1 /*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46
47 /**
48 * DOC: Global GTT views
49 *
50 * Background and previous state
51 *
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
55 *
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
59 *
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
63 *
64 * 12
65 * 34
66 *
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
70 *
71 * 1212
72 * 3434
73 *
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
76 *
77 * Implementation and usage
78 *
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
81 *
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
86 *
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
91 *
92 * Code wanting to add or use a new GGTT view needs to:
93 *
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
97 *
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
101 *
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
105 *
106 */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
gen6_ggtt_invalidate(struct drm_i915_private * dev_priv)111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113 /*
114 * Note that as an uncached mmio write, this will flush the
115 * WCB of the writes into the GGTT before it triggers the invalidate.
116 */
117 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
118 }
119
guc_ggtt_invalidate(struct drm_i915_private * dev_priv)120 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
121 {
122 gen6_ggtt_invalidate(dev_priv);
123 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
124 }
125
gmch_ggtt_invalidate(struct drm_i915_private * dev_priv)126 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
127 {
128 intel_gtt_chipset_flush();
129 }
130
i915_ggtt_invalidate(struct drm_i915_private * i915)131 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
132 {
133 i915->ggtt.invalidate(i915);
134 }
135
intel_sanitize_enable_ppgtt(struct drm_i915_private * dev_priv,int enable_ppgtt)136 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
137 int enable_ppgtt)
138 {
139 bool has_full_ppgtt;
140 bool has_full_48bit_ppgtt;
141
142 if (!dev_priv->info.has_aliasing_ppgtt)
143 return 0;
144
145 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
146 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147
148 if (intel_vgpu_active(dev_priv)) {
149 /* GVT-g has no support for 32bit ppgtt */
150 has_full_ppgtt = false;
151 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152 }
153
154 /*
155 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
156 * execlists, the sole mechanism available to submit work.
157 */
158 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 return 0;
160
161 if (enable_ppgtt == 1)
162 return 1;
163
164 if (enable_ppgtt == 2 && has_full_ppgtt)
165 return 2;
166
167 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
168 return 3;
169
170 /* Disable ppgtt on SNB if VT-d is on. */
171 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172 DRM_INFO("Disabling PPGTT because VT-d is on\n");
173 return 0;
174 }
175
176 /* Early VLV doesn't have this */
177 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
179 return 0;
180 }
181
182 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 if (has_full_48bit_ppgtt)
184 return 3;
185
186 if (has_full_ppgtt)
187 return 2;
188 }
189
190 return 1;
191 }
192
ppgtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)193 static int ppgtt_bind_vma(struct i915_vma *vma,
194 enum i915_cache_level cache_level,
195 u32 unused)
196 {
197 u32 pte_flags;
198 int err;
199
200 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
201 err = vma->vm->allocate_va_range(vma->vm,
202 vma->node.start, vma->size);
203 if (err)
204 return err;
205 }
206
207 /* Applicable to VLV, and gen8+ */
208 pte_flags = 0;
209 if (i915_gem_object_is_readonly(vma->obj))
210 pte_flags |= PTE_READ_ONLY;
211
212 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213
214 return 0;
215 }
216
ppgtt_unbind_vma(struct i915_vma * vma)217 static void ppgtt_unbind_vma(struct i915_vma *vma)
218 {
219 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220 }
221
ppgtt_set_pages(struct i915_vma * vma)222 static int ppgtt_set_pages(struct i915_vma *vma)
223 {
224 GEM_BUG_ON(vma->pages);
225
226 vma->pages = vma->obj->mm.pages;
227
228 vma->page_sizes = vma->obj->mm.page_sizes;
229
230 return 0;
231 }
232
clear_pages(struct i915_vma * vma)233 static void clear_pages(struct i915_vma *vma)
234 {
235 GEM_BUG_ON(!vma->pages);
236
237 if (vma->pages != vma->obj->mm.pages) {
238 sg_free_table(vma->pages);
239 kfree(vma->pages);
240 }
241 vma->pages = NULL;
242
243 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 }
245
gen8_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)246 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 enum i915_cache_level level,
248 u32 flags)
249 {
250 gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
251
252 if (unlikely(flags & PTE_READ_ONLY))
253 pte &= ~_PAGE_RW;
254
255 switch (level) {
256 case I915_CACHE_NONE:
257 pte |= PPAT_UNCACHED;
258 break;
259 case I915_CACHE_WT:
260 pte |= PPAT_DISPLAY_ELLC;
261 break;
262 default:
263 pte |= PPAT_CACHED;
264 break;
265 }
266
267 return pte;
268 }
269
gen8_pde_encode(const dma_addr_t addr,const enum i915_cache_level level)270 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
271 const enum i915_cache_level level)
272 {
273 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
274 pde |= addr;
275 if (level != I915_CACHE_NONE)
276 pde |= PPAT_CACHED_PDE;
277 else
278 pde |= PPAT_UNCACHED;
279 return pde;
280 }
281
282 #define gen8_pdpe_encode gen8_pde_encode
283 #define gen8_pml4e_encode gen8_pde_encode
284
snb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)285 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
286 enum i915_cache_level level,
287 u32 unused)
288 {
289 gen6_pte_t pte = GEN6_PTE_VALID;
290 pte |= GEN6_PTE_ADDR_ENCODE(addr);
291
292 switch (level) {
293 case I915_CACHE_L3_LLC:
294 case I915_CACHE_LLC:
295 pte |= GEN6_PTE_CACHE_LLC;
296 break;
297 case I915_CACHE_NONE:
298 pte |= GEN6_PTE_UNCACHED;
299 break;
300 default:
301 MISSING_CASE(level);
302 }
303
304 return pte;
305 }
306
ivb_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)307 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
308 enum i915_cache_level level,
309 u32 unused)
310 {
311 gen6_pte_t pte = GEN6_PTE_VALID;
312 pte |= GEN6_PTE_ADDR_ENCODE(addr);
313
314 switch (level) {
315 case I915_CACHE_L3_LLC:
316 pte |= GEN7_PTE_CACHE_L3_LLC;
317 break;
318 case I915_CACHE_LLC:
319 pte |= GEN6_PTE_CACHE_LLC;
320 break;
321 case I915_CACHE_NONE:
322 pte |= GEN6_PTE_UNCACHED;
323 break;
324 default:
325 MISSING_CASE(level);
326 }
327
328 return pte;
329 }
330
byt_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 flags)331 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
332 enum i915_cache_level level,
333 u32 flags)
334 {
335 gen6_pte_t pte = GEN6_PTE_VALID;
336 pte |= GEN6_PTE_ADDR_ENCODE(addr);
337
338 if (!(flags & PTE_READ_ONLY))
339 pte |= BYT_PTE_WRITEABLE;
340
341 if (level != I915_CACHE_NONE)
342 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
343
344 return pte;
345 }
346
hsw_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)347 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
348 enum i915_cache_level level,
349 u32 unused)
350 {
351 gen6_pte_t pte = GEN6_PTE_VALID;
352 pte |= HSW_PTE_ADDR_ENCODE(addr);
353
354 if (level != I915_CACHE_NONE)
355 pte |= HSW_WB_LLC_AGE3;
356
357 return pte;
358 }
359
iris_pte_encode(dma_addr_t addr,enum i915_cache_level level,u32 unused)360 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
361 enum i915_cache_level level,
362 u32 unused)
363 {
364 gen6_pte_t pte = GEN6_PTE_VALID;
365 pte |= HSW_PTE_ADDR_ENCODE(addr);
366
367 switch (level) {
368 case I915_CACHE_NONE:
369 break;
370 case I915_CACHE_WT:
371 pte |= HSW_WT_ELLC_LLC_AGE3;
372 break;
373 default:
374 pte |= HSW_WB_ELLC_LLC_AGE3;
375 break;
376 }
377
378 return pte;
379 }
380
stash_init(struct pagestash * stash)381 static void stash_init(struct pagestash *stash)
382 {
383 pagevec_init(&stash->pvec);
384 spin_lock_init(&stash->lock);
385 }
386
stash_pop_page(struct pagestash * stash)387 static struct page *stash_pop_page(struct pagestash *stash)
388 {
389 struct page *page = NULL;
390
391 spin_lock(&stash->lock);
392 if (likely(stash->pvec.nr))
393 page = stash->pvec.pages[--stash->pvec.nr];
394 spin_unlock(&stash->lock);
395
396 return page;
397 }
398
stash_push_pagevec(struct pagestash * stash,struct pagevec * pvec)399 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
400 {
401 int nr;
402
403 spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
404
405 nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
406 memcpy(stash->pvec.pages + stash->pvec.nr,
407 pvec->pages + pvec->nr - nr,
408 sizeof(pvec->pages[0]) * nr);
409 stash->pvec.nr += nr;
410
411 spin_unlock(&stash->lock);
412
413 pvec->nr -= nr;
414 }
415
vm_alloc_page(struct i915_address_space * vm,gfp_t gfp)416 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
417 {
418 struct pagevec stack;
419 struct page *page;
420
421 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
422 i915_gem_shrink_all(vm->i915);
423
424 page = stash_pop_page(&vm->free_pages);
425 if (page)
426 return page;
427
428 if (!vm->pt_kmap_wc)
429 return alloc_page(gfp);
430
431 /* Look in our global stash of WC pages... */
432 page = stash_pop_page(&vm->i915->mm.wc_stash);
433 if (page)
434 return page;
435
436 /*
437 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
438 *
439 * We have to be careful as page allocation may trigger the shrinker
440 * (via direct reclaim) which will fill up the WC stash underneath us.
441 * So we add our WB pages into a temporary pvec on the stack and merge
442 * them into the WC stash after all the allocations are complete.
443 */
444 pagevec_init(&stack);
445 do {
446 struct page *page;
447
448 page = alloc_page(gfp);
449 if (unlikely(!page))
450 break;
451
452 stack.pages[stack.nr++] = page;
453 } while (pagevec_space(&stack));
454
455 if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
456 page = stack.pages[--stack.nr];
457
458 /* Merge spare WC pages to the global stash */
459 stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
460
461 /* Push any surplus WC pages onto the local VM stash */
462 if (stack.nr)
463 stash_push_pagevec(&vm->free_pages, &stack);
464 }
465
466 /* Return unwanted leftovers */
467 if (unlikely(stack.nr)) {
468 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
469 __pagevec_release(&stack);
470 }
471
472 return page;
473 }
474
vm_free_pages_release(struct i915_address_space * vm,bool immediate)475 static void vm_free_pages_release(struct i915_address_space *vm,
476 bool immediate)
477 {
478 struct pagevec *pvec = &vm->free_pages.pvec;
479 struct pagevec stack;
480
481 lockdep_assert_held(&vm->free_pages.lock);
482 GEM_BUG_ON(!pagevec_count(pvec));
483
484 if (vm->pt_kmap_wc) {
485 /*
486 * When we use WC, first fill up the global stash and then
487 * only if full immediately free the overflow.
488 */
489 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
490
491 /*
492 * As we have made some room in the VM's free_pages,
493 * we can wait for it to fill again. Unless we are
494 * inside i915_address_space_fini() and must
495 * immediately release the pages!
496 */
497 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
498 return;
499
500 /*
501 * We have to drop the lock to allow ourselves to sleep,
502 * so take a copy of the pvec and clear the stash for
503 * others to use it as we sleep.
504 */
505 stack = *pvec;
506 pagevec_reinit(pvec);
507 spin_unlock(&vm->free_pages.lock);
508
509 pvec = &stack;
510 set_pages_array_wb(pvec->pages, pvec->nr);
511
512 spin_lock(&vm->free_pages.lock);
513 }
514
515 __pagevec_release(pvec);
516 }
517
vm_free_page(struct i915_address_space * vm,struct page * page)518 static void vm_free_page(struct i915_address_space *vm, struct page *page)
519 {
520 /*
521 * On !llc, we need to change the pages back to WB. We only do so
522 * in bulk, so we rarely need to change the page attributes here,
523 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
524 * To make detection of the possible sleep more likely, use an
525 * unconditional might_sleep() for everybody.
526 */
527 might_sleep();
528 spin_lock(&vm->free_pages.lock);
529 if (!pagevec_add(&vm->free_pages.pvec, page))
530 vm_free_pages_release(vm, false);
531 spin_unlock(&vm->free_pages.lock);
532 }
533
i915_address_space_init(struct i915_address_space * vm,struct drm_i915_private * dev_priv)534 static void i915_address_space_init(struct i915_address_space *vm,
535 struct drm_i915_private *dev_priv)
536 {
537 /*
538 * The vm->mutex must be reclaim safe (for use in the shrinker).
539 * Do a dummy acquire now under fs_reclaim so that any allocation
540 * attempt holding the lock is immediately reported by lockdep.
541 */
542 mutex_init(&vm->mutex);
543 i915_gem_shrinker_taints_mutex(&vm->mutex);
544
545 GEM_BUG_ON(!vm->total);
546 drm_mm_init(&vm->mm, 0, vm->total);
547 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
548
549 stash_init(&vm->free_pages);
550
551 INIT_LIST_HEAD(&vm->active_list);
552 INIT_LIST_HEAD(&vm->inactive_list);
553 INIT_LIST_HEAD(&vm->unbound_list);
554 }
555
i915_address_space_fini(struct i915_address_space * vm)556 static void i915_address_space_fini(struct i915_address_space *vm)
557 {
558 spin_lock(&vm->free_pages.lock);
559 if (pagevec_count(&vm->free_pages.pvec))
560 vm_free_pages_release(vm, true);
561 GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
562 spin_unlock(&vm->free_pages.lock);
563
564 drm_mm_takedown(&vm->mm);
565
566 mutex_destroy(&vm->mutex);
567 }
568
__setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,gfp_t gfp)569 static int __setup_page_dma(struct i915_address_space *vm,
570 struct i915_page_dma *p,
571 gfp_t gfp)
572 {
573 p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 if (unlikely(!p->page))
575 return -ENOMEM;
576
577 p->daddr = dma_map_page_attrs(vm->dma,
578 p->page, 0, PAGE_SIZE,
579 PCI_DMA_BIDIRECTIONAL,
580 DMA_ATTR_SKIP_CPU_SYNC |
581 DMA_ATTR_NO_WARN);
582 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
583 vm_free_page(vm, p->page);
584 return -ENOMEM;
585 }
586
587 return 0;
588 }
589
setup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)590 static int setup_page_dma(struct i915_address_space *vm,
591 struct i915_page_dma *p)
592 {
593 return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 }
595
cleanup_page_dma(struct i915_address_space * vm,struct i915_page_dma * p)596 static void cleanup_page_dma(struct i915_address_space *vm,
597 struct i915_page_dma *p)
598 {
599 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
600 vm_free_page(vm, p->page);
601 }
602
603 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604
605 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
606 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
608 #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609
fill_page_dma(struct i915_address_space * vm,struct i915_page_dma * p,const u64 val)610 static void fill_page_dma(struct i915_address_space *vm,
611 struct i915_page_dma *p,
612 const u64 val)
613 {
614 u64 * const vaddr = kmap_atomic(p->page);
615
616 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617
618 kunmap_atomic(vaddr);
619 }
620
fill_page_dma_32(struct i915_address_space * vm,struct i915_page_dma * p,const u32 v)621 static void fill_page_dma_32(struct i915_address_space *vm,
622 struct i915_page_dma *p,
623 const u32 v)
624 {
625 fill_page_dma(vm, p, (u64)v << 32 | v);
626 }
627
628 static int
setup_scratch_page(struct i915_address_space * vm,gfp_t gfp)629 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630 {
631 unsigned long size;
632
633 /*
634 * In order to utilize 64K pages for an object with a size < 2M, we will
635 * need to support a 64K scratch page, given that every 16th entry for a
636 * page-table operating in 64K mode must point to a properly aligned 64K
637 * region, including any PTEs which happen to point to scratch.
638 *
639 * This is only relevant for the 48b PPGTT where we support
640 * huge-gtt-pages, see also i915_vma_insert().
641 *
642 * TODO: we should really consider write-protecting the scratch-page and
643 * sharing between ppgtt
644 */
645 size = I915_GTT_PAGE_SIZE_4K;
646 if (i915_vm_is_48bit(vm) &&
647 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
648 size = I915_GTT_PAGE_SIZE_64K;
649 gfp |= __GFP_NOWARN;
650 }
651 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
652
653 do {
654 int order = get_order(size);
655 struct page *page;
656 dma_addr_t addr;
657
658 page = alloc_pages(gfp, order);
659 if (unlikely(!page))
660 goto skip;
661
662 addr = dma_map_page_attrs(vm->dma,
663 page, 0, size,
664 PCI_DMA_BIDIRECTIONAL,
665 DMA_ATTR_SKIP_CPU_SYNC |
666 DMA_ATTR_NO_WARN);
667 if (unlikely(dma_mapping_error(vm->dma, addr)))
668 goto free_page;
669
670 if (unlikely(!IS_ALIGNED(addr, size)))
671 goto unmap_page;
672
673 vm->scratch_page.page = page;
674 vm->scratch_page.daddr = addr;
675 vm->scratch_page.order = order;
676 return 0;
677
678 unmap_page:
679 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
680 free_page:
681 __free_pages(page, order);
682 skip:
683 if (size == I915_GTT_PAGE_SIZE_4K)
684 return -ENOMEM;
685
686 size = I915_GTT_PAGE_SIZE_4K;
687 gfp &= ~__GFP_NOWARN;
688 } while (1);
689 }
690
cleanup_scratch_page(struct i915_address_space * vm)691 static void cleanup_scratch_page(struct i915_address_space *vm)
692 {
693 struct i915_page_dma *p = &vm->scratch_page;
694
695 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
696 PCI_DMA_BIDIRECTIONAL);
697 __free_pages(p->page, p->order);
698 }
699
alloc_pt(struct i915_address_space * vm)700 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701 {
702 struct i915_page_table *pt;
703
704 pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705 if (unlikely(!pt))
706 return ERR_PTR(-ENOMEM);
707
708 if (unlikely(setup_px(vm, pt))) {
709 kfree(pt);
710 return ERR_PTR(-ENOMEM);
711 }
712
713 pt->used_ptes = 0;
714 return pt;
715 }
716
free_pt(struct i915_address_space * vm,struct i915_page_table * pt)717 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718 {
719 cleanup_px(vm, pt);
720 kfree(pt);
721 }
722
gen8_initialize_pt(struct i915_address_space * vm,struct i915_page_table * pt)723 static void gen8_initialize_pt(struct i915_address_space *vm,
724 struct i915_page_table *pt)
725 {
726 fill_px(vm, pt,
727 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
728 }
729
gen6_initialize_pt(struct gen6_hw_ppgtt * ppgtt,struct i915_page_table * pt)730 static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
731 struct i915_page_table *pt)
732 {
733 fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
734 }
735
alloc_pd(struct i915_address_space * vm)736 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
737 {
738 struct i915_page_directory *pd;
739
740 pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741 if (unlikely(!pd))
742 return ERR_PTR(-ENOMEM);
743
744 if (unlikely(setup_px(vm, pd))) {
745 kfree(pd);
746 return ERR_PTR(-ENOMEM);
747 }
748
749 pd->used_pdes = 0;
750 return pd;
751 }
752
free_pd(struct i915_address_space * vm,struct i915_page_directory * pd)753 static void free_pd(struct i915_address_space *vm,
754 struct i915_page_directory *pd)
755 {
756 cleanup_px(vm, pd);
757 kfree(pd);
758 }
759
gen8_initialize_pd(struct i915_address_space * vm,struct i915_page_directory * pd)760 static void gen8_initialize_pd(struct i915_address_space *vm,
761 struct i915_page_directory *pd)
762 {
763 fill_px(vm, pd,
764 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
765 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
766 }
767
__pdp_init(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)768 static int __pdp_init(struct i915_address_space *vm,
769 struct i915_page_directory_pointer *pdp)
770 {
771 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
772
773 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
774 I915_GFP_ALLOW_FAIL);
775 if (unlikely(!pdp->page_directory))
776 return -ENOMEM;
777
778 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
779
780 return 0;
781 }
782
__pdp_fini(struct i915_page_directory_pointer * pdp)783 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
784 {
785 kfree(pdp->page_directory);
786 pdp->page_directory = NULL;
787 }
788
use_4lvl(const struct i915_address_space * vm)789 static inline bool use_4lvl(const struct i915_address_space *vm)
790 {
791 return i915_vm_is_48bit(vm);
792 }
793
794 static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space * vm)795 alloc_pdp(struct i915_address_space *vm)
796 {
797 struct i915_page_directory_pointer *pdp;
798 int ret = -ENOMEM;
799
800 GEM_BUG_ON(!use_4lvl(vm));
801
802 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
803 if (!pdp)
804 return ERR_PTR(-ENOMEM);
805
806 ret = __pdp_init(vm, pdp);
807 if (ret)
808 goto fail_bitmap;
809
810 ret = setup_px(vm, pdp);
811 if (ret)
812 goto fail_page_m;
813
814 return pdp;
815
816 fail_page_m:
817 __pdp_fini(pdp);
818 fail_bitmap:
819 kfree(pdp);
820
821 return ERR_PTR(ret);
822 }
823
free_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)824 static void free_pdp(struct i915_address_space *vm,
825 struct i915_page_directory_pointer *pdp)
826 {
827 __pdp_fini(pdp);
828
829 if (!use_4lvl(vm))
830 return;
831
832 cleanup_px(vm, pdp);
833 kfree(pdp);
834 }
835
gen8_initialize_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)836 static void gen8_initialize_pdp(struct i915_address_space *vm,
837 struct i915_page_directory_pointer *pdp)
838 {
839 gen8_ppgtt_pdpe_t scratch_pdpe;
840
841 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
842
843 fill_px(vm, pdp, scratch_pdpe);
844 }
845
gen8_initialize_pml4(struct i915_address_space * vm,struct i915_pml4 * pml4)846 static void gen8_initialize_pml4(struct i915_address_space *vm,
847 struct i915_pml4 *pml4)
848 {
849 fill_px(vm, pml4,
850 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
851 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
852 }
853
854 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
855 * the page table structures, we mark them dirty so that
856 * context switching/execlist queuing code takes extra steps
857 * to ensure that tlbs are flushed.
858 */
mark_tlbs_dirty(struct i915_hw_ppgtt * ppgtt)859 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
860 {
861 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
862 }
863
864 /* Removes entries from a single page table, releasing it if it's empty.
865 * Caller can use the return value to update higher-level entries.
866 */
gen8_ppgtt_clear_pt(struct i915_address_space * vm,struct i915_page_table * pt,u64 start,u64 length)867 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
868 struct i915_page_table *pt,
869 u64 start, u64 length)
870 {
871 unsigned int num_entries = gen8_pte_count(start, length);
872 unsigned int pte = gen8_pte_index(start);
873 unsigned int pte_end = pte + num_entries;
874 const gen8_pte_t scratch_pte =
875 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
876 gen8_pte_t *vaddr;
877
878 GEM_BUG_ON(num_entries > pt->used_ptes);
879
880 pt->used_ptes -= num_entries;
881 if (!pt->used_ptes)
882 return true;
883
884 vaddr = kmap_atomic_px(pt);
885 while (pte < pte_end)
886 vaddr[pte++] = scratch_pte;
887 kunmap_atomic(vaddr);
888
889 return false;
890 }
891
gen8_ppgtt_set_pde(struct i915_address_space * vm,struct i915_page_directory * pd,struct i915_page_table * pt,unsigned int pde)892 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
893 struct i915_page_directory *pd,
894 struct i915_page_table *pt,
895 unsigned int pde)
896 {
897 gen8_pde_t *vaddr;
898
899 pd->page_table[pde] = pt;
900
901 vaddr = kmap_atomic_px(pd);
902 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
903 kunmap_atomic(vaddr);
904 }
905
gen8_ppgtt_clear_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)906 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
907 struct i915_page_directory *pd,
908 u64 start, u64 length)
909 {
910 struct i915_page_table *pt;
911 u32 pde;
912
913 gen8_for_each_pde(pt, pd, start, length, pde) {
914 GEM_BUG_ON(pt == vm->scratch_pt);
915
916 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
917 continue;
918
919 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
920 GEM_BUG_ON(!pd->used_pdes);
921 pd->used_pdes--;
922
923 free_pt(vm, pt);
924 }
925
926 return !pd->used_pdes;
927 }
928
gen8_ppgtt_set_pdpe(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,struct i915_page_directory * pd,unsigned int pdpe)929 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
930 struct i915_page_directory_pointer *pdp,
931 struct i915_page_directory *pd,
932 unsigned int pdpe)
933 {
934 gen8_ppgtt_pdpe_t *vaddr;
935
936 pdp->page_directory[pdpe] = pd;
937 if (!use_4lvl(vm))
938 return;
939
940 vaddr = kmap_atomic_px(pdp);
941 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
942 kunmap_atomic(vaddr);
943 }
944
945 /* Removes entries from a single page dir pointer, releasing it if it's empty.
946 * Caller can use the return value to update higher-level entries
947 */
gen8_ppgtt_clear_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)948 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
949 struct i915_page_directory_pointer *pdp,
950 u64 start, u64 length)
951 {
952 struct i915_page_directory *pd;
953 unsigned int pdpe;
954
955 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
956 GEM_BUG_ON(pd == vm->scratch_pd);
957
958 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
959 continue;
960
961 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
962 GEM_BUG_ON(!pdp->used_pdpes);
963 pdp->used_pdpes--;
964
965 free_pd(vm, pd);
966 }
967
968 return !pdp->used_pdpes;
969 }
970
gen8_ppgtt_clear_3lvl(struct i915_address_space * vm,u64 start,u64 length)971 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
972 u64 start, u64 length)
973 {
974 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
975 }
976
gen8_ppgtt_set_pml4e(struct i915_pml4 * pml4,struct i915_page_directory_pointer * pdp,unsigned int pml4e)977 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
978 struct i915_page_directory_pointer *pdp,
979 unsigned int pml4e)
980 {
981 gen8_ppgtt_pml4e_t *vaddr;
982
983 pml4->pdps[pml4e] = pdp;
984
985 vaddr = kmap_atomic_px(pml4);
986 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
987 kunmap_atomic(vaddr);
988 }
989
990 /* Removes entries from a single pml4.
991 * This is the top-level structure in 4-level page tables used on gen8+.
992 * Empty entries are always scratch pml4e.
993 */
gen8_ppgtt_clear_4lvl(struct i915_address_space * vm,u64 start,u64 length)994 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
995 u64 start, u64 length)
996 {
997 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
998 struct i915_pml4 *pml4 = &ppgtt->pml4;
999 struct i915_page_directory_pointer *pdp;
1000 unsigned int pml4e;
1001
1002 GEM_BUG_ON(!use_4lvl(vm));
1003
1004 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1005 GEM_BUG_ON(pdp == vm->scratch_pdp);
1006
1007 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
1008 continue;
1009
1010 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1011
1012 free_pdp(vm, pdp);
1013 }
1014 }
1015
1016 static inline struct sgt_dma {
1017 struct scatterlist *sg;
1018 dma_addr_t dma, max;
sgt_dma(struct i915_vma * vma)1019 } sgt_dma(struct i915_vma *vma) {
1020 struct scatterlist *sg = vma->pages->sgl;
1021 dma_addr_t addr = sg_dma_address(sg);
1022 return (struct sgt_dma) { sg, addr, addr + sg->length };
1023 }
1024
1025 struct gen8_insert_pte {
1026 u16 pml4e;
1027 u16 pdpe;
1028 u16 pde;
1029 u16 pte;
1030 };
1031
gen8_insert_pte(u64 start)1032 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
1033 {
1034 return (struct gen8_insert_pte) {
1035 gen8_pml4e_index(start),
1036 gen8_pdpe_index(start),
1037 gen8_pde_index(start),
1038 gen8_pte_index(start),
1039 };
1040 }
1041
1042 static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,struct sgt_dma * iter,struct gen8_insert_pte * idx,enum i915_cache_level cache_level,u32 flags)1043 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1044 struct i915_page_directory_pointer *pdp,
1045 struct sgt_dma *iter,
1046 struct gen8_insert_pte *idx,
1047 enum i915_cache_level cache_level,
1048 u32 flags)
1049 {
1050 struct i915_page_directory *pd;
1051 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1052 gen8_pte_t *vaddr;
1053 bool ret;
1054
1055 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1056 pd = pdp->page_directory[idx->pdpe];
1057 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1058 do {
1059 vaddr[idx->pte] = pte_encode | iter->dma;
1060
1061 iter->dma += PAGE_SIZE;
1062 if (iter->dma >= iter->max) {
1063 iter->sg = __sg_next(iter->sg);
1064 if (!iter->sg) {
1065 ret = false;
1066 break;
1067 }
1068
1069 iter->dma = sg_dma_address(iter->sg);
1070 iter->max = iter->dma + iter->sg->length;
1071 }
1072
1073 if (++idx->pte == GEN8_PTES) {
1074 idx->pte = 0;
1075
1076 if (++idx->pde == I915_PDES) {
1077 idx->pde = 0;
1078
1079 /* Limited by sg length for 3lvl */
1080 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1081 idx->pdpe = 0;
1082 ret = true;
1083 break;
1084 }
1085
1086 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1087 pd = pdp->page_directory[idx->pdpe];
1088 }
1089
1090 kunmap_atomic(vaddr);
1091 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1092 }
1093 } while (1);
1094 kunmap_atomic(vaddr);
1095
1096 return ret;
1097 }
1098
gen8_ppgtt_insert_3lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1099 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1100 struct i915_vma *vma,
1101 enum i915_cache_level cache_level,
1102 u32 flags)
1103 {
1104 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1105 struct sgt_dma iter = sgt_dma(vma);
1106 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1107
1108 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1109 cache_level, flags);
1110
1111 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1112 }
1113
gen8_ppgtt_insert_huge_entries(struct i915_vma * vma,struct i915_page_directory_pointer ** pdps,struct sgt_dma * iter,enum i915_cache_level cache_level,u32 flags)1114 static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1115 struct i915_page_directory_pointer **pdps,
1116 struct sgt_dma *iter,
1117 enum i915_cache_level cache_level,
1118 u32 flags)
1119 {
1120 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1121 u64 start = vma->node.start;
1122 dma_addr_t rem = iter->sg->length;
1123
1124 do {
1125 struct gen8_insert_pte idx = gen8_insert_pte(start);
1126 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1127 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1128 unsigned int page_size;
1129 bool maybe_64K = false;
1130 gen8_pte_t encode = pte_encode;
1131 gen8_pte_t *vaddr;
1132 u16 index, max;
1133
1134 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1135 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1136 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1137 index = idx.pde;
1138 max = I915_PDES;
1139 page_size = I915_GTT_PAGE_SIZE_2M;
1140
1141 encode |= GEN8_PDE_PS_2M;
1142
1143 vaddr = kmap_atomic_px(pd);
1144 } else {
1145 struct i915_page_table *pt = pd->page_table[idx.pde];
1146
1147 index = idx.pte;
1148 max = GEN8_PTES;
1149 page_size = I915_GTT_PAGE_SIZE;
1150
1151 if (!index &&
1152 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1153 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1154 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1155 rem >= (max - index) << PAGE_SHIFT))
1156 maybe_64K = true;
1157
1158 vaddr = kmap_atomic_px(pt);
1159 }
1160
1161 do {
1162 GEM_BUG_ON(iter->sg->length < page_size);
1163 vaddr[index++] = encode | iter->dma;
1164
1165 start += page_size;
1166 iter->dma += page_size;
1167 rem -= page_size;
1168 if (iter->dma >= iter->max) {
1169 iter->sg = __sg_next(iter->sg);
1170 if (!iter->sg)
1171 break;
1172
1173 rem = iter->sg->length;
1174 iter->dma = sg_dma_address(iter->sg);
1175 iter->max = iter->dma + rem;
1176
1177 if (maybe_64K && index < max &&
1178 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1179 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1180 rem >= (max - index) << PAGE_SHIFT)))
1181 maybe_64K = false;
1182
1183 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1184 break;
1185 }
1186 } while (rem >= page_size && index < max);
1187
1188 kunmap_atomic(vaddr);
1189
1190 /*
1191 * Is it safe to mark the 2M block as 64K? -- Either we have
1192 * filled whole page-table with 64K entries, or filled part of
1193 * it and have reached the end of the sg table and we have
1194 * enough padding.
1195 */
1196 if (maybe_64K &&
1197 (index == max ||
1198 (i915_vm_has_scratch_64K(vma->vm) &&
1199 !iter->sg && IS_ALIGNED(vma->node.start +
1200 vma->node.size,
1201 I915_GTT_PAGE_SIZE_2M)))) {
1202 vaddr = kmap_atomic_px(pd);
1203 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1204 kunmap_atomic(vaddr);
1205 page_size = I915_GTT_PAGE_SIZE_64K;
1206
1207 /*
1208 * We write all 4K page entries, even when using 64K
1209 * pages. In order to verify that the HW isn't cheating
1210 * by using the 4K PTE instead of the 64K PTE, we want
1211 * to remove all the surplus entries. If the HW skipped
1212 * the 64K PTE, it will read/write into the scratch page
1213 * instead - which we detect as missing results during
1214 * selftests.
1215 */
1216 if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
1217 u16 i;
1218
1219 encode = pte_encode | vma->vm->scratch_page.daddr;
1220 vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
1221
1222 for (i = 1; i < index; i += 16)
1223 memset64(vaddr + i, encode, 15);
1224
1225 kunmap_atomic(vaddr);
1226 }
1227 }
1228
1229 vma->page_sizes.gtt |= page_size;
1230 } while (iter->sg);
1231 }
1232
gen8_ppgtt_insert_4lvl(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1233 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1234 struct i915_vma *vma,
1235 enum i915_cache_level cache_level,
1236 u32 flags)
1237 {
1238 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1239 struct sgt_dma iter = sgt_dma(vma);
1240 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1241
1242 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1243 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
1244 flags);
1245 } else {
1246 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1247
1248 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1249 &iter, &idx, cache_level,
1250 flags))
1251 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1252
1253 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1254 }
1255 }
1256
gen8_free_page_tables(struct i915_address_space * vm,struct i915_page_directory * pd)1257 static void gen8_free_page_tables(struct i915_address_space *vm,
1258 struct i915_page_directory *pd)
1259 {
1260 int i;
1261
1262 if (!px_page(pd))
1263 return;
1264
1265 for (i = 0; i < I915_PDES; i++) {
1266 if (pd->page_table[i] != vm->scratch_pt)
1267 free_pt(vm, pd->page_table[i]);
1268 }
1269 }
1270
gen8_init_scratch(struct i915_address_space * vm)1271 static int gen8_init_scratch(struct i915_address_space *vm)
1272 {
1273 int ret;
1274
1275 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1276 if (ret)
1277 return ret;
1278
1279 vm->scratch_pt = alloc_pt(vm);
1280 if (IS_ERR(vm->scratch_pt)) {
1281 ret = PTR_ERR(vm->scratch_pt);
1282 goto free_scratch_page;
1283 }
1284
1285 vm->scratch_pd = alloc_pd(vm);
1286 if (IS_ERR(vm->scratch_pd)) {
1287 ret = PTR_ERR(vm->scratch_pd);
1288 goto free_pt;
1289 }
1290
1291 if (use_4lvl(vm)) {
1292 vm->scratch_pdp = alloc_pdp(vm);
1293 if (IS_ERR(vm->scratch_pdp)) {
1294 ret = PTR_ERR(vm->scratch_pdp);
1295 goto free_pd;
1296 }
1297 }
1298
1299 gen8_initialize_pt(vm, vm->scratch_pt);
1300 gen8_initialize_pd(vm, vm->scratch_pd);
1301 if (use_4lvl(vm))
1302 gen8_initialize_pdp(vm, vm->scratch_pdp);
1303
1304 return 0;
1305
1306 free_pd:
1307 free_pd(vm, vm->scratch_pd);
1308 free_pt:
1309 free_pt(vm, vm->scratch_pt);
1310 free_scratch_page:
1311 cleanup_scratch_page(vm);
1312
1313 return ret;
1314 }
1315
gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt * ppgtt,bool create)1316 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1317 {
1318 struct i915_address_space *vm = &ppgtt->vm;
1319 struct drm_i915_private *dev_priv = vm->i915;
1320 enum vgt_g2v_type msg;
1321 int i;
1322
1323 if (use_4lvl(vm)) {
1324 const u64 daddr = px_dma(&ppgtt->pml4);
1325
1326 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1327 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1328
1329 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1330 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1331 } else {
1332 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1333 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1334
1335 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1336 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1337 }
1338
1339 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1340 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1341 }
1342
1343 I915_WRITE(vgtif_reg(g2v_notify), msg);
1344
1345 return 0;
1346 }
1347
gen8_free_scratch(struct i915_address_space * vm)1348 static void gen8_free_scratch(struct i915_address_space *vm)
1349 {
1350 if (use_4lvl(vm))
1351 free_pdp(vm, vm->scratch_pdp);
1352 free_pd(vm, vm->scratch_pd);
1353 free_pt(vm, vm->scratch_pt);
1354 cleanup_scratch_page(vm);
1355 }
1356
gen8_ppgtt_cleanup_3lvl(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp)1357 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1358 struct i915_page_directory_pointer *pdp)
1359 {
1360 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1361 int i;
1362
1363 for (i = 0; i < pdpes; i++) {
1364 if (pdp->page_directory[i] == vm->scratch_pd)
1365 continue;
1366
1367 gen8_free_page_tables(vm, pdp->page_directory[i]);
1368 free_pd(vm, pdp->page_directory[i]);
1369 }
1370
1371 free_pdp(vm, pdp);
1372 }
1373
gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt * ppgtt)1374 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1375 {
1376 int i;
1377
1378 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1379 if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1380 continue;
1381
1382 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1383 }
1384
1385 cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1386 }
1387
gen8_ppgtt_cleanup(struct i915_address_space * vm)1388 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1389 {
1390 struct drm_i915_private *dev_priv = vm->i915;
1391 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1392
1393 if (intel_vgpu_active(dev_priv))
1394 gen8_ppgtt_notify_vgt(ppgtt, false);
1395
1396 if (use_4lvl(vm))
1397 gen8_ppgtt_cleanup_4lvl(ppgtt);
1398 else
1399 gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1400
1401 gen8_free_scratch(vm);
1402 }
1403
gen8_ppgtt_alloc_pd(struct i915_address_space * vm,struct i915_page_directory * pd,u64 start,u64 length)1404 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1405 struct i915_page_directory *pd,
1406 u64 start, u64 length)
1407 {
1408 struct i915_page_table *pt;
1409 u64 from = start;
1410 unsigned int pde;
1411
1412 gen8_for_each_pde(pt, pd, start, length, pde) {
1413 int count = gen8_pte_count(start, length);
1414
1415 if (pt == vm->scratch_pt) {
1416 pd->used_pdes++;
1417
1418 pt = alloc_pt(vm);
1419 if (IS_ERR(pt)) {
1420 pd->used_pdes--;
1421 goto unwind;
1422 }
1423
1424 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1425 gen8_initialize_pt(vm, pt);
1426
1427 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1428 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1429 }
1430
1431 pt->used_ptes += count;
1432 }
1433 return 0;
1434
1435 unwind:
1436 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1437 return -ENOMEM;
1438 }
1439
gen8_ppgtt_alloc_pdp(struct i915_address_space * vm,struct i915_page_directory_pointer * pdp,u64 start,u64 length)1440 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1441 struct i915_page_directory_pointer *pdp,
1442 u64 start, u64 length)
1443 {
1444 struct i915_page_directory *pd;
1445 u64 from = start;
1446 unsigned int pdpe;
1447 int ret;
1448
1449 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1450 if (pd == vm->scratch_pd) {
1451 pdp->used_pdpes++;
1452
1453 pd = alloc_pd(vm);
1454 if (IS_ERR(pd)) {
1455 pdp->used_pdpes--;
1456 goto unwind;
1457 }
1458
1459 gen8_initialize_pd(vm, pd);
1460 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1461 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1462
1463 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1464 }
1465
1466 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1467 if (unlikely(ret))
1468 goto unwind_pd;
1469 }
1470
1471 return 0;
1472
1473 unwind_pd:
1474 if (!pd->used_pdes) {
1475 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1476 GEM_BUG_ON(!pdp->used_pdpes);
1477 pdp->used_pdpes--;
1478 free_pd(vm, pd);
1479 }
1480 unwind:
1481 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1482 return -ENOMEM;
1483 }
1484
gen8_ppgtt_alloc_3lvl(struct i915_address_space * vm,u64 start,u64 length)1485 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1486 u64 start, u64 length)
1487 {
1488 return gen8_ppgtt_alloc_pdp(vm,
1489 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1490 }
1491
gen8_ppgtt_alloc_4lvl(struct i915_address_space * vm,u64 start,u64 length)1492 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1493 u64 start, u64 length)
1494 {
1495 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1496 struct i915_pml4 *pml4 = &ppgtt->pml4;
1497 struct i915_page_directory_pointer *pdp;
1498 u64 from = start;
1499 u32 pml4e;
1500 int ret;
1501
1502 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1503 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1504 pdp = alloc_pdp(vm);
1505 if (IS_ERR(pdp))
1506 goto unwind;
1507
1508 gen8_initialize_pdp(vm, pdp);
1509 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1510 }
1511
1512 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1513 if (unlikely(ret))
1514 goto unwind_pdp;
1515 }
1516
1517 return 0;
1518
1519 unwind_pdp:
1520 if (!pdp->used_pdpes) {
1521 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1522 free_pdp(vm, pdp);
1523 }
1524 unwind:
1525 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1526 return -ENOMEM;
1527 }
1528
gen8_dump_pdp(struct i915_hw_ppgtt * ppgtt,struct i915_page_directory_pointer * pdp,u64 start,u64 length,gen8_pte_t scratch_pte,struct seq_file * m)1529 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1530 struct i915_page_directory_pointer *pdp,
1531 u64 start, u64 length,
1532 gen8_pte_t scratch_pte,
1533 struct seq_file *m)
1534 {
1535 struct i915_address_space *vm = &ppgtt->vm;
1536 struct i915_page_directory *pd;
1537 u32 pdpe;
1538
1539 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1540 struct i915_page_table *pt;
1541 u64 pd_len = length;
1542 u64 pd_start = start;
1543 u32 pde;
1544
1545 if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1546 continue;
1547
1548 seq_printf(m, "\tPDPE #%d\n", pdpe);
1549 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1550 u32 pte;
1551 gen8_pte_t *pt_vaddr;
1552
1553 if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1554 continue;
1555
1556 pt_vaddr = kmap_atomic_px(pt);
1557 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1558 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1559 pde << GEN8_PDE_SHIFT |
1560 pte << GEN8_PTE_SHIFT);
1561 int i;
1562 bool found = false;
1563
1564 for (i = 0; i < 4; i++)
1565 if (pt_vaddr[pte + i] != scratch_pte)
1566 found = true;
1567 if (!found)
1568 continue;
1569
1570 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1571 for (i = 0; i < 4; i++) {
1572 if (pt_vaddr[pte + i] != scratch_pte)
1573 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1574 else
1575 seq_puts(m, " SCRATCH ");
1576 }
1577 seq_puts(m, "\n");
1578 }
1579 kunmap_atomic(pt_vaddr);
1580 }
1581 }
1582 }
1583
gen8_dump_ppgtt(struct i915_hw_ppgtt * ppgtt,struct seq_file * m)1584 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1585 {
1586 struct i915_address_space *vm = &ppgtt->vm;
1587 const gen8_pte_t scratch_pte =
1588 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1589 u64 start = 0, length = ppgtt->vm.total;
1590
1591 if (use_4lvl(vm)) {
1592 u64 pml4e;
1593 struct i915_pml4 *pml4 = &ppgtt->pml4;
1594 struct i915_page_directory_pointer *pdp;
1595
1596 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1597 if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1598 continue;
1599
1600 seq_printf(m, " PML4E #%llu\n", pml4e);
1601 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1602 }
1603 } else {
1604 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1605 }
1606 }
1607
gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt * ppgtt)1608 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1609 {
1610 struct i915_address_space *vm = &ppgtt->vm;
1611 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1612 struct i915_page_directory *pd;
1613 u64 start = 0, length = ppgtt->vm.total;
1614 u64 from = start;
1615 unsigned int pdpe;
1616
1617 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1618 pd = alloc_pd(vm);
1619 if (IS_ERR(pd))
1620 goto unwind;
1621
1622 gen8_initialize_pd(vm, pd);
1623 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1624 pdp->used_pdpes++;
1625 }
1626
1627 pdp->used_pdpes++; /* never remove */
1628 return 0;
1629
1630 unwind:
1631 start -= from;
1632 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1633 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1634 free_pd(vm, pd);
1635 }
1636 pdp->used_pdpes = 0;
1637 return -ENOMEM;
1638 }
1639
1640 /*
1641 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1642 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1643 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1644 * space.
1645 *
1646 */
gen8_ppgtt_create(struct drm_i915_private * i915)1647 static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
1648 {
1649 struct i915_hw_ppgtt *ppgtt;
1650 int err;
1651
1652 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1653 if (!ppgtt)
1654 return ERR_PTR(-ENOMEM);
1655
1656 kref_init(&ppgtt->ref);
1657
1658 ppgtt->vm.i915 = i915;
1659 ppgtt->vm.dma = &i915->drm.pdev->dev;
1660
1661 ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1662 1ULL << 48 :
1663 1ULL << 32;
1664
1665 /*
1666 * From bdw, there is support for read-only pages in the PPGTT.
1667 *
1668 * XXX GVT is not honouring the lack of RW in the PTE bits.
1669 */
1670 ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1671
1672 i915_address_space_init(&ppgtt->vm, i915);
1673
1674 /* There are only few exceptions for gen >=6. chv and bxt.
1675 * And we are not sure about the latter so play safe for now.
1676 */
1677 if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1678 ppgtt->vm.pt_kmap_wc = true;
1679
1680 err = gen8_init_scratch(&ppgtt->vm);
1681 if (err)
1682 goto err_free;
1683
1684 if (use_4lvl(&ppgtt->vm)) {
1685 err = setup_px(&ppgtt->vm, &ppgtt->pml4);
1686 if (err)
1687 goto err_scratch;
1688
1689 gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1690
1691 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1692 ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
1693 ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1694 } else {
1695 err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
1696 if (err)
1697 goto err_scratch;
1698
1699 if (intel_vgpu_active(i915)) {
1700 err = gen8_preallocate_top_level_pdp(ppgtt);
1701 if (err) {
1702 __pdp_fini(&ppgtt->pdp);
1703 goto err_scratch;
1704 }
1705 }
1706
1707 ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1708 ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
1709 ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1710 }
1711
1712 if (intel_vgpu_active(i915))
1713 gen8_ppgtt_notify_vgt(ppgtt, true);
1714
1715 ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1716 ppgtt->debug_dump = gen8_dump_ppgtt;
1717
1718 ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
1719 ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
1720 ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
1721 ppgtt->vm.vma_ops.clear_pages = clear_pages;
1722
1723 return ppgtt;
1724
1725 err_scratch:
1726 gen8_free_scratch(&ppgtt->vm);
1727 err_free:
1728 kfree(ppgtt);
1729 return ERR_PTR(err);
1730 }
1731
gen6_dump_ppgtt(struct i915_hw_ppgtt * base,struct seq_file * m)1732 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
1733 {
1734 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1735 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1736 struct i915_page_table *pt;
1737 u32 pte, pde;
1738
1739 gen6_for_all_pdes(pt, &base->pd, pde) {
1740 gen6_pte_t *vaddr;
1741
1742 if (pt == base->vm.scratch_pt)
1743 continue;
1744
1745 if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
1746 u32 expected =
1747 GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
1748 GEN6_PDE_VALID;
1749 u32 pd_entry = readl(ppgtt->pd_addr + pde);
1750
1751 if (pd_entry != expected)
1752 seq_printf(m,
1753 "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1754 pde,
1755 pd_entry,
1756 expected);
1757
1758 seq_printf(m, "\tPDE: %x\n", pd_entry);
1759 }
1760
1761 vaddr = kmap_atomic_px(base->pd.page_table[pde]);
1762 for (pte = 0; pte < GEN6_PTES; pte += 4) {
1763 int i;
1764
1765 for (i = 0; i < 4; i++)
1766 if (vaddr[pte + i] != scratch_pte)
1767 break;
1768 if (i == 4)
1769 continue;
1770
1771 seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
1772 pde, pte,
1773 (pde * GEN6_PTES + pte) * PAGE_SIZE);
1774 for (i = 0; i < 4; i++) {
1775 if (vaddr[pte + i] != scratch_pte)
1776 seq_printf(m, " %08x", vaddr[pte + i]);
1777 else
1778 seq_puts(m, " SCRATCH");
1779 }
1780 seq_puts(m, "\n");
1781 }
1782 kunmap_atomic(vaddr);
1783 }
1784 }
1785
1786 /* Write pde (index) from the page directory @pd to the page table @pt */
gen6_write_pde(const struct gen6_hw_ppgtt * ppgtt,const unsigned int pde,const struct i915_page_table * pt)1787 static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
1788 const unsigned int pde,
1789 const struct i915_page_table *pt)
1790 {
1791 /* Caller needs to make sure the write completes if necessary */
1792 iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1793 ppgtt->pd_addr + pde);
1794 }
1795
gen8_ppgtt_enable(struct drm_i915_private * dev_priv)1796 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1797 {
1798 struct intel_engine_cs *engine;
1799 enum intel_engine_id id;
1800
1801 for_each_engine(engine, dev_priv, id) {
1802 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1803 GEN8_GFX_PPGTT_48B : 0;
1804 I915_WRITE(RING_MODE_GEN7(engine),
1805 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1806 }
1807 }
1808
gen7_ppgtt_enable(struct drm_i915_private * dev_priv)1809 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1810 {
1811 struct intel_engine_cs *engine;
1812 u32 ecochk, ecobits;
1813 enum intel_engine_id id;
1814
1815 ecobits = I915_READ(GAC_ECO_BITS);
1816 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1817
1818 ecochk = I915_READ(GAM_ECOCHK);
1819 if (IS_HASWELL(dev_priv)) {
1820 ecochk |= ECOCHK_PPGTT_WB_HSW;
1821 } else {
1822 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1823 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1824 }
1825 I915_WRITE(GAM_ECOCHK, ecochk);
1826
1827 for_each_engine(engine, dev_priv, id) {
1828 /* GFX_MODE is per-ring on gen7+ */
1829 I915_WRITE(RING_MODE_GEN7(engine),
1830 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1831 }
1832 }
1833
gen6_ppgtt_enable(struct drm_i915_private * dev_priv)1834 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1835 {
1836 u32 ecochk, gab_ctl, ecobits;
1837
1838 ecobits = I915_READ(GAC_ECO_BITS);
1839 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1840 ECOBITS_PPGTT_CACHE64B);
1841
1842 gab_ctl = I915_READ(GAB_CTL);
1843 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1844
1845 ecochk = I915_READ(GAM_ECOCHK);
1846 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1847
1848 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1849 }
1850
1851 /* PPGTT support for Sandybdrige/Gen6 and later */
gen6_ppgtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)1852 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1853 u64 start, u64 length)
1854 {
1855 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1856 unsigned int first_entry = start >> PAGE_SHIFT;
1857 unsigned int pde = first_entry / GEN6_PTES;
1858 unsigned int pte = first_entry % GEN6_PTES;
1859 unsigned int num_entries = length >> PAGE_SHIFT;
1860 const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1861
1862 while (num_entries) {
1863 struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1864 const unsigned int end = min(pte + num_entries, GEN6_PTES);
1865 const unsigned int count = end - pte;
1866 gen6_pte_t *vaddr;
1867
1868 GEM_BUG_ON(pt == vm->scratch_pt);
1869
1870 num_entries -= count;
1871
1872 GEM_BUG_ON(count > pt->used_ptes);
1873 pt->used_ptes -= count;
1874 if (!pt->used_ptes)
1875 ppgtt->scan_for_unused_pt = true;
1876
1877 /*
1878 * Note that the hw doesn't support removing PDE on the fly
1879 * (they are cached inside the context with no means to
1880 * invalidate the cache), so we can only reset the PTE
1881 * entries back to scratch.
1882 */
1883
1884 vaddr = kmap_atomic_px(pt);
1885 do {
1886 vaddr[pte++] = scratch_pte;
1887 } while (pte < end);
1888 kunmap_atomic(vaddr);
1889
1890 pte = 0;
1891 }
1892 }
1893
gen6_ppgtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)1894 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1895 struct i915_vma *vma,
1896 enum i915_cache_level cache_level,
1897 u32 flags)
1898 {
1899 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1900 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1901 unsigned act_pt = first_entry / GEN6_PTES;
1902 unsigned act_pte = first_entry % GEN6_PTES;
1903 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1904 struct sgt_dma iter = sgt_dma(vma);
1905 gen6_pte_t *vaddr;
1906
1907 GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
1908
1909 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1910 do {
1911 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1912
1913 iter.dma += PAGE_SIZE;
1914 if (iter.dma == iter.max) {
1915 iter.sg = __sg_next(iter.sg);
1916 if (!iter.sg)
1917 break;
1918
1919 iter.dma = sg_dma_address(iter.sg);
1920 iter.max = iter.dma + iter.sg->length;
1921 }
1922
1923 if (++act_pte == GEN6_PTES) {
1924 kunmap_atomic(vaddr);
1925 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1926 act_pte = 0;
1927 }
1928 } while (1);
1929 kunmap_atomic(vaddr);
1930
1931 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1932 }
1933
gen6_alloc_va_range(struct i915_address_space * vm,u64 start,u64 length)1934 static int gen6_alloc_va_range(struct i915_address_space *vm,
1935 u64 start, u64 length)
1936 {
1937 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1938 struct i915_page_table *pt;
1939 u64 from = start;
1940 unsigned int pde;
1941 bool flush = false;
1942
1943 gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1944 const unsigned int count = gen6_pte_count(start, length);
1945
1946 if (pt == vm->scratch_pt) {
1947 pt = alloc_pt(vm);
1948 if (IS_ERR(pt))
1949 goto unwind_out;
1950
1951 gen6_initialize_pt(ppgtt, pt);
1952 ppgtt->base.pd.page_table[pde] = pt;
1953
1954 if (i915_vma_is_bound(ppgtt->vma,
1955 I915_VMA_GLOBAL_BIND)) {
1956 gen6_write_pde(ppgtt, pde, pt);
1957 flush = true;
1958 }
1959
1960 GEM_BUG_ON(pt->used_ptes);
1961 }
1962
1963 pt->used_ptes += count;
1964 }
1965
1966 if (flush) {
1967 mark_tlbs_dirty(&ppgtt->base);
1968 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1969 }
1970
1971 return 0;
1972
1973 unwind_out:
1974 gen6_ppgtt_clear_range(vm, from, start - from);
1975 return -ENOMEM;
1976 }
1977
gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt * ppgtt)1978 static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1979 {
1980 struct i915_address_space * const vm = &ppgtt->base.vm;
1981 struct i915_page_table *unused;
1982 u32 pde;
1983 int ret;
1984
1985 ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1986 if (ret)
1987 return ret;
1988
1989 ppgtt->scratch_pte =
1990 vm->pte_encode(vm->scratch_page.daddr,
1991 I915_CACHE_NONE, PTE_READ_ONLY);
1992
1993 vm->scratch_pt = alloc_pt(vm);
1994 if (IS_ERR(vm->scratch_pt)) {
1995 cleanup_scratch_page(vm);
1996 return PTR_ERR(vm->scratch_pt);
1997 }
1998
1999 gen6_initialize_pt(ppgtt, vm->scratch_pt);
2000 gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
2001 ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
2002
2003 return 0;
2004 }
2005
gen6_ppgtt_free_scratch(struct i915_address_space * vm)2006 static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
2007 {
2008 free_pt(vm, vm->scratch_pt);
2009 cleanup_scratch_page(vm);
2010 }
2011
gen6_ppgtt_free_pd(struct gen6_hw_ppgtt * ppgtt)2012 static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2013 {
2014 struct i915_page_table *pt;
2015 u32 pde;
2016
2017 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2018 if (pt != ppgtt->base.vm.scratch_pt)
2019 free_pt(&ppgtt->base.vm, pt);
2020 }
2021
gen6_ppgtt_cleanup(struct i915_address_space * vm)2022 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
2023 {
2024 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2025
2026 i915_vma_destroy(ppgtt->vma);
2027
2028 gen6_ppgtt_free_pd(ppgtt);
2029 gen6_ppgtt_free_scratch(vm);
2030 }
2031
pd_vma_set_pages(struct i915_vma * vma)2032 static int pd_vma_set_pages(struct i915_vma *vma)
2033 {
2034 vma->pages = ERR_PTR(-ENODEV);
2035 return 0;
2036 }
2037
pd_vma_clear_pages(struct i915_vma * vma)2038 static void pd_vma_clear_pages(struct i915_vma *vma)
2039 {
2040 GEM_BUG_ON(!vma->pages);
2041
2042 vma->pages = NULL;
2043 }
2044
pd_vma_bind(struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2045 static int pd_vma_bind(struct i915_vma *vma,
2046 enum i915_cache_level cache_level,
2047 u32 unused)
2048 {
2049 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2050 struct gen6_hw_ppgtt *ppgtt = vma->private;
2051 u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
2052 struct i915_page_table *pt;
2053 unsigned int pde;
2054
2055 ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2056 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2057
2058 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2059 gen6_write_pde(ppgtt, pde, pt);
2060
2061 mark_tlbs_dirty(&ppgtt->base);
2062 gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2063
2064 return 0;
2065 }
2066
pd_vma_unbind(struct i915_vma * vma)2067 static void pd_vma_unbind(struct i915_vma *vma)
2068 {
2069 struct gen6_hw_ppgtt *ppgtt = vma->private;
2070 struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
2071 struct i915_page_table *pt;
2072 unsigned int pde;
2073
2074 if (!ppgtt->scan_for_unused_pt)
2075 return;
2076
2077 /* Free all no longer used page tables */
2078 gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2079 if (pt->used_ptes || pt == scratch_pt)
2080 continue;
2081
2082 free_pt(&ppgtt->base.vm, pt);
2083 ppgtt->base.pd.page_table[pde] = scratch_pt;
2084 }
2085
2086 ppgtt->scan_for_unused_pt = false;
2087 }
2088
2089 static const struct i915_vma_ops pd_vma_ops = {
2090 .set_pages = pd_vma_set_pages,
2091 .clear_pages = pd_vma_clear_pages,
2092 .bind_vma = pd_vma_bind,
2093 .unbind_vma = pd_vma_unbind,
2094 };
2095
pd_vma_create(struct gen6_hw_ppgtt * ppgtt,int size)2096 static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
2097 {
2098 struct drm_i915_private *i915 = ppgtt->base.vm.i915;
2099 struct i915_ggtt *ggtt = &i915->ggtt;
2100 struct i915_vma *vma;
2101
2102 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
2103 GEM_BUG_ON(size > ggtt->vm.total);
2104
2105 vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
2106 if (!vma)
2107 return ERR_PTR(-ENOMEM);
2108
2109 init_request_active(&vma->last_fence, NULL);
2110
2111 vma->vm = &ggtt->vm;
2112 vma->ops = &pd_vma_ops;
2113 vma->private = ppgtt;
2114
2115 vma->active = RB_ROOT;
2116
2117 vma->size = size;
2118 vma->fence_size = size;
2119 vma->flags = I915_VMA_GGTT;
2120 vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
2121
2122 INIT_LIST_HEAD(&vma->obj_link);
2123 list_add(&vma->vm_link, &vma->vm->unbound_list);
2124
2125 return vma;
2126 }
2127
gen6_ppgtt_pin(struct i915_hw_ppgtt * base)2128 int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2129 {
2130 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2131
2132 /*
2133 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
2134 * which will be pinned into every active context.
2135 * (When vma->pin_count becomes atomic, I expect we will naturally
2136 * need a larger, unpacked, type and kill this redundancy.)
2137 */
2138 if (ppgtt->pin_count++)
2139 return 0;
2140
2141 /*
2142 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2143 * allocator works in address space sizes, so it's multiplied by page
2144 * size. We allocate at the top of the GTT to avoid fragmentation.
2145 */
2146 return i915_vma_pin(ppgtt->vma,
2147 0, GEN6_PD_ALIGN,
2148 PIN_GLOBAL | PIN_HIGH);
2149 }
2150
gen6_ppgtt_unpin(struct i915_hw_ppgtt * base)2151 void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
2152 {
2153 struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2154
2155 GEM_BUG_ON(!ppgtt->pin_count);
2156 if (--ppgtt->pin_count)
2157 return;
2158
2159 i915_vma_unpin(ppgtt->vma);
2160 }
2161
gen6_ppgtt_create(struct drm_i915_private * i915)2162 static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2163 {
2164 struct i915_ggtt * const ggtt = &i915->ggtt;
2165 struct gen6_hw_ppgtt *ppgtt;
2166 int err;
2167
2168 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2169 if (!ppgtt)
2170 return ERR_PTR(-ENOMEM);
2171
2172 kref_init(&ppgtt->base.ref);
2173
2174 ppgtt->base.vm.i915 = i915;
2175 ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2176
2177 ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2178
2179 i915_address_space_init(&ppgtt->base.vm, i915);
2180
2181 ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2182 ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
2183 ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
2184 ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2185 ppgtt->base.debug_dump = gen6_dump_ppgtt;
2186
2187 ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma;
2188 ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
2189 ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages;
2190 ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2191
2192 ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
2193
2194 err = gen6_ppgtt_init_scratch(ppgtt);
2195 if (err)
2196 goto err_free;
2197
2198 ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
2199 if (IS_ERR(ppgtt->vma)) {
2200 err = PTR_ERR(ppgtt->vma);
2201 goto err_scratch;
2202 }
2203
2204 return &ppgtt->base;
2205
2206 err_scratch:
2207 gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2208 err_free:
2209 kfree(ppgtt);
2210 return ERR_PTR(err);
2211 }
2212
gtt_write_workarounds(struct drm_i915_private * dev_priv)2213 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2214 {
2215 /* This function is for gtt related workarounds. This function is
2216 * called on driver load and after a GPU reset, so you can place
2217 * workarounds here even if they get overwritten by GPU reset.
2218 */
2219 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2220 if (IS_BROADWELL(dev_priv))
2221 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2222 else if (IS_CHERRYVIEW(dev_priv))
2223 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2224 else if (IS_GEN9_LP(dev_priv))
2225 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2226 else if (INTEL_GEN(dev_priv) >= 9)
2227 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2228
2229 /*
2230 * To support 64K PTEs we need to first enable the use of the
2231 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2232 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2233 * shouldn't be needed after GEN10.
2234 *
2235 * 64K pages were first introduced from BDW+, although technically they
2236 * only *work* from gen9+. For pre-BDW we instead have the option for
2237 * 32K pages, but we don't currently have any support for it in our
2238 * driver.
2239 */
2240 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2241 INTEL_GEN(dev_priv) <= 10)
2242 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2243 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2244 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2245 }
2246
i915_ppgtt_init_hw(struct drm_i915_private * dev_priv)2247 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2248 {
2249 gtt_write_workarounds(dev_priv);
2250
2251 /* In the case of execlists, PPGTT is enabled by the context descriptor
2252 * and the PDPs are contained within the context itself. We don't
2253 * need to do anything here. */
2254 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2255 return 0;
2256
2257 if (!USES_PPGTT(dev_priv))
2258 return 0;
2259
2260 if (IS_GEN6(dev_priv))
2261 gen6_ppgtt_enable(dev_priv);
2262 else if (IS_GEN7(dev_priv))
2263 gen7_ppgtt_enable(dev_priv);
2264 else if (INTEL_GEN(dev_priv) >= 8)
2265 gen8_ppgtt_enable(dev_priv);
2266 else
2267 MISSING_CASE(INTEL_GEN(dev_priv));
2268
2269 return 0;
2270 }
2271
2272 static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private * i915)2273 __hw_ppgtt_create(struct drm_i915_private *i915)
2274 {
2275 if (INTEL_GEN(i915) < 8)
2276 return gen6_ppgtt_create(i915);
2277 else
2278 return gen8_ppgtt_create(i915);
2279 }
2280
2281 struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private * i915,struct drm_i915_file_private * fpriv)2282 i915_ppgtt_create(struct drm_i915_private *i915,
2283 struct drm_i915_file_private *fpriv)
2284 {
2285 struct i915_hw_ppgtt *ppgtt;
2286
2287 ppgtt = __hw_ppgtt_create(i915);
2288 if (IS_ERR(ppgtt))
2289 return ppgtt;
2290
2291 ppgtt->vm.file = fpriv;
2292
2293 trace_i915_ppgtt_create(&ppgtt->vm);
2294
2295 return ppgtt;
2296 }
2297
i915_ppgtt_close(struct i915_address_space * vm)2298 void i915_ppgtt_close(struct i915_address_space *vm)
2299 {
2300 GEM_BUG_ON(vm->closed);
2301 vm->closed = true;
2302 }
2303
ppgtt_destroy_vma(struct i915_address_space * vm)2304 static void ppgtt_destroy_vma(struct i915_address_space *vm)
2305 {
2306 struct list_head *phases[] = {
2307 &vm->active_list,
2308 &vm->inactive_list,
2309 &vm->unbound_list,
2310 NULL,
2311 }, **phase;
2312
2313 vm->closed = true;
2314 for (phase = phases; *phase; phase++) {
2315 struct i915_vma *vma, *vn;
2316
2317 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2318 i915_vma_destroy(vma);
2319 }
2320 }
2321
i915_ppgtt_release(struct kref * kref)2322 void i915_ppgtt_release(struct kref *kref)
2323 {
2324 struct i915_hw_ppgtt *ppgtt =
2325 container_of(kref, struct i915_hw_ppgtt, ref);
2326
2327 trace_i915_ppgtt_release(&ppgtt->vm);
2328
2329 ppgtt_destroy_vma(&ppgtt->vm);
2330
2331 GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
2332 GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
2333 GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2334
2335 ppgtt->vm.cleanup(&ppgtt->vm);
2336 i915_address_space_fini(&ppgtt->vm);
2337 kfree(ppgtt);
2338 }
2339
2340 /* Certain Gen5 chipsets require require idling the GPU before
2341 * unmapping anything from the GTT when VT-d is enabled.
2342 */
needs_idle_maps(struct drm_i915_private * dev_priv)2343 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2344 {
2345 /* Query intel_iommu to see if we need the workaround. Presumably that
2346 * was loaded first.
2347 */
2348 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2349 }
2350
gen6_check_and_clear_faults(struct drm_i915_private * dev_priv)2351 static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2352 {
2353 struct intel_engine_cs *engine;
2354 enum intel_engine_id id;
2355 u32 fault;
2356
2357 for_each_engine(engine, dev_priv, id) {
2358 fault = I915_READ(RING_FAULT_REG(engine));
2359 if (fault & RING_FAULT_VALID) {
2360 DRM_DEBUG_DRIVER("Unexpected fault\n"
2361 "\tAddr: 0x%08lx\n"
2362 "\tAddress space: %s\n"
2363 "\tSource ID: %d\n"
2364 "\tType: %d\n",
2365 fault & PAGE_MASK,
2366 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2367 RING_FAULT_SRCID(fault),
2368 RING_FAULT_FAULT_TYPE(fault));
2369 I915_WRITE(RING_FAULT_REG(engine),
2370 fault & ~RING_FAULT_VALID);
2371 }
2372 }
2373
2374 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2375 }
2376
gen8_check_and_clear_faults(struct drm_i915_private * dev_priv)2377 static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2378 {
2379 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2380
2381 if (fault & RING_FAULT_VALID) {
2382 u32 fault_data0, fault_data1;
2383 u64 fault_addr;
2384
2385 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2386 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2387 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2388 ((u64)fault_data0 << 12);
2389
2390 DRM_DEBUG_DRIVER("Unexpected fault\n"
2391 "\tAddr: 0x%08x_%08x\n"
2392 "\tAddress space: %s\n"
2393 "\tEngine ID: %d\n"
2394 "\tSource ID: %d\n"
2395 "\tType: %d\n",
2396 upper_32_bits(fault_addr),
2397 lower_32_bits(fault_addr),
2398 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2399 GEN8_RING_FAULT_ENGINE_ID(fault),
2400 RING_FAULT_SRCID(fault),
2401 RING_FAULT_FAULT_TYPE(fault));
2402 I915_WRITE(GEN8_RING_FAULT_REG,
2403 fault & ~RING_FAULT_VALID);
2404 }
2405
2406 POSTING_READ(GEN8_RING_FAULT_REG);
2407 }
2408
i915_check_and_clear_faults(struct drm_i915_private * dev_priv)2409 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2410 {
2411 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2412 if (INTEL_GEN(dev_priv) >= 8)
2413 gen8_check_and_clear_faults(dev_priv);
2414 else if (INTEL_GEN(dev_priv) >= 6)
2415 gen6_check_and_clear_faults(dev_priv);
2416 else
2417 return;
2418 }
2419
i915_gem_suspend_gtt_mappings(struct drm_i915_private * dev_priv)2420 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2421 {
2422 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2423
2424 /* Don't bother messing with faults pre GEN6 as we have little
2425 * documentation supporting that it's a good idea.
2426 */
2427 if (INTEL_GEN(dev_priv) < 6)
2428 return;
2429
2430 i915_check_and_clear_faults(dev_priv);
2431
2432 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2433
2434 i915_ggtt_invalidate(dev_priv);
2435 }
2436
i915_gem_gtt_prepare_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2437 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2438 struct sg_table *pages)
2439 {
2440 do {
2441 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2442 pages->sgl, pages->nents,
2443 PCI_DMA_BIDIRECTIONAL,
2444 DMA_ATTR_NO_WARN))
2445 return 0;
2446
2447 /* If the DMA remap fails, one cause can be that we have
2448 * too many objects pinned in a small remapping table,
2449 * such as swiotlb. Incrementally purge all other objects and
2450 * try again - if there are no more pages to remove from
2451 * the DMA remapper, i915_gem_shrink will return 0.
2452 */
2453 GEM_BUG_ON(obj->mm.pages == pages);
2454 } while (i915_gem_shrink(to_i915(obj->base.dev),
2455 obj->base.size >> PAGE_SHIFT, NULL,
2456 I915_SHRINK_BOUND |
2457 I915_SHRINK_UNBOUND |
2458 I915_SHRINK_ACTIVE));
2459
2460 return -ENOSPC;
2461 }
2462
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)2463 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2464 {
2465 writeq(pte, addr);
2466 }
2467
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2468 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2469 dma_addr_t addr,
2470 u64 offset,
2471 enum i915_cache_level level,
2472 u32 unused)
2473 {
2474 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2475 gen8_pte_t __iomem *pte =
2476 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2477
2478 gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2479
2480 ggtt->invalidate(vm->i915);
2481 }
2482
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2483 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2484 struct i915_vma *vma,
2485 enum i915_cache_level level,
2486 u32 flags)
2487 {
2488 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2489 struct sgt_iter sgt_iter;
2490 gen8_pte_t __iomem *gtt_entries;
2491 const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2492 dma_addr_t addr;
2493
2494 /*
2495 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
2496 * not to allow the user to override access to a read only page.
2497 */
2498
2499 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2500 gtt_entries += vma->node.start >> PAGE_SHIFT;
2501 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2502 gen8_set_pte(gtt_entries++, pte_encode | addr);
2503
2504 /*
2505 * We want to flush the TLBs only after we're certain all the PTE
2506 * updates have finished.
2507 */
2508 ggtt->invalidate(vm->i915);
2509 }
2510
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 flags)2511 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2512 dma_addr_t addr,
2513 u64 offset,
2514 enum i915_cache_level level,
2515 u32 flags)
2516 {
2517 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2518 gen6_pte_t __iomem *pte =
2519 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2520
2521 iowrite32(vm->pte_encode(addr, level, flags), pte);
2522
2523 ggtt->invalidate(vm->i915);
2524 }
2525
2526 /*
2527 * Binds an object into the global gtt with the specified cache level. The object
2528 * will be accessible to the GPU via commands whose operands reference offsets
2529 * within the global GTT as well as accessible by the GPU through the GMADR
2530 * mapped BAR (dev_priv->mm.gtt->gtt).
2531 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2532 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2533 struct i915_vma *vma,
2534 enum i915_cache_level level,
2535 u32 flags)
2536 {
2537 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2538 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2539 unsigned int i = vma->node.start >> PAGE_SHIFT;
2540 struct sgt_iter iter;
2541 dma_addr_t addr;
2542 for_each_sgt_dma(addr, iter, vma->pages)
2543 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2544
2545 /*
2546 * We want to flush the TLBs only after we're certain all the PTE
2547 * updates have finished.
2548 */
2549 ggtt->invalidate(vm->i915);
2550 }
2551
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)2552 static void nop_clear_range(struct i915_address_space *vm,
2553 u64 start, u64 length)
2554 {
2555 }
2556
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2557 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2558 u64 start, u64 length)
2559 {
2560 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2561 unsigned first_entry = start >> PAGE_SHIFT;
2562 unsigned num_entries = length >> PAGE_SHIFT;
2563 const gen8_pte_t scratch_pte =
2564 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2565 gen8_pte_t __iomem *gtt_base =
2566 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2567 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2568 int i;
2569
2570 if (WARN(num_entries > max_entries,
2571 "First entry = %d; Num entries = %d (max=%d)\n",
2572 first_entry, num_entries, max_entries))
2573 num_entries = max_entries;
2574
2575 for (i = 0; i < num_entries; i++)
2576 gen8_set_pte(>t_base[i], scratch_pte);
2577 }
2578
bxt_vtd_ggtt_wa(struct i915_address_space * vm)2579 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2580 {
2581 struct drm_i915_private *dev_priv = vm->i915;
2582
2583 /*
2584 * Make sure the internal GAM fifo has been cleared of all GTT
2585 * writes before exiting stop_machine(). This guarantees that
2586 * any aperture accesses waiting to start in another process
2587 * cannot back up behind the GTT writes causing a hang.
2588 * The register can be any arbitrary GAM register.
2589 */
2590 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2591 }
2592
2593 struct insert_page {
2594 struct i915_address_space *vm;
2595 dma_addr_t addr;
2596 u64 offset;
2597 enum i915_cache_level level;
2598 };
2599
bxt_vtd_ggtt_insert_page__cb(void * _arg)2600 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2601 {
2602 struct insert_page *arg = _arg;
2603
2604 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2605 bxt_vtd_ggtt_wa(arg->vm);
2606
2607 return 0;
2608 }
2609
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level level,u32 unused)2610 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2611 dma_addr_t addr,
2612 u64 offset,
2613 enum i915_cache_level level,
2614 u32 unused)
2615 {
2616 struct insert_page arg = { vm, addr, offset, level };
2617
2618 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2619 }
2620
2621 struct insert_entries {
2622 struct i915_address_space *vm;
2623 struct i915_vma *vma;
2624 enum i915_cache_level level;
2625 u32 flags;
2626 };
2627
bxt_vtd_ggtt_insert_entries__cb(void * _arg)2628 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2629 {
2630 struct insert_entries *arg = _arg;
2631
2632 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2633 bxt_vtd_ggtt_wa(arg->vm);
2634
2635 return 0;
2636 }
2637
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level level,u32 flags)2638 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2639 struct i915_vma *vma,
2640 enum i915_cache_level level,
2641 u32 flags)
2642 {
2643 struct insert_entries arg = { vm, vma, level, flags };
2644
2645 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2646 }
2647
2648 struct clear_range {
2649 struct i915_address_space *vm;
2650 u64 start;
2651 u64 length;
2652 };
2653
bxt_vtd_ggtt_clear_range__cb(void * _arg)2654 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2655 {
2656 struct clear_range *arg = _arg;
2657
2658 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2659 bxt_vtd_ggtt_wa(arg->vm);
2660
2661 return 0;
2662 }
2663
bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space * vm,u64 start,u64 length)2664 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2665 u64 start,
2666 u64 length)
2667 {
2668 struct clear_range arg = { vm, start, length };
2669
2670 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2671 }
2672
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2673 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2674 u64 start, u64 length)
2675 {
2676 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2677 unsigned first_entry = start >> PAGE_SHIFT;
2678 unsigned num_entries = length >> PAGE_SHIFT;
2679 gen6_pte_t scratch_pte, __iomem *gtt_base =
2680 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2681 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2682 int i;
2683
2684 if (WARN(num_entries > max_entries,
2685 "First entry = %d; Num entries = %d (max=%d)\n",
2686 first_entry, num_entries, max_entries))
2687 num_entries = max_entries;
2688
2689 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2690 I915_CACHE_LLC, 0);
2691
2692 for (i = 0; i < num_entries; i++)
2693 iowrite32(scratch_pte, >t_base[i]);
2694 }
2695
i915_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,enum i915_cache_level cache_level,u32 unused)2696 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2697 dma_addr_t addr,
2698 u64 offset,
2699 enum i915_cache_level cache_level,
2700 u32 unused)
2701 {
2702 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2703 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2704
2705 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2706 }
2707
i915_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma * vma,enum i915_cache_level cache_level,u32 unused)2708 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2709 struct i915_vma *vma,
2710 enum i915_cache_level cache_level,
2711 u32 unused)
2712 {
2713 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2714 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2715
2716 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2717 flags);
2718 }
2719
i915_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)2720 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2721 u64 start, u64 length)
2722 {
2723 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2724 }
2725
ggtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2726 static int ggtt_bind_vma(struct i915_vma *vma,
2727 enum i915_cache_level cache_level,
2728 u32 flags)
2729 {
2730 struct drm_i915_private *i915 = vma->vm->i915;
2731 struct drm_i915_gem_object *obj = vma->obj;
2732 u32 pte_flags;
2733
2734 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2735 pte_flags = 0;
2736 if (i915_gem_object_is_readonly(obj))
2737 pte_flags |= PTE_READ_ONLY;
2738
2739 intel_runtime_pm_get(i915);
2740 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2741 intel_runtime_pm_put(i915);
2742
2743 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2744
2745 /*
2746 * Without aliasing PPGTT there's no difference between
2747 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2748 * upgrade to both bound if we bind either to avoid double-binding.
2749 */
2750 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2751
2752 return 0;
2753 }
2754
ggtt_unbind_vma(struct i915_vma * vma)2755 static void ggtt_unbind_vma(struct i915_vma *vma)
2756 {
2757 struct drm_i915_private *i915 = vma->vm->i915;
2758
2759 intel_runtime_pm_get(i915);
2760 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2761 intel_runtime_pm_put(i915);
2762 }
2763
aliasing_gtt_bind_vma(struct i915_vma * vma,enum i915_cache_level cache_level,u32 flags)2764 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2765 enum i915_cache_level cache_level,
2766 u32 flags)
2767 {
2768 struct drm_i915_private *i915 = vma->vm->i915;
2769 u32 pte_flags;
2770 int ret;
2771
2772 /* Currently applicable only to VLV */
2773 pte_flags = 0;
2774 if (i915_gem_object_is_readonly(vma->obj))
2775 pte_flags |= PTE_READ_ONLY;
2776
2777 if (flags & I915_VMA_LOCAL_BIND) {
2778 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2779
2780 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2781 ret = appgtt->vm.allocate_va_range(&appgtt->vm,
2782 vma->node.start,
2783 vma->size);
2784 if (ret)
2785 return ret;
2786 }
2787
2788 appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
2789 pte_flags);
2790 }
2791
2792 if (flags & I915_VMA_GLOBAL_BIND) {
2793 intel_runtime_pm_get(i915);
2794 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2795 intel_runtime_pm_put(i915);
2796 }
2797
2798 return 0;
2799 }
2800
aliasing_gtt_unbind_vma(struct i915_vma * vma)2801 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2802 {
2803 struct drm_i915_private *i915 = vma->vm->i915;
2804
2805 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2806 intel_runtime_pm_get(i915);
2807 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2808 intel_runtime_pm_put(i915);
2809 }
2810
2811 if (vma->flags & I915_VMA_LOCAL_BIND) {
2812 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2813
2814 vm->clear_range(vm, vma->node.start, vma->size);
2815 }
2816 }
2817
i915_gem_gtt_finish_pages(struct drm_i915_gem_object * obj,struct sg_table * pages)2818 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2819 struct sg_table *pages)
2820 {
2821 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2822 struct device *kdev = &dev_priv->drm.pdev->dev;
2823 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2824
2825 if (unlikely(ggtt->do_idle_maps)) {
2826 if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2827 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2828 /* Wait a bit, in hopes it avoids the hang */
2829 udelay(10);
2830 }
2831 }
2832
2833 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2834 }
2835
ggtt_set_pages(struct i915_vma * vma)2836 static int ggtt_set_pages(struct i915_vma *vma)
2837 {
2838 int ret;
2839
2840 GEM_BUG_ON(vma->pages);
2841
2842 ret = i915_get_ggtt_vma_pages(vma);
2843 if (ret)
2844 return ret;
2845
2846 vma->page_sizes = vma->obj->mm.page_sizes;
2847
2848 return 0;
2849 }
2850
i915_gtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)2851 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2852 unsigned long color,
2853 u64 *start,
2854 u64 *end)
2855 {
2856 if (node->allocated && node->color != color)
2857 *start += I915_GTT_PAGE_SIZE;
2858
2859 /* Also leave a space between the unallocated reserved node after the
2860 * GTT and any objects within the GTT, i.e. we use the color adjustment
2861 * to insert a guard page to prevent prefetches crossing over the
2862 * GTT boundary.
2863 */
2864 node = list_next_entry(node, node_list);
2865 if (node->color != color)
2866 *end -= I915_GTT_PAGE_SIZE;
2867 }
2868
i915_gem_init_aliasing_ppgtt(struct drm_i915_private * i915)2869 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2870 {
2871 struct i915_ggtt *ggtt = &i915->ggtt;
2872 struct i915_hw_ppgtt *ppgtt;
2873 int err;
2874
2875 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2876 if (IS_ERR(ppgtt))
2877 return PTR_ERR(ppgtt);
2878
2879 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2880 err = -ENODEV;
2881 goto err_ppgtt;
2882 }
2883
2884 /*
2885 * Note we only pre-allocate as far as the end of the global
2886 * GTT. On 48b / 4-level page-tables, the difference is very,
2887 * very significant! We have to preallocate as GVT/vgpu does
2888 * not like the page directory disappearing.
2889 */
2890 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
2891 if (err)
2892 goto err_ppgtt;
2893
2894 i915->mm.aliasing_ppgtt = ppgtt;
2895
2896 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
2897 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2898
2899 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
2900 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2901
2902 return 0;
2903
2904 err_ppgtt:
2905 i915_ppgtt_put(ppgtt);
2906 return err;
2907 }
2908
i915_gem_fini_aliasing_ppgtt(struct drm_i915_private * i915)2909 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2910 {
2911 struct i915_ggtt *ggtt = &i915->ggtt;
2912 struct i915_hw_ppgtt *ppgtt;
2913
2914 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2915 if (!ppgtt)
2916 return;
2917
2918 i915_ppgtt_put(ppgtt);
2919
2920 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
2921 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2922 }
2923
i915_gem_init_ggtt(struct drm_i915_private * dev_priv)2924 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2925 {
2926 /* Let GEM Manage all of the aperture.
2927 *
2928 * However, leave one page at the end still bound to the scratch page.
2929 * There are a number of places where the hardware apparently prefetches
2930 * past the end of the object, and we've seen multiple hangs with the
2931 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2932 * aperture. One page should be enough to keep any prefetching inside
2933 * of the aperture.
2934 */
2935 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2936 unsigned long hole_start, hole_end;
2937 struct drm_mm_node *entry;
2938 int ret;
2939
2940 ret = intel_vgt_balloon(dev_priv);
2941 if (ret)
2942 return ret;
2943
2944 /* Reserve a mappable slot for our lockless error capture */
2945 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2946 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2947 0, ggtt->mappable_end,
2948 DRM_MM_INSERT_LOW);
2949 if (ret)
2950 return ret;
2951
2952 /* Clear any non-preallocated blocks */
2953 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2954 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2955 hole_start, hole_end);
2956 ggtt->vm.clear_range(&ggtt->vm, hole_start,
2957 hole_end - hole_start);
2958 }
2959
2960 /* And finally clear the reserved guard page */
2961 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2962
2963 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2964 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2965 if (ret)
2966 goto err;
2967 }
2968
2969 return 0;
2970
2971 err:
2972 drm_mm_remove_node(&ggtt->error_capture);
2973 return ret;
2974 }
2975
2976 /**
2977 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2978 * @dev_priv: i915 device
2979 */
i915_ggtt_cleanup_hw(struct drm_i915_private * dev_priv)2980 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2981 {
2982 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2983 struct i915_vma *vma, *vn;
2984 struct pagevec *pvec;
2985
2986 ggtt->vm.closed = true;
2987
2988 mutex_lock(&dev_priv->drm.struct_mutex);
2989 i915_gem_fini_aliasing_ppgtt(dev_priv);
2990
2991 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
2992 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2993 WARN_ON(i915_vma_unbind(vma));
2994
2995 if (drm_mm_node_allocated(&ggtt->error_capture))
2996 drm_mm_remove_node(&ggtt->error_capture);
2997
2998 if (drm_mm_initialized(&ggtt->vm.mm)) {
2999 intel_vgt_deballoon(dev_priv);
3000 i915_address_space_fini(&ggtt->vm);
3001 }
3002
3003 ggtt->vm.cleanup(&ggtt->vm);
3004
3005 pvec = &dev_priv->mm.wc_stash.pvec;
3006 if (pvec->nr) {
3007 set_pages_array_wb(pvec->pages, pvec->nr);
3008 __pagevec_release(pvec);
3009 }
3010
3011 mutex_unlock(&dev_priv->drm.struct_mutex);
3012
3013 arch_phys_wc_del(ggtt->mtrr);
3014 io_mapping_fini(&ggtt->iomap);
3015
3016 i915_gem_cleanup_stolen(&dev_priv->drm);
3017 }
3018
gen6_get_total_gtt_size(u16 snb_gmch_ctl)3019 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3020 {
3021 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
3022 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
3023 return snb_gmch_ctl << 20;
3024 }
3025
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)3026 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3027 {
3028 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
3029 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
3030 if (bdw_gmch_ctl)
3031 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3032
3033 #ifdef CONFIG_X86_32
3034 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
3035 if (bdw_gmch_ctl > 4)
3036 bdw_gmch_ctl = 4;
3037 #endif
3038
3039 return bdw_gmch_ctl << 20;
3040 }
3041
chv_get_total_gtt_size(u16 gmch_ctrl)3042 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3043 {
3044 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
3045 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
3046
3047 if (gmch_ctrl)
3048 return 1 << (20 + gmch_ctrl);
3049
3050 return 0;
3051 }
3052
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)3053 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
3054 {
3055 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3056 struct pci_dev *pdev = dev_priv->drm.pdev;
3057 phys_addr_t phys_addr;
3058 int ret;
3059
3060 /* For Modern GENs the PTEs and register space are split in the BAR */
3061 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
3062
3063 /*
3064 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
3065 * will be dropped. For WC mappings in general we have 64 byte burst
3066 * writes when the WC buffer is flushed, so we can't use it, but have to
3067 * resort to an uncached mapping. The WC issue is easily caught by the
3068 * readback check when writing GTT PTE entries.
3069 */
3070 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3071 ggtt->gsm = ioremap_nocache(phys_addr, size);
3072 else
3073 ggtt->gsm = ioremap_wc(phys_addr, size);
3074 if (!ggtt->gsm) {
3075 DRM_ERROR("Failed to map the ggtt page table\n");
3076 return -ENOMEM;
3077 }
3078
3079 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3080 if (ret) {
3081 DRM_ERROR("Scratch setup failed\n");
3082 /* iounmap will also get called at remove, but meh */
3083 iounmap(ggtt->gsm);
3084 return ret;
3085 }
3086
3087 return 0;
3088 }
3089
3090 static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat * ppat,unsigned int index,u8 value)3091 __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3092 {
3093 struct intel_ppat_entry *entry = &ppat->entries[index];
3094
3095 GEM_BUG_ON(index >= ppat->max_entries);
3096 GEM_BUG_ON(test_bit(index, ppat->used));
3097
3098 entry->ppat = ppat;
3099 entry->value = value;
3100 kref_init(&entry->ref);
3101 set_bit(index, ppat->used);
3102 set_bit(index, ppat->dirty);
3103
3104 return entry;
3105 }
3106
__free_ppat_entry(struct intel_ppat_entry * entry)3107 static void __free_ppat_entry(struct intel_ppat_entry *entry)
3108 {
3109 struct intel_ppat *ppat = entry->ppat;
3110 unsigned int index = entry - ppat->entries;
3111
3112 GEM_BUG_ON(index >= ppat->max_entries);
3113 GEM_BUG_ON(!test_bit(index, ppat->used));
3114
3115 entry->value = ppat->clear_value;
3116 clear_bit(index, ppat->used);
3117 set_bit(index, ppat->dirty);
3118 }
3119
3120 /**
3121 * intel_ppat_get - get a usable PPAT entry
3122 * @i915: i915 device instance
3123 * @value: the PPAT value required by the caller
3124 *
3125 * The function tries to search if there is an existing PPAT entry which
3126 * matches with the required value. If perfectly matched, the existing PPAT
3127 * entry will be used. If only partially matched, it will try to check if
3128 * there is any available PPAT index. If yes, it will allocate a new PPAT
3129 * index for the required entry and update the HW. If not, the partially
3130 * matched entry will be used.
3131 */
3132 const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private * i915,u8 value)3133 intel_ppat_get(struct drm_i915_private *i915, u8 value)
3134 {
3135 struct intel_ppat *ppat = &i915->ppat;
3136 struct intel_ppat_entry *entry = NULL;
3137 unsigned int scanned, best_score;
3138 int i;
3139
3140 GEM_BUG_ON(!ppat->max_entries);
3141
3142 scanned = best_score = 0;
3143 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3144 unsigned int score;
3145
3146 score = ppat->match(ppat->entries[i].value, value);
3147 if (score > best_score) {
3148 entry = &ppat->entries[i];
3149 if (score == INTEL_PPAT_PERFECT_MATCH) {
3150 kref_get(&entry->ref);
3151 return entry;
3152 }
3153 best_score = score;
3154 }
3155 scanned++;
3156 }
3157
3158 if (scanned == ppat->max_entries) {
3159 if (!entry)
3160 return ERR_PTR(-ENOSPC);
3161
3162 kref_get(&entry->ref);
3163 return entry;
3164 }
3165
3166 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3167 entry = __alloc_ppat_entry(ppat, i, value);
3168 ppat->update_hw(i915);
3169 return entry;
3170 }
3171
release_ppat(struct kref * kref)3172 static void release_ppat(struct kref *kref)
3173 {
3174 struct intel_ppat_entry *entry =
3175 container_of(kref, struct intel_ppat_entry, ref);
3176 struct drm_i915_private *i915 = entry->ppat->i915;
3177
3178 __free_ppat_entry(entry);
3179 entry->ppat->update_hw(i915);
3180 }
3181
3182 /**
3183 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3184 * @entry: an intel PPAT entry
3185 *
3186 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3187 * entry is dynamically allocated, its reference count will be decreased. Once
3188 * the reference count becomes into zero, the PPAT index becomes free again.
3189 */
intel_ppat_put(const struct intel_ppat_entry * entry)3190 void intel_ppat_put(const struct intel_ppat_entry *entry)
3191 {
3192 struct intel_ppat *ppat = entry->ppat;
3193 unsigned int index = entry - ppat->entries;
3194
3195 GEM_BUG_ON(!ppat->max_entries);
3196
3197 kref_put(&ppat->entries[index].ref, release_ppat);
3198 }
3199
cnl_private_pat_update_hw(struct drm_i915_private * dev_priv)3200 static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3201 {
3202 struct intel_ppat *ppat = &dev_priv->ppat;
3203 int i;
3204
3205 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3206 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3207 clear_bit(i, ppat->dirty);
3208 }
3209 }
3210
bdw_private_pat_update_hw(struct drm_i915_private * dev_priv)3211 static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3212 {
3213 struct intel_ppat *ppat = &dev_priv->ppat;
3214 u64 pat = 0;
3215 int i;
3216
3217 for (i = 0; i < ppat->max_entries; i++)
3218 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3219
3220 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3221
3222 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3223 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3224 }
3225
bdw_private_pat_match(u8 src,u8 dst)3226 static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3227 {
3228 unsigned int score = 0;
3229 enum {
3230 AGE_MATCH = BIT(0),
3231 TC_MATCH = BIT(1),
3232 CA_MATCH = BIT(2),
3233 };
3234
3235 /* Cache attribute has to be matched. */
3236 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3237 return 0;
3238
3239 score |= CA_MATCH;
3240
3241 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3242 score |= TC_MATCH;
3243
3244 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3245 score |= AGE_MATCH;
3246
3247 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3248 return INTEL_PPAT_PERFECT_MATCH;
3249
3250 return score;
3251 }
3252
chv_private_pat_match(u8 src,u8 dst)3253 static unsigned int chv_private_pat_match(u8 src, u8 dst)
3254 {
3255 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3256 INTEL_PPAT_PERFECT_MATCH : 0;
3257 }
3258
cnl_setup_private_ppat(struct intel_ppat * ppat)3259 static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3260 {
3261 ppat->max_entries = 8;
3262 ppat->update_hw = cnl_private_pat_update_hw;
3263 ppat->match = bdw_private_pat_match;
3264 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3265
3266 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3267 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3268 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3269 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3270 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3271 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3272 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3273 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3274 }
3275
3276 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3277 * bits. When using advanced contexts each context stores its own PAT, but
3278 * writing this data shouldn't be harmful even in those cases. */
bdw_setup_private_ppat(struct intel_ppat * ppat)3279 static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3280 {
3281 ppat->max_entries = 8;
3282 ppat->update_hw = bdw_private_pat_update_hw;
3283 ppat->match = bdw_private_pat_match;
3284 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3285
3286 if (!USES_PPGTT(ppat->i915)) {
3287 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3288 * so RTL will always use the value corresponding to
3289 * pat_sel = 000".
3290 * So let's disable cache for GGTT to avoid screen corruptions.
3291 * MOCS still can be used though.
3292 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3293 * before this patch, i.e. the same uncached + snooping access
3294 * like on gen6/7 seems to be in effect.
3295 * - So this just fixes blitter/render access. Again it looks
3296 * like it's not just uncached access, but uncached + snooping.
3297 * So we can still hold onto all our assumptions wrt cpu
3298 * clflushing on LLC machines.
3299 */
3300 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3301 return;
3302 }
3303
3304 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3305 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3306 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3307 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3308 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3309 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3310 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3311 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3312 }
3313
chv_setup_private_ppat(struct intel_ppat * ppat)3314 static void chv_setup_private_ppat(struct intel_ppat *ppat)
3315 {
3316 ppat->max_entries = 8;
3317 ppat->update_hw = bdw_private_pat_update_hw;
3318 ppat->match = chv_private_pat_match;
3319 ppat->clear_value = CHV_PPAT_SNOOP;
3320
3321 /*
3322 * Map WB on BDW to snooped on CHV.
3323 *
3324 * Only the snoop bit has meaning for CHV, the rest is
3325 * ignored.
3326 *
3327 * The hardware will never snoop for certain types of accesses:
3328 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3329 * - PPGTT page tables
3330 * - some other special cycles
3331 *
3332 * As with BDW, we also need to consider the following for GT accesses:
3333 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3334 * so RTL will always use the value corresponding to
3335 * pat_sel = 000".
3336 * Which means we must set the snoop bit in PAT entry 0
3337 * in order to keep the global status page working.
3338 */
3339
3340 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3341 __alloc_ppat_entry(ppat, 1, 0);
3342 __alloc_ppat_entry(ppat, 2, 0);
3343 __alloc_ppat_entry(ppat, 3, 0);
3344 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3345 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3346 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3347 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3348 }
3349
gen6_gmch_remove(struct i915_address_space * vm)3350 static void gen6_gmch_remove(struct i915_address_space *vm)
3351 {
3352 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3353
3354 iounmap(ggtt->gsm);
3355 cleanup_scratch_page(vm);
3356 }
3357
setup_private_pat(struct drm_i915_private * dev_priv)3358 static void setup_private_pat(struct drm_i915_private *dev_priv)
3359 {
3360 struct intel_ppat *ppat = &dev_priv->ppat;
3361 int i;
3362
3363 ppat->i915 = dev_priv;
3364
3365 if (INTEL_GEN(dev_priv) >= 10)
3366 cnl_setup_private_ppat(ppat);
3367 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3368 chv_setup_private_ppat(ppat);
3369 else
3370 bdw_setup_private_ppat(ppat);
3371
3372 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3373
3374 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3375 ppat->entries[i].value = ppat->clear_value;
3376 ppat->entries[i].ppat = ppat;
3377 set_bit(i, ppat->dirty);
3378 }
3379
3380 ppat->update_hw(dev_priv);
3381 }
3382
gen8_gmch_probe(struct i915_ggtt * ggtt)3383 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3384 {
3385 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3386 struct pci_dev *pdev = dev_priv->drm.pdev;
3387 unsigned int size;
3388 u16 snb_gmch_ctl;
3389 int err;
3390
3391 /* TODO: We're not aware of mappable constraints on gen8 yet */
3392 ggtt->gmadr =
3393 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3394 pci_resource_len(pdev, 2));
3395 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3396
3397 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3398 if (!err)
3399 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3400 if (err)
3401 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3402
3403 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3404 if (IS_CHERRYVIEW(dev_priv))
3405 size = chv_get_total_gtt_size(snb_gmch_ctl);
3406 else
3407 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3408
3409 ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3410 ggtt->vm.cleanup = gen6_gmch_remove;
3411 ggtt->vm.insert_page = gen8_ggtt_insert_page;
3412 ggtt->vm.clear_range = nop_clear_range;
3413 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3414 ggtt->vm.clear_range = gen8_ggtt_clear_range;
3415
3416 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3417
3418 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3419 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3420 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3421 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3422 if (ggtt->vm.clear_range != nop_clear_range)
3423 ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3424 }
3425
3426 ggtt->invalidate = gen6_ggtt_invalidate;
3427
3428 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3429 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3430 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3431 ggtt->vm.vma_ops.clear_pages = clear_pages;
3432
3433 setup_private_pat(dev_priv);
3434
3435 return ggtt_probe_common(ggtt, size);
3436 }
3437
gen6_gmch_probe(struct i915_ggtt * ggtt)3438 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3439 {
3440 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3441 struct pci_dev *pdev = dev_priv->drm.pdev;
3442 unsigned int size;
3443 u16 snb_gmch_ctl;
3444 int err;
3445
3446 ggtt->gmadr =
3447 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3448 pci_resource_len(pdev, 2));
3449 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3450
3451 /* 64/512MB is the current min/max we actually know of, but this is just
3452 * a coarse sanity check.
3453 */
3454 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3455 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3456 return -ENXIO;
3457 }
3458
3459 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3460 if (!err)
3461 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3462 if (err)
3463 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3464 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3465
3466 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3467 ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3468
3469 ggtt->vm.clear_range = gen6_ggtt_clear_range;
3470 ggtt->vm.insert_page = gen6_ggtt_insert_page;
3471 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
3472 ggtt->vm.cleanup = gen6_gmch_remove;
3473
3474 ggtt->invalidate = gen6_ggtt_invalidate;
3475
3476 if (HAS_EDRAM(dev_priv))
3477 ggtt->vm.pte_encode = iris_pte_encode;
3478 else if (IS_HASWELL(dev_priv))
3479 ggtt->vm.pte_encode = hsw_pte_encode;
3480 else if (IS_VALLEYVIEW(dev_priv))
3481 ggtt->vm.pte_encode = byt_pte_encode;
3482 else if (INTEL_GEN(dev_priv) >= 7)
3483 ggtt->vm.pte_encode = ivb_pte_encode;
3484 else
3485 ggtt->vm.pte_encode = snb_pte_encode;
3486
3487 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3488 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3489 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3490 ggtt->vm.vma_ops.clear_pages = clear_pages;
3491
3492 return ggtt_probe_common(ggtt, size);
3493 }
3494
i915_gmch_remove(struct i915_address_space * vm)3495 static void i915_gmch_remove(struct i915_address_space *vm)
3496 {
3497 intel_gmch_remove();
3498 }
3499
i915_gmch_probe(struct i915_ggtt * ggtt)3500 static int i915_gmch_probe(struct i915_ggtt *ggtt)
3501 {
3502 struct drm_i915_private *dev_priv = ggtt->vm.i915;
3503 phys_addr_t gmadr_base;
3504 int ret;
3505
3506 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3507 if (!ret) {
3508 DRM_ERROR("failed to set up gmch\n");
3509 return -EIO;
3510 }
3511
3512 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3513
3514 ggtt->gmadr =
3515 (struct resource) DEFINE_RES_MEM(gmadr_base,
3516 ggtt->mappable_end);
3517
3518 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3519 ggtt->vm.insert_page = i915_ggtt_insert_page;
3520 ggtt->vm.insert_entries = i915_ggtt_insert_entries;
3521 ggtt->vm.clear_range = i915_ggtt_clear_range;
3522 ggtt->vm.cleanup = i915_gmch_remove;
3523
3524 ggtt->invalidate = gmch_ggtt_invalidate;
3525
3526 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
3527 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
3528 ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
3529 ggtt->vm.vma_ops.clear_pages = clear_pages;
3530
3531 if (unlikely(ggtt->do_idle_maps))
3532 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3533
3534 return 0;
3535 }
3536
3537 /**
3538 * i915_ggtt_probe_hw - Probe GGTT hardware location
3539 * @dev_priv: i915 device
3540 */
i915_ggtt_probe_hw(struct drm_i915_private * dev_priv)3541 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3542 {
3543 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3544 int ret;
3545
3546 ggtt->vm.i915 = dev_priv;
3547 ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3548
3549 if (INTEL_GEN(dev_priv) <= 5)
3550 ret = i915_gmch_probe(ggtt);
3551 else if (INTEL_GEN(dev_priv) < 8)
3552 ret = gen6_gmch_probe(ggtt);
3553 else
3554 ret = gen8_gmch_probe(ggtt);
3555 if (ret)
3556 return ret;
3557
3558 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3559 * This is easier than doing range restriction on the fly, as we
3560 * currently don't have any bits spare to pass in this upper
3561 * restriction!
3562 */
3563 if (USES_GUC(dev_priv)) {
3564 ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
3565 ggtt->mappable_end =
3566 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3567 }
3568
3569 if ((ggtt->vm.total - 1) >> 32) {
3570 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3571 " of address space! Found %lldM!\n",
3572 ggtt->vm.total >> 20);
3573 ggtt->vm.total = 1ULL << 32;
3574 ggtt->mappable_end =
3575 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3576 }
3577
3578 if (ggtt->mappable_end > ggtt->vm.total) {
3579 DRM_ERROR("mappable aperture extends past end of GGTT,"
3580 " aperture=%pa, total=%llx\n",
3581 &ggtt->mappable_end, ggtt->vm.total);
3582 ggtt->mappable_end = ggtt->vm.total;
3583 }
3584
3585 /* GMADR is the PCI mmio aperture into the global GTT. */
3586 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3587 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3588 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3589 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3590 if (intel_vtd_active())
3591 DRM_INFO("VT-d active for gfx access\n");
3592
3593 return 0;
3594 }
3595
3596 /**
3597 * i915_ggtt_init_hw - Initialize GGTT hardware
3598 * @dev_priv: i915 device
3599 */
i915_ggtt_init_hw(struct drm_i915_private * dev_priv)3600 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3601 {
3602 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3603 int ret;
3604
3605 stash_init(&dev_priv->mm.wc_stash);
3606
3607 /* Note that we use page colouring to enforce a guard page at the
3608 * end of the address space. This is required as the CS may prefetch
3609 * beyond the end of the batch buffer, across the page boundary,
3610 * and beyond the end of the GTT if we do not provide a guard.
3611 */
3612 mutex_lock(&dev_priv->drm.struct_mutex);
3613 i915_address_space_init(&ggtt->vm, dev_priv);
3614
3615 /* Only VLV supports read-only GGTT mappings */
3616 ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
3617
3618 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3619 ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3620 mutex_unlock(&dev_priv->drm.struct_mutex);
3621
3622 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3623 dev_priv->ggtt.gmadr.start,
3624 dev_priv->ggtt.mappable_end)) {
3625 ret = -EIO;
3626 goto out_gtt_cleanup;
3627 }
3628
3629 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3630
3631 /*
3632 * Initialise stolen early so that we may reserve preallocated
3633 * objects for the BIOS to KMS transition.
3634 */
3635 ret = i915_gem_init_stolen(dev_priv);
3636 if (ret)
3637 goto out_gtt_cleanup;
3638
3639 return 0;
3640
3641 out_gtt_cleanup:
3642 ggtt->vm.cleanup(&ggtt->vm);
3643 return ret;
3644 }
3645
i915_ggtt_enable_hw(struct drm_i915_private * dev_priv)3646 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3647 {
3648 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3649 return -EIO;
3650
3651 return 0;
3652 }
3653
i915_ggtt_enable_guc(struct drm_i915_private * i915)3654 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3655 {
3656 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3657
3658 i915->ggtt.invalidate = guc_ggtt_invalidate;
3659
3660 i915_ggtt_invalidate(i915);
3661 }
3662
i915_ggtt_disable_guc(struct drm_i915_private * i915)3663 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3664 {
3665 /* We should only be called after i915_ggtt_enable_guc() */
3666 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3667
3668 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3669
3670 i915_ggtt_invalidate(i915);
3671 }
3672
i915_gem_restore_gtt_mappings(struct drm_i915_private * dev_priv)3673 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3674 {
3675 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3676 struct i915_vma *vma, *vn;
3677
3678 i915_check_and_clear_faults(dev_priv);
3679
3680 /* First fill our portion of the GTT with scratch pages */
3681 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3682
3683 ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3684
3685 /* clflush objects bound into the GGTT and rebind them. */
3686 GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
3687 list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3688 struct drm_i915_gem_object *obj = vma->obj;
3689
3690 if (!(vma->flags & I915_VMA_GLOBAL_BIND))
3691 continue;
3692
3693 if (!i915_vma_unbind(vma))
3694 continue;
3695
3696 WARN_ON(i915_vma_bind(vma,
3697 obj ? obj->cache_level : 0,
3698 PIN_UPDATE));
3699 if (obj)
3700 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3701 }
3702
3703 ggtt->vm.closed = false;
3704 i915_ggtt_invalidate(dev_priv);
3705
3706 if (INTEL_GEN(dev_priv) >= 8) {
3707 struct intel_ppat *ppat = &dev_priv->ppat;
3708
3709 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3710 dev_priv->ppat.update_hw(dev_priv);
3711 return;
3712 }
3713 }
3714
3715 static struct scatterlist *
rotate_pages(const dma_addr_t * in,unsigned int offset,unsigned int width,unsigned int height,unsigned int stride,struct sg_table * st,struct scatterlist * sg)3716 rotate_pages(const dma_addr_t *in, unsigned int offset,
3717 unsigned int width, unsigned int height,
3718 unsigned int stride,
3719 struct sg_table *st, struct scatterlist *sg)
3720 {
3721 unsigned int column, row;
3722 unsigned int src_idx;
3723
3724 for (column = 0; column < width; column++) {
3725 src_idx = stride * (height - 1) + column;
3726 for (row = 0; row < height; row++) {
3727 st->nents++;
3728 /* We don't need the pages, but need to initialize
3729 * the entries so the sg list can be happily traversed.
3730 * The only thing we need are DMA addresses.
3731 */
3732 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3733 sg_dma_address(sg) = in[offset + src_idx];
3734 sg_dma_len(sg) = PAGE_SIZE;
3735 sg = sg_next(sg);
3736 src_idx -= stride;
3737 }
3738 }
3739
3740 return sg;
3741 }
3742
3743 static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info * rot_info,struct drm_i915_gem_object * obj)3744 intel_rotate_pages(struct intel_rotation_info *rot_info,
3745 struct drm_i915_gem_object *obj)
3746 {
3747 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3748 unsigned int size = intel_rotation_info_size(rot_info);
3749 struct sgt_iter sgt_iter;
3750 dma_addr_t dma_addr;
3751 unsigned long i;
3752 dma_addr_t *page_addr_list;
3753 struct sg_table *st;
3754 struct scatterlist *sg;
3755 int ret = -ENOMEM;
3756
3757 /* Allocate a temporary list of source pages for random access. */
3758 page_addr_list = kvmalloc_array(n_pages,
3759 sizeof(dma_addr_t),
3760 GFP_KERNEL);
3761 if (!page_addr_list)
3762 return ERR_PTR(ret);
3763
3764 /* Allocate target SG list. */
3765 st = kmalloc(sizeof(*st), GFP_KERNEL);
3766 if (!st)
3767 goto err_st_alloc;
3768
3769 ret = sg_alloc_table(st, size, GFP_KERNEL);
3770 if (ret)
3771 goto err_sg_alloc;
3772
3773 /* Populate source page list from the object. */
3774 i = 0;
3775 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3776 page_addr_list[i++] = dma_addr;
3777
3778 GEM_BUG_ON(i != n_pages);
3779 st->nents = 0;
3780 sg = st->sgl;
3781
3782 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3783 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3784 rot_info->plane[i].width, rot_info->plane[i].height,
3785 rot_info->plane[i].stride, st, sg);
3786 }
3787
3788 kvfree(page_addr_list);
3789
3790 return st;
3791
3792 err_sg_alloc:
3793 kfree(st);
3794 err_st_alloc:
3795 kvfree(page_addr_list);
3796
3797 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3798 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3799
3800 return ERR_PTR(ret);
3801 }
3802
3803 static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view * view,struct drm_i915_gem_object * obj)3804 intel_partial_pages(const struct i915_ggtt_view *view,
3805 struct drm_i915_gem_object *obj)
3806 {
3807 struct sg_table *st;
3808 struct scatterlist *sg, *iter;
3809 unsigned int count = view->partial.size;
3810 unsigned int offset;
3811 int ret = -ENOMEM;
3812
3813 st = kmalloc(sizeof(*st), GFP_KERNEL);
3814 if (!st)
3815 goto err_st_alloc;
3816
3817 ret = sg_alloc_table(st, count, GFP_KERNEL);
3818 if (ret)
3819 goto err_sg_alloc;
3820
3821 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3822 GEM_BUG_ON(!iter);
3823
3824 sg = st->sgl;
3825 st->nents = 0;
3826 do {
3827 unsigned int len;
3828
3829 len = min(iter->length - (offset << PAGE_SHIFT),
3830 count << PAGE_SHIFT);
3831 sg_set_page(sg, NULL, len, 0);
3832 sg_dma_address(sg) =
3833 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3834 sg_dma_len(sg) = len;
3835
3836 st->nents++;
3837 count -= len >> PAGE_SHIFT;
3838 if (count == 0) {
3839 sg_mark_end(sg);
3840 return st;
3841 }
3842
3843 sg = __sg_next(sg);
3844 iter = __sg_next(iter);
3845 offset = 0;
3846 } while (1);
3847
3848 err_sg_alloc:
3849 kfree(st);
3850 err_st_alloc:
3851 return ERR_PTR(ret);
3852 }
3853
3854 static int
i915_get_ggtt_vma_pages(struct i915_vma * vma)3855 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3856 {
3857 int ret;
3858
3859 /* The vma->pages are only valid within the lifespan of the borrowed
3860 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3861 * must be the vma->pages. A simple rule is that vma->pages must only
3862 * be accessed when the obj->mm.pages are pinned.
3863 */
3864 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3865
3866 switch (vma->ggtt_view.type) {
3867 default:
3868 GEM_BUG_ON(vma->ggtt_view.type);
3869 /* fall through */
3870 case I915_GGTT_VIEW_NORMAL:
3871 vma->pages = vma->obj->mm.pages;
3872 return 0;
3873
3874 case I915_GGTT_VIEW_ROTATED:
3875 vma->pages =
3876 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3877 break;
3878
3879 case I915_GGTT_VIEW_PARTIAL:
3880 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3881 break;
3882 }
3883
3884 ret = 0;
3885 if (unlikely(IS_ERR(vma->pages))) {
3886 ret = PTR_ERR(vma->pages);
3887 vma->pages = NULL;
3888 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3889 vma->ggtt_view.type, ret);
3890 }
3891 return ret;
3892 }
3893
3894 /**
3895 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3896 * @vm: the &struct i915_address_space
3897 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3898 * @size: how much space to allocate inside the GTT,
3899 * must be #I915_GTT_PAGE_SIZE aligned
3900 * @offset: where to insert inside the GTT,
3901 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3902 * (@offset + @size) must fit within the address space
3903 * @color: color to apply to node, if this node is not from a VMA,
3904 * color must be #I915_COLOR_UNEVICTABLE
3905 * @flags: control search and eviction behaviour
3906 *
3907 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3908 * the address space (using @size and @color). If the @node does not fit, it
3909 * tries to evict any overlapping nodes from the GTT, including any
3910 * neighbouring nodes if the colors do not match (to ensure guard pages between
3911 * differing domains). See i915_gem_evict_for_node() for the gory details
3912 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3913 * evicting active overlapping objects, and any overlapping node that is pinned
3914 * or marked as unevictable will also result in failure.
3915 *
3916 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3917 * asked to wait for eviction and interrupted.
3918 */
i915_gem_gtt_reserve(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 offset,unsigned long color,unsigned int flags)3919 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3920 struct drm_mm_node *node,
3921 u64 size, u64 offset, unsigned long color,
3922 unsigned int flags)
3923 {
3924 int err;
3925
3926 GEM_BUG_ON(!size);
3927 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3928 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3929 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3930 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3931 GEM_BUG_ON(drm_mm_node_allocated(node));
3932
3933 node->size = size;
3934 node->start = offset;
3935 node->color = color;
3936
3937 err = drm_mm_reserve_node(&vm->mm, node);
3938 if (err != -ENOSPC)
3939 return err;
3940
3941 if (flags & PIN_NOEVICT)
3942 return -ENOSPC;
3943
3944 err = i915_gem_evict_for_node(vm, node, flags);
3945 if (err == 0)
3946 err = drm_mm_reserve_node(&vm->mm, node);
3947
3948 return err;
3949 }
3950
random_offset(u64 start,u64 end,u64 len,u64 align)3951 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3952 {
3953 u64 range, addr;
3954
3955 GEM_BUG_ON(range_overflows(start, len, end));
3956 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3957
3958 range = round_down(end - len, align) - round_up(start, align);
3959 if (range) {
3960 if (sizeof(unsigned long) == sizeof(u64)) {
3961 addr = get_random_long();
3962 } else {
3963 addr = get_random_int();
3964 if (range > U32_MAX) {
3965 addr <<= 32;
3966 addr |= get_random_int();
3967 }
3968 }
3969 div64_u64_rem(addr, range, &addr);
3970 start += addr;
3971 }
3972
3973 return round_up(start, align);
3974 }
3975
3976 /**
3977 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3978 * @vm: the &struct i915_address_space
3979 * @node: the &struct drm_mm_node (typically i915_vma.node)
3980 * @size: how much space to allocate inside the GTT,
3981 * must be #I915_GTT_PAGE_SIZE aligned
3982 * @alignment: required alignment of starting offset, may be 0 but
3983 * if specified, this must be a power-of-two and at least
3984 * #I915_GTT_MIN_ALIGNMENT
3985 * @color: color to apply to node
3986 * @start: start of any range restriction inside GTT (0 for all),
3987 * must be #I915_GTT_PAGE_SIZE aligned
3988 * @end: end of any range restriction inside GTT (U64_MAX for all),
3989 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3990 * @flags: control search and eviction behaviour
3991 *
3992 * i915_gem_gtt_insert() first searches for an available hole into which
3993 * is can insert the node. The hole address is aligned to @alignment and
3994 * its @size must then fit entirely within the [@start, @end] bounds. The
3995 * nodes on either side of the hole must match @color, or else a guard page
3996 * will be inserted between the two nodes (or the node evicted). If no
3997 * suitable hole is found, first a victim is randomly selected and tested
3998 * for eviction, otherwise then the LRU list of objects within the GTT
3999 * is scanned to find the first set of replacement nodes to create the hole.
4000 * Those old overlapping nodes are evicted from the GTT (and so must be
4001 * rebound before any future use). Any node that is currently pinned cannot
4002 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
4003 * active and #PIN_NONBLOCK is specified, that node is also skipped when
4004 * searching for an eviction candidate. See i915_gem_evict_something() for
4005 * the gory details on the eviction algorithm.
4006 *
4007 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
4008 * asked to wait for eviction and interrupted.
4009 */
i915_gem_gtt_insert(struct i915_address_space * vm,struct drm_mm_node * node,u64 size,u64 alignment,unsigned long color,u64 start,u64 end,unsigned int flags)4010 int i915_gem_gtt_insert(struct i915_address_space *vm,
4011 struct drm_mm_node *node,
4012 u64 size, u64 alignment, unsigned long color,
4013 u64 start, u64 end, unsigned int flags)
4014 {
4015 enum drm_mm_insert_mode mode;
4016 u64 offset;
4017 int err;
4018
4019 lockdep_assert_held(&vm->i915->drm.struct_mutex);
4020 GEM_BUG_ON(!size);
4021 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
4022 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
4023 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
4024 GEM_BUG_ON(start >= end);
4025 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
4026 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4027 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4028 GEM_BUG_ON(drm_mm_node_allocated(node));
4029
4030 if (unlikely(range_overflows(start, size, end)))
4031 return -ENOSPC;
4032
4033 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
4034 return -ENOSPC;
4035
4036 mode = DRM_MM_INSERT_BEST;
4037 if (flags & PIN_HIGH)
4038 mode = DRM_MM_INSERT_HIGHEST;
4039 if (flags & PIN_MAPPABLE)
4040 mode = DRM_MM_INSERT_LOW;
4041
4042 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
4043 * so we know that we always have a minimum alignment of 4096.
4044 * The drm_mm range manager is optimised to return results
4045 * with zero alignment, so where possible use the optimal
4046 * path.
4047 */
4048 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
4049 if (alignment <= I915_GTT_MIN_ALIGNMENT)
4050 alignment = 0;
4051
4052 err = drm_mm_insert_node_in_range(&vm->mm, node,
4053 size, alignment, color,
4054 start, end, mode);
4055 if (err != -ENOSPC)
4056 return err;
4057
4058 if (mode & DRM_MM_INSERT_ONCE) {
4059 err = drm_mm_insert_node_in_range(&vm->mm, node,
4060 size, alignment, color,
4061 start, end,
4062 DRM_MM_INSERT_BEST);
4063 if (err != -ENOSPC)
4064 return err;
4065 }
4066
4067 if (flags & PIN_NOEVICT)
4068 return -ENOSPC;
4069
4070 /* No free space, pick a slot at random.
4071 *
4072 * There is a pathological case here using a GTT shared between
4073 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4074 *
4075 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4076 * (64k objects) (448k objects)
4077 *
4078 * Now imagine that the eviction LRU is ordered top-down (just because
4079 * pathology meets real life), and that we need to evict an object to
4080 * make room inside the aperture. The eviction scan then has to walk
4081 * the 448k list before it finds one within range. And now imagine that
4082 * it has to search for a new hole between every byte inside the memcpy,
4083 * for several simultaneous clients.
4084 *
4085 * On a full-ppgtt system, if we have run out of available space, there
4086 * will be lots and lots of objects in the eviction list! Again,
4087 * searching that LRU list may be slow if we are also applying any
4088 * range restrictions (e.g. restriction to low 4GiB) and so, for
4089 * simplicity and similarilty between different GTT, try the single
4090 * random replacement first.
4091 */
4092 offset = random_offset(start, end,
4093 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4094 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4095 if (err != -ENOSPC)
4096 return err;
4097
4098 /* Randomly selected placement is pinned, do a search */
4099 err = i915_gem_evict_something(vm, size, alignment, color,
4100 start, end, flags);
4101 if (err)
4102 return err;
4103
4104 return drm_mm_insert_node_in_range(&vm->mm, node,
4105 size, alignment, color,
4106 start, end, DRM_MM_INSERT_EVICT);
4107 }
4108
4109 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4110 #include "selftests/mock_gtt.c"
4111 #include "selftests/i915_gem_gtt.c"
4112 #endif
4113