1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
40 
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
44 #include <asm/mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/page.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
50 #include <asm/prom.h>
51 #include <asm/io.h>
52 #include <asm/eeh.h>
53 #include <asm/tlb.h>
54 #include <asm/cacheflush.h>
55 #include <asm/cputable.h>
56 #include <asm/sections.h>
57 #include <asm/copro.h>
58 #include <asm/udbg.h>
59 #include <asm/code-patching.h>
60 #include <asm/fadump.h>
61 #include <asm/firmware.h>
62 #include <asm/tm.h>
63 #include <asm/trace.h>
64 #include <asm/ps3.h>
65 #include <asm/pte-walk.h>
66 #include <asm/asm-prototypes.h>
67 
68 #ifdef DEBUG
69 #define DBG(fmt...) udbg_printf(fmt)
70 #else
71 #define DBG(fmt...)
72 #endif
73 
74 #ifdef DEBUG_LOW
75 #define DBG_LOW(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG_LOW(fmt...)
78 #endif
79 
80 #define KB (1024)
81 #define MB (1024*KB)
82 #define GB (1024L*MB)
83 
84 /*
85  * Note:  pte   --> Linux PTE
86  *        HPTE  --> PowerPC Hashed Page Table Entry
87  *
88  * Execution context:
89  *   htab_initialize is called with the MMU off (of course), but
90  *   the kernel has been copied down to zero so it can directly
91  *   reference global data.  At this point it is very difficult
92  *   to print debug info.
93  *
94  */
95 
96 static unsigned long _SDR1;
97 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
98 EXPORT_SYMBOL_GPL(mmu_psize_defs);
99 
100 u8 hpte_page_sizes[1 << LP_BITS];
101 EXPORT_SYMBOL_GPL(hpte_page_sizes);
102 
103 struct hash_pte *htab_address;
104 unsigned long htab_size_bytes;
105 unsigned long htab_hash_mask;
106 EXPORT_SYMBOL_GPL(htab_hash_mask);
107 int mmu_linear_psize = MMU_PAGE_4K;
108 EXPORT_SYMBOL_GPL(mmu_linear_psize);
109 int mmu_virtual_psize = MMU_PAGE_4K;
110 int mmu_vmalloc_psize = MMU_PAGE_4K;
111 #ifdef CONFIG_SPARSEMEM_VMEMMAP
112 int mmu_vmemmap_psize = MMU_PAGE_4K;
113 #endif
114 int mmu_io_psize = MMU_PAGE_4K;
115 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
116 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
117 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
118 u16 mmu_slb_size = 64;
119 EXPORT_SYMBOL_GPL(mmu_slb_size);
120 #ifdef CONFIG_PPC_64K_PAGES
121 int mmu_ci_restrictions;
122 #endif
123 #ifdef CONFIG_DEBUG_PAGEALLOC
124 static u8 *linear_map_hash_slots;
125 static unsigned long linear_map_hash_count;
126 static DEFINE_SPINLOCK(linear_map_hash_lock);
127 #endif /* CONFIG_DEBUG_PAGEALLOC */
128 struct mmu_hash_ops mmu_hash_ops;
129 EXPORT_SYMBOL(mmu_hash_ops);
130 
131 /* There are definitions of page sizes arrays to be used when none
132  * is provided by the firmware.
133  */
134 
135 /*
136  * Fallback (4k pages only)
137  */
138 static struct mmu_psize_def mmu_psize_defaults[] = {
139 	[MMU_PAGE_4K] = {
140 		.shift	= 12,
141 		.sllp	= 0,
142 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
143 		.avpnm	= 0,
144 		.tlbiel = 0,
145 	},
146 };
147 
148 /* POWER4, GPUL, POWER5
149  *
150  * Support for 16Mb large pages
151  */
152 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
153 	[MMU_PAGE_4K] = {
154 		.shift	= 12,
155 		.sllp	= 0,
156 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
157 		.avpnm	= 0,
158 		.tlbiel = 1,
159 	},
160 	[MMU_PAGE_16M] = {
161 		.shift	= 24,
162 		.sllp	= SLB_VSID_L,
163 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
164 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
165 		.avpnm	= 0x1UL,
166 		.tlbiel = 0,
167 	},
168 };
169 
170 /*
171  * 'R' and 'C' update notes:
172  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
173  *     create writeable HPTEs without C set, because the hcall H_PROTECT
174  *     that we use in that case will not update C
175  *  - The above is however not a problem, because we also don't do that
176  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
177  *     do the right thing and thus we don't have the race I described earlier
178  *
179  *    - Under bare metal,  we do have the race, so we need R and C set
180  *    - We make sure R is always set and never lost
181  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
182  */
htab_convert_pte_flags(unsigned long pteflags)183 unsigned long htab_convert_pte_flags(unsigned long pteflags)
184 {
185 	unsigned long rflags = 0;
186 
187 	/* _PAGE_EXEC -> NOEXEC */
188 	if ((pteflags & _PAGE_EXEC) == 0)
189 		rflags |= HPTE_R_N;
190 	/*
191 	 * PPP bits:
192 	 * Linux uses slb key 0 for kernel and 1 for user.
193 	 * kernel RW areas are mapped with PPP=0b000
194 	 * User area is mapped with PPP=0b010 for read/write
195 	 * or PPP=0b011 for read-only (including writeable but clean pages).
196 	 */
197 	if (pteflags & _PAGE_PRIVILEGED) {
198 		/*
199 		 * Kernel read only mapped with ppp bits 0b110
200 		 */
201 		if (!(pteflags & _PAGE_WRITE)) {
202 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
203 				rflags |= (HPTE_R_PP0 | 0x2);
204 			else
205 				rflags |= 0x3;
206 		}
207 	} else {
208 		if (pteflags & _PAGE_RWX)
209 			rflags |= 0x2;
210 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
211 			rflags |= 0x1;
212 	}
213 	/*
214 	 * We can't allow hardware to update hpte bits. Hence always
215 	 * set 'R' bit and set 'C' if it is a write fault
216 	 */
217 	rflags |=  HPTE_R_R;
218 
219 	if (pteflags & _PAGE_DIRTY)
220 		rflags |= HPTE_R_C;
221 	/*
222 	 * Add in WIG bits
223 	 */
224 
225 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
226 		rflags |= HPTE_R_I;
227 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
228 		rflags |= (HPTE_R_I | HPTE_R_G);
229 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
230 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
231 	else
232 		/*
233 		 * Add memory coherence if cache inhibited is not set
234 		 */
235 		rflags |= HPTE_R_M;
236 
237 	rflags |= pte_to_hpte_pkey_bits(pteflags);
238 	return rflags;
239 }
240 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)241 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
242 		      unsigned long pstart, unsigned long prot,
243 		      int psize, int ssize)
244 {
245 	unsigned long vaddr, paddr;
246 	unsigned int step, shift;
247 	int ret = 0;
248 
249 	shift = mmu_psize_defs[psize].shift;
250 	step = 1 << shift;
251 
252 	prot = htab_convert_pte_flags(prot);
253 
254 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
255 	    vstart, vend, pstart, prot, psize, ssize);
256 
257 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
258 	     vaddr += step, paddr += step) {
259 		unsigned long hash, hpteg;
260 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
261 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
262 		unsigned long tprot = prot;
263 
264 		/*
265 		 * If we hit a bad address return error.
266 		 */
267 		if (!vsid)
268 			return -1;
269 		/* Make kernel text executable */
270 		if (overlaps_kernel_text(vaddr, vaddr + step))
271 			tprot &= ~HPTE_R_N;
272 
273 		/* Make kvm guest trampolines executable */
274 		if (overlaps_kvm_tmp(vaddr, vaddr + step))
275 			tprot &= ~HPTE_R_N;
276 
277 		/*
278 		 * If relocatable, check if it overlaps interrupt vectors that
279 		 * are copied down to real 0. For relocatable kernel
280 		 * (e.g. kdump case) we copy interrupt vectors down to real
281 		 * address 0. Mark that region as executable. This is
282 		 * because on p8 system with relocation on exception feature
283 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
284 		 * in order to execute the interrupt handlers in virtual
285 		 * mode the vector region need to be marked as executable.
286 		 */
287 		if ((PHYSICAL_START > MEMORY_START) &&
288 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
289 				tprot &= ~HPTE_R_N;
290 
291 		hash = hpt_hash(vpn, shift, ssize);
292 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
293 
294 		BUG_ON(!mmu_hash_ops.hpte_insert);
295 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
296 					       HPTE_V_BOLTED, psize, psize,
297 					       ssize);
298 
299 		if (ret < 0)
300 			break;
301 
302 #ifdef CONFIG_DEBUG_PAGEALLOC
303 		if (debug_pagealloc_enabled() &&
304 			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
305 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
306 #endif /* CONFIG_DEBUG_PAGEALLOC */
307 	}
308 	return ret < 0 ? ret : 0;
309 }
310 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)311 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
312 		      int psize, int ssize)
313 {
314 	unsigned long vaddr;
315 	unsigned int step, shift;
316 	int rc;
317 	int ret = 0;
318 
319 	shift = mmu_psize_defs[psize].shift;
320 	step = 1 << shift;
321 
322 	if (!mmu_hash_ops.hpte_removebolted)
323 		return -ENODEV;
324 
325 	for (vaddr = vstart; vaddr < vend; vaddr += step) {
326 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
327 		if (rc == -ENOENT) {
328 			ret = -ENOENT;
329 			continue;
330 		}
331 		if (rc < 0)
332 			return rc;
333 	}
334 
335 	return ret;
336 }
337 
338 static bool disable_1tb_segments = false;
339 
parse_disable_1tb_segments(char * p)340 static int __init parse_disable_1tb_segments(char *p)
341 {
342 	disable_1tb_segments = true;
343 	return 0;
344 }
345 early_param("disable_1tb_segments", parse_disable_1tb_segments);
346 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)347 static int __init htab_dt_scan_seg_sizes(unsigned long node,
348 					 const char *uname, int depth,
349 					 void *data)
350 {
351 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
352 	const __be32 *prop;
353 	int size = 0;
354 
355 	/* We are scanning "cpu" nodes only */
356 	if (type == NULL || strcmp(type, "cpu") != 0)
357 		return 0;
358 
359 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
360 	if (prop == NULL)
361 		return 0;
362 	for (; size >= 4; size -= 4, ++prop) {
363 		if (be32_to_cpu(prop[0]) == 40) {
364 			DBG("1T segment support detected\n");
365 
366 			if (disable_1tb_segments) {
367 				DBG("1T segments disabled by command line\n");
368 				break;
369 			}
370 
371 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
372 			return 1;
373 		}
374 	}
375 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
376 	return 0;
377 }
378 
get_idx_from_shift(unsigned int shift)379 static int __init get_idx_from_shift(unsigned int shift)
380 {
381 	int idx = -1;
382 
383 	switch (shift) {
384 	case 0xc:
385 		idx = MMU_PAGE_4K;
386 		break;
387 	case 0x10:
388 		idx = MMU_PAGE_64K;
389 		break;
390 	case 0x14:
391 		idx = MMU_PAGE_1M;
392 		break;
393 	case 0x18:
394 		idx = MMU_PAGE_16M;
395 		break;
396 	case 0x22:
397 		idx = MMU_PAGE_16G;
398 		break;
399 	}
400 	return idx;
401 }
402 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)403 static int __init htab_dt_scan_page_sizes(unsigned long node,
404 					  const char *uname, int depth,
405 					  void *data)
406 {
407 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
408 	const __be32 *prop;
409 	int size = 0;
410 
411 	/* We are scanning "cpu" nodes only */
412 	if (type == NULL || strcmp(type, "cpu") != 0)
413 		return 0;
414 
415 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
416 	if (!prop)
417 		return 0;
418 
419 	pr_info("Page sizes from device-tree:\n");
420 	size /= 4;
421 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
422 	while(size > 0) {
423 		unsigned int base_shift = be32_to_cpu(prop[0]);
424 		unsigned int slbenc = be32_to_cpu(prop[1]);
425 		unsigned int lpnum = be32_to_cpu(prop[2]);
426 		struct mmu_psize_def *def;
427 		int idx, base_idx;
428 
429 		size -= 3; prop += 3;
430 		base_idx = get_idx_from_shift(base_shift);
431 		if (base_idx < 0) {
432 			/* skip the pte encoding also */
433 			prop += lpnum * 2; size -= lpnum * 2;
434 			continue;
435 		}
436 		def = &mmu_psize_defs[base_idx];
437 		if (base_idx == MMU_PAGE_16M)
438 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
439 
440 		def->shift = base_shift;
441 		if (base_shift <= 23)
442 			def->avpnm = 0;
443 		else
444 			def->avpnm = (1 << (base_shift - 23)) - 1;
445 		def->sllp = slbenc;
446 		/*
447 		 * We don't know for sure what's up with tlbiel, so
448 		 * for now we only set it for 4K and 64K pages
449 		 */
450 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
451 			def->tlbiel = 1;
452 		else
453 			def->tlbiel = 0;
454 
455 		while (size > 0 && lpnum) {
456 			unsigned int shift = be32_to_cpu(prop[0]);
457 			int penc  = be32_to_cpu(prop[1]);
458 
459 			prop += 2; size -= 2;
460 			lpnum--;
461 
462 			idx = get_idx_from_shift(shift);
463 			if (idx < 0)
464 				continue;
465 
466 			if (penc == -1)
467 				pr_err("Invalid penc for base_shift=%d "
468 				       "shift=%d\n", base_shift, shift);
469 
470 			def->penc[idx] = penc;
471 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
472 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
473 				base_shift, shift, def->sllp,
474 				def->avpnm, def->tlbiel, def->penc[idx]);
475 		}
476 	}
477 
478 	return 1;
479 }
480 
481 #ifdef CONFIG_HUGETLB_PAGE
482 /* Scan for 16G memory blocks that have been set aside for huge pages
483  * and reserve those blocks for 16G huge pages.
484  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)485 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
486 					const char *uname, int depth,
487 					void *data) {
488 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
489 	const __be64 *addr_prop;
490 	const __be32 *page_count_prop;
491 	unsigned int expected_pages;
492 	long unsigned int phys_addr;
493 	long unsigned int block_size;
494 
495 	/* We are scanning "memory" nodes only */
496 	if (type == NULL || strcmp(type, "memory") != 0)
497 		return 0;
498 
499 	/* This property is the log base 2 of the number of virtual pages that
500 	 * will represent this memory block. */
501 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
502 	if (page_count_prop == NULL)
503 		return 0;
504 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
505 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
506 	if (addr_prop == NULL)
507 		return 0;
508 	phys_addr = be64_to_cpu(addr_prop[0]);
509 	block_size = be64_to_cpu(addr_prop[1]);
510 	if (block_size != (16 * GB))
511 		return 0;
512 	printk(KERN_INFO "Huge page(16GB) memory: "
513 			"addr = 0x%lX size = 0x%lX pages = %d\n",
514 			phys_addr, block_size, expected_pages);
515 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
516 		memblock_reserve(phys_addr, block_size * expected_pages);
517 		pseries_add_gpage(phys_addr, block_size, expected_pages);
518 	}
519 	return 0;
520 }
521 #endif /* CONFIG_HUGETLB_PAGE */
522 
mmu_psize_set_default_penc(void)523 static void mmu_psize_set_default_penc(void)
524 {
525 	int bpsize, apsize;
526 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
527 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
528 			mmu_psize_defs[bpsize].penc[apsize] = -1;
529 }
530 
531 #ifdef CONFIG_PPC_64K_PAGES
532 
might_have_hea(void)533 static bool might_have_hea(void)
534 {
535 	/*
536 	 * The HEA ethernet adapter requires awareness of the
537 	 * GX bus. Without that awareness we can easily assume
538 	 * we will never see an HEA ethernet device.
539 	 */
540 #ifdef CONFIG_IBMEBUS
541 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
542 		firmware_has_feature(FW_FEATURE_SPLPAR);
543 #else
544 	return false;
545 #endif
546 }
547 
548 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
549 
htab_scan_page_sizes(void)550 static void __init htab_scan_page_sizes(void)
551 {
552 	int rc;
553 
554 	/* se the invalid penc to -1 */
555 	mmu_psize_set_default_penc();
556 
557 	/* Default to 4K pages only */
558 	memcpy(mmu_psize_defs, mmu_psize_defaults,
559 	       sizeof(mmu_psize_defaults));
560 
561 	/*
562 	 * Try to find the available page sizes in the device-tree
563 	 */
564 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
565 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
566 		/*
567 		 * Nothing in the device-tree, but the CPU supports 16M pages,
568 		 * so let's fallback on a known size list for 16M capable CPUs.
569 		 */
570 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
571 		       sizeof(mmu_psize_defaults_gp));
572 	}
573 
574 #ifdef CONFIG_HUGETLB_PAGE
575 	if (!hugetlb_disabled) {
576 		/* Reserve 16G huge page memory sections for huge pages */
577 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
578 	}
579 #endif /* CONFIG_HUGETLB_PAGE */
580 }
581 
582 /*
583  * Fill in the hpte_page_sizes[] array.
584  * We go through the mmu_psize_defs[] array looking for all the
585  * supported base/actual page size combinations.  Each combination
586  * has a unique pagesize encoding (penc) value in the low bits of
587  * the LP field of the HPTE.  For actual page sizes less than 1MB,
588  * some of the upper LP bits are used for RPN bits, meaning that
589  * we need to fill in several entries in hpte_page_sizes[].
590  *
591  * In diagrammatic form, with r = RPN bits and z = page size bits:
592  *        PTE LP     actual page size
593  *    rrrr rrrz		>=8KB
594  *    rrrr rrzz		>=16KB
595  *    rrrr rzzz		>=32KB
596  *    rrrr zzzz		>=64KB
597  *    ...
598  *
599  * The zzzz bits are implementation-specific but are chosen so that
600  * no encoding for a larger page size uses the same value in its
601  * low-order N bits as the encoding for the 2^(12+N) byte page size
602  * (if it exists).
603  */
init_hpte_page_sizes(void)604 static void init_hpte_page_sizes(void)
605 {
606 	long int ap, bp;
607 	long int shift, penc;
608 
609 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
610 		if (!mmu_psize_defs[bp].shift)
611 			continue;	/* not a supported page size */
612 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
613 			penc = mmu_psize_defs[bp].penc[ap];
614 			if (penc == -1 || !mmu_psize_defs[ap].shift)
615 				continue;
616 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
617 			if (shift <= 0)
618 				continue;	/* should never happen */
619 			/*
620 			 * For page sizes less than 1MB, this loop
621 			 * replicates the entry for all possible values
622 			 * of the rrrr bits.
623 			 */
624 			while (penc < (1 << LP_BITS)) {
625 				hpte_page_sizes[penc] = (ap << 4) | bp;
626 				penc += 1 << shift;
627 			}
628 		}
629 	}
630 }
631 
htab_init_page_sizes(void)632 static void __init htab_init_page_sizes(void)
633 {
634 	init_hpte_page_sizes();
635 
636 	if (!debug_pagealloc_enabled()) {
637 		/*
638 		 * Pick a size for the linear mapping. Currently, we only
639 		 * support 16M, 1M and 4K which is the default
640 		 */
641 		if (mmu_psize_defs[MMU_PAGE_16M].shift)
642 			mmu_linear_psize = MMU_PAGE_16M;
643 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
644 			mmu_linear_psize = MMU_PAGE_1M;
645 	}
646 
647 #ifdef CONFIG_PPC_64K_PAGES
648 	/*
649 	 * Pick a size for the ordinary pages. Default is 4K, we support
650 	 * 64K for user mappings and vmalloc if supported by the processor.
651 	 * We only use 64k for ioremap if the processor
652 	 * (and firmware) support cache-inhibited large pages.
653 	 * If not, we use 4k and set mmu_ci_restrictions so that
654 	 * hash_page knows to switch processes that use cache-inhibited
655 	 * mappings to 4k pages.
656 	 */
657 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
658 		mmu_virtual_psize = MMU_PAGE_64K;
659 		mmu_vmalloc_psize = MMU_PAGE_64K;
660 		if (mmu_linear_psize == MMU_PAGE_4K)
661 			mmu_linear_psize = MMU_PAGE_64K;
662 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
663 			/*
664 			 * When running on pSeries using 64k pages for ioremap
665 			 * would stop us accessing the HEA ethernet. So if we
666 			 * have the chance of ever seeing one, stay at 4k.
667 			 */
668 			if (!might_have_hea())
669 				mmu_io_psize = MMU_PAGE_64K;
670 		} else
671 			mmu_ci_restrictions = 1;
672 	}
673 #endif /* CONFIG_PPC_64K_PAGES */
674 
675 #ifdef CONFIG_SPARSEMEM_VMEMMAP
676 	/* We try to use 16M pages for vmemmap if that is supported
677 	 * and we have at least 1G of RAM at boot
678 	 */
679 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
680 	    memblock_phys_mem_size() >= 0x40000000)
681 		mmu_vmemmap_psize = MMU_PAGE_16M;
682 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
683 		mmu_vmemmap_psize = MMU_PAGE_64K;
684 	else
685 		mmu_vmemmap_psize = MMU_PAGE_4K;
686 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
687 
688 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
689 	       "virtual = %d, io = %d"
690 #ifdef CONFIG_SPARSEMEM_VMEMMAP
691 	       ", vmemmap = %d"
692 #endif
693 	       "\n",
694 	       mmu_psize_defs[mmu_linear_psize].shift,
695 	       mmu_psize_defs[mmu_virtual_psize].shift,
696 	       mmu_psize_defs[mmu_io_psize].shift
697 #ifdef CONFIG_SPARSEMEM_VMEMMAP
698 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
699 #endif
700 	       );
701 }
702 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)703 static int __init htab_dt_scan_pftsize(unsigned long node,
704 				       const char *uname, int depth,
705 				       void *data)
706 {
707 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
708 	const __be32 *prop;
709 
710 	/* We are scanning "cpu" nodes only */
711 	if (type == NULL || strcmp(type, "cpu") != 0)
712 		return 0;
713 
714 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
715 	if (prop != NULL) {
716 		/* pft_size[0] is the NUMA CEC cookie */
717 		ppc64_pft_size = be32_to_cpu(prop[1]);
718 		return 1;
719 	}
720 	return 0;
721 }
722 
htab_shift_for_mem_size(unsigned long mem_size)723 unsigned htab_shift_for_mem_size(unsigned long mem_size)
724 {
725 	unsigned memshift = __ilog2(mem_size);
726 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
727 	unsigned pteg_shift;
728 
729 	/* round mem_size up to next power of 2 */
730 	if ((1UL << memshift) < mem_size)
731 		memshift += 1;
732 
733 	/* aim for 2 pages / pteg */
734 	pteg_shift = memshift - (pshift + 1);
735 
736 	/*
737 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
738 	 * size permitted by the architecture.
739 	 */
740 	return max(pteg_shift + 7, 18U);
741 }
742 
htab_get_table_size(void)743 static unsigned long __init htab_get_table_size(void)
744 {
745 	/* If hash size isn't already provided by the platform, we try to
746 	 * retrieve it from the device-tree. If it's not there neither, we
747 	 * calculate it now based on the total RAM size
748 	 */
749 	if (ppc64_pft_size == 0)
750 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
751 	if (ppc64_pft_size)
752 		return 1UL << ppc64_pft_size;
753 
754 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
755 }
756 
757 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)758 void resize_hpt_for_hotplug(unsigned long new_mem_size)
759 {
760 	unsigned target_hpt_shift;
761 
762 	if (!mmu_hash_ops.resize_hpt)
763 		return;
764 
765 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
766 
767 	/*
768 	 * To avoid lots of HPT resizes if memory size is fluctuating
769 	 * across a boundary, we deliberately have some hysterisis
770 	 * here: we immediately increase the HPT size if the target
771 	 * shift exceeds the current shift, but we won't attempt to
772 	 * reduce unless the target shift is at least 2 below the
773 	 * current shift
774 	 */
775 	if ((target_hpt_shift > ppc64_pft_size)
776 	    || (target_hpt_shift < (ppc64_pft_size - 1))) {
777 		int rc;
778 
779 		rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
780 		if (rc && (rc != -ENODEV))
781 			printk(KERN_WARNING
782 			       "Unable to resize hash page table to target order %d: %d\n",
783 			       target_hpt_shift, rc);
784 	}
785 }
786 
hash__create_section_mapping(unsigned long start,unsigned long end,int nid)787 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
788 {
789 	int rc = htab_bolt_mapping(start, end, __pa(start),
790 				   pgprot_val(PAGE_KERNEL), mmu_linear_psize,
791 				   mmu_kernel_ssize);
792 
793 	if (rc < 0) {
794 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
795 					      mmu_kernel_ssize);
796 		BUG_ON(rc2 && (rc2 != -ENOENT));
797 	}
798 	return rc;
799 }
800 
hash__remove_section_mapping(unsigned long start,unsigned long end)801 int hash__remove_section_mapping(unsigned long start, unsigned long end)
802 {
803 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
804 				     mmu_kernel_ssize);
805 	WARN_ON(rc < 0);
806 	return rc;
807 }
808 #endif /* CONFIG_MEMORY_HOTPLUG */
809 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)810 static void __init hash_init_partition_table(phys_addr_t hash_table,
811 					     unsigned long htab_size)
812 {
813 	mmu_partition_table_init();
814 
815 	/*
816 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
817 	 * For now, UPRT is 0 and we have no segment table.
818 	 */
819 	htab_size =  __ilog2(htab_size) - 18;
820 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
821 	pr_info("Partition table %p\n", partition_tb);
822 }
823 
htab_initialize(void)824 static void __init htab_initialize(void)
825 {
826 	unsigned long table;
827 	unsigned long pteg_count;
828 	unsigned long prot;
829 	unsigned long base = 0, size = 0;
830 	struct memblock_region *reg;
831 
832 	DBG(" -> htab_initialize()\n");
833 
834 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
835 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
836 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
837 		printk(KERN_INFO "Using 1TB segments\n");
838 	}
839 
840 	/*
841 	 * Calculate the required size of the htab.  We want the number of
842 	 * PTEGs to equal one half the number of real pages.
843 	 */
844 	htab_size_bytes = htab_get_table_size();
845 	pteg_count = htab_size_bytes >> 7;
846 
847 	htab_hash_mask = pteg_count - 1;
848 
849 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
850 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
851 		/* Using a hypervisor which owns the htab */
852 		htab_address = NULL;
853 		_SDR1 = 0;
854 		/*
855 		 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
856 		 * to inform the hypervisor that we wish to use the HPT.
857 		 */
858 		if (cpu_has_feature(CPU_FTR_ARCH_300))
859 			register_process_table(0, 0, 0);
860 #ifdef CONFIG_FA_DUMP
861 		/*
862 		 * If firmware assisted dump is active firmware preserves
863 		 * the contents of htab along with entire partition memory.
864 		 * Clear the htab if firmware assisted dump is active so
865 		 * that we dont end up using old mappings.
866 		 */
867 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
868 			mmu_hash_ops.hpte_clear_all();
869 #endif
870 	} else {
871 		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
872 
873 #ifdef CONFIG_PPC_CELL
874 		/*
875 		 * Cell may require the hash table down low when using the
876 		 * Axon IOMMU in order to fit the dynamic region over it, see
877 		 * comments in cell/iommu.c
878 		 */
879 		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
880 			limit = 0x80000000;
881 			pr_info("Hash table forced below 2G for Axon IOMMU\n");
882 		}
883 #endif /* CONFIG_PPC_CELL */
884 
885 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
886 					    limit);
887 
888 		DBG("Hash table allocated at %lx, size: %lx\n", table,
889 		    htab_size_bytes);
890 
891 		htab_address = __va(table);
892 
893 		/* htab absolute addr + encoded htabsize */
894 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
895 
896 		/* Initialize the HPT with no entries */
897 		memset((void *)table, 0, htab_size_bytes);
898 
899 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
900 			/* Set SDR1 */
901 			mtspr(SPRN_SDR1, _SDR1);
902 		else
903 			hash_init_partition_table(table, htab_size_bytes);
904 	}
905 
906 	prot = pgprot_val(PAGE_KERNEL);
907 
908 #ifdef CONFIG_DEBUG_PAGEALLOC
909 	if (debug_pagealloc_enabled()) {
910 		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
911 		linear_map_hash_slots = __va(memblock_alloc_base(
912 				linear_map_hash_count, 1, ppc64_rma_size));
913 		memset(linear_map_hash_slots, 0, linear_map_hash_count);
914 	}
915 #endif /* CONFIG_DEBUG_PAGEALLOC */
916 
917 	/* create bolted the linear mapping in the hash table */
918 	for_each_memblock(memory, reg) {
919 		base = (unsigned long)__va(reg->base);
920 		size = reg->size;
921 
922 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
923 		    base, size, prot);
924 
925 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
926 				prot, mmu_linear_psize, mmu_kernel_ssize));
927 	}
928 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
929 
930 	/*
931 	 * If we have a memory_limit and we've allocated TCEs then we need to
932 	 * explicitly map the TCE area at the top of RAM. We also cope with the
933 	 * case that the TCEs start below memory_limit.
934 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
935 	 * for either 4K or 16MB pages.
936 	 */
937 	if (tce_alloc_start) {
938 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
939 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
940 
941 		if (base + size >= tce_alloc_start)
942 			tce_alloc_start = base + size + 1;
943 
944 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
945 					 __pa(tce_alloc_start), prot,
946 					 mmu_linear_psize, mmu_kernel_ssize));
947 	}
948 
949 
950 	DBG(" <- htab_initialize()\n");
951 }
952 #undef KB
953 #undef MB
954 
hash__early_init_devtree(void)955 void __init hash__early_init_devtree(void)
956 {
957 	/* Initialize segment sizes */
958 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
959 
960 	/* Initialize page sizes */
961 	htab_scan_page_sizes();
962 }
963 
hash__early_init_mmu(void)964 void __init hash__early_init_mmu(void)
965 {
966 #ifndef CONFIG_PPC_64K_PAGES
967 	/*
968 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
969 	 * do the following:
970 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
971 	 *
972 	 * Where the slot number is between 0-15, and values of 8-15 indicate
973 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
974 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
975 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
976 	 * with a BUILD_BUG_ON().
977 	 */
978 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
979 #endif /* CONFIG_PPC_64K_PAGES */
980 
981 	htab_init_page_sizes();
982 
983 	/*
984 	 * initialize page table size
985 	 */
986 	__pte_frag_nr = H_PTE_FRAG_NR;
987 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
988 	__pmd_frag_nr = H_PMD_FRAG_NR;
989 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
990 
991 	__pte_index_size = H_PTE_INDEX_SIZE;
992 	__pmd_index_size = H_PMD_INDEX_SIZE;
993 	__pud_index_size = H_PUD_INDEX_SIZE;
994 	__pgd_index_size = H_PGD_INDEX_SIZE;
995 	__pud_cache_index = H_PUD_CACHE_INDEX;
996 	__pte_table_size = H_PTE_TABLE_SIZE;
997 	__pmd_table_size = H_PMD_TABLE_SIZE;
998 	__pud_table_size = H_PUD_TABLE_SIZE;
999 	__pgd_table_size = H_PGD_TABLE_SIZE;
1000 	/*
1001 	 * 4k use hugepd format, so for hash set then to
1002 	 * zero
1003 	 */
1004 	__pmd_val_bits = 0;
1005 	__pud_val_bits = 0;
1006 	__pgd_val_bits = 0;
1007 
1008 	__kernel_virt_start = H_KERN_VIRT_START;
1009 	__kernel_virt_size = H_KERN_VIRT_SIZE;
1010 	__vmalloc_start = H_VMALLOC_START;
1011 	__vmalloc_end = H_VMALLOC_END;
1012 	__kernel_io_start = H_KERN_IO_START;
1013 	vmemmap = (struct page *)H_VMEMMAP_BASE;
1014 	ioremap_bot = IOREMAP_BASE;
1015 
1016 #ifdef CONFIG_PCI
1017 	pci_io_base = ISA_IO_BASE;
1018 #endif
1019 
1020 	/* Select appropriate backend */
1021 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1022 		ps3_early_mm_init();
1023 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1024 		hpte_init_pseries();
1025 	else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1026 		hpte_init_native();
1027 
1028 	if (!mmu_hash_ops.hpte_insert)
1029 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1030 
1031 	/* Initialize the MMU Hash table and create the linear mapping
1032 	 * of memory. Has to be done before SLB initialization as this is
1033 	 * currently where the page size encoding is obtained.
1034 	 */
1035 	htab_initialize();
1036 
1037 	pr_info("Initializing hash mmu with SLB\n");
1038 	/* Initialize SLB management */
1039 	slb_initialize();
1040 
1041 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1042 			&& cpu_has_feature(CPU_FTR_HVMODE))
1043 		tlbiel_all();
1044 }
1045 
1046 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1047 void hash__early_init_mmu_secondary(void)
1048 {
1049 	/* Initialize hash table for that CPU */
1050 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1051 
1052 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1053 			mtspr(SPRN_SDR1, _SDR1);
1054 		else
1055 			mtspr(SPRN_PTCR,
1056 			      __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1057 	}
1058 	/* Initialize SLB */
1059 	slb_initialize();
1060 
1061 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1062 			&& cpu_has_feature(CPU_FTR_HVMODE))
1063 		tlbiel_all();
1064 }
1065 #endif /* CONFIG_SMP */
1066 
1067 /*
1068  * Called by asm hashtable.S for doing lazy icache flush
1069  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1070 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1071 {
1072 	struct page *page;
1073 
1074 	if (!pfn_valid(pte_pfn(pte)))
1075 		return pp;
1076 
1077 	page = pte_page(pte);
1078 
1079 	/* page is dirty */
1080 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1081 		if (trap == 0x400) {
1082 			flush_dcache_icache_page(page);
1083 			set_bit(PG_arch_1, &page->flags);
1084 		} else
1085 			pp |= HPTE_R_N;
1086 	}
1087 	return pp;
1088 }
1089 
1090 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)1091 static unsigned int get_paca_psize(unsigned long addr)
1092 {
1093 	unsigned char *psizes;
1094 	unsigned long index, mask_index;
1095 
1096 	if (addr < SLICE_LOW_TOP) {
1097 		psizes = get_paca()->mm_ctx_low_slices_psize;
1098 		index = GET_LOW_SLICE_INDEX(addr);
1099 	} else {
1100 		psizes = get_paca()->mm_ctx_high_slices_psize;
1101 		index = GET_HIGH_SLICE_INDEX(addr);
1102 	}
1103 	mask_index = index & 0x1;
1104 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1105 }
1106 
1107 #else
get_paca_psize(unsigned long addr)1108 unsigned int get_paca_psize(unsigned long addr)
1109 {
1110 	return get_paca()->mm_ctx_user_psize;
1111 }
1112 #endif
1113 
1114 /*
1115  * Demote a segment to using 4k pages.
1116  * For now this makes the whole process use 4k pages.
1117  */
1118 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1119 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1120 {
1121 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1122 		return;
1123 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1124 	copro_flush_all_slbs(mm);
1125 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1126 
1127 		copy_mm_to_paca(mm);
1128 		slb_flush_and_rebolt();
1129 	}
1130 }
1131 #endif /* CONFIG_PPC_64K_PAGES */
1132 
1133 #ifdef CONFIG_PPC_SUBPAGE_PROT
1134 /*
1135  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1136  * Userspace sets the subpage permissions using the subpage_prot system call.
1137  *
1138  * Result is 0: full permissions, _PAGE_RW: read-only,
1139  * _PAGE_RWX: no access.
1140  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1141 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1142 {
1143 	struct subpage_prot_table *spt = &mm->context.spt;
1144 	u32 spp = 0;
1145 	u32 **sbpm, *sbpp;
1146 
1147 	if (ea >= spt->maxaddr)
1148 		return 0;
1149 	if (ea < 0x100000000UL) {
1150 		/* addresses below 4GB use spt->low_prot */
1151 		sbpm = spt->low_prot;
1152 	} else {
1153 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1154 		if (!sbpm)
1155 			return 0;
1156 	}
1157 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1158 	if (!sbpp)
1159 		return 0;
1160 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1161 
1162 	/* extract 2-bit bitfield for this 4k subpage */
1163 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1164 
1165 	/*
1166 	 * 0 -> full premission
1167 	 * 1 -> Read only
1168 	 * 2 -> no access.
1169 	 * We return the flag that need to be cleared.
1170 	 */
1171 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1172 	return spp;
1173 }
1174 
1175 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1176 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1177 {
1178 	return 0;
1179 }
1180 #endif
1181 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1182 void hash_failure_debug(unsigned long ea, unsigned long access,
1183 			unsigned long vsid, unsigned long trap,
1184 			int ssize, int psize, int lpsize, unsigned long pte)
1185 {
1186 	if (!printk_ratelimit())
1187 		return;
1188 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1189 		ea, access, current->comm);
1190 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1191 		trap, vsid, ssize, psize, lpsize, pte);
1192 }
1193 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1194 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1195 			     int psize, bool user_region)
1196 {
1197 	if (user_region) {
1198 		if (psize != get_paca_psize(ea)) {
1199 			copy_mm_to_paca(mm);
1200 			slb_flush_and_rebolt();
1201 		}
1202 	} else if (get_paca()->vmalloc_sllp !=
1203 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1204 		get_paca()->vmalloc_sllp =
1205 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1206 		slb_vmalloc_update();
1207 	}
1208 }
1209 
1210 /* Result code is:
1211  *  0 - handled
1212  *  1 - normal page fault
1213  * -1 - critical hash insertion error
1214  * -2 - access not permitted by subpage protection mechanism
1215  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1216 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1217 		 unsigned long access, unsigned long trap,
1218 		 unsigned long flags)
1219 {
1220 	bool is_thp;
1221 	enum ctx_state prev_state = exception_enter();
1222 	pgd_t *pgdir;
1223 	unsigned long vsid;
1224 	pte_t *ptep;
1225 	unsigned hugeshift;
1226 	int rc, user_region = 0;
1227 	int psize, ssize;
1228 
1229 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1230 		ea, access, trap);
1231 	trace_hash_fault(ea, access, trap);
1232 
1233 	/* Get region & vsid */
1234  	switch (REGION_ID(ea)) {
1235 	case USER_REGION_ID:
1236 		user_region = 1;
1237 		if (! mm) {
1238 			DBG_LOW(" user region with no mm !\n");
1239 			rc = 1;
1240 			goto bail;
1241 		}
1242 		psize = get_slice_psize(mm, ea);
1243 		ssize = user_segment_size(ea);
1244 		vsid = get_user_vsid(&mm->context, ea, ssize);
1245 		break;
1246 	case VMALLOC_REGION_ID:
1247 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1248 		if (ea < VMALLOC_END)
1249 			psize = mmu_vmalloc_psize;
1250 		else
1251 			psize = mmu_io_psize;
1252 		ssize = mmu_kernel_ssize;
1253 		break;
1254 	default:
1255 		/* Not a valid range
1256 		 * Send the problem up to do_page_fault
1257 		 */
1258 		rc = 1;
1259 		goto bail;
1260 	}
1261 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1262 
1263 	/* Bad address. */
1264 	if (!vsid) {
1265 		DBG_LOW("Bad address!\n");
1266 		rc = 1;
1267 		goto bail;
1268 	}
1269 	/* Get pgdir */
1270 	pgdir = mm->pgd;
1271 	if (pgdir == NULL) {
1272 		rc = 1;
1273 		goto bail;
1274 	}
1275 
1276 	/* Check CPU locality */
1277 	if (user_region && mm_is_thread_local(mm))
1278 		flags |= HPTE_LOCAL_UPDATE;
1279 
1280 #ifndef CONFIG_PPC_64K_PAGES
1281 	/* If we use 4K pages and our psize is not 4K, then we might
1282 	 * be hitting a special driver mapping, and need to align the
1283 	 * address before we fetch the PTE.
1284 	 *
1285 	 * It could also be a hugepage mapping, in which case this is
1286 	 * not necessary, but it's not harmful, either.
1287 	 */
1288 	if (psize != MMU_PAGE_4K)
1289 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1290 #endif /* CONFIG_PPC_64K_PAGES */
1291 
1292 	/* Get PTE and page size from page tables */
1293 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1294 	if (ptep == NULL || !pte_present(*ptep)) {
1295 		DBG_LOW(" no PTE !\n");
1296 		rc = 1;
1297 		goto bail;
1298 	}
1299 
1300 	/* Add _PAGE_PRESENT to the required access perm */
1301 	access |= _PAGE_PRESENT;
1302 
1303 	/* Pre-check access permissions (will be re-checked atomically
1304 	 * in __hash_page_XX but this pre-check is a fast path
1305 	 */
1306 	if (!check_pte_access(access, pte_val(*ptep))) {
1307 		DBG_LOW(" no access !\n");
1308 		rc = 1;
1309 		goto bail;
1310 	}
1311 
1312 	if (hugeshift) {
1313 		if (is_thp)
1314 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1315 					     trap, flags, ssize, psize);
1316 #ifdef CONFIG_HUGETLB_PAGE
1317 		else
1318 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1319 					      flags, ssize, hugeshift, psize);
1320 #else
1321 		else {
1322 			/*
1323 			 * if we have hugeshift, and is not transhuge with
1324 			 * hugetlb disabled, something is really wrong.
1325 			 */
1326 			rc = 1;
1327 			WARN_ON(1);
1328 		}
1329 #endif
1330 		if (current->mm == mm)
1331 			check_paca_psize(ea, mm, psize, user_region);
1332 
1333 		goto bail;
1334 	}
1335 
1336 #ifndef CONFIG_PPC_64K_PAGES
1337 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1338 #else
1339 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1340 		pte_val(*(ptep + PTRS_PER_PTE)));
1341 #endif
1342 	/* Do actual hashing */
1343 #ifdef CONFIG_PPC_64K_PAGES
1344 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1345 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1346 		demote_segment_4k(mm, ea);
1347 		psize = MMU_PAGE_4K;
1348 	}
1349 
1350 	/* If this PTE is non-cacheable and we have restrictions on
1351 	 * using non cacheable large pages, then we switch to 4k
1352 	 */
1353 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1354 		if (user_region) {
1355 			demote_segment_4k(mm, ea);
1356 			psize = MMU_PAGE_4K;
1357 		} else if (ea < VMALLOC_END) {
1358 			/*
1359 			 * some driver did a non-cacheable mapping
1360 			 * in vmalloc space, so switch vmalloc
1361 			 * to 4k pages
1362 			 */
1363 			printk(KERN_ALERT "Reducing vmalloc segment "
1364 			       "to 4kB pages because of "
1365 			       "non-cacheable mapping\n");
1366 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1367 			copro_flush_all_slbs(mm);
1368 		}
1369 	}
1370 
1371 #endif /* CONFIG_PPC_64K_PAGES */
1372 
1373 	if (current->mm == mm)
1374 		check_paca_psize(ea, mm, psize, user_region);
1375 
1376 #ifdef CONFIG_PPC_64K_PAGES
1377 	if (psize == MMU_PAGE_64K)
1378 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1379 				     flags, ssize);
1380 	else
1381 #endif /* CONFIG_PPC_64K_PAGES */
1382 	{
1383 		int spp = subpage_protection(mm, ea);
1384 		if (access & spp)
1385 			rc = -2;
1386 		else
1387 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1388 					    flags, ssize, spp);
1389 	}
1390 
1391 	/* Dump some info in case of hash insertion failure, they should
1392 	 * never happen so it is really useful to know if/when they do
1393 	 */
1394 	if (rc == -1)
1395 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1396 				   psize, pte_val(*ptep));
1397 #ifndef CONFIG_PPC_64K_PAGES
1398 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1399 #else
1400 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1401 		pte_val(*(ptep + PTRS_PER_PTE)));
1402 #endif
1403 	DBG_LOW(" -> rc=%d\n", rc);
1404 
1405 bail:
1406 	exception_exit(prev_state);
1407 	return rc;
1408 }
1409 EXPORT_SYMBOL_GPL(hash_page_mm);
1410 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1411 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1412 	      unsigned long dsisr)
1413 {
1414 	unsigned long flags = 0;
1415 	struct mm_struct *mm = current->mm;
1416 
1417 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1418 		mm = &init_mm;
1419 
1420 	if (dsisr & DSISR_NOHPTE)
1421 		flags |= HPTE_NOHPTE_UPDATE;
1422 
1423 	return hash_page_mm(mm, ea, access, trap, flags);
1424 }
1425 EXPORT_SYMBOL_GPL(hash_page);
1426 
__hash_page(unsigned long ea,unsigned long msr,unsigned long trap,unsigned long dsisr)1427 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1428 		unsigned long dsisr)
1429 {
1430 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1431 	unsigned long flags = 0;
1432 	struct mm_struct *mm = current->mm;
1433 
1434 	if (REGION_ID(ea) == VMALLOC_REGION_ID)
1435 		mm = &init_mm;
1436 
1437 	if (dsisr & DSISR_NOHPTE)
1438 		flags |= HPTE_NOHPTE_UPDATE;
1439 
1440 	if (dsisr & DSISR_ISSTORE)
1441 		access |= _PAGE_WRITE;
1442 	/*
1443 	 * We set _PAGE_PRIVILEGED only when
1444 	 * kernel mode access kernel space.
1445 	 *
1446 	 * _PAGE_PRIVILEGED is NOT set
1447 	 * 1) when kernel mode access user space
1448 	 * 2) user space access kernel space.
1449 	 */
1450 	access |= _PAGE_PRIVILEGED;
1451 	if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1452 		access &= ~_PAGE_PRIVILEGED;
1453 
1454 	if (trap == 0x400)
1455 		access |= _PAGE_EXEC;
1456 
1457 	return hash_page_mm(mm, ea, access, trap, flags);
1458 }
1459 
1460 #ifdef CONFIG_PPC_MM_SLICES
should_hash_preload(struct mm_struct * mm,unsigned long ea)1461 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1462 {
1463 	int psize = get_slice_psize(mm, ea);
1464 
1465 	/* We only prefault standard pages for now */
1466 	if (unlikely(psize != mm->context.user_psize))
1467 		return false;
1468 
1469 	/*
1470 	 * Don't prefault if subpage protection is enabled for the EA.
1471 	 */
1472 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1473 		return false;
1474 
1475 	return true;
1476 }
1477 #else
should_hash_preload(struct mm_struct * mm,unsigned long ea)1478 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1479 {
1480 	return true;
1481 }
1482 #endif
1483 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1484 void hash_preload(struct mm_struct *mm, unsigned long ea,
1485 		  unsigned long access, unsigned long trap)
1486 {
1487 	int hugepage_shift;
1488 	unsigned long vsid;
1489 	pgd_t *pgdir;
1490 	pte_t *ptep;
1491 	unsigned long flags;
1492 	int rc, ssize, update_flags = 0;
1493 
1494 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1495 
1496 	if (!should_hash_preload(mm, ea))
1497 		return;
1498 
1499 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1500 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1501 
1502 	/* Get Linux PTE if available */
1503 	pgdir = mm->pgd;
1504 	if (pgdir == NULL)
1505 		return;
1506 
1507 	/* Get VSID */
1508 	ssize = user_segment_size(ea);
1509 	vsid = get_user_vsid(&mm->context, ea, ssize);
1510 	if (!vsid)
1511 		return;
1512 	/*
1513 	 * Hash doesn't like irqs. Walking linux page table with irq disabled
1514 	 * saves us from holding multiple locks.
1515 	 */
1516 	local_irq_save(flags);
1517 
1518 	/*
1519 	 * THP pages use update_mmu_cache_pmd. We don't do
1520 	 * hash preload there. Hence can ignore THP here
1521 	 */
1522 	ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1523 	if (!ptep)
1524 		goto out_exit;
1525 
1526 	WARN_ON(hugepage_shift);
1527 #ifdef CONFIG_PPC_64K_PAGES
1528 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1529 	 * a 64K kernel), then we don't preload, hash_page() will take
1530 	 * care of it once we actually try to access the page.
1531 	 * That way we don't have to duplicate all of the logic for segment
1532 	 * page size demotion here
1533 	 */
1534 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1535 		goto out_exit;
1536 #endif /* CONFIG_PPC_64K_PAGES */
1537 
1538 	/* Is that local to this CPU ? */
1539 	if (mm_is_thread_local(mm))
1540 		update_flags |= HPTE_LOCAL_UPDATE;
1541 
1542 	/* Hash it in */
1543 #ifdef CONFIG_PPC_64K_PAGES
1544 	if (mm->context.user_psize == MMU_PAGE_64K)
1545 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1546 				     update_flags, ssize);
1547 	else
1548 #endif /* CONFIG_PPC_64K_PAGES */
1549 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1550 				    ssize, subpage_protection(mm, ea));
1551 
1552 	/* Dump some info in case of hash insertion failure, they should
1553 	 * never happen so it is really useful to know if/when they do
1554 	 */
1555 	if (rc == -1)
1556 		hash_failure_debug(ea, access, vsid, trap, ssize,
1557 				   mm->context.user_psize,
1558 				   mm->context.user_psize,
1559 				   pte_val(*ptep));
1560 out_exit:
1561 	local_irq_restore(flags);
1562 }
1563 
1564 #ifdef CONFIG_PPC_MEM_KEYS
1565 /*
1566  * Return the protection key associated with the given address and the
1567  * mm_struct.
1568  */
get_mm_addr_key(struct mm_struct * mm,unsigned long address)1569 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1570 {
1571 	pte_t *ptep;
1572 	u16 pkey = 0;
1573 	unsigned long flags;
1574 
1575 	if (!mm || !mm->pgd)
1576 		return 0;
1577 
1578 	local_irq_save(flags);
1579 	ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1580 	if (ptep)
1581 		pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1582 	local_irq_restore(flags);
1583 
1584 	return pkey;
1585 }
1586 #endif /* CONFIG_PPC_MEM_KEYS */
1587 
1588 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)1589 static inline void tm_flush_hash_page(int local)
1590 {
1591 	/*
1592 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1593 	 * page back to a block device w/PIO could pick up transactional data
1594 	 * (bad!) so we force an abort here. Before the sync the page will be
1595 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1596 	 * kernel uses a page from userspace without unmapping it first, it may
1597 	 * see the speculated version.
1598 	 */
1599 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1600 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1601 		tm_enable();
1602 		tm_abort(TM_CAUSE_TLBI);
1603 	}
1604 }
1605 #else
tm_flush_hash_page(int local)1606 static inline void tm_flush_hash_page(int local)
1607 {
1608 }
1609 #endif
1610 
1611 /*
1612  * Return the global hash slot, corresponding to the given PTE, which contains
1613  * the HPTE.
1614  */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)1615 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1616 		int ssize, real_pte_t rpte, unsigned int subpg_index)
1617 {
1618 	unsigned long hash, gslot, hidx;
1619 
1620 	hash = hpt_hash(vpn, shift, ssize);
1621 	hidx = __rpte_to_hidx(rpte, subpg_index);
1622 	if (hidx & _PTEIDX_SECONDARY)
1623 		hash = ~hash;
1624 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1625 	gslot += hidx & _PTEIDX_GROUP_IX;
1626 	return gslot;
1627 }
1628 
1629 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1630  *          do not forget to update the assembly call site !
1631  */
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)1632 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1633 		     unsigned long flags)
1634 {
1635 	unsigned long index, shift, gslot;
1636 	int local = flags & HPTE_LOCAL_UPDATE;
1637 
1638 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1639 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1640 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1641 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1642 		/*
1643 		 * We use same base page size and actual psize, because we don't
1644 		 * use these functions for hugepage
1645 		 */
1646 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1647 					     ssize, local);
1648 	} pte_iterate_hashed_end();
1649 
1650 	tm_flush_hash_page(local);
1651 }
1652 
1653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)1654 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1655 			 pmd_t *pmdp, unsigned int psize, int ssize,
1656 			 unsigned long flags)
1657 {
1658 	int i, max_hpte_count, valid;
1659 	unsigned long s_addr;
1660 	unsigned char *hpte_slot_array;
1661 	unsigned long hidx, shift, vpn, hash, slot;
1662 	int local = flags & HPTE_LOCAL_UPDATE;
1663 
1664 	s_addr = addr & HPAGE_PMD_MASK;
1665 	hpte_slot_array = get_hpte_slot_array(pmdp);
1666 	/*
1667 	 * IF we try to do a HUGE PTE update after a withdraw is done.
1668 	 * we will find the below NULL. This happens when we do
1669 	 * split_huge_page_pmd
1670 	 */
1671 	if (!hpte_slot_array)
1672 		return;
1673 
1674 	if (mmu_hash_ops.hugepage_invalidate) {
1675 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1676 						 psize, ssize, local);
1677 		goto tm_abort;
1678 	}
1679 	/*
1680 	 * No bluk hpte removal support, invalidate each entry
1681 	 */
1682 	shift = mmu_psize_defs[psize].shift;
1683 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1684 	for (i = 0; i < max_hpte_count; i++) {
1685 		/*
1686 		 * 8 bits per each hpte entries
1687 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1688 		 */
1689 		valid = hpte_valid(hpte_slot_array, i);
1690 		if (!valid)
1691 			continue;
1692 		hidx =  hpte_hash_index(hpte_slot_array, i);
1693 
1694 		/* get the vpn */
1695 		addr = s_addr + (i * (1ul << shift));
1696 		vpn = hpt_vpn(addr, vsid, ssize);
1697 		hash = hpt_hash(vpn, shift, ssize);
1698 		if (hidx & _PTEIDX_SECONDARY)
1699 			hash = ~hash;
1700 
1701 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1702 		slot += hidx & _PTEIDX_GROUP_IX;
1703 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1704 					     MMU_PAGE_16M, ssize, local);
1705 	}
1706 tm_abort:
1707 	tm_flush_hash_page(local);
1708 }
1709 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1710 
flush_hash_range(unsigned long number,int local)1711 void flush_hash_range(unsigned long number, int local)
1712 {
1713 	if (mmu_hash_ops.flush_hash_range)
1714 		mmu_hash_ops.flush_hash_range(number, local);
1715 	else {
1716 		int i;
1717 		struct ppc64_tlb_batch *batch =
1718 			this_cpu_ptr(&ppc64_tlb_batch);
1719 
1720 		for (i = 0; i < number; i++)
1721 			flush_hash_page(batch->vpn[i], batch->pte[i],
1722 					batch->psize, batch->ssize, local);
1723 	}
1724 }
1725 
1726 /*
1727  * low_hash_fault is called when we the low level hash code failed
1728  * to instert a PTE due to an hypervisor error
1729  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1730 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1731 {
1732 	enum ctx_state prev_state = exception_enter();
1733 
1734 	if (user_mode(regs)) {
1735 #ifdef CONFIG_PPC_SUBPAGE_PROT
1736 		if (rc == -2)
1737 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1738 		else
1739 #endif
1740 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1741 	} else
1742 		bad_page_fault(regs, address, SIGBUS);
1743 
1744 	exception_exit(prev_state);
1745 }
1746 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)1747 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1748 			   unsigned long pa, unsigned long rflags,
1749 			   unsigned long vflags, int psize, int ssize)
1750 {
1751 	unsigned long hpte_group;
1752 	long slot;
1753 
1754 repeat:
1755 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1756 
1757 	/* Insert into the hash table, primary slot */
1758 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1759 					psize, psize, ssize);
1760 
1761 	/* Primary is full, try the secondary */
1762 	if (unlikely(slot == -1)) {
1763 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1764 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1765 						vflags | HPTE_V_SECONDARY,
1766 						psize, psize, ssize);
1767 		if (slot == -1) {
1768 			if (mftb() & 0x1)
1769 				hpte_group = (hash & htab_hash_mask) *
1770 						HPTES_PER_GROUP;
1771 
1772 			mmu_hash_ops.hpte_remove(hpte_group);
1773 			goto repeat;
1774 		}
1775 	}
1776 
1777 	return slot;
1778 }
1779 
1780 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1781 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1782 {
1783 	unsigned long hash;
1784 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1785 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1786 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1787 	long ret;
1788 
1789 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1790 
1791 	/* Don't create HPTE entries for bad address */
1792 	if (!vsid)
1793 		return;
1794 
1795 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1796 				    HPTE_V_BOLTED,
1797 				    mmu_linear_psize, mmu_kernel_ssize);
1798 
1799 	BUG_ON (ret < 0);
1800 	spin_lock(&linear_map_hash_lock);
1801 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1802 	linear_map_hash_slots[lmi] = ret | 0x80;
1803 	spin_unlock(&linear_map_hash_lock);
1804 }
1805 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1806 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1807 {
1808 	unsigned long hash, hidx, slot;
1809 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1810 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1811 
1812 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1813 	spin_lock(&linear_map_hash_lock);
1814 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1815 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1816 	linear_map_hash_slots[lmi] = 0;
1817 	spin_unlock(&linear_map_hash_lock);
1818 	if (hidx & _PTEIDX_SECONDARY)
1819 		hash = ~hash;
1820 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1821 	slot += hidx & _PTEIDX_GROUP_IX;
1822 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1823 				     mmu_linear_psize,
1824 				     mmu_kernel_ssize, 0);
1825 }
1826 
__kernel_map_pages(struct page * page,int numpages,int enable)1827 void __kernel_map_pages(struct page *page, int numpages, int enable)
1828 {
1829 	unsigned long flags, vaddr, lmi;
1830 	int i;
1831 
1832 	local_irq_save(flags);
1833 	for (i = 0; i < numpages; i++, page++) {
1834 		vaddr = (unsigned long)page_address(page);
1835 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1836 		if (lmi >= linear_map_hash_count)
1837 			continue;
1838 		if (enable)
1839 			kernel_map_linear_page(vaddr, lmi);
1840 		else
1841 			kernel_unmap_linear_page(vaddr, lmi);
1842 	}
1843 	local_irq_restore(flags);
1844 }
1845 #endif /* CONFIG_DEBUG_PAGEALLOC */
1846 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1847 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1848 				phys_addr_t first_memblock_size)
1849 {
1850 	/* We don't currently support the first MEMBLOCK not mapping 0
1851 	 * physical on those processors
1852 	 */
1853 	BUG_ON(first_memblock_base != 0);
1854 
1855 	/*
1856 	 * On virtualized systems the first entry is our RMA region aka VRMA,
1857 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
1858 	 * on real mode access.
1859 	 *
1860 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
1861 	 * to avoid some funky things such as RTAS bugs etc...
1862 	 */
1863 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1864 		ppc64_rma_size = first_memblock_size;
1865 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1866 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1867 
1868 		/* Finally limit subsequent allocations */
1869 		memblock_set_current_limit(ppc64_rma_size);
1870 	} else {
1871 		ppc64_rma_size = ULONG_MAX;
1872 	}
1873 }
1874 
1875 #ifdef CONFIG_DEBUG_FS
1876 
hpt_order_get(void * data,u64 * val)1877 static int hpt_order_get(void *data, u64 *val)
1878 {
1879 	*val = ppc64_pft_size;
1880 	return 0;
1881 }
1882 
hpt_order_set(void * data,u64 val)1883 static int hpt_order_set(void *data, u64 val)
1884 {
1885 	if (!mmu_hash_ops.resize_hpt)
1886 		return -ENODEV;
1887 
1888 	return mmu_hash_ops.resize_hpt(val);
1889 }
1890 
1891 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1892 
hash64_debugfs(void)1893 static int __init hash64_debugfs(void)
1894 {
1895 	if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1896 				 NULL, &fops_hpt_order)) {
1897 		pr_err("lpar: unable to create hpt_order debugsfs file\n");
1898 	}
1899 
1900 	return 0;
1901 }
1902 machine_device_initcall(pseries, hash64_debugfs);
1903 #endif /* CONFIG_DEBUG_FS */
1904