1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H
3 #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H
4
5 #define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB
6 #define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB
7 #define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB
8 #define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB
9
10
11 /*
12 * Each context is 512TB size. SLB miss for first context/default context
13 * is handled in the hotpath.
14 */
15 #define MAX_EA_BITS_PER_CONTEXT 49
16 #define REGION_SHIFT MAX_EA_BITS_PER_CONTEXT
17
18 /*
19 * We use one context for each MAP area.
20 */
21 #define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT)
22
23 /*
24 * Define the address range of the kernel non-linear virtual area
25 * 2PB
26 */
27 #define H_KERN_VIRT_START ASM_CONST(0xc008000000000000)
28
29 /*
30 * 64k aligned address free up few of the lower bits of RPN for us
31 * We steal that here. For more deatils look at pte_pfn/pfn_pte()
32 */
33 #define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */
34 #define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */
35 #define H_PAGE_BUSY _RPAGE_RPN44 /* software: PTE & hash are busy */
36 #define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */
37
38 /* memory key bits. */
39 #define H_PTE_PKEY_BIT0 _RPAGE_RSV1
40 #define H_PTE_PKEY_BIT1 _RPAGE_RSV2
41 #define H_PTE_PKEY_BIT2 _RPAGE_RSV3
42 #define H_PTE_PKEY_BIT3 _RPAGE_RSV4
43 #define H_PTE_PKEY_BIT4 _RPAGE_RSV5
44
45 /*
46 * We need to differentiate between explicit huge page and THP huge
47 * page, since THP huge page also need to track real subpage details
48 */
49 #define H_PAGE_THP_HUGE H_PAGE_4K_PFN
50
51 /* PTE flags to conserve for HPTE identification */
52 #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO)
53 /*
54 * We use a 2K PTE page fragment and another 2K for storing
55 * real_pte_t hash index
56 * 8 bytes per each pte entry and another 8 bytes for storing
57 * slot details.
58 */
59 #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1)
60 #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT)
61
62 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
63 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1)
64 #else
65 #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3)
66 #endif
67 #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT)
68
69 #ifndef __ASSEMBLY__
70 #include <asm/errno.h>
71
72 /*
73 * With 64K pages on hash table, we have a special PTE format that
74 * uses a second "half" of the page table to encode sub-page information
75 * in order to deal with 64K made of 4K HW pages. Thus we override the
76 * generic accessors and iterators here
77 */
78 #define __real_pte __real_pte
__real_pte(pte_t pte,pte_t * ptep,int offset)79 static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset)
80 {
81 real_pte_t rpte;
82 unsigned long *hidxp;
83
84 rpte.pte = pte;
85
86 /*
87 * Ensure that we do not read the hidx before we read the PTE. Because
88 * the writer side is expected to finish writing the hidx first followed
89 * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that.
90 */
91 smp_rmb();
92
93 hidxp = (unsigned long *)(ptep + offset);
94 rpte.hidx = *hidxp;
95 return rpte;
96 }
97
98 /*
99 * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented
100 * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a
101 * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when
102 * allocated. We dont have to zero them gain; thus save on the initialization.
103 */
104 #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */
105 #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */
106 #define HIDX_BITS(x, index) (x << (index << 2))
107 #define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL)
108 #define INVALID_RPTE_HIDX 0x0UL
109
__rpte_to_hidx(real_pte_t rpte,unsigned long index)110 static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index)
111 {
112 return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index));
113 }
114
115 /*
116 * Commit the hidx and return PTE bits that needs to be modified. The caller is
117 * expected to modify the PTE bits accordingly and commit the PTE to memory.
118 */
pte_set_hidx(pte_t * ptep,real_pte_t rpte,unsigned int subpg_index,unsigned long hidx,int offset)119 static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte,
120 unsigned int subpg_index,
121 unsigned long hidx, int offset)
122 {
123 unsigned long *hidxp = (unsigned long *)(ptep + offset);
124
125 rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index);
126 *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index);
127
128 /*
129 * Anyone reading PTE must ensure hidx bits are read after reading the
130 * PTE by using the read-side barrier smp_rmb(). __real_pte() can be
131 * used for that.
132 */
133 smp_wmb();
134
135 /* No PTE bits to be modified, return 0x0UL */
136 return 0x0UL;
137 }
138
139 #define __rpte_to_pte(r) ((r).pte)
140 extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index);
141 /*
142 * Trick: we set __end to va + 64k, which happens works for
143 * a 16M page as well as we want only one iteration
144 */
145 #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \
146 do { \
147 unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \
148 unsigned __split = (psize == MMU_PAGE_4K || \
149 psize == MMU_PAGE_64K_AP); \
150 shift = mmu_psize_defs[psize].shift; \
151 for (index = 0; vpn < __end; index++, \
152 vpn += (1L << (shift - VPN_SHIFT))) { \
153 if (!__split || __rpte_sub_valid(rpte, index))
154
155 #define pte_iterate_hashed_end() } } while(0)
156
157 #define pte_pagesize_index(mm, addr, pte) \
158 (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K)
159
160 extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
161 unsigned long pfn, unsigned long size, pgprot_t);
hash__remap_4k_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot)162 static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr,
163 unsigned long pfn, pgprot_t prot)
164 {
165 if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) {
166 WARN(1, "remap_4k_pfn called with wrong pfn value\n");
167 return -EINVAL;
168 }
169 return remap_pfn_range(vma, addr, pfn, PAGE_SIZE,
170 __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN));
171 }
172
173 #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE
174 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE)
175 #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \
176 (sizeof(unsigned long) << PMD_INDEX_SIZE))
177 #else
178 #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE)
179 #endif
180 #ifdef CONFIG_HUGETLB_PAGE
181 #define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \
182 (sizeof(unsigned long) << PUD_INDEX_SIZE))
183 #else
184 #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE)
185 #endif
186 #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
187
188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
get_hpte_slot_array(pmd_t * pmdp)189 static inline char *get_hpte_slot_array(pmd_t *pmdp)
190 {
191 /*
192 * The hpte hindex is stored in the pgtable whose address is in the
193 * second half of the PMD
194 *
195 * Order this load with the test for pmd_trans_huge in the caller
196 */
197 smp_rmb();
198 return *(char **)(pmdp + PTRS_PER_PMD);
199
200
201 }
202 /*
203 * The linux hugepage PMD now include the pmd entries followed by the address
204 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
205 * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per
206 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
207 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
208 *
209 * The top three bits are intentionally left as zero. This memory location
210 * are also used as normal page PTE pointers. So if we have any pointers
211 * left around while we collapse a hugepage, we need to make sure
212 * _PAGE_PRESENT bit of that is zero when we look at them
213 */
hpte_valid(unsigned char * hpte_slot_array,int index)214 static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
215 {
216 return hpte_slot_array[index] & 0x1;
217 }
218
hpte_hash_index(unsigned char * hpte_slot_array,int index)219 static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
220 int index)
221 {
222 return hpte_slot_array[index] >> 1;
223 }
224
mark_hpte_slot_valid(unsigned char * hpte_slot_array,unsigned int index,unsigned int hidx)225 static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
226 unsigned int index, unsigned int hidx)
227 {
228 hpte_slot_array[index] = (hidx << 1) | 0x1;
229 }
230
231 /*
232 *
233 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
234 * page. The hugetlbfs page table walking and mangling paths are totally
235 * separated form the core VM paths and they're differentiated by
236 * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
237 *
238 * pmd_trans_huge() is defined as false at build time if
239 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
240 * time in such case.
241 *
242 * For ppc64 we need to differntiate from explicit hugepages from THP, because
243 * for THP we also track the subpage details at the pmd level. We don't do
244 * that for explicit huge pages.
245 *
246 */
hash__pmd_trans_huge(pmd_t pmd)247 static inline int hash__pmd_trans_huge(pmd_t pmd)
248 {
249 return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE)) ==
250 (_PAGE_PTE | H_PAGE_THP_HUGE));
251 }
252
hash__pmd_same(pmd_t pmd_a,pmd_t pmd_b)253 static inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b)
254 {
255 return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0);
256 }
257
hash__pmd_mkhuge(pmd_t pmd)258 static inline pmd_t hash__pmd_mkhuge(pmd_t pmd)
259 {
260 return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE));
261 }
262
263 extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm,
264 unsigned long addr, pmd_t *pmdp,
265 unsigned long clr, unsigned long set);
266 extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma,
267 unsigned long address, pmd_t *pmdp);
268 extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
269 pgtable_t pgtable);
270 extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
271 extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm,
272 unsigned long addr, pmd_t *pmdp);
273 extern int hash__has_transparent_hugepage(void);
274 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
275 #endif /* __ASSEMBLY__ */
276
277 #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */
278