shift(unsigned int shift)
380 {
381 int idx = -1;
382
383 switch (shift) {
384 case 0xc:
385 idx = MMU_PAGE_4K;
386 break;
387 case 0x10:
388 idx = MMU_PAGE_64K;
389 break;
390 case 0x14:
391 idx = MMU_PAGE_1M;
392 break;
393 case 0x18:
394 idx = MMU_PAGE_16M;
395 break;
396 case 0x22:
397 idx = MMU_PAGE_16G;
398 break;
399 }
400 return idx;
401 }
402
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)403 static int __init htab_dt_scan_page_sizes(unsigned long node,
404 const char *uname, int depth,
405 void *data)
406 {
407 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
408 const __be32 *prop;
409 int size = 0;
410
411 /* We are scanning "cpu" nodes only */
412 if (type == NULL || strcmp(type, "cpu") != 0)
413 return 0;
414
415 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
416 if (!prop)
417 return 0;
418
419 pr_info("Page sizes from device-tree:\n");
420 size /= 4;
421 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
422 while(size > 0) {
423 unsigned int base_shift = be32_to_cpu(prop[0]);
424 unsigned int slbenc = be32_to_cpu(prop[1]);
425 unsigned int lpnum = be32_to_cpu(prop[2]);
426 struct mmu_psize_def *def;
427 int idx, base_idx;
428
429 size -= 3; prop += 3;
430 base_idx = get_idx_from_shift(base_shift);
431 if (base_idx < 0) {
432 /* skip the pte encoding also */
433 prop += lpnum * 2; size -= lpnum * 2;
434 continue;
435 }
436 def = &mmu_psize_defs[base_idx];
437 if (base_idx == MMU_PAGE_16M)
438 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
439
440 def->shift = base_shift;
441 if (base_shift <= 23)
442 def->avpnm = 0;
443 else
444 def->avpnm = (1 << (base_shift - 23)) - 1;
445 def->sllp = slbenc;
446 /*
447 * We don't know for sure what's up with tlbiel, so
448 * for now we only set it for 4K and 64K pages
449 */
450 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
451 def->tlbiel = 1;
452 else
453 def->tlbiel = 0;
454
455 while (size > 0 && lpnum) {
456 unsigned int shift = be32_to_cpu(prop[0]);
457 int penc = be32_to_cpu(prop[1]);
458
459 prop += 2; size -= 2;
460 lpnum--;
461
462 idx = get_idx_from_shift(shift);
463 if (idx < 0)
464 continue;
465
466 if (penc == -1)
467 pr_err("Invalid penc for base_shift=%d "
468 "shift=%d\n", base_shift, shift);
469
470 def->penc[idx] = penc;
471 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
472 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
473 base_shift, shift, def->sllp,
474 def->avpnm, def->tlbiel, def->penc[idx]);
475 }
476 }
477
478 return 1;
479 }
480
481 #ifdef CONFIG_HUGETLB_PAGE
482 /* Scan for 16G memory blocks that have been set aside for huge pages
483 * and reserve those blocks for 16G huge pages.
484 */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)485 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
486 const char *uname, int depth,
487 void *data) {
488 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
489 const __be64 *addr_prop;
490 const __be32 *page_count_prop;
491 unsigned int expected_pages;
492 long unsigned int phys_addr;
493 long unsigned int block_size;
494
495 /* We are scanning "memory" nodes only */
496 if (type == NULL || strcmp(type, "memory") != 0)
497 return 0;
498
499 /* This property is the log base 2 of the number of virtual pages that
500 * will represent this memory block. */
501 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
502 if (page_count_prop == NULL)
503 return 0;
504 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
505 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
506 if (addr_prop == NULL)
507 return 0;
508 phys_addr = be64_to_cpu(addr_prop[0]);
509 block_size = be64_to_cpu(addr_prop[1]);
510 if (block_size != (16 * GB))
511 return 0;
512 printk(KERN_INFO "Huge page(16GB) memory: "
513 "addr = 0x%lX size = 0x%lX pages = %d\n",
514 phys_addr, block_size, expected_pages);
515 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
516 memblock_reserve(phys_addr, block_size * expected_pages);
517 pseries_add_gpage(phys_addr, block_size, expected_pages);
518 }
519 return 0;
520 }
521 #endif /* CONFIG_HUGETLB_PAGE */
522
mmu_psize_set_default_penc(void)523 static void mmu_psize_set_default_penc(void)
524 {
525 int bpsize, apsize;
526 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
527 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
528 mmu_psize_defs[bpsize].penc[apsize] = -1;
529 }
530
531 #ifdef CONFIG_PPC_64K_PAGES
532
might_have_hea(void)533 static bool might_have_hea(void)
534 {
535 /*
536 * The HEA ethernet adapter requires awareness of the
537 * GX bus. Without that awareness we can easily assume
538 * we will never see an HEA ethernet device.
539 */
540 #ifdef CONFIG_IBMEBUS
541 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
542 firmware_has_feature(FW_FEATURE_SPLPAR);
543 #else
544 return false;
545 #endif
546 }
547
548 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
549
htab_scan_page_sizes(void)550 static void __init htab_scan_page_sizes(void)
551 {
552 int rc;
553
554 /* se the invalid penc to -1 */
555 mmu_psize_set_default_penc();
556
557 /* Default to 4K pages only */
558 memcpy(mmu_psize_defs, mmu_psize_defaults,
559 sizeof(mmu_psize_defaults));
560
561 /*
562 * Try to find the available page sizes in the device-tree
563 */
564 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
565 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
566 /*
567 * Nothing in the device-tree, but the CPU supports 16M pages,
568 * so let's fallback on a known size list for 16M capable CPUs.
569 */
570 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
571 sizeof(mmu_psize_defaults_gp));
572 }
573
574 #ifdef CONFIG_HUGETLB_PAGE
575 if (!hugetlb_disabled) {
576 /* Reserve 16G huge page memory sections for huge pages */
577 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
578 }
579 #endif /* CONFIG_HUGETLB_PAGE */
580 }
581
582 /*
583 * Fill in the hpte_page_sizes[] array.
584 * We go through the mmu_psize_defs[] array looking for all the
585 * supported base/actual page size combinations. Each combination
586 * has a unique pagesize encoding (penc) value in the low bits of
587 * the LP field of the HPTE. For actual page sizes less than 1MB,
588 * some of the upper LP bits are used for RPN bits, meaning that
589 * we need to fill in several entries in hpte_page_sizes[].
590 *
591 * In diagrammatic form, with r = RPN bits and z = page size bits:
592 * PTE LP actual page size
593 * rrrr rrrz >=8KB
594 * rrrr rrzz >=16KB
595 * rrrr rzzz >=32KB
596 * rrrr zzzz >=64KB
597 * ...
598 *
599 * The zzzz bits are implementation-specific but are chosen so that
600 * no encoding for a larger page size uses the same value in its
601 * low-order N bits as the encoding for the 2^(12+N) byte page size
602 * (if it exists).
603 */
init_hpte_page_sizes(void)604 static void init_hpte_page_sizes(void)
605 {
606 long int ap, bp;
607 long int shift, penc;
608
609 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
610 if (!mmu_psize_defs[bp].shift)
611 continue; /* not a supported page size */
612 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
613 penc = mmu_psize_defs[bp].penc[ap];
614 if (penc == -1 || !mmu_psize_defs[ap].shift)
615 continue;
616 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
617 if (shift <= 0)
618 continue; /* should never happen */
619 /*
620 * For page sizes less than 1MB, this loop
621 * replicates the entry for all possible values
622 * of the rrrr bits.
623 */
624 while (penc < (1 << LP_BITS)) {
625 hpte_page_sizes[penc] = (ap << 4) | bp;
626 penc += 1 << shift;
627 }
628 }
629 }
630 }
631
htab_init_page_sizes(void)632 static void __init htab_init_page_sizes(void)
633 {
634 init_hpte_page_sizes();
635
636 if (!debug_pagealloc_enabled()) {
637 /*
638 * Pick a size for the linear mapping. Currently, we only
639 * support 16M, 1M and 4K which is the default
640 */
641 if (mmu_psize_defs[MMU_PAGE_16M].shift)
642 mmu_linear_psize = MMU_PAGE_16M;
643 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
644 mmu_linear_psize = MMU_PAGE_1M;
645 }
646
647 #ifdef CONFIG_PPC_64K_PAGES
648 /*
649 * Pick a size for the ordinary pages. Default is 4K, we support
650 * 64K for user mappings and vmalloc if supported by the processor.
651 * We only use 64k for ioremap if the processor
652 * (and firmware) support cache-inhibited large pages.
653 * If not, we use 4k and set mmu_ci_restrictions so that
654 * hash_page knows to switch processes that use cache-inhibited
655 * mappings to 4k pages.
656 */
657 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
658 mmu_virtual_psize = MMU_PAGE_64K;
659 mmu_vmalloc_psize = MMU_PAGE_64K;
660 if (mmu_linear_psize == MMU_PAGE_4K)
661 mmu_linear_psize = MMU_PAGE_64K;
662 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
663 /*
664 * When running on pSeries using 64k pages for ioremap
665 * would stop us accessing the HEA ethernet. So if we
666 * have the chance of ever seeing one, stay at 4k.
667 */
668 if (!might_have_hea())
669 mmu_io_psize = MMU_PAGE_64K;
670 } else
671 mmu_ci_restrictions = 1;
672 }
673 #endif /* CONFIG_PPC_64K_PAGES */
674
675 #ifdef CONFIG_SPARSEMEM_VMEMMAP
676 /* We try to use 16M pages for vmemmap if that is supported
677 * and we have at least 1G of RAM at boot
678 */
679 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
680 memblock_phys_mem_size() >= 0x40000000)
681 mmu_vmemmap_psize = MMU_PAGE_16M;
682 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
683 mmu_vmemmap_psize = MMU_PAGE_64K;
684 else
685 mmu_vmemmap_psize = MMU_PAGE_4K;
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
687
688 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
689 "virtual = %d, io = %d"
690 #ifdef CONFIG_SPARSEMEM_VMEMMAP
691 ", vmemmap = %d"
692 #endif
693 "\n",
694 mmu_psize_defs[mmu_linear_psize].shift,
695 mmu_psize_defs[mmu_virtual_psize].shift,
696 mmu_psize_defs[mmu_io_psize].shift
697 #ifdef CONFIG_SPARSEMEM_VMEMMAP
698 ,mmu_psize_defs[mmu_vmemmap_psize].shift
699 #endif
700 );
701 }
702
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)703 static int __init htab_dt_scan_pftsize(unsigned long node,
704 const char *uname, int depth,
705 void *data)
706 {
707 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
708 const __be32 *prop;
709
710 /* We are scanning "cpu" nodes only */
711 if (type == NULL || strcmp(type, "cpu") != 0)
712 return 0;
713
714 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
715 if (prop != NULL) {
716 /* pft_size[0] is the NUMA CEC cookie */
717 ppc64_pft_size = be32_to_cpu(prop[1]);
718 return 1;
719 }
720 return 0;
721 }
722
htab_shift_for_mem_size(unsigned long mem_size)723 unsigned htab_shift_for_mem_size(unsigned long mem_size)
724 {
725 unsigned memshift = __ilog2(mem_size);
726 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
727 unsigned pteg_shift;
728
729 /* round mem_size up to next power of 2 */
730 if ((1UL << memshift) < mem_size)
731 memshift += 1;
732
733 /* aim for 2 pages / pteg */
734 pteg_shift = memshift - (pshift + 1);
735
736 /*
737 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
738 * size permitted by the architecture.
739 */
740 return max(pteg_shift + 7, 18U);
741 }
742
htab_get_table_size(void)743 static unsigned long __init htab_get_table_size(void)
744 {
745 /* If hash size isn't already provided by the platform, we try to
746 * retrieve it from the device-tree. If it's not there neither, we
747 * calculate it now based on the total RAM size
748 */
749 if (ppc64_pft_size == 0)
750 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
751 if (ppc64_pft_size)
752 return 1UL << ppc64_pft_size;
753
754 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
755 }
756
757 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)758 void resize_hpt_for_hotplug(unsigned long new_mem_size)
759 {
760 unsigned target_hpt_shift;
761
762 if (!mmu_hash_ops.resize_hpt)
763 return;
764
765 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
766
767 /*
768 * To avoid lots of HPT resizes if memory size is fluctuating
769 * across a boundary, we deliberately have some hysterisis
770 * here: we immediately increase the HPT size if the target
771 * shift exceeds the current shift, but we won't attempt to
772 * reduce unless the target shift is at least 2 below the
773 * current shift
774 */
775 if ((target_hpt_shift > ppc64_pft_size)
776 || (target_hpt_shift < (ppc64_pft_size - 1))) {
777 int rc;
778
779 rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
780 if (rc && (rc != -ENODEV))
781 printk(KERN_WARNING
782 "Unable to resize hash page table to target order %d: %d\n",
783 target_hpt_shift, rc);
784 }
785 }
786
hash__create_section_mapping(unsigned long start,unsigned long end,int nid)787 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
788 {
789 int rc = htab_bolt_mapping(start, end, __pa(start),
790 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
791 mmu_kernel_ssize);
792
793 if (rc < 0) {
794 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
795 mmu_kernel_ssize);
796 BUG_ON(rc2 && (rc2 != -ENOENT));
797 }
798 return rc;
799 }
800
hash__remove_section_mapping(unsigned long start,unsigned long end)801 int hash__remove_section_mapping(unsigned long start, unsigned long end)
802 {
803 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
804 mmu_kernel_ssize);
805 WARN_ON(rc < 0);
806 return rc;
807 }
808 #endif /* CONFIG_MEMORY_HOTPLUG */
809
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)810 static void __init hash_init_partition_table(phys_addr_t hash_table,
811 unsigned long htab_size)
812 {
813 mmu_partition_table_init();
814
815 /*
816 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
817 * For now, UPRT is 0 and we have no segment table.
818 */
819 htab_size = __ilog2(htab_size) - 18;
820 mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
821 pr_info("Partition table %p\n", partition_tb);
822 }
823
htab_initialize(void)824 static void __init htab_initialize(void)
825 {
826 unsigned long table;
827 unsigned long pteg_count;
828 unsigned long prot;
829 unsigned long base = 0, size = 0;
830 struct memblock_region *reg;
831
832 DBG(" -> htab_initialize()\n");
833
834 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
835 mmu_kernel_ssize = MMU_SEGSIZE_1T;
836 mmu_highuser_ssize = MMU_SEGSIZE_1T;
837 printk(KERN_INFO "Using 1TB segments\n");
838 }
839
840 /*
841 * Calculate the required size of the htab. We want the number of
842 * PTEGs to equal one half the number of real pages.
843 */
844 htab_size_bytes = htab_get_table_size();
845 pteg_count = htab_size_bytes >> 7;
846
847 htab_hash_mask = pteg_count - 1;
848
849 if (firmware_has_feature(FW_FEATURE_LPAR) ||
850 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
851 /* Using a hypervisor which owns the htab */
852 htab_address = NULL;
853 _SDR1 = 0;
854 /*
855 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
856 * to inform the hypervisor that we wish to use the HPT.
857 */
858 if (cpu_has_feature(CPU_FTR_ARCH_300))
859 register_process_table(0, 0, 0);
860 #ifdef CONFIG_FA_DUMP
861 /*
862 * If firmware assisted dump is active firmware preserves
863 * the contents of htab along with entire partition memory.
864 * Clear the htab if firmware assisted dump is active so
865 * that we dont end up using old mappings.
866 */
867 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
868 mmu_hash_ops.hpte_clear_all();
869 #endif
870 } else {
871 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
872
873 #ifdef CONFIG_PPC_CELL
874 /*
875 * Cell may require the hash table down low when using the
876 * Axon IOMMU in order to fit the dynamic region over it, see
877 * comments in cell/iommu.c
878 */
879 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
880 limit = 0x80000000;
881 pr_info("Hash table forced below 2G for Axon IOMMU\n");
882 }
883 #endif /* CONFIG_PPC_CELL */
884
885 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
886 limit);
887
888 DBG("Hash table allocated at %lx, size: %lx\n", table,
889 htab_size_bytes);
890
891 htab_address = __va(table);
892
893 /* htab absolute addr + encoded htabsize */
894 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
895
896 /* Initialize the HPT with no entries */
897 memset((void *)table, 0, htab_size_bytes);
898
899 if (!cpu_has_feature(CPU_FTR_ARCH_300))
900 /* Set SDR1 */
901 mtspr(SPRN_SDR1, _SDR1);
902 else
903 hash_init_partition_table(table, htab_size_bytes);
904 }
905
906 prot = pgprot_val(PAGE_KERNEL);
907
908 #ifdef CONFIG_DEBUG_PAGEALLOC
909 if (debug_pagealloc_enabled()) {
910 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
911 linear_map_hash_slots = __va(memblock_alloc_base(
912 linear_map_hash_count, 1, ppc64_rma_size));
913 memset(linear_map_hash_slots, 0, linear_map_hash_count);
914 }
915 #endif /* CONFIG_DEBUG_PAGEALLOC */
916
917 /* create bolted the linear mapping in the hash table */
918 for_each_memblock(memory, reg) {
919 base = (unsigned long)__va(reg->base);
920 size = reg->size;
921
922 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
923 base, size, prot);
924
925 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
926 prot, mmu_linear_psize, mmu_kernel_ssize));
927 }
928 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
929
930 /*
931 * If we have a memory_limit and we've allocated TCEs then we need to
932 * explicitly map the TCE area at the top of RAM. We also cope with the
933 * case that the TCEs start below memory_limit.
934 * tce_alloc_start/end are 16MB aligned so the mapping should work
935 * for either 4K or 16MB pages.
936 */
937 if (tce_alloc_start) {
938 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
939 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
940
941 if (base + size >= tce_alloc_start)
942 tce_alloc_start = base + size + 1;
943
944 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
945 __pa(tce_alloc_start), prot,
946 mmu_linear_psize, mmu_kernel_ssize));
947 }
948
949
950 DBG(" <- htab_initialize()\n");
951 }
952 #undef KB
953 #undef MB
954
hash__early_init_devtree(void)955 void __init hash__early_init_devtree(void)
956 {
957 /* Initialize segment sizes */
958 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
959
960 /* Initialize page sizes */
961 htab_scan_page_sizes();
962 }
963
hash__early_init_mmu(void)964 void __init hash__early_init_mmu(void)
965 {
966 #ifndef CONFIG_PPC_64K_PAGES
967 /*
968 * We have code in __hash_page_4K() and elsewhere, which assumes it can
969 * do the following:
970 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
971 *
972 * Where the slot number is between 0-15, and values of 8-15 indicate
973 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
974 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
975 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
976 * with a BUILD_BUG_ON().
977 */
978 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
979 #endif /* CONFIG_PPC_64K_PAGES */
980
981 htab_init_page_sizes();
982
983 /*
984 * initialize page table size
985 */
986 __pte_frag_nr = H_PTE_FRAG_NR;
987 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
988 __pmd_frag_nr = H_PMD_FRAG_NR;
989 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
990
991 __pte_index_size = H_PTE_INDEX_SIZE;
992 __pmd_index_size = H_PMD_INDEX_SIZE;
993 __pud_index_size = H_PUD_INDEX_SIZE;
994 __pgd_index_size = H_PGD_INDEX_SIZE;
995 __pud_cache_index = H_PUD_CACHE_INDEX;
996 __pte_table_size = H_PTE_TABLE_SIZE;
997 __pmd_table_size = H_PMD_TABLE_SIZE;
998 __pud_table_size = H_PUD_TABLE_SIZE;
999 __pgd_table_size = H_PGD_TABLE_SIZE;
1000 /*
1001 * 4k use hugepd format, so for hash set then to
1002 * zero
1003 */
1004 __pmd_val_bits = 0;
1005 __pud_val_bits = 0;
1006 __pgd_val_bits = 0;
1007
1008 __kernel_virt_start = H_KERN_VIRT_START;
1009 __kernel_virt_size = H_KERN_VIRT_SIZE;
1010 __vmalloc_start = H_VMALLOC_START;
1011 __vmalloc_end = H_VMALLOC_END;
1012 __kernel_io_start = H_KERN_IO_START;
1013 vmemmap = (struct page *)H_VMEMMAP_BASE;
1014 ioremap_bot = IOREMAP_BASE;
1015
1016 #ifdef CONFIG_PCI
1017 pci_io_base = ISA_IO_BASE;
1018 #endif
1019
1020 /* Select appropriate backend */
1021 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1022 ps3_early_mm_init();
1023 else if (firmware_has_feature(FW_FEATURE_LPAR))
1024 hpte_init_pseries();
1025 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1026 hpte_init_native();
1027
1028 if (!mmu_hash_ops.hpte_insert)
1029 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1030
1031 /* Initialize the MMU Hash table and create the linear mapping
1032 * of memory. Has to be done before SLB initialization as this is
1033 * currently where the page size encoding is obtained.
1034 */
1035 htab_initialize();
1036
1037 pr_info("Initializing hash mmu with SLB\n");
1038 /* Initialize SLB management */
1039 slb_initialize();
1040
1041 if (cpu_has_feature(CPU_FTR_ARCH_206)
1042 && cpu_has_feature(CPU_FTR_HVMODE))
1043 tlbiel_all();
1044 }
1045
1046 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1047 void hash__early_init_mmu_secondary(void)
1048 {
1049 /* Initialize hash table for that CPU */
1050 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1051
1052 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1053 mtspr(SPRN_SDR1, _SDR1);
1054 else
1055 mtspr(SPRN_PTCR,
1056 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1057 }
1058 /* Initialize SLB */
1059 slb_initialize();
1060
1061 if (cpu_has_feature(CPU_FTR_ARCH_206)
1062 && cpu_has_feature(CPU_FTR_HVMODE))
1063 tlbiel_all();
1064 }
1065 #endif /* CONFIG_SMP */
1066
1067 /*
1068 * Called by asm hashtable.S for doing lazy icache flush
1069 */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1070 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1071 {
1072 struct page *page;
1073
1074 if (!pfn_valid(pte_pfn(pte)))
1075 return pp;
1076
1077 page = pte_page(pte);
1078
1079 /* page is dirty */
1080 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1081 if (trap == 0x400) {
1082 flush_dcache_icache_page(page);
1083 set_bit(PG_arch_1, &page->flags);
1084 } else
1085 pp |= HPTE_R_N;
1086 }
1087 return pp;
1088 }
1089
1090 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1091 static unsigned int get_paca_psize(unsigned long addr)
1092 {
1093 unsigned char *psizes;
1094 unsigned long index, mask_index;
1095
1096 if (addr < SLICE_LOW_TOP) {
1097 psizes = get_paca()->mm_ctx_low_slices_psize;
1098 index = GET_LOW_SLICE_INDEX(addr);
1099 } else {
1100 psizes = get_paca()->mm_ctx_high_slices_psize;
1101 index = GET_HIGH_SLICE_INDEX(addr);
1102 }
1103 mask_index = index & 0x1;
1104 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1105 }
1106
1107 #else
get_paca_psize(unsigned long addr)1108 unsigned int get_paca_psize(unsigned long addr)
1109 {
1110 return get_paca()->mm_ctx_user_psize;
1111 }
1112 #endif
1113
1114 /*
1115 * Demote a segment to using 4k pages.
1116 * For now this makes the whole process use 4k pages.
1117 */
1118 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1119 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1120 {
1121 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1122 return;
1123 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1124 copro_flush_all_slbs(mm);
1125 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1126
1127 copy_mm_to_paca(mm);
1128 slb_flush_and_rebolt();
1129 }
1130 }
1131 #endif /* CONFIG_PPC_64K_PAGES */
1132
1133 #ifdef CONFIG_PPC_SUBPAGE_PROT
1134 /*
1135 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1136 * Userspace sets the subpage permissions using the subpage_prot system call.
1137 *
1138 * Result is 0: full permissions, _PAGE_RW: read-only,
1139 * _PAGE_RWX: no access.
1140 */
subpage_protection(struct mm_struct * mm,unsigned long ea)1141 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1142 {
1143 struct subpage_prot_table *spt = &mm->context.spt;
1144 u32 spp = 0;
1145 u32 **sbpm, *sbpp;
1146
1147 if (ea >= spt->maxaddr)
1148 return 0;
1149 if (ea < 0x100000000UL) {
1150 /* addresses below 4GB use spt->low_prot */
1151 sbpm = spt->low_prot;
1152 } else {
1153 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1154 if (!sbpm)
1155 return 0;
1156 }
1157 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1158 if (!sbpp)
1159 return 0;
1160 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1161
1162 /* extract 2-bit bitfield for this 4k subpage */
1163 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1164
1165 /*
1166 * 0 -> full premission
1167 * 1 -> Read only
1168 * 2 -> no access.
1169 * We return the flag that need to be cleared.
1170 */
1171 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1172 return spp;
1173 }
1174
1175 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1176 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1177 {
1178 return 0;
1179 }
1180 #endif
1181
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1182 void hash_failure_debug(unsigned long ea, unsigned long access,
1183 unsigned long vsid, unsigned long trap,
1184 int ssize, int psize, int lpsize, unsigned long pte)
1185 {
1186 if (!printk_ratelimit())
1187 return;
1188 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1189 ea, access, current->comm);
1190 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1191 trap, vsid, ssize, psize, lpsize, pte);
1192 }
1193
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1194 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1195 int psize, bool user_region)
1196 {
1197 if (user_region) {
1198 if (psize != get_paca_psize(ea)) {
1199 copy_mm_to_paca(mm);
1200 slb_flush_and_rebolt();
1201 }
1202 } else if (get_paca()->vmalloc_sllp !=
1203 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1204 get_paca()->vmalloc_sllp =
1205 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1206 slb_vmalloc_update();
1207 }
1208 }
1209
1210 /* Result code is:
1211 * 0 - handled
1212 * 1 - normal page fault
1213 * -1 - critical hash insertion error
1214 * -2 - access not permitted by subpage protection mechanism
1215 */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1216 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1217 unsigned long access, unsigned long trap,
1218 unsigned long flags)
1219 {
1220 bool is_thp;
1221 enum ctx_state prev_state = exception_enter();
1222 pgd_t *pgdir;
1223 unsigned long vsid;
1224 pte_t *ptep;
1225 unsigned hugeshift;
1226 int rc, user_region = 0;
1227 int psize, ssize;
1228
1229 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1230 ea, access, trap);
1231 trace_hash_fault(ea, access, trap);
1232
1233 /* Get region & vsid */
1234 switch (REGION_ID(ea)) {
1235 case USER_REGION_ID:
1236 user_region = 1;
1237 if (! mm) {
1238 DBG_LOW(" user region with no mm !\n");
1239 rc = 1;
1240 goto bail;
1241 }
1242 psize = get_slice_psize(mm, ea);
1243 ssize = user_segment_size(ea);
1244 vsid = get_user_vsid(&mm->context, ea, ssize);
1245 break;
1246 case VMALLOC_REGION_ID:
1247 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1248 if (ea < VMALLOC_END)
1249 psize = mmu_vmalloc_psize;
1250 else
1251 psize = mmu_io_psize;
1252 ssize = mmu_kernel_ssize;
1253 break;
1254 default:
1255 /* Not a valid range
1256 * Send the problem up to do_page_fault
1257 */
1258 rc = 1;
1259 goto bail;
1260 }
1261 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1262
1263 /* Bad address. */
1264 if (!vsid) {
1265 DBG_LOW("Bad address!\n");
1266 rc = 1;
1267 goto bail;
1268 }
1269 /* Get pgdir */
1270 pgdir = mm->pgd;
1271 if (pgdir == NULL) {
1272 rc = 1;
1273 goto bail;
1274 }
1275
1276 /* Check CPU locality */
1277 if (user_region && mm_is_thread_local(mm))
1278 flags |= HPTE_LOCAL_UPDATE;
1279
1280 #ifndef CONFIG_PPC_64K_PAGES
1281 /* If we use 4K pages and our psize is not 4K, then we might
1282 * be hitting a special driver mapping, and need to align the
1283 * address before we fetch the PTE.
1284 *
1285 * It could also be a hugepage mapping, in which case this is
1286 * not necessary, but it's not harmful, either.
1287 */
1288 if (psize != MMU_PAGE_4K)
1289 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1290 #endif /* CONFIG_PPC_64K_PAGES */
1291
1292 /* Get PTE and page size from page tables */
1293 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1294 if (ptep == NULL || !pte_present(*ptep)) {
1295 DBG_LOW(" no PTE !\n");
1296 rc = 1;
1297 goto bail;
1298 }
1299
1300 /* Add _PAGE_PRESENT to the required access perm */
1301 access |= _PAGE_PRESENT;
1302
1303 /* Pre-check access permissions (will be re-checked atomically
1304 * in __hash_page_XX but this pre-check is a fast path
1305 */
1306 if (!check_pte_access(access, pte_val(*ptep))) {
1307 DBG_LOW(" no access !\n");
1308 rc = 1;
1309 goto bail;
1310 }
1311
1312 if (hugeshift) {
1313 if (is_thp)
1314 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1315 trap, flags, ssize, psize);
1316 #ifdef CONFIG_HUGETLB_PAGE
1317 else
1318 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1319 flags, ssize, hugeshift, psize);
1320 #else
1321 else {
1322 /*
1323 * if we have hugeshift, and is not transhuge with
1324 * hugetlb disabled, something is really wrong.
1325 */
1326 rc = 1;
1327 WARN_ON(1);
1328 }
1329 #endif
1330 if (current->mm == mm)
1331 check_paca_psize(ea, mm, psize, user_region);
1332
1333 goto bail;
1334 }
1335
1336 #ifndef CONFIG_PPC_64K_PAGES
1337 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1338 #else
1339 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1340 pte_val(*(ptep + PTRS_PER_PTE)));
1341 #endif
1342 /* Do actual hashing */
1343 #ifdef CONFIG_PPC_64K_PAGES
1344 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1345 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1346 demote_segment_4k(mm, ea);
1347 psize = MMU_PAGE_4K;
1348 }
1349
1350 /* If this PTE is non-cacheable and we have restrictions on
1351 * using non cacheable large pages, then we switch to 4k
1352 */
1353 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1354 if (user_region) {
1355 demote_segment_4k(mm, ea);
1356 psize = MMU_PAGE_4K;
1357 } else if (ea < VMALLOC_END) {
1358 /*
1359 * some driver did a non-cacheable mapping
1360 * in vmalloc space, so switch vmalloc
1361 * to 4k pages
1362 */
1363 printk(KERN_ALERT "Reducing vmalloc segment "
1364 "to 4kB pages because of "
1365 "non-cacheable mapping\n");
1366 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1367 copro_flush_all_slbs(mm);
1368 }
1369 }
1370
1371 #endif /* CONFIG_PPC_64K_PAGES */
1372
1373 if (current->mm == mm)
1374 check_paca_psize(ea, mm, psize, user_region);
1375
1376 #ifdef CONFIG_PPC_64K_PAGES
1377 if (psize == MMU_PAGE_64K)
1378 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1379 flags, ssize);
1380 else
1381 #endif /* CONFIG_PPC_64K_PAGES */
1382 {
1383 int spp = subpage_protection(mm, ea);
1384 if (access & spp)
1385 rc = -2;
1386 else
1387 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1388 flags, ssize, spp);
1389 }
1390
1391 /* Dump some info in case of hash insertion failure, they should
1392 * never happen so it is really useful to know if/when they do
1393 */
1394 if (rc == -1)
1395 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1396 psize, pte_val(*ptep));
1397 #ifndef CONFIG_PPC_64K_PAGES
1398 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1399 #else
1400 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1401 pte_val(*(ptep + PTRS_PER_PTE)));
1402 #endif
1403 DBG_LOW(" -> rc=%d\n", rc);
1404
1405 bail:
1406 exception_exit(prev_state);
1407 return rc;
1408 }
1409 EXPORT_SYMBOL_GPL(hash_page_mm);
1410
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1411 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1412 unsigned long dsisr)
1413 {
1414 unsigned long flags = 0;
1415 struct mm_struct *mm = current->mm;
1416
1417 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1418 mm = &init_mm;
1419
1420 if (dsisr & DSISR_NOHPTE)
1421 flags |= HPTE_NOHPTE_UPDATE;
1422
1423 return hash_page_mm(mm, ea, access, trap, flags);
1424 }
1425 EXPORT_SYMBOL_GPL(hash_page);
1426
__hash_page(unsigned long ea,unsigned long msr,unsigned long trap,unsigned long dsisr)1427 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1428 unsigned long dsisr)
1429 {
1430 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1431 unsigned long flags = 0;
1432 struct mm_struct *mm = current->mm;
1433
1434 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1435 mm = &init_mm;
1436
1437 if (dsisr & DSISR_NOHPTE)
1438 flags |= HPTE_NOHPTE_UPDATE;
1439
1440 if (dsisr & DSISR_ISSTORE)
1441 access |= _PAGE_WRITE;
1442 /*
1443 * We set _PAGE_PRIVILEGED only when
1444 * kernel mode access kernel space.
1445 *
1446 * _PAGE_PRIVILEGED is NOT set
1447 * 1) when kernel mode access user space
1448 * 2) user space access kernel space.
1449 */
1450 access |= _PAGE_PRIVILEGED;
1451 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1452 access &= ~_PAGE_PRIVILEGED;
1453
1454 if (trap == 0x400)
1455 access |= _PAGE_EXEC;
1456
1457 return hash_page_mm(mm, ea, access, trap, flags);
1458 }
1459
1460 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1461 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1462 {
1463 int psize = get_slice_psize(mm, ea);
1464
1465 /* We only prefault standard pages for now */
1466 if (unlikely(psize != mm->context.user_psize))
1467 return false;
1468
1469 /*
1470 * Don't prefault if subpage protection is enabled for the EA.
1471 */
1472 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1473 return false;
1474
1475 return true;
1476 }
1477 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1478 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1479 {
1480 return true;
1481 }
1482 #endif
1483
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1484 void hash_preload(struct mm_struct *mm, unsigned long ea,
1485 unsigned long access, unsigned long trap)
1486 {
1487 int hugepage_shift;
1488 unsigned long vsid;
1489 pgd_t *pgdir;
1490 pte_t *ptep;
1491 unsigned long flags;
1492 int rc, ssize, update_flags = 0;
1493
1494 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1495
1496 if (!should_hash_preload(mm, ea))
1497 return;
1498
1499 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1500 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1501
1502 /* Get Linux PTE if available */
1503 pgdir = mm->pgd;
1504 if (pgdir == NULL)
1505 return;
1506
1507 /* Get VSID */
1508 ssize = user_segment_size(ea);
1509 vsid = get_user_vsid(&mm->context, ea, ssize);
1510 if (!vsid)
1511 return;
1512 /*
1513 * Hash doesn't like irqs. Walking linux page table with irq disabled
1514 * saves us from holding multiple locks.
1515 */
1516 local_irq_save(flags);
1517
1518 /*
1519 * THP pages use update_mmu_cache_pmd. We don't do
1520 * hash preload there. Hence can ignore THP here
1521 */
1522 ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1523 if (!ptep)
1524 goto out_exit;
1525
1526 WARN_ON(hugepage_shift);
1527 #ifdef CONFIG_PPC_64K_PAGES
1528 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1529 * a 64K kernel), then we don't preload, hash_page() will take
1530 * care of it once we actually try to access the page.
1531 * That way we don't have to duplicate all of the logic for segment
1532 * page size demotion here
1533 */
1534 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1535 goto out_exit;
1536 #endif /* CONFIG_PPC_64K_PAGES */
1537
1538 /* Is that local to this CPU ? */
1539 if (mm_is_thread_local(mm))
1540 update_flags |= HPTE_LOCAL_UPDATE;
1541
1542 /* Hash it in */
1543 #ifdef CONFIG_PPC_64K_PAGES
1544 if (mm->context.user_psize == MMU_PAGE_64K)
1545 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1546 update_flags, ssize);
1547 else
1548 #endif /* CONFIG_PPC_64K_PAGES */
1549 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1550 ssize, subpage_protection(mm, ea));
1551
1552 /* Dump some info in case of hash insertion failure, they should
1553 * never happen so it is really useful to know if/when they do
1554 */
1555 if (rc == -1)
1556 hash_failure_debug(ea, access, vsid, trap, ssize,
1557 mm->context.user_psize,
1558 mm->context.user_psize,
1559 pte_val(*ptep));
1560 out_exit:
1561 local_irq_restore(flags);
1562 }
1563
1564 #ifdef CONFIG_PPC_MEM_KEYS
1565 /*
1566 * Return the protection key associated with the given address and the
1567 * mm_struct.
1568 */
get_mm_addr_key(struct mm_struct * mm,unsigned long address)1569 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1570 {
1571 pte_t *ptep;
1572 u16 pkey = 0;
1573 unsigned long flags;
1574
1575 if (!mm || !mm->pgd)
1576 return 0;
1577
1578 local_irq_save(flags);
1579 ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1580 if (ptep)
1581 pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1582 local_irq_restore(flags);
1583
1584 return pkey;
1585 }
1586 #endif /* CONFIG_PPC_MEM_KEYS */
1587
1588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1589 static inline void tm_flush_hash_page(int local)
1590 {
1591 /*
1592 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1593 * page back to a block device w/PIO could pick up transactional data
1594 * (bad!) so we force an abort here. Before the sync the page will be
1595 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1596 * kernel uses a page from userspace without unmapping it first, it may
1597 * see the speculated version.
1598 */
1599 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1600 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1601 tm_enable();
1602 tm_abort(TM_CAUSE_TLBI);
1603 }
1604 }
1605 #else
tm_flush_hash_page(int local)1606 static inline void tm_flush_hash_page(int local)
1607 {
1608 }
1609 #endif
1610
1611 /*
1612 * Return the global hash slot, corresponding to the given PTE, which contains
1613 * the HPTE.
1614 */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1615 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1616 int ssize, real_pte_t rpte, unsigned int subpg_index)
1617 {
1618 unsigned long hash, gslot, hidx;
1619
1620 hash = hpt_hash(vpn, shift, ssize);
1621 hidx = __rpte_to_hidx(rpte, subpg_index);
1622 if (hidx & _PTEIDX_SECONDARY)
1623 hash = ~hash;
1624 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1625 gslot += hidx & _PTEIDX_GROUP_IX;
1626 return gslot;
1627 }
1628
1629 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1630 * do not forget to update the assembly call site !
1631 */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1632 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1633 unsigned long flags)
1634 {
1635 unsigned long index, shift, gslot;
1636 int local = flags & HPTE_LOCAL_UPDATE;
1637
1638 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1639 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1640 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1641 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1642 /*
1643 * We use same base page size and actual psize, because we don't
1644 * use these functions for hugepage
1645 */
1646 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1647 ssize, local);
1648 } pte_iterate_hashed_end();
1649
1650 tm_flush_hash_page(local);
1651 }
1652
1653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1654 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1655 pmd_t *pmdp, unsigned int psize, int ssize,
1656 unsigned long flags)
1657 {
1658 int i, max_hpte_count, valid;
1659 unsigned long s_addr;
1660 unsigned char *hpte_slot_array;
1661 unsigned long hidx, shift, vpn, hash, slot;
1662 int local = flags & HPTE_LOCAL_UPDATE;
1663
1664 s_addr = addr & HPAGE_PMD_MASK;
1665 hpte_slot_array = get_hpte_slot_array(pmdp);
1666 /*
1667 * IF we try to do a HUGE PTE update after a withdraw is done.
1668 * we will find the below NULL. This happens when we do
1669 * split_huge_page_pmd
1670 */
1671 if (!hpte_slot_array)
1672 return;
1673
1674 if (mmu_hash_ops.hugepage_invalidate) {
1675 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1676 psize, ssize, local);
1677 goto tm_abort;
1678 }
1679 /*
1680 * No bluk hpte removal support, invalidate each entry
1681 */
1682 shift = mmu_psize_defs[psize].shift;
1683 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1684 for (i = 0; i < max_hpte_count; i++) {
1685 /*
1686 * 8 bits per each hpte entries
1687 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1688 */
1689 valid = hpte_valid(hpte_slot_array, i);
1690 if (!valid)
1691 continue;
1692 hidx = hpte_hash_index(hpte_slot_array, i);
1693
1694 /* get the vpn */
1695 addr = s_addr + (i * (1ul << shift));
1696 vpn = hpt_vpn(addr, vsid, ssize);
1697 hash = hpt_hash(vpn, shift, ssize);
1698 if (hidx & _PTEIDX_SECONDARY)
1699 hash = ~hash;
1700
1701 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1702 slot += hidx & _PTEIDX_GROUP_IX;
1703 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1704 MMU_PAGE_16M, ssize, local);
1705 }
1706 tm_abort:
1707 tm_flush_hash_page(local);
1708 }
1709 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1710
flush_hash_range(unsigned long number,int local)1711 void flush_hash_range(unsigned long number, int local)
1712 {
1713 if (mmu_hash_ops.flush_hash_range)
1714 mmu_hash_ops.flush_hash_range(number, local);
1715 else {
1716 int i;
1717 struct ppc64_tlb_batch *batch =
1718 this_cpu_ptr(&ppc64_tlb_batch);
1719
1720 for (i = 0; i < number; i++)
1721 flush_hash_page(batch->vpn[i], batch->pte[i],
1722 batch->psize, batch->ssize, local);
1723 }
1724 }
1725
1726 /*
1727 * low_hash_fault is called when we the low level hash code failed
1728 * to instert a PTE due to an hypervisor error
1729 */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1730 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1731 {
1732 enum ctx_state prev_state = exception_enter();
1733
1734 if (user_mode(regs)) {
1735 #ifdef CONFIG_PPC_SUBPAGE_PROT
1736 if (rc == -2)
1737 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1738 else
1739 #endif
1740 _exception(SIGBUS, regs, BUS_ADRERR, address);
1741 } else
1742 bad_page_fault(regs, address, SIGBUS);
1743
1744 exception_exit(prev_state);
1745 }
1746
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1747 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1748 unsigned long pa, unsigned long rflags,
1749 unsigned long vflags, int psize, int ssize)
1750 {
1751 unsigned long hpte_group;
1752 long slot;
1753
1754 repeat:
1755 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1756
1757 /* Insert into the hash table, primary slot */
1758 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1759 psize, psize, ssize);
1760
1761 /* Primary is full, try the secondary */
1762 if (unlikely(slot == -1)) {
1763 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1764 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1765 vflags | HPTE_V_SECONDARY,
1766 psize, psize, ssize);
1767 if (slot == -1) {
1768 if (mftb() & 0x1)
1769 hpte_group = (hash & htab_hash_mask) *
1770 HPTES_PER_GROUP;
1771
1772 mmu_hash_ops.hpte_remove(hpte_group);
1773 goto repeat;
1774 }
1775 }
1776
1777 return slot;
1778 }
1779
1780 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1781 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1782 {
1783 unsigned long hash;
1784 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1785 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1786 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1787 long ret;
1788
1789 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1790
1791 /* Don't create HPTE entries for bad address */
1792 if (!vsid)
1793 return;
1794
1795 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1796 HPTE_V_BOLTED,
1797 mmu_linear_psize, mmu_kernel_ssize);
1798
1799 BUG_ON (ret < 0);
1800 spin_lock(&linear_map_hash_lock);
1801 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1802 linear_map_hash_slots[lmi] = ret | 0x80;
1803 spin_unlock(&linear_map_hash_lock);
1804 }
1805
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1806 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1807 {
1808 unsigned long hash, hidx, slot;
1809 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1810 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1811
1812 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1813 spin_lock(&linear_map_hash_lock);
1814 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1815 hidx = linear_map_hash_slots[lmi] & 0x7f;
1816 linear_map_hash_slots[lmi] = 0;
1817 spin_unlock(&linear_map_hash_lock);
1818 if (hidx & _PTEIDX_SECONDARY)
1819 hash = ~hash;
1820 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1821 slot += hidx & _PTEIDX_GROUP_IX;
1822 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1823 mmu_linear_psize,
1824 mmu_kernel_ssize, 0);
1825 }
1826
__kernel_map_pages(struct page * page,int numpages,int enable)1827 void __kernel_map_pages(struct page *page, int numpages, int enable)
1828 {
1829 unsigned long flags, vaddr, lmi;
1830 int i;
1831
1832 local_irq_save(flags);
1833 for (i = 0; i < numpages; i++, page++) {
1834 vaddr = (unsigned long)page_address(page);
1835 lmi = __pa(vaddr) >> PAGE_SHIFT;
1836 if (lmi >= linear_map_hash_count)
1837 continue;
1838 if (enable)
1839 kernel_map_linear_page(vaddr, lmi);
1840 else
1841 kernel_unmap_linear_page(vaddr, lmi);
1842 }
1843 local_irq_restore(flags);
1844 }
1845 #endif /* CONFIG_DEBUG_PAGEALLOC */
1846
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1847 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1848 phys_addr_t first_memblock_size)
1849 {
1850 /* We don't currently support the first MEMBLOCK not mapping 0
1851 * physical on those processors
1852 */
1853 BUG_ON(first_memblock_base != 0);
1854
1855 /*
1856 * On virtualized systems the first entry is our RMA region aka VRMA,
1857 * non-virtualized 64-bit hash MMU systems don't have a limitation
1858 * on real mode access.
1859 *
1860 * For guests on platforms before POWER9, we clamp the it limit to 1G
1861 * to avoid some funky things such as RTAS bugs etc...
1862 */
1863 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1864 ppc64_rma_size = first_memblock_size;
1865 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1866 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1867
1868 /* Finally limit subsequent allocations */
1869 memblock_set_current_limit(ppc64_rma_size);
1870 } else {
1871 ppc64_rma_size = ULONG_MAX;
1872 }
1873 }
1874
1875 #ifdef CONFIG_DEBUG_FS
1876
hpt_order_get(void * data,u64 * val)1877 static int hpt_order_get(void *data, u64 *val)
1878 {
1879 *val = ppc64_pft_size;
1880 return 0;
1881 }
1882
hpt_order_set(void * data,u64 val)1883 static int hpt_order_set(void *data, u64 val)
1884 {
1885 if (!mmu_hash_ops.resize_hpt)
1886 return -ENODEV;
1887
1888 return mmu_hash_ops.resize_hpt(val);
1889 }
1890
1891 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1892
hash64_debugfs(void)1893 static int __init hash64_debugfs(void)
1894 {
1895 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1896 NULL, &fops_hpt_order)) {
1897 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1898 }
1899
1900 return 0;
1901 }
1902 machine_device_initcall(pseries, hash64_debugfs);
1903 #endif /* CONFIG_DEBUG_FS */
1904