1 /*
2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4 *
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
28 *
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37 *
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
41 * USA.
42 */
43
44 #include "esas2r.h"
45
46 /*
47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware. In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
52 */
53
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 struct esas2r_request *,
62 struct esas2r_sg_context *,
63 void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 struct esas2r_request *, void *);
66
67 struct esas2r_buffered_ioctl {
68 struct esas2r_adapter *a;
69 void *ioctl;
70 u32 length;
71 u32 control_code;
72 u32 offset;
73 BUFFERED_IOCTL_CALLBACK
74 callback;
75 void *context;
76 BUFFERED_IOCTL_DONE_CALLBACK
77 done_callback;
78 void *done_context;
79
80 };
81
complete_fm_api_req(struct esas2r_adapter * a,struct esas2r_request * rq)82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 struct esas2r_request *rq)
84 {
85 a->fm_api_command_done = 1;
86 wake_up_interruptible(&a->fm_api_waiter);
87 }
88
89 /* Callbacks for building scatter/gather lists for FM API requests */
get_physaddr_fm_api(struct esas2r_sg_context * sgc,u64 * addr)90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 int offset = sgc->cur_offset - a->save_offset;
94
95 (*addr) = a->firmware.phys + offset;
96 return a->firmware.orig_len - offset;
97 }
98
get_physaddr_fm_api_header(struct esas2r_sg_context * sgc,u64 * addr)99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 int offset = sgc->cur_offset - a->save_offset;
103
104 (*addr) = a->firmware.header_buff_phys + offset;
105 return sizeof(struct esas2r_flash_img) - offset;
106 }
107
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
do_fm_api(struct esas2r_adapter * a,struct esas2r_flash_img * fi)109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111 struct esas2r_request *rq;
112
113 if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114 fi->status = FI_STAT_BUSY;
115 return;
116 }
117
118 rq = esas2r_alloc_request(a);
119 if (rq == NULL) {
120 fi->status = FI_STAT_BUSY;
121 goto free_sem;
122 }
123
124 if (fi == &a->firmware.header) {
125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126 (size_t)sizeof(
127 struct
128 esas2r_flash_img),
129 (dma_addr_t *)&a->
130 firmware.
131 header_buff_phys,
132 GFP_KERNEL);
133
134 if (a->firmware.header_buff == NULL) {
135 esas2r_debug("failed to allocate header buffer!");
136 fi->status = FI_STAT_BUSY;
137 goto free_req;
138 }
139
140 memcpy(a->firmware.header_buff, fi,
141 sizeof(struct esas2r_flash_img));
142 a->save_offset = a->firmware.header_buff;
143 a->fm_api_sgc.get_phys_addr =
144 (PGETPHYSADDR)get_physaddr_fm_api_header;
145 } else {
146 a->save_offset = (u8 *)fi;
147 a->fm_api_sgc.get_phys_addr =
148 (PGETPHYSADDR)get_physaddr_fm_api;
149 }
150
151 rq->comp_cb = complete_fm_api_req;
152 a->fm_api_command_done = 0;
153 a->fm_api_sgc.cur_offset = a->save_offset;
154
155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156 &a->fm_api_sgc))
157 goto all_done;
158
159 /* Now wait around for it to complete. */
160 while (!a->fm_api_command_done)
161 wait_event_interruptible(a->fm_api_waiter,
162 a->fm_api_command_done);
163 all_done:
164 if (fi == &a->firmware.header) {
165 memcpy(fi, a->firmware.header_buff,
166 sizeof(struct esas2r_flash_img));
167
168 dma_free_coherent(&a->pcid->dev,
169 (size_t)sizeof(struct esas2r_flash_img),
170 a->firmware.header_buff,
171 (dma_addr_t)a->firmware.header_buff_phys);
172 }
173 free_req:
174 esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176 mutex_unlock(&a->fm_api_mutex);
177 return;
178
179 }
180
complete_nvr_req(struct esas2r_adapter * a,struct esas2r_request * rq)181 static void complete_nvr_req(struct esas2r_adapter *a,
182 struct esas2r_request *rq)
183 {
184 a->nvram_command_done = 1;
185 wake_up_interruptible(&a->nvram_waiter);
186 }
187
188 /* Callback for building scatter/gather lists for buffered ioctls */
get_physaddr_buffered_ioctl(struct esas2r_sg_context * sgc,u64 * addr)189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190 u64 *addr)
191 {
192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194 (*addr) = esas2r_buffered_ioctl_addr + offset;
195 return esas2r_buffered_ioctl_size - offset;
196 }
197
complete_buffered_ioctl_req(struct esas2r_adapter * a,struct esas2r_request * rq)198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 struct esas2r_request *rq)
200 {
201 a->buffered_ioctl_done = 1;
202 wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204
handle_buffered_ioctl(struct esas2r_buffered_ioctl * bi)205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207 struct esas2r_adapter *a = bi->a;
208 struct esas2r_request *rq;
209 struct esas2r_sg_context sgc;
210 u8 result = IOCTL_SUCCESS;
211
212 if (down_interruptible(&buffered_ioctl_semaphore))
213 return IOCTL_OUT_OF_RESOURCES;
214
215 /* allocate a buffer or use the existing buffer. */
216 if (esas2r_buffered_ioctl) {
217 if (esas2r_buffered_ioctl_size < bi->length) {
218 /* free the too-small buffer and get a new one */
219 dma_free_coherent(&a->pcid->dev,
220 (size_t)esas2r_buffered_ioctl_size,
221 esas2r_buffered_ioctl,
222 esas2r_buffered_ioctl_addr);
223
224 goto allocate_buffer;
225 }
226 } else {
227 allocate_buffer:
228 esas2r_buffered_ioctl_size = bi->length;
229 esas2r_buffered_ioctl_pcid = a->pcid;
230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231 (size_t)
232 esas2r_buffered_ioctl_size,
233 &
234 esas2r_buffered_ioctl_addr,
235 GFP_KERNEL);
236 }
237
238 if (!esas2r_buffered_ioctl) {
239 esas2r_log(ESAS2R_LOG_CRIT,
240 "could not allocate %d bytes of consistent memory "
241 "for a buffered ioctl!",
242 bi->length);
243
244 esas2r_debug("buffered ioctl alloc failure");
245 result = IOCTL_OUT_OF_RESOURCES;
246 goto exit_cleanly;
247 }
248
249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251 rq = esas2r_alloc_request(a);
252 if (rq == NULL) {
253 esas2r_log(ESAS2R_LOG_CRIT,
254 "could not allocate an internal request");
255
256 result = IOCTL_OUT_OF_RESOURCES;
257 esas2r_debug("buffered ioctl - no requests");
258 goto exit_cleanly;
259 }
260
261 a->buffered_ioctl_done = 0;
262 rq->comp_cb = complete_buffered_ioctl_req;
263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 sgc.length = esas2r_buffered_ioctl_size;
266
267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 /* completed immediately, no need to wait */
269 a->buffered_ioctl_done = 0;
270 goto free_andexit_cleanly;
271 }
272
273 /* now wait around for it to complete. */
274 while (!a->buffered_ioctl_done)
275 wait_event_interruptible(a->buffered_ioctl_waiter,
276 a->buffered_ioctl_done);
277
278 free_andexit_cleanly:
279 if (result == IOCTL_SUCCESS && bi->done_callback)
280 (*bi->done_callback)(a, rq, bi->done_context);
281
282 esas2r_free_request(a, rq);
283
284 exit_cleanly:
285 if (result == IOCTL_SUCCESS)
286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288 up(&buffered_ioctl_semaphore);
289 return result;
290 }
291
292 /* SMP ioctl support */
smp_ioctl_callback(struct esas2r_adapter * a,struct esas2r_request * rq,struct esas2r_sg_context * sgc,void * context)293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 struct esas2r_request *rq,
295 struct esas2r_sg_context *sgc, void *context)
296 {
297 struct atto_ioctl_smp *si =
298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303 if (!esas2r_build_sg_list(a, rq, sgc)) {
304 si->status = ATTO_STS_OUT_OF_RSRC;
305 return false;
306 }
307
308 esas2r_start_request(a, rq);
309 return true;
310 }
311
handle_smp_ioctl(struct esas2r_adapter * a,struct atto_ioctl_smp * si)312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314 struct esas2r_buffered_ioctl bi;
315
316 memset(&bi, 0, sizeof(bi));
317
318 bi.a = a;
319 bi.ioctl = si;
320 bi.length = sizeof(struct atto_ioctl_smp)
321 + le32_to_cpu(si->req_length)
322 + le32_to_cpu(si->rsp_length);
323 bi.offset = 0;
324 bi.callback = smp_ioctl_callback;
325 return handle_buffered_ioctl(&bi);
326 }
327
328
329 /* CSMI ioctl support */
esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter * a,struct esas2r_request * rq)330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 struct esas2r_request *rq)
332 {
333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336 /* Now call the original completion callback. */
337 (*rq->aux_req_cb)(a, rq);
338 }
339
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
csmi_ioctl_tunnel(struct esas2r_adapter * a,union atto_ioctl_csmi * ci,struct esas2r_request * rq,struct esas2r_sg_context * sgc,u32 ctrl_code,u16 target_id)341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 union atto_ioctl_csmi *ci,
343 struct esas2r_request *rq,
344 struct esas2r_sg_context *sgc,
345 u32 ctrl_code,
346 u16 target_id)
347 {
348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350 if (test_bit(AF_DEGRADED_MODE, &a->flags))
351 return false;
352
353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 ioctl->csmi.target_id = cpu_to_le16(target_id);
357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359 /*
360 * Always usurp the completion callback since the interrupt callback
361 * mechanism may be used.
362 */
363 rq->aux_req_cx = ci;
364 rq->aux_req_cb = rq->comp_cb;
365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367 if (!esas2r_build_sg_list(a, rq, sgc))
368 return false;
369
370 esas2r_start_request(a, rq);
371 return true;
372 }
373
check_lun(struct scsi_lun lun)374 static bool check_lun(struct scsi_lun lun)
375 {
376 bool result;
377
378 result = ((lun.scsi_lun[7] == 0) &&
379 (lun.scsi_lun[6] == 0) &&
380 (lun.scsi_lun[5] == 0) &&
381 (lun.scsi_lun[4] == 0) &&
382 (lun.scsi_lun[3] == 0) &&
383 (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 (lun.scsi_lun[0] == 0));
386
387 return result;
388 }
389
csmi_ioctl_callback(struct esas2r_adapter * a,struct esas2r_request * rq,struct esas2r_sg_context * sgc,void * context)390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 struct esas2r_request *rq,
392 struct esas2r_sg_context *sgc, void *context)
393 {
394 struct atto_csmi *ci = (struct atto_csmi *)context;
395 union atto_ioctl_csmi *ioctl_csmi =
396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397 u8 path = 0;
398 u8 tid = 0;
399 u8 lun = 0;
400 u32 sts = CSMI_STS_SUCCESS;
401 struct esas2r_target *t;
402 unsigned long flags;
403
404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407 path = gda->path_id;
408 tid = gda->target_id;
409 lun = gda->lun;
410 } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413 path = tm->path_id;
414 tid = tm->target_id;
415 lun = tm->lun;
416 }
417
418 if (path > 0) {
419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420 CSMI_STS_INV_PARAM);
421 return false;
422 }
423
424 rq->target_id = tid;
425 rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427 switch (ci->control_code) {
428 case CSMI_CC_GET_DRVR_INFO:
429 {
430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432 strcpy(gdi->description, esas2r_get_model_name(a));
433 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435 break;
436 }
437
438 case CSMI_CC_GET_CNTLR_CFG:
439 {
440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442 gcc->base_io_addr = 0;
443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 &gcc->base_memaddr_lo);
445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 &gcc->base_memaddr_hi);
447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 a->pcid->subsystem_vendor);
449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 gcc->pci_addr.bus_num = a->pcid->bus->number;
453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 | CSMI_CNTLRF_SATA_HBA;
469 else
470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 | CSMI_CNTLRF_SATA_RAID;
472
473 gcc->rrom_major_rev = 0;
474 gcc->rrom_minor_rev = 0;
475 gcc->rrom_build_rev = 0;
476 gcc->rrom_release_rev = 0;
477 gcc->rrom_biosmajor_rev = 0;
478 gcc->rrom_biosminor_rev = 0;
479 gcc->rrom_biosbuild_rev = 0;
480 gcc->rrom_biosrelease_rev = 0;
481 break;
482 }
483
484 case CSMI_CC_GET_CNTLR_STS:
485 {
486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 gcs->status = CSMI_CNTLR_STS_FAILED;
490 else
491 gcs->status = CSMI_CNTLR_STS_GOOD;
492
493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494 break;
495 }
496
497 case CSMI_CC_FW_DOWNLOAD:
498 case CSMI_CC_GET_RAID_INFO:
499 case CSMI_CC_GET_RAID_CFG:
500
501 sts = CSMI_STS_BAD_CTRL_CODE;
502 break;
503
504 case CSMI_CC_SMP_PASSTHRU:
505 case CSMI_CC_SSP_PASSTHRU:
506 case CSMI_CC_STP_PASSTHRU:
507 case CSMI_CC_GET_PHY_INFO:
508 case CSMI_CC_SET_PHY_INFO:
509 case CSMI_CC_GET_LINK_ERRORS:
510 case CSMI_CC_GET_SATA_SIG:
511 case CSMI_CC_GET_CONN_INFO:
512 case CSMI_CC_PHY_CTRL:
513
514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515 ci->control_code,
516 ESAS2R_TARG_ID_INV)) {
517 sts = CSMI_STS_FAILED;
518 break;
519 }
520
521 return true;
522
523 case CSMI_CC_GET_SCSI_ADDR:
524 {
525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527 struct scsi_lun lun;
528
529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531 if (!check_lun(lun)) {
532 sts = CSMI_STS_NO_SCSI_ADDR;
533 break;
534 }
535
536 /* make sure the device is present */
537 spin_lock_irqsave(&a->mem_lock, flags);
538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 spin_unlock_irqrestore(&a->mem_lock, flags);
540
541 if (t == NULL) {
542 sts = CSMI_STS_NO_SCSI_ADDR;
543 break;
544 }
545
546 gsa->host_index = 0xFF;
547 gsa->lun = gsa->sas_lun[1];
548 rq->target_id = esas2r_targ_get_id(t, a);
549 break;
550 }
551
552 case CSMI_CC_GET_DEV_ADDR:
553 {
554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556 /* make sure the target is present */
557 t = a->targetdb + rq->target_id;
558
559 if (t >= a->targetdb_end
560 || t->target_state != TS_PRESENT
561 || t->sas_addr == 0) {
562 sts = CSMI_STS_NO_DEV_ADDR;
563 break;
564 }
565
566 /* fill in the result */
567 *(u64 *)gda->sas_addr = t->sas_addr;
568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570 break;
571 }
572
573 case CSMI_CC_TASK_MGT:
574
575 /* make sure the target is present */
576 t = a->targetdb + rq->target_id;
577
578 if (t >= a->targetdb_end
579 || t->target_state != TS_PRESENT
580 || !(t->flags & TF_PASS_THRU)) {
581 sts = CSMI_STS_NO_DEV_ADDR;
582 break;
583 }
584
585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586 ci->control_code,
587 t->phys_targ_id)) {
588 sts = CSMI_STS_FAILED;
589 break;
590 }
591
592 return true;
593
594 default:
595
596 sts = CSMI_STS_BAD_CTRL_CODE;
597 break;
598 }
599
600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602 return false;
603 }
604
605
csmi_ioctl_done_callback(struct esas2r_adapter * a,struct esas2r_request * rq,void * context)606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 struct esas2r_request *rq, void *context)
608 {
609 struct atto_csmi *ci = (struct atto_csmi *)context;
610 union atto_ioctl_csmi *ioctl_csmi =
611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613 switch (ci->control_code) {
614 case CSMI_CC_GET_DRVR_INFO:
615 {
616 struct atto_csmi_get_driver_info *gdi =
617 &ioctl_csmi->drvr_info;
618
619 strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621 gdi->major_rev = ESAS2R_MAJOR_REV;
622 gdi->minor_rev = ESAS2R_MINOR_REV;
623 gdi->build_rev = 0;
624 gdi->release_rev = 0;
625 break;
626 }
627
628 case CSMI_CC_GET_SCSI_ADDR:
629 {
630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633 CSMI_STS_SUCCESS) {
634 gsa->target_id = rq->target_id;
635 gsa->path_id = 0;
636 }
637
638 break;
639 }
640 }
641
642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644
645
handle_csmi_ioctl(struct esas2r_adapter * a,struct atto_csmi * ci)646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648 struct esas2r_buffered_ioctl bi;
649
650 memset(&bi, 0, sizeof(bi));
651
652 bi.a = a;
653 bi.ioctl = &ci->data;
654 bi.length = sizeof(union atto_ioctl_csmi);
655 bi.offset = 0;
656 bi.callback = csmi_ioctl_callback;
657 bi.context = ci;
658 bi.done_callback = csmi_ioctl_done_callback;
659 bi.done_context = ci;
660
661 return handle_buffered_ioctl(&bi);
662 }
663
664 /* ATTO HBA ioctl support */
665
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
hba_ioctl_tunnel(struct esas2r_adapter * a,struct atto_ioctl * hi,struct esas2r_request * rq,struct esas2r_sg_context * sgc)667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 struct atto_ioctl *hi,
669 struct esas2r_request *rq,
670 struct esas2r_sg_context *sgc)
671 {
672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676 if (!esas2r_build_sg_list(a, rq, sgc)) {
677 hi->status = ATTO_STS_OUT_OF_RSRC;
678
679 return false;
680 }
681
682 esas2r_start_request(a, rq);
683
684 return true;
685 }
686
scsi_passthru_comp_cb(struct esas2r_adapter * a,struct esas2r_request * rq)687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 struct esas2r_request *rq)
689 {
690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 u8 sts = ATTO_SPT_RS_FAILED;
693
694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 spt->sense_length = rq->sense_len;
696 spt->residual_length =
697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699 switch (rq->req_stat) {
700 case RS_SUCCESS:
701 case RS_SCSI_ERROR:
702 sts = ATTO_SPT_RS_SUCCESS;
703 break;
704 case RS_UNDERRUN:
705 sts = ATTO_SPT_RS_UNDERRUN;
706 break;
707 case RS_OVERRUN:
708 sts = ATTO_SPT_RS_OVERRUN;
709 break;
710 case RS_SEL:
711 case RS_SEL2:
712 sts = ATTO_SPT_RS_NO_DEVICE;
713 break;
714 case RS_NO_LUN:
715 sts = ATTO_SPT_RS_NO_LUN;
716 break;
717 case RS_TIMEOUT:
718 sts = ATTO_SPT_RS_TIMEOUT;
719 break;
720 case RS_DEGRADED:
721 sts = ATTO_SPT_RS_DEGRADED;
722 break;
723 case RS_BUSY:
724 sts = ATTO_SPT_RS_BUSY;
725 break;
726 case RS_ABORTED:
727 sts = ATTO_SPT_RS_ABORTED;
728 break;
729 case RS_RESET:
730 sts = ATTO_SPT_RS_BUS_RESET;
731 break;
732 }
733
734 spt->req_status = sts;
735
736 /* Update the target ID to the next one present. */
737 spt->target_id =
738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740 /* Done, call the completion callback. */
741 (*rq->aux_req_cb)(a, rq);
742 }
743
hba_ioctl_callback(struct esas2r_adapter * a,struct esas2r_request * rq,struct esas2r_sg_context * sgc,void * context)744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 struct esas2r_request *rq,
746 struct esas2r_sg_context *sgc,
747 void *context)
748 {
749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751 hi->status = ATTO_STS_SUCCESS;
752
753 switch (hi->function) {
754 case ATTO_FUNC_GET_ADAP_INFO:
755 {
756 u8 *class_code = (u8 *)&a->pcid->class;
757
758 struct atto_hba_get_adapter_info *gai =
759 &hi->data.get_adap_info;
760
761 if (hi->flags & HBAF_TUNNEL) {
762 hi->status = ATTO_STS_UNSUPPORTED;
763 break;
764 }
765
766 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767 hi->status = ATTO_STS_INV_VERSION;
768 hi->version = ATTO_VER_GET_ADAP_INFO0;
769 break;
770 }
771
772 memset(gai, 0, sizeof(*gai));
773
774 gai->pci.vendor_id = a->pcid->vendor;
775 gai->pci.device_id = a->pcid->device;
776 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777 gai->pci.ss_device_id = a->pcid->subsystem_device;
778 gai->pci.class_code[0] = class_code[0];
779 gai->pci.class_code[1] = class_code[1];
780 gai->pci.class_code[2] = class_code[2];
781 gai->pci.rev_id = a->pcid->revision;
782 gai->pci.bus_num = a->pcid->bus->number;
783 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
785
786 if (pci_is_pcie(a->pcid)) {
787 u16 stat;
788 u32 caps;
789
790 pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
791 &stat);
792 pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
793 &caps);
794
795 gai->pci.link_speed_curr =
796 (u8)(stat & PCI_EXP_LNKSTA_CLS);
797 gai->pci.link_speed_max =
798 (u8)(caps & PCI_EXP_LNKCAP_SLS);
799 gai->pci.link_width_curr =
800 (u8)((stat & PCI_EXP_LNKSTA_NLW)
801 >> PCI_EXP_LNKSTA_NLW_SHIFT);
802 gai->pci.link_width_max =
803 (u8)((caps & PCI_EXP_LNKCAP_MLW)
804 >> 4);
805 }
806
807 gai->pci.msi_vector_cnt = 1;
808
809 if (a->pcid->msix_enabled)
810 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811 else if (a->pcid->msi_enabled)
812 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
813 else
814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
815
816 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
817
818 if (test_bit(AF2_THUNDERLINK, &a->flags2))
819 gai->adap_type = ATTO_GAI_AT_TLSASHBA;
820
821 if (test_bit(AF_DEGRADED_MODE, &a->flags))
822 gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
823
824 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825 ATTO_GAI_AF_DEVADDR_SUPP;
826
827 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828 || a->pcid->subsystem_device == ATTO_ESAS_R608
829 || a->pcid->subsystem_device == ATTO_ESAS_R644
830 || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
832
833 gai->num_ports = ESAS2R_NUM_PHYS;
834 gai->num_phys = ESAS2R_NUM_PHYS;
835
836 strcpy(gai->firmware_rev, a->fw_rev);
837 strcpy(gai->flash_rev, a->flash_rev);
838 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839 strcpy(gai->model_name, esas2r_get_model_name(a));
840
841 gai->num_targets = ESAS2R_MAX_TARGETS;
842
843 gai->num_busses = 1;
844 gai->num_targsper_bus = gai->num_targets;
845 gai->num_lunsper_targ = 256;
846
847 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848 || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849 gai->num_connectors = 4;
850 else
851 gai->num_connectors = 2;
852
853 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
854
855 gai->num_targets_backend = a->num_targets_backend;
856
857 gai->tunnel_flags = a->ioctl_tunnel
858 & (ATTO_GAI_TF_MEM_RW
859 | ATTO_GAI_TF_TRACE
860 | ATTO_GAI_TF_SCSI_PASS_THRU
861 | ATTO_GAI_TF_GET_DEV_ADDR
862 | ATTO_GAI_TF_PHY_CTRL
863 | ATTO_GAI_TF_CONN_CTRL
864 | ATTO_GAI_TF_GET_DEV_INFO);
865 break;
866 }
867
868 case ATTO_FUNC_GET_ADAP_ADDR:
869 {
870 struct atto_hba_get_adapter_address *gaa =
871 &hi->data.get_adap_addr;
872
873 if (hi->flags & HBAF_TUNNEL) {
874 hi->status = ATTO_STS_UNSUPPORTED;
875 break;
876 }
877
878 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879 hi->status = ATTO_STS_INV_VERSION;
880 hi->version = ATTO_VER_GET_ADAP_ADDR0;
881 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
882 || gaa->addr_type == ATTO_GAA_AT_NODE) {
883 if (gaa->addr_type == ATTO_GAA_AT_PORT
884 && gaa->port_id >= ESAS2R_NUM_PHYS) {
885 hi->status = ATTO_STS_NOT_APPL;
886 } else {
887 memcpy((u64 *)gaa->address,
888 &a->nvram->sas_addr[0], sizeof(u64));
889 gaa->addr_len = sizeof(u64);
890 }
891 } else {
892 hi->status = ATTO_STS_INV_PARAM;
893 }
894
895 break;
896 }
897
898 case ATTO_FUNC_MEM_RW:
899 {
900 if (hi->flags & HBAF_TUNNEL) {
901 if (hba_ioctl_tunnel(a, hi, rq, sgc))
902 return true;
903
904 break;
905 }
906
907 hi->status = ATTO_STS_UNSUPPORTED;
908
909 break;
910 }
911
912 case ATTO_FUNC_TRACE:
913 {
914 struct atto_hba_trace *trc = &hi->data.trace;
915
916 if (hi->flags & HBAF_TUNNEL) {
917 if (hba_ioctl_tunnel(a, hi, rq, sgc))
918 return true;
919
920 break;
921 }
922
923 if (hi->version > ATTO_VER_TRACE1) {
924 hi->status = ATTO_STS_INV_VERSION;
925 hi->version = ATTO_VER_TRACE1;
926 break;
927 }
928
929 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930 && hi->version >= ATTO_VER_TRACE1) {
931 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932 u32 len = hi->data_length;
933 u32 offset = trc->current_offset;
934 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
935
936 /* Size is zero if a core dump isn't present */
937 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
938 total_len = 0;
939
940 if (len > total_len)
941 len = total_len;
942
943 if (offset >= total_len
944 || offset + len > total_len
945 || len == 0) {
946 hi->status = ATTO_STS_INV_PARAM;
947 break;
948 }
949
950 memcpy(trc->contents,
951 a->fw_coredump_buff + offset,
952 len);
953 hi->data_length = len;
954 } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
955 memset(a->fw_coredump_buff, 0,
956 ESAS2R_FWCOREDUMP_SZ);
957
958 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
959 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
960 hi->status = ATTO_STS_UNSUPPORTED;
961 break;
962 }
963
964 /* Always return all the info we can. */
965 trc->trace_mask = 0;
966 trc->current_offset = 0;
967 trc->total_length = ESAS2R_FWCOREDUMP_SZ;
968
969 /* Return zero length buffer if core dump not present */
970 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
971 trc->total_length = 0;
972 } else {
973 hi->status = ATTO_STS_UNSUPPORTED;
974 }
975
976 break;
977 }
978
979 case ATTO_FUNC_SCSI_PASS_THRU:
980 {
981 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
982 struct scsi_lun lun;
983
984 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
985
986 if (hi->flags & HBAF_TUNNEL) {
987 if (hba_ioctl_tunnel(a, hi, rq, sgc))
988 return true;
989
990 break;
991 }
992
993 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
994 hi->status = ATTO_STS_INV_VERSION;
995 hi->version = ATTO_VER_SCSI_PASS_THRU0;
996 break;
997 }
998
999 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1000 hi->status = ATTO_STS_INV_PARAM;
1001 break;
1002 }
1003
1004 esas2r_sgc_init(sgc, a, rq, NULL);
1005
1006 sgc->length = hi->data_length;
1007 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1008 + sizeof(struct atto_hba_scsi_pass_thru);
1009
1010 /* Finish request initialization */
1011 rq->target_id = (u16)spt->target_id;
1012 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1013 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1014 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1015 rq->sense_len = spt->sense_length;
1016 rq->sense_buf = (u8 *)spt->sense_data;
1017 /* NOTE: we ignore spt->timeout */
1018
1019 /*
1020 * always usurp the completion callback since the interrupt
1021 * callback mechanism may be used.
1022 */
1023
1024 rq->aux_req_cx = hi;
1025 rq->aux_req_cb = rq->comp_cb;
1026 rq->comp_cb = scsi_passthru_comp_cb;
1027
1028 if (spt->flags & ATTO_SPTF_DATA_IN) {
1029 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1030 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1031 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1032 } else {
1033 if (sgc->length) {
1034 hi->status = ATTO_STS_INV_PARAM;
1035 break;
1036 }
1037 }
1038
1039 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1040 rq->vrq->scsi.flags |=
1041 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1042 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1043 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1044
1045
1046 if (!esas2r_build_sg_list(a, rq, sgc)) {
1047 hi->status = ATTO_STS_OUT_OF_RSRC;
1048 break;
1049 }
1050
1051 esas2r_start_request(a, rq);
1052
1053 return true;
1054 }
1055
1056 case ATTO_FUNC_GET_DEV_ADDR:
1057 {
1058 struct atto_hba_get_device_address *gda =
1059 &hi->data.get_dev_addr;
1060 struct esas2r_target *t;
1061
1062 if (hi->flags & HBAF_TUNNEL) {
1063 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1064 return true;
1065
1066 break;
1067 }
1068
1069 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1070 hi->status = ATTO_STS_INV_VERSION;
1071 hi->version = ATTO_VER_GET_DEV_ADDR0;
1072 break;
1073 }
1074
1075 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1076 hi->status = ATTO_STS_INV_PARAM;
1077 break;
1078 }
1079
1080 t = a->targetdb + (u16)gda->target_id;
1081
1082 if (t->target_state != TS_PRESENT) {
1083 hi->status = ATTO_STS_FAILED;
1084 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1085 if (t->sas_addr == 0) {
1086 hi->status = ATTO_STS_UNSUPPORTED;
1087 } else {
1088 *(u64 *)gda->address = t->sas_addr;
1089
1090 gda->addr_len = sizeof(u64);
1091 }
1092 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1093 hi->status = ATTO_STS_NOT_APPL;
1094 } else {
1095 hi->status = ATTO_STS_INV_PARAM;
1096 }
1097
1098 /* update the target ID to the next one present. */
1099
1100 gda->target_id =
1101 esas2r_targ_db_find_next_present(a,
1102 (u16)gda->target_id);
1103 break;
1104 }
1105
1106 case ATTO_FUNC_PHY_CTRL:
1107 case ATTO_FUNC_CONN_CTRL:
1108 {
1109 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1110 return true;
1111
1112 break;
1113 }
1114
1115 case ATTO_FUNC_ADAP_CTRL:
1116 {
1117 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1118
1119 if (hi->flags & HBAF_TUNNEL) {
1120 hi->status = ATTO_STS_UNSUPPORTED;
1121 break;
1122 }
1123
1124 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1125 hi->status = ATTO_STS_INV_VERSION;
1126 hi->version = ATTO_VER_ADAP_CTRL0;
1127 break;
1128 }
1129
1130 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1131 esas2r_reset_adapter(a);
1132 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1133 hi->status = ATTO_STS_UNSUPPORTED;
1134 break;
1135 }
1136
1137 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1138 ac->adap_state = ATTO_AC_AS_RST_SCHED;
1139 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1140 ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1141 else if (test_bit(AF_DISC_PENDING, &a->flags))
1142 ac->adap_state = ATTO_AC_AS_RST_DISC;
1143 else if (test_bit(AF_DISABLED, &a->flags))
1144 ac->adap_state = ATTO_AC_AS_DISABLED;
1145 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1146 ac->adap_state = ATTO_AC_AS_DEGRADED;
1147 else
1148 ac->adap_state = ATTO_AC_AS_OK;
1149
1150 break;
1151 }
1152
1153 case ATTO_FUNC_GET_DEV_INFO:
1154 {
1155 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1156 struct esas2r_target *t;
1157
1158 if (hi->flags & HBAF_TUNNEL) {
1159 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1160 return true;
1161
1162 break;
1163 }
1164
1165 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1166 hi->status = ATTO_STS_INV_VERSION;
1167 hi->version = ATTO_VER_GET_DEV_INFO0;
1168 break;
1169 }
1170
1171 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1172 hi->status = ATTO_STS_INV_PARAM;
1173 break;
1174 }
1175
1176 t = a->targetdb + (u16)gdi->target_id;
1177
1178 /* update the target ID to the next one present. */
1179
1180 gdi->target_id =
1181 esas2r_targ_db_find_next_present(a,
1182 (u16)gdi->target_id);
1183
1184 if (t->target_state != TS_PRESENT) {
1185 hi->status = ATTO_STS_FAILED;
1186 break;
1187 }
1188
1189 hi->status = ATTO_STS_UNSUPPORTED;
1190 break;
1191 }
1192
1193 default:
1194
1195 hi->status = ATTO_STS_INV_FUNC;
1196 break;
1197 }
1198
1199 return false;
1200 }
1201
hba_ioctl_done_callback(struct esas2r_adapter * a,struct esas2r_request * rq,void * context)1202 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1203 struct esas2r_request *rq, void *context)
1204 {
1205 struct atto_ioctl *ioctl_hba =
1206 (struct atto_ioctl *)esas2r_buffered_ioctl;
1207
1208 esas2r_debug("hba_ioctl_done_callback %d", a->index);
1209
1210 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1211 struct atto_hba_get_adapter_info *gai =
1212 &ioctl_hba->data.get_adap_info;
1213
1214 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1215
1216 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1217 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1218
1219 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1220 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1221
1222 gai->num_busses = 1;
1223 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1224 gai->num_lunsper_targ = 1;
1225 }
1226 }
1227
handle_hba_ioctl(struct esas2r_adapter * a,struct atto_ioctl * ioctl_hba)1228 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1229 struct atto_ioctl *ioctl_hba)
1230 {
1231 struct esas2r_buffered_ioctl bi;
1232
1233 memset(&bi, 0, sizeof(bi));
1234
1235 bi.a = a;
1236 bi.ioctl = ioctl_hba;
1237 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1238 bi.callback = hba_ioctl_callback;
1239 bi.context = NULL;
1240 bi.done_callback = hba_ioctl_done_callback;
1241 bi.done_context = NULL;
1242 bi.offset = 0;
1243
1244 return handle_buffered_ioctl(&bi);
1245 }
1246
1247
esas2r_write_params(struct esas2r_adapter * a,struct esas2r_request * rq,struct esas2r_sas_nvram * data)1248 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1249 struct esas2r_sas_nvram *data)
1250 {
1251 int result = 0;
1252
1253 a->nvram_command_done = 0;
1254 rq->comp_cb = complete_nvr_req;
1255
1256 if (esas2r_nvram_write(a, rq, data)) {
1257 /* now wait around for it to complete. */
1258 while (!a->nvram_command_done)
1259 wait_event_interruptible(a->nvram_waiter,
1260 a->nvram_command_done);
1261 ;
1262
1263 /* done, check the status. */
1264 if (rq->req_stat == RS_SUCCESS)
1265 result = 1;
1266 }
1267 return result;
1268 }
1269
1270
1271 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
esas2r_ioctl_handler(void * hostdata,unsigned int cmd,void __user * arg)1272 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1273 {
1274 struct atto_express_ioctl *ioctl = NULL;
1275 struct esas2r_adapter *a;
1276 struct esas2r_request *rq;
1277 u16 code;
1278 int err;
1279
1280 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1281
1282 if ((arg == NULL)
1283 || (cmd < EXPRESS_IOCTL_MIN)
1284 || (cmd > EXPRESS_IOCTL_MAX))
1285 return -ENOTSUPP;
1286
1287 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1288 if (IS_ERR(ioctl)) {
1289 esas2r_log(ESAS2R_LOG_WARN,
1290 "ioctl_handler access_ok failed for cmd %u, address %p",
1291 cmd, arg);
1292 return PTR_ERR(ioctl);
1293 }
1294
1295 /* verify the signature */
1296
1297 if (memcmp(ioctl->header.signature,
1298 EXPRESS_IOCTL_SIGNATURE,
1299 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1300 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1301 kfree(ioctl);
1302
1303 return -ENOTSUPP;
1304 }
1305
1306 /* assume success */
1307
1308 ioctl->header.return_code = IOCTL_SUCCESS;
1309 err = 0;
1310
1311 /*
1312 * handle EXPRESS_IOCTL_GET_CHANNELS
1313 * without paying attention to channel
1314 */
1315
1316 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1317 int i = 0, k = 0;
1318
1319 ioctl->data.chanlist.num_channels = 0;
1320
1321 while (i < MAX_ADAPTERS) {
1322 if (esas2r_adapters[i]) {
1323 ioctl->data.chanlist.num_channels++;
1324 ioctl->data.chanlist.channel[k] = i;
1325 k++;
1326 }
1327 i++;
1328 }
1329
1330 goto ioctl_done;
1331 }
1332
1333 /* get the channel */
1334
1335 if (ioctl->header.channel == 0xFF) {
1336 a = (struct esas2r_adapter *)hostdata;
1337 } else {
1338 if (ioctl->header.channel >= MAX_ADAPTERS ||
1339 esas2r_adapters[ioctl->header.channel] == NULL) {
1340 ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1341 esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1342 kfree(ioctl);
1343
1344 return -ENOTSUPP;
1345 }
1346 a = esas2r_adapters[ioctl->header.channel];
1347 }
1348
1349 switch (cmd) {
1350 case EXPRESS_IOCTL_RW_FIRMWARE:
1351
1352 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1353 err = esas2r_write_fw(a,
1354 (char *)ioctl->data.fwrw.image,
1355 0,
1356 sizeof(struct
1357 atto_express_ioctl));
1358
1359 if (err >= 0) {
1360 err = esas2r_read_fw(a,
1361 (char *)ioctl->data.fwrw.
1362 image,
1363 0,
1364 sizeof(struct
1365 atto_express_ioctl));
1366 }
1367 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1368 err = esas2r_write_fs(a,
1369 (char *)ioctl->data.fwrw.image,
1370 0,
1371 sizeof(struct
1372 atto_express_ioctl));
1373
1374 if (err >= 0) {
1375 err = esas2r_read_fs(a,
1376 (char *)ioctl->data.fwrw.
1377 image,
1378 0,
1379 sizeof(struct
1380 atto_express_ioctl));
1381 }
1382 } else {
1383 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1384 }
1385
1386 break;
1387
1388 case EXPRESS_IOCTL_READ_PARAMS:
1389
1390 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1391 sizeof(struct esas2r_sas_nvram));
1392 ioctl->data.prw.code = 1;
1393 break;
1394
1395 case EXPRESS_IOCTL_WRITE_PARAMS:
1396
1397 rq = esas2r_alloc_request(a);
1398 if (rq == NULL) {
1399 kfree(ioctl);
1400 esas2r_log(ESAS2R_LOG_WARN,
1401 "could not allocate an internal request");
1402 return -ENOMEM;
1403 }
1404
1405 code = esas2r_write_params(a, rq,
1406 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1407 ioctl->data.prw.code = code;
1408
1409 esas2r_free_request(a, rq);
1410
1411 break;
1412
1413 case EXPRESS_IOCTL_DEFAULT_PARAMS:
1414
1415 esas2r_nvram_get_defaults(a,
1416 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1417 ioctl->data.prw.code = 1;
1418 break;
1419
1420 case EXPRESS_IOCTL_CHAN_INFO:
1421
1422 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1423 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1424 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1425 ioctl->data.chaninfo.device_id = a->pcid->device;
1426 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1427 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1428 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1429 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1430 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1431 ioctl->data.chaninfo.core_rev = 0;
1432 ioctl->data.chaninfo.host_no = a->host->host_no;
1433 ioctl->data.chaninfo.hbaapi_rev = 0;
1434 break;
1435
1436 case EXPRESS_IOCTL_SMP:
1437 ioctl->header.return_code = handle_smp_ioctl(a,
1438 &ioctl->data.
1439 ioctl_smp);
1440 break;
1441
1442 case EXPRESS_CSMI:
1443 ioctl->header.return_code =
1444 handle_csmi_ioctl(a, &ioctl->data.csmi);
1445 break;
1446
1447 case EXPRESS_IOCTL_HBA:
1448 ioctl->header.return_code = handle_hba_ioctl(a,
1449 &ioctl->data.
1450 ioctl_hba);
1451 break;
1452
1453 case EXPRESS_IOCTL_VDA:
1454 err = esas2r_write_vda(a,
1455 (char *)&ioctl->data.ioctl_vda,
1456 0,
1457 sizeof(struct atto_ioctl_vda) +
1458 ioctl->data.ioctl_vda.data_length);
1459
1460 if (err >= 0) {
1461 err = esas2r_read_vda(a,
1462 (char *)&ioctl->data.ioctl_vda,
1463 0,
1464 sizeof(struct atto_ioctl_vda) +
1465 ioctl->data.ioctl_vda.data_length);
1466 }
1467
1468
1469
1470
1471 break;
1472
1473 case EXPRESS_IOCTL_GET_MOD_INFO:
1474
1475 ioctl->data.modinfo.adapter = a;
1476 ioctl->data.modinfo.pci_dev = a->pcid;
1477 ioctl->data.modinfo.scsi_host = a->host;
1478 ioctl->data.modinfo.host_no = a->host->host_no;
1479
1480 break;
1481
1482 default:
1483 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1484 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1485 }
1486
1487 ioctl_done:
1488
1489 if (err < 0) {
1490 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1491 cmd);
1492
1493 switch (err) {
1494 case -ENOMEM:
1495 case -EBUSY:
1496 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1497 break;
1498
1499 case -ENOSYS:
1500 case -EINVAL:
1501 ioctl->header.return_code = IOCTL_INVALID_PARAM;
1502 break;
1503
1504 default:
1505 ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1506 break;
1507 }
1508
1509 }
1510
1511 /* Always copy the buffer back, if only to pick up the status */
1512 err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1513 if (err != 0) {
1514 esas2r_log(ESAS2R_LOG_WARN,
1515 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1516 err, cmd);
1517 kfree(ioctl);
1518
1519 return -EFAULT;
1520 }
1521
1522 kfree(ioctl);
1523
1524 return 0;
1525 }
1526
esas2r_ioctl(struct scsi_device * sd,unsigned int cmd,void __user * arg)1527 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1528 {
1529 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1530 }
1531
free_fw_buffers(struct esas2r_adapter * a)1532 static void free_fw_buffers(struct esas2r_adapter *a)
1533 {
1534 if (a->firmware.data) {
1535 dma_free_coherent(&a->pcid->dev,
1536 (size_t)a->firmware.orig_len,
1537 a->firmware.data,
1538 (dma_addr_t)a->firmware.phys);
1539
1540 a->firmware.data = NULL;
1541 }
1542 }
1543
allocate_fw_buffers(struct esas2r_adapter * a,u32 length)1544 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1545 {
1546 free_fw_buffers(a);
1547
1548 a->firmware.orig_len = length;
1549
1550 a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1551 (size_t)length,
1552 (dma_addr_t *)&a->firmware.phys,
1553 GFP_KERNEL);
1554
1555 if (!a->firmware.data) {
1556 esas2r_debug("buffer alloc failed!");
1557 return 0;
1558 }
1559
1560 return 1;
1561 }
1562
1563 /* Handle a call to read firmware. */
esas2r_read_fw(struct esas2r_adapter * a,char * buf,long off,int count)1564 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1565 {
1566 esas2r_trace_enter();
1567 /* if the cached header is a status, simply copy it over and return. */
1568 if (a->firmware.state == FW_STATUS_ST) {
1569 int size = min_t(int, count, sizeof(a->firmware.header));
1570 esas2r_trace_exit();
1571 memcpy(buf, &a->firmware.header, size);
1572 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1573 return size;
1574 }
1575
1576 /*
1577 * if the cached header is a command, do it if at
1578 * offset 0, otherwise copy the pieces.
1579 */
1580
1581 if (a->firmware.state == FW_COMMAND_ST) {
1582 u32 length = a->firmware.header.length;
1583 esas2r_trace_exit();
1584
1585 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1586 length,
1587 off);
1588
1589 if (off == 0) {
1590 if (a->firmware.header.action == FI_ACT_UP) {
1591 if (!allocate_fw_buffers(a, length))
1592 return -ENOMEM;
1593
1594
1595 /* copy header over */
1596
1597 memcpy(a->firmware.data,
1598 &a->firmware.header,
1599 sizeof(a->firmware.header));
1600
1601 do_fm_api(a,
1602 (struct esas2r_flash_img *)a->firmware.data);
1603 } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1604 int size =
1605 min((int)count,
1606 (int)sizeof(a->firmware.header));
1607 do_fm_api(a, &a->firmware.header);
1608 memcpy(buf, &a->firmware.header, size);
1609 esas2r_debug("FI_ACT_UPSZ size %d", size);
1610 return size;
1611 } else {
1612 esas2r_debug("invalid action %d",
1613 a->firmware.header.action);
1614 return -ENOSYS;
1615 }
1616 }
1617
1618 if (count + off > length)
1619 count = length - off;
1620
1621 if (count < 0)
1622 return 0;
1623
1624 if (!a->firmware.data) {
1625 esas2r_debug(
1626 "read: nonzero offset but no buffer available!");
1627 return -ENOMEM;
1628 }
1629
1630 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1631 count,
1632 length);
1633
1634 memcpy(buf, &a->firmware.data[off], count);
1635
1636 /* when done, release the buffer */
1637
1638 if (length <= off + count) {
1639 esas2r_debug("esas2r_read_fw: freeing buffer!");
1640
1641 free_fw_buffers(a);
1642 }
1643
1644 return count;
1645 }
1646
1647 esas2r_trace_exit();
1648 esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1649 a->firmware.state);
1650
1651 return -EINVAL;
1652 }
1653
1654 /* Handle a call to write firmware. */
esas2r_write_fw(struct esas2r_adapter * a,const char * buf,long off,int count)1655 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1656 int count)
1657 {
1658 u32 length;
1659
1660 if (off == 0) {
1661 struct esas2r_flash_img *header =
1662 (struct esas2r_flash_img *)buf;
1663
1664 /* assume version 0 flash image */
1665
1666 int min_size = sizeof(struct esas2r_flash_img_v0);
1667
1668 a->firmware.state = FW_INVALID_ST;
1669
1670 /* validate the version field first */
1671
1672 if (count < 4
1673 || header->fi_version > FI_VERSION_1) {
1674 esas2r_debug(
1675 "esas2r_write_fw: short header or invalid version");
1676 return -EINVAL;
1677 }
1678
1679 /* See if its a version 1 flash image */
1680
1681 if (header->fi_version == FI_VERSION_1)
1682 min_size = sizeof(struct esas2r_flash_img);
1683
1684 /* If this is the start, the header must be full and valid. */
1685 if (count < min_size) {
1686 esas2r_debug("esas2r_write_fw: short header, aborting");
1687 return -EINVAL;
1688 }
1689
1690 /* Make sure the size is reasonable. */
1691 length = header->length;
1692
1693 if (length > 1024 * 1024) {
1694 esas2r_debug(
1695 "esas2r_write_fw: hosed, length %d fi_version %d",
1696 length, header->fi_version);
1697 return -EINVAL;
1698 }
1699
1700 /*
1701 * If this is a write command, allocate memory because
1702 * we have to cache everything. otherwise, just cache
1703 * the header, because the read op will do the command.
1704 */
1705
1706 if (header->action == FI_ACT_DOWN) {
1707 if (!allocate_fw_buffers(a, length))
1708 return -ENOMEM;
1709
1710 /*
1711 * Store the command, so there is context on subsequent
1712 * calls.
1713 */
1714 memcpy(&a->firmware.header,
1715 buf,
1716 sizeof(*header));
1717 } else if (header->action == FI_ACT_UP
1718 || header->action == FI_ACT_UPSZ) {
1719 /* Save the command, result will be picked up on read */
1720 memcpy(&a->firmware.header,
1721 buf,
1722 sizeof(*header));
1723
1724 a->firmware.state = FW_COMMAND_ST;
1725
1726 esas2r_debug(
1727 "esas2r_write_fw: COMMAND, count %d, action %d ",
1728 count, header->action);
1729
1730 /*
1731 * Pretend we took the whole buffer,
1732 * so we don't get bothered again.
1733 */
1734
1735 return count;
1736 } else {
1737 esas2r_debug("esas2r_write_fw: invalid action %d ",
1738 a->firmware.header.action);
1739 return -ENOSYS;
1740 }
1741 } else {
1742 length = a->firmware.header.length;
1743 }
1744
1745 /*
1746 * We only get here on a download command, regardless of offset.
1747 * the chunks written by the system need to be cached, and when
1748 * the final one arrives, issue the fmapi command.
1749 */
1750
1751 if (off + count > length)
1752 count = length - off;
1753
1754 if (count > 0) {
1755 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1756 count,
1757 length);
1758
1759 /*
1760 * On a full upload, the system tries sending the whole buffer.
1761 * there's nothing to do with it, so just drop it here, before
1762 * trying to copy over into unallocated memory!
1763 */
1764 if (a->firmware.header.action == FI_ACT_UP)
1765 return count;
1766
1767 if (!a->firmware.data) {
1768 esas2r_debug(
1769 "write: nonzero offset but no buffer available!");
1770 return -ENOMEM;
1771 }
1772
1773 memcpy(&a->firmware.data[off], buf, count);
1774
1775 if (length == off + count) {
1776 do_fm_api(a,
1777 (struct esas2r_flash_img *)a->firmware.data);
1778
1779 /*
1780 * Now copy the header result to be picked up by the
1781 * next read
1782 */
1783 memcpy(&a->firmware.header,
1784 a->firmware.data,
1785 sizeof(a->firmware.header));
1786
1787 a->firmware.state = FW_STATUS_ST;
1788
1789 esas2r_debug("write completed");
1790
1791 /*
1792 * Since the system has the data buffered, the only way
1793 * this can leak is if a root user writes a program
1794 * that writes a shorter buffer than it claims, and the
1795 * copyin fails.
1796 */
1797 free_fw_buffers(a);
1798 }
1799 }
1800
1801 return count;
1802 }
1803
1804 /* Callback for the completion of a VDA request. */
vda_complete_req(struct esas2r_adapter * a,struct esas2r_request * rq)1805 static void vda_complete_req(struct esas2r_adapter *a,
1806 struct esas2r_request *rq)
1807 {
1808 a->vda_command_done = 1;
1809 wake_up_interruptible(&a->vda_waiter);
1810 }
1811
1812 /* Scatter/gather callback for VDA requests */
get_physaddr_vda(struct esas2r_sg_context * sgc,u64 * addr)1813 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1814 {
1815 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1816 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1817
1818 (*addr) = a->ppvda_buffer + offset;
1819 return VDA_MAX_BUFFER_SIZE - offset;
1820 }
1821
1822 /* Handle a call to read a VDA command. */
esas2r_read_vda(struct esas2r_adapter * a,char * buf,long off,int count)1823 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1824 {
1825 if (!a->vda_buffer)
1826 return -ENOMEM;
1827
1828 if (off == 0) {
1829 struct esas2r_request *rq;
1830 struct atto_ioctl_vda *vi =
1831 (struct atto_ioctl_vda *)a->vda_buffer;
1832 struct esas2r_sg_context sgc;
1833 bool wait_for_completion;
1834
1835 /*
1836 * Presumeably, someone has already written to the vda_buffer,
1837 * and now they are reading the node the response, so now we
1838 * will actually issue the request to the chip and reply.
1839 */
1840
1841 /* allocate a request */
1842 rq = esas2r_alloc_request(a);
1843 if (rq == NULL) {
1844 esas2r_debug("esas2r_read_vda: out of requests");
1845 return -EBUSY;
1846 }
1847
1848 rq->comp_cb = vda_complete_req;
1849
1850 sgc.first_req = rq;
1851 sgc.adapter = a;
1852 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1853 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1854
1855 a->vda_command_done = 0;
1856
1857 wait_for_completion =
1858 esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1859
1860 if (wait_for_completion) {
1861 /* now wait around for it to complete. */
1862
1863 while (!a->vda_command_done)
1864 wait_event_interruptible(a->vda_waiter,
1865 a->vda_command_done);
1866 }
1867
1868 esas2r_free_request(a, (struct esas2r_request *)rq);
1869 }
1870
1871 if (off > VDA_MAX_BUFFER_SIZE)
1872 return 0;
1873
1874 if (count + off > VDA_MAX_BUFFER_SIZE)
1875 count = VDA_MAX_BUFFER_SIZE - off;
1876
1877 if (count < 0)
1878 return 0;
1879
1880 memcpy(buf, a->vda_buffer + off, count);
1881
1882 return count;
1883 }
1884
1885 /* Handle a call to write a VDA command. */
esas2r_write_vda(struct esas2r_adapter * a,const char * buf,long off,int count)1886 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1887 int count)
1888 {
1889 /*
1890 * allocate memory for it, if not already done. once allocated,
1891 * we will keep it around until the driver is unloaded.
1892 */
1893
1894 if (!a->vda_buffer) {
1895 dma_addr_t dma_addr;
1896 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1897 (size_t)
1898 VDA_MAX_BUFFER_SIZE,
1899 &dma_addr,
1900 GFP_KERNEL);
1901
1902 a->ppvda_buffer = dma_addr;
1903 }
1904
1905 if (!a->vda_buffer)
1906 return -ENOMEM;
1907
1908 if (off > VDA_MAX_BUFFER_SIZE)
1909 return 0;
1910
1911 if (count + off > VDA_MAX_BUFFER_SIZE)
1912 count = VDA_MAX_BUFFER_SIZE - off;
1913
1914 if (count < 1)
1915 return 0;
1916
1917 memcpy(a->vda_buffer + off, buf, count);
1918
1919 return count;
1920 }
1921
1922 /* Callback for the completion of an FS_API request.*/
fs_api_complete_req(struct esas2r_adapter * a,struct esas2r_request * rq)1923 static void fs_api_complete_req(struct esas2r_adapter *a,
1924 struct esas2r_request *rq)
1925 {
1926 a->fs_api_command_done = 1;
1927
1928 wake_up_interruptible(&a->fs_api_waiter);
1929 }
1930
1931 /* Scatter/gather callback for VDA requests */
get_physaddr_fs_api(struct esas2r_sg_context * sgc,u64 * addr)1932 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1933 {
1934 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1935 struct esas2r_ioctl_fs *fs =
1936 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1937 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1938
1939 (*addr) = a->ppfs_api_buffer + offset;
1940
1941 return a->fs_api_buffer_size - offset;
1942 }
1943
1944 /* Handle a call to read firmware via FS_API. */
esas2r_read_fs(struct esas2r_adapter * a,char * buf,long off,int count)1945 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1946 {
1947 if (!a->fs_api_buffer)
1948 return -ENOMEM;
1949
1950 if (off == 0) {
1951 struct esas2r_request *rq;
1952 struct esas2r_sg_context sgc;
1953 struct esas2r_ioctl_fs *fs =
1954 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1955
1956 /* If another flash request is already in progress, return. */
1957 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1958 busy:
1959 fs->status = ATTO_STS_OUT_OF_RSRC;
1960 return -EBUSY;
1961 }
1962
1963 /*
1964 * Presumeably, someone has already written to the
1965 * fs_api_buffer, and now they are reading the node the
1966 * response, so now we will actually issue the request to the
1967 * chip and reply. Allocate a request
1968 */
1969
1970 rq = esas2r_alloc_request(a);
1971 if (rq == NULL) {
1972 esas2r_debug("esas2r_read_fs: out of requests");
1973 mutex_unlock(&a->fs_api_mutex);
1974 goto busy;
1975 }
1976
1977 rq->comp_cb = fs_api_complete_req;
1978
1979 /* Set up the SGCONTEXT for to build the s/g table */
1980
1981 sgc.cur_offset = fs->data;
1982 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1983
1984 a->fs_api_command_done = 0;
1985
1986 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1987 if (fs->status == ATTO_STS_OUT_OF_RSRC)
1988 count = -EBUSY;
1989
1990 goto dont_wait;
1991 }
1992
1993 /* Now wait around for it to complete. */
1994
1995 while (!a->fs_api_command_done)
1996 wait_event_interruptible(a->fs_api_waiter,
1997 a->fs_api_command_done);
1998 ;
1999 dont_wait:
2000 /* Free the request and keep going */
2001 mutex_unlock(&a->fs_api_mutex);
2002 esas2r_free_request(a, (struct esas2r_request *)rq);
2003
2004 /* Pick up possible error code from above */
2005 if (count < 0)
2006 return count;
2007 }
2008
2009 if (off > a->fs_api_buffer_size)
2010 return 0;
2011
2012 if (count + off > a->fs_api_buffer_size)
2013 count = a->fs_api_buffer_size - off;
2014
2015 if (count < 0)
2016 return 0;
2017
2018 memcpy(buf, a->fs_api_buffer + off, count);
2019
2020 return count;
2021 }
2022
2023 /* Handle a call to write firmware via FS_API. */
esas2r_write_fs(struct esas2r_adapter * a,const char * buf,long off,int count)2024 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2025 int count)
2026 {
2027 if (off == 0) {
2028 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2029 u32 length = fs->command.length + offsetof(
2030 struct esas2r_ioctl_fs,
2031 data);
2032
2033 /*
2034 * Special case, for BEGIN commands, the length field
2035 * is lying to us, so just get enough for the header.
2036 */
2037
2038 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2039 length = offsetof(struct esas2r_ioctl_fs, data);
2040
2041 /*
2042 * Beginning a command. We assume we'll get at least
2043 * enough in the first write so we can look at the
2044 * header and see how much we need to alloc.
2045 */
2046
2047 if (count < offsetof(struct esas2r_ioctl_fs, data))
2048 return -EINVAL;
2049
2050 /* Allocate a buffer or use the existing buffer. */
2051 if (a->fs_api_buffer) {
2052 if (a->fs_api_buffer_size < length) {
2053 /* Free too-small buffer and get a new one */
2054 dma_free_coherent(&a->pcid->dev,
2055 (size_t)a->fs_api_buffer_size,
2056 a->fs_api_buffer,
2057 (dma_addr_t)a->ppfs_api_buffer);
2058
2059 goto re_allocate_buffer;
2060 }
2061 } else {
2062 re_allocate_buffer:
2063 a->fs_api_buffer_size = length;
2064
2065 a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2066 (size_t)a->fs_api_buffer_size,
2067 (dma_addr_t *)&a->ppfs_api_buffer,
2068 GFP_KERNEL);
2069 }
2070 }
2071
2072 if (!a->fs_api_buffer)
2073 return -ENOMEM;
2074
2075 if (off > a->fs_api_buffer_size)
2076 return 0;
2077
2078 if (count + off > a->fs_api_buffer_size)
2079 count = a->fs_api_buffer_size - off;
2080
2081 if (count < 1)
2082 return 0;
2083
2084 memcpy(a->fs_api_buffer + off, buf, count);
2085
2086 return count;
2087 }
2088