1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <linux/debugfs.h>
26
27 #include <asm/processor.h>
28 #include <asm/mmu.h>
29 #include <asm/page.h>
30 #include <asm/machdep.h>
31 #include <asm/mmu_context.h>
32 #include <asm/iommu.h>
33 #include <asm/tlb.h>
34 #include <asm/prom.h>
35 #include <asm/cputable.h>
36 #include <asm/udbg.h>
37 #include <asm/smp.h>
38 #include <asm/trace.h>
39 #include <asm/firmware.h>
40 #include <asm/plpar_wrappers.h>
41 #include <asm/kexec.h>
42 #include <asm/fadump.h>
43 #include <asm/asm-prototypes.h>
44 #include <asm/dtl.h>
45
46 #include "pseries.h"
47
48 /* Flag bits for H_BULK_REMOVE */
49 #define HBR_REQUEST 0x4000000000000000UL
50 #define HBR_RESPONSE 0x8000000000000000UL
51 #define HBR_END 0xc000000000000000UL
52 #define HBR_AVPN 0x0200000000000000UL
53 #define HBR_ANDCOND 0x0100000000000000UL
54
55
56 /* in hvCall.S */
57 EXPORT_SYMBOL(plpar_hcall);
58 EXPORT_SYMBOL(plpar_hcall9);
59 EXPORT_SYMBOL(plpar_hcall_norets);
60
61 /*
62 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
63 * page size is that page size.
64 *
65 * The first index is the segment base page size, the second one is the actual
66 * page size.
67 */
68 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
69
70 /*
71 * Due to the involved complexity, and that the current hypervisor is only
72 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
73 * buffer size to 8 size block.
74 */
75 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
76
77 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
78 static u8 dtl_mask = DTL_LOG_PREEMPT;
79 #else
80 static u8 dtl_mask;
81 #endif
82
alloc_dtl_buffers(unsigned long * time_limit)83 void alloc_dtl_buffers(unsigned long *time_limit)
84 {
85 int cpu;
86 struct paca_struct *pp;
87 struct dtl_entry *dtl;
88
89 for_each_possible_cpu(cpu) {
90 pp = paca_ptrs[cpu];
91 if (pp->dispatch_log)
92 continue;
93 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
94 if (!dtl) {
95 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
96 cpu);
97 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
98 pr_warn("Stolen time statistics will be unreliable\n");
99 #endif
100 break;
101 }
102
103 pp->dtl_ridx = 0;
104 pp->dispatch_log = dtl;
105 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
106 pp->dtl_curr = dtl;
107
108 if (time_limit && time_after(jiffies, *time_limit)) {
109 cond_resched();
110 *time_limit = jiffies + HZ;
111 }
112 }
113 }
114
register_dtl_buffer(int cpu)115 void register_dtl_buffer(int cpu)
116 {
117 long ret;
118 struct paca_struct *pp;
119 struct dtl_entry *dtl;
120 int hwcpu = get_hard_smp_processor_id(cpu);
121
122 pp = paca_ptrs[cpu];
123 dtl = pp->dispatch_log;
124 if (dtl && dtl_mask) {
125 pp->dtl_ridx = 0;
126 pp->dtl_curr = dtl;
127 lppaca_of(cpu).dtl_idx = 0;
128
129 /* hypervisor reads buffer length from this field */
130 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
131 ret = register_dtl(hwcpu, __pa(dtl));
132 if (ret)
133 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
134 cpu, hwcpu, ret);
135
136 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
137 }
138 }
139
140 #ifdef CONFIG_PPC_SPLPAR
141 struct dtl_worker {
142 struct delayed_work work;
143 int cpu;
144 };
145
146 struct vcpu_dispatch_data {
147 int last_disp_cpu;
148
149 int total_disp;
150
151 int same_cpu_disp;
152 int same_chip_disp;
153 int diff_chip_disp;
154 int far_chip_disp;
155
156 int numa_home_disp;
157 int numa_remote_disp;
158 int numa_far_disp;
159 };
160
161 /*
162 * This represents the number of cpus in the hypervisor. Since there is no
163 * architected way to discover the number of processors in the host, we
164 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
165 * is sufficient for our purposes. This will need to be tweaked if
166 * CONFIG_NR_CPUS is changed.
167 */
168 #define NR_CPUS_H NR_CPUS
169
170 DEFINE_RWLOCK(dtl_access_lock);
171 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
172 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
173 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
174 static enum cpuhp_state dtl_worker_state;
175 static DEFINE_MUTEX(dtl_enable_mutex);
176 static int vcpudispatch_stats_on __read_mostly;
177 static int vcpudispatch_stats_freq = 50;
178 static __be32 *vcpu_associativity, *pcpu_associativity;
179
180
free_dtl_buffers(unsigned long * time_limit)181 static void free_dtl_buffers(unsigned long *time_limit)
182 {
183 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
184 int cpu;
185 struct paca_struct *pp;
186
187 for_each_possible_cpu(cpu) {
188 pp = paca_ptrs[cpu];
189 if (!pp->dispatch_log)
190 continue;
191 kmem_cache_free(dtl_cache, pp->dispatch_log);
192 pp->dtl_ridx = 0;
193 pp->dispatch_log = 0;
194 pp->dispatch_log_end = 0;
195 pp->dtl_curr = 0;
196
197 if (time_limit && time_after(jiffies, *time_limit)) {
198 cond_resched();
199 *time_limit = jiffies + HZ;
200 }
201 }
202 #endif
203 }
204
init_cpu_associativity(void)205 static int init_cpu_associativity(void)
206 {
207 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
210 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
211
212 if (!vcpu_associativity || !pcpu_associativity) {
213 pr_err("error allocating memory for associativity information\n");
214 return -ENOMEM;
215 }
216
217 return 0;
218 }
219
destroy_cpu_associativity(void)220 static void destroy_cpu_associativity(void)
221 {
222 kfree(vcpu_associativity);
223 kfree(pcpu_associativity);
224 vcpu_associativity = pcpu_associativity = 0;
225 }
226
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)227 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
228 {
229 __be32 *assoc;
230 int rc = 0;
231
232 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
233 if (!assoc[0]) {
234 rc = hcall_vphn(cpu, flag, &assoc[0]);
235 if (rc)
236 return NULL;
237 }
238
239 return assoc;
240 }
241
get_pcpu_associativity(int cpu)242 static __be32 *get_pcpu_associativity(int cpu)
243 {
244 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
245 }
246
get_vcpu_associativity(int cpu)247 static __be32 *get_vcpu_associativity(int cpu)
248 {
249 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
250 }
251
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)252 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
253 {
254 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
255
256 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
257 return -EINVAL;
258
259 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
260 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
261
262 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
263 return -EIO;
264
265 return cpu_relative_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
266 }
267
cpu_home_node_dispatch_distance(int disp_cpu)268 static int cpu_home_node_dispatch_distance(int disp_cpu)
269 {
270 __be32 *disp_cpu_assoc, *vcpu_assoc;
271 int vcpu_id = smp_processor_id();
272
273 if (disp_cpu >= NR_CPUS_H) {
274 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
275 disp_cpu, NR_CPUS_H);
276 return -EINVAL;
277 }
278
279 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
280 vcpu_assoc = get_vcpu_associativity(vcpu_id);
281
282 if (!disp_cpu_assoc || !vcpu_assoc)
283 return -EIO;
284
285 return cpu_relative_distance(disp_cpu_assoc, vcpu_assoc);
286 }
287
update_vcpu_disp_stat(int disp_cpu)288 static void update_vcpu_disp_stat(int disp_cpu)
289 {
290 struct vcpu_dispatch_data *disp;
291 int distance;
292
293 disp = this_cpu_ptr(&vcpu_disp_data);
294 if (disp->last_disp_cpu == -1) {
295 disp->last_disp_cpu = disp_cpu;
296 return;
297 }
298
299 disp->total_disp++;
300
301 if (disp->last_disp_cpu == disp_cpu ||
302 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
303 cpu_first_thread_sibling(disp_cpu)))
304 disp->same_cpu_disp++;
305 else {
306 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
307 disp_cpu);
308 if (distance < 0)
309 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
310 smp_processor_id());
311 else {
312 switch (distance) {
313 case 0:
314 disp->same_chip_disp++;
315 break;
316 case 1:
317 disp->diff_chip_disp++;
318 break;
319 case 2:
320 disp->far_chip_disp++;
321 break;
322 default:
323 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
324 smp_processor_id(),
325 disp->last_disp_cpu,
326 disp_cpu,
327 distance);
328 }
329 }
330 }
331
332 distance = cpu_home_node_dispatch_distance(disp_cpu);
333 if (distance < 0)
334 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
335 smp_processor_id());
336 else {
337 switch (distance) {
338 case 0:
339 disp->numa_home_disp++;
340 break;
341 case 1:
342 disp->numa_remote_disp++;
343 break;
344 case 2:
345 disp->numa_far_disp++;
346 break;
347 default:
348 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
349 smp_processor_id(),
350 disp_cpu,
351 distance);
352 }
353 }
354
355 disp->last_disp_cpu = disp_cpu;
356 }
357
process_dtl_buffer(struct work_struct * work)358 static void process_dtl_buffer(struct work_struct *work)
359 {
360 struct dtl_entry dtle;
361 u64 i = __this_cpu_read(dtl_entry_ridx);
362 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
363 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
364 struct lppaca *vpa = local_paca->lppaca_ptr;
365 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
366
367 if (!local_paca->dispatch_log)
368 return;
369
370 /* if we have been migrated away, we cancel ourself */
371 if (d->cpu != smp_processor_id()) {
372 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
373 smp_processor_id());
374 return;
375 }
376
377 if (i == be64_to_cpu(vpa->dtl_idx))
378 goto out;
379
380 while (i < be64_to_cpu(vpa->dtl_idx)) {
381 dtle = *dtl;
382 barrier();
383 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
384 /* buffer has overflowed */
385 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
386 d->cpu,
387 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
388 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
389 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
390 continue;
391 }
392 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
393 ++i;
394 ++dtl;
395 if (dtl == dtl_end)
396 dtl = local_paca->dispatch_log;
397 }
398
399 __this_cpu_write(dtl_entry_ridx, i);
400
401 out:
402 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
403 HZ / vcpudispatch_stats_freq);
404 }
405
dtl_worker_online(unsigned int cpu)406 static int dtl_worker_online(unsigned int cpu)
407 {
408 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
409
410 memset(d, 0, sizeof(*d));
411 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
412 d->cpu = cpu;
413
414 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
415 per_cpu(dtl_entry_ridx, cpu) = 0;
416 register_dtl_buffer(cpu);
417 #else
418 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
419 #endif
420
421 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
422 return 0;
423 }
424
dtl_worker_offline(unsigned int cpu)425 static int dtl_worker_offline(unsigned int cpu)
426 {
427 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
428
429 cancel_delayed_work_sync(&d->work);
430
431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
432 unregister_dtl(get_hard_smp_processor_id(cpu));
433 #endif
434
435 return 0;
436 }
437
set_global_dtl_mask(u8 mask)438 static void set_global_dtl_mask(u8 mask)
439 {
440 int cpu;
441
442 dtl_mask = mask;
443 for_each_present_cpu(cpu)
444 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
445 }
446
reset_global_dtl_mask(void)447 static void reset_global_dtl_mask(void)
448 {
449 int cpu;
450
451 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
452 dtl_mask = DTL_LOG_PREEMPT;
453 #else
454 dtl_mask = 0;
455 #endif
456 for_each_present_cpu(cpu)
457 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
458 }
459
dtl_worker_enable(unsigned long * time_limit)460 static int dtl_worker_enable(unsigned long *time_limit)
461 {
462 int rc = 0, state;
463
464 if (!write_trylock(&dtl_access_lock)) {
465 rc = -EBUSY;
466 goto out;
467 }
468
469 set_global_dtl_mask(DTL_LOG_ALL);
470
471 /* Setup dtl buffers and register those */
472 alloc_dtl_buffers(time_limit);
473
474 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
475 dtl_worker_online, dtl_worker_offline);
476 if (state < 0) {
477 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
478 free_dtl_buffers(time_limit);
479 reset_global_dtl_mask();
480 write_unlock(&dtl_access_lock);
481 rc = -EINVAL;
482 goto out;
483 }
484 dtl_worker_state = state;
485
486 out:
487 return rc;
488 }
489
dtl_worker_disable(unsigned long * time_limit)490 static void dtl_worker_disable(unsigned long *time_limit)
491 {
492 cpuhp_remove_state(dtl_worker_state);
493 free_dtl_buffers(time_limit);
494 reset_global_dtl_mask();
495 write_unlock(&dtl_access_lock);
496 }
497
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)498 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
499 size_t count, loff_t *ppos)
500 {
501 unsigned long time_limit = jiffies + HZ;
502 struct vcpu_dispatch_data *disp;
503 int rc, cmd, cpu;
504 char buf[16];
505
506 if (count > 15)
507 return -EINVAL;
508
509 if (copy_from_user(buf, p, count))
510 return -EFAULT;
511
512 buf[count] = 0;
513 rc = kstrtoint(buf, 0, &cmd);
514 if (rc || cmd < 0 || cmd > 1) {
515 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
516 return rc ? rc : -EINVAL;
517 }
518
519 mutex_lock(&dtl_enable_mutex);
520
521 if ((cmd == 0 && !vcpudispatch_stats_on) ||
522 (cmd == 1 && vcpudispatch_stats_on))
523 goto out;
524
525 if (cmd) {
526 rc = init_cpu_associativity();
527 if (rc)
528 goto out;
529
530 for_each_possible_cpu(cpu) {
531 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
532 memset(disp, 0, sizeof(*disp));
533 disp->last_disp_cpu = -1;
534 }
535
536 rc = dtl_worker_enable(&time_limit);
537 if (rc) {
538 destroy_cpu_associativity();
539 goto out;
540 }
541 } else {
542 dtl_worker_disable(&time_limit);
543 destroy_cpu_associativity();
544 }
545
546 vcpudispatch_stats_on = cmd;
547
548 out:
549 mutex_unlock(&dtl_enable_mutex);
550 if (rc)
551 return rc;
552 return count;
553 }
554
vcpudispatch_stats_display(struct seq_file * p,void * v)555 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
556 {
557 int cpu;
558 struct vcpu_dispatch_data *disp;
559
560 if (!vcpudispatch_stats_on) {
561 seq_puts(p, "off\n");
562 return 0;
563 }
564
565 for_each_online_cpu(cpu) {
566 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
567 seq_printf(p, "cpu%d", cpu);
568 seq_put_decimal_ull(p, " ", disp->total_disp);
569 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
570 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
571 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
572 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
573 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
574 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
575 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
576 seq_puts(p, "\n");
577 }
578
579 return 0;
580 }
581
vcpudispatch_stats_open(struct inode * inode,struct file * file)582 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
583 {
584 return single_open(file, vcpudispatch_stats_display, NULL);
585 }
586
587 static const struct proc_ops vcpudispatch_stats_proc_ops = {
588 .proc_open = vcpudispatch_stats_open,
589 .proc_read = seq_read,
590 .proc_write = vcpudispatch_stats_write,
591 .proc_lseek = seq_lseek,
592 .proc_release = single_release,
593 };
594
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)595 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
596 const char __user *p, size_t count, loff_t *ppos)
597 {
598 int rc, freq;
599 char buf[16];
600
601 if (count > 15)
602 return -EINVAL;
603
604 if (copy_from_user(buf, p, count))
605 return -EFAULT;
606
607 buf[count] = 0;
608 rc = kstrtoint(buf, 0, &freq);
609 if (rc || freq < 1 || freq > HZ) {
610 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
611 HZ);
612 return rc ? rc : -EINVAL;
613 }
614
615 vcpudispatch_stats_freq = freq;
616
617 return count;
618 }
619
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)620 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
621 {
622 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
623 return 0;
624 }
625
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)626 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
627 {
628 return single_open(file, vcpudispatch_stats_freq_display, NULL);
629 }
630
631 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
632 .proc_open = vcpudispatch_stats_freq_open,
633 .proc_read = seq_read,
634 .proc_write = vcpudispatch_stats_freq_write,
635 .proc_lseek = seq_lseek,
636 .proc_release = single_release,
637 };
638
vcpudispatch_stats_procfs_init(void)639 static int __init vcpudispatch_stats_procfs_init(void)
640 {
641 /*
642 * Avoid smp_processor_id while preemptible. All CPUs should have
643 * the same value for lppaca_shared_proc.
644 */
645 preempt_disable();
646 if (!lppaca_shared_proc(get_lppaca())) {
647 preempt_enable();
648 return 0;
649 }
650 preempt_enable();
651
652 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
653 &vcpudispatch_stats_proc_ops))
654 pr_err("vcpudispatch_stats: error creating procfs file\n");
655 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
656 &vcpudispatch_stats_freq_proc_ops))
657 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
658
659 return 0;
660 }
661
662 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
663 #endif /* CONFIG_PPC_SPLPAR */
664
vpa_init(int cpu)665 void vpa_init(int cpu)
666 {
667 int hwcpu = get_hard_smp_processor_id(cpu);
668 unsigned long addr;
669 long ret;
670
671 /*
672 * The spec says it "may be problematic" if CPU x registers the VPA of
673 * CPU y. We should never do that, but wail if we ever do.
674 */
675 WARN_ON(cpu != smp_processor_id());
676
677 if (cpu_has_feature(CPU_FTR_ALTIVEC))
678 lppaca_of(cpu).vmxregs_in_use = 1;
679
680 if (cpu_has_feature(CPU_FTR_ARCH_207S))
681 lppaca_of(cpu).ebb_regs_in_use = 1;
682
683 addr = __pa(&lppaca_of(cpu));
684 ret = register_vpa(hwcpu, addr);
685
686 if (ret) {
687 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
688 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
689 return;
690 }
691
692 #ifdef CONFIG_PPC_BOOK3S_64
693 /*
694 * PAPR says this feature is SLB-Buffer but firmware never
695 * reports that. All SPLPAR support SLB shadow buffer.
696 */
697 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
698 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
699 ret = register_slb_shadow(hwcpu, addr);
700 if (ret)
701 pr_err("WARNING: SLB shadow buffer registration for "
702 "cpu %d (hw %d) of area %lx failed with %ld\n",
703 cpu, hwcpu, addr, ret);
704 }
705 #endif /* CONFIG_PPC_BOOK3S_64 */
706
707 /*
708 * Register dispatch trace log, if one has been allocated.
709 */
710 register_dtl_buffer(cpu);
711 }
712
713 #ifdef CONFIG_PPC_BOOK3S_64
714
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)715 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
716 unsigned long vpn, unsigned long pa,
717 unsigned long rflags, unsigned long vflags,
718 int psize, int apsize, int ssize)
719 {
720 unsigned long lpar_rc;
721 unsigned long flags;
722 unsigned long slot;
723 unsigned long hpte_v, hpte_r;
724
725 if (!(vflags & HPTE_V_BOLTED))
726 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
727 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
728 hpte_group, vpn, pa, rflags, vflags, psize);
729
730 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
731 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
732
733 if (!(vflags & HPTE_V_BOLTED))
734 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
735
736 /* Now fill in the actual HPTE */
737 /* Set CEC cookie to 0 */
738 /* Zero page = 0 */
739 /* I-cache Invalidate = 0 */
740 /* I-cache synchronize = 0 */
741 /* Exact = 0 */
742 flags = 0;
743
744 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
745 flags |= H_COALESCE_CAND;
746
747 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
748 if (unlikely(lpar_rc == H_PTEG_FULL)) {
749 pr_devel("Hash table group is full\n");
750 return -1;
751 }
752
753 /*
754 * Since we try and ioremap PHBs we don't own, the pte insert
755 * will fail. However we must catch the failure in hash_page
756 * or we will loop forever, so return -2 in this case.
757 */
758 if (unlikely(lpar_rc != H_SUCCESS)) {
759 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
760 return -2;
761 }
762 if (!(vflags & HPTE_V_BOLTED))
763 pr_devel(" -> slot: %lu\n", slot & 7);
764
765 /* Because of iSeries, we have to pass down the secondary
766 * bucket bit here as well
767 */
768 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
769 }
770
771 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
772
pSeries_lpar_hpte_remove(unsigned long hpte_group)773 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
774 {
775 unsigned long slot_offset;
776 unsigned long lpar_rc;
777 int i;
778 unsigned long dummy1, dummy2;
779
780 /* pick a random slot to start at */
781 slot_offset = mftb() & 0x7;
782
783 for (i = 0; i < HPTES_PER_GROUP; i++) {
784
785 /* don't remove a bolted entry */
786 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
787 HPTE_V_BOLTED, &dummy1, &dummy2);
788 if (lpar_rc == H_SUCCESS)
789 return i;
790
791 /*
792 * The test for adjunct partition is performed before the
793 * ANDCOND test. H_RESOURCE may be returned, so we need to
794 * check for that as well.
795 */
796 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
797
798 slot_offset++;
799 slot_offset &= 0x7;
800 }
801
802 return -1;
803 }
804
805 /* Called during kexec sequence with MMU off */
manual_hpte_clear_all(void)806 static notrace void manual_hpte_clear_all(void)
807 {
808 unsigned long size_bytes = 1UL << ppc64_pft_size;
809 unsigned long hpte_count = size_bytes >> 4;
810 struct {
811 unsigned long pteh;
812 unsigned long ptel;
813 } ptes[4];
814 long lpar_rc;
815 unsigned long i, j;
816
817 /* Read in batches of 4,
818 * invalidate only valid entries not in the VRMA
819 * hpte_count will be a multiple of 4
820 */
821 for (i = 0; i < hpte_count; i += 4) {
822 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
823 if (lpar_rc != H_SUCCESS) {
824 pr_info("Failed to read hash page table at %ld err %ld\n",
825 i, lpar_rc);
826 continue;
827 }
828 for (j = 0; j < 4; j++){
829 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
830 HPTE_V_VRMA_MASK)
831 continue;
832 if (ptes[j].pteh & HPTE_V_VALID)
833 plpar_pte_remove_raw(0, i + j, 0,
834 &(ptes[j].pteh), &(ptes[j].ptel));
835 }
836 }
837 }
838
839 /* Called during kexec sequence with MMU off */
hcall_hpte_clear_all(void)840 static notrace int hcall_hpte_clear_all(void)
841 {
842 int rc;
843
844 do {
845 rc = plpar_hcall_norets(H_CLEAR_HPT);
846 } while (rc == H_CONTINUE);
847
848 return rc;
849 }
850
851 /* Called during kexec sequence with MMU off */
pseries_hpte_clear_all(void)852 static notrace void pseries_hpte_clear_all(void)
853 {
854 int rc;
855
856 rc = hcall_hpte_clear_all();
857 if (rc != H_SUCCESS)
858 manual_hpte_clear_all();
859
860 #ifdef __LITTLE_ENDIAN__
861 /*
862 * Reset exceptions to big endian.
863 *
864 * FIXME this is a hack for kexec, we need to reset the exception
865 * endian before starting the new kernel and this is a convenient place
866 * to do it.
867 *
868 * This is also called on boot when a fadump happens. In that case we
869 * must not change the exception endian mode.
870 */
871 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
872 pseries_big_endian_exceptions();
873 #endif
874 }
875
876 /*
877 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
878 * the low 3 bits of flags happen to line up. So no transform is needed.
879 * We can probably optimize here and assume the high bits of newpp are
880 * already zero. For now I am paranoid.
881 */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)882 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
883 unsigned long newpp,
884 unsigned long vpn,
885 int psize, int apsize,
886 int ssize, unsigned long inv_flags)
887 {
888 unsigned long lpar_rc;
889 unsigned long flags;
890 unsigned long want_v;
891
892 want_v = hpte_encode_avpn(vpn, psize, ssize);
893
894 flags = (newpp & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO)) | H_AVPN;
895 flags |= (newpp & HPTE_R_KEY_HI) >> 48;
896 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
897 /* Move pp0 into bit 8 (IBM 55) */
898 flags |= (newpp & HPTE_R_PP0) >> 55;
899
900 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
901 want_v, slot, flags, psize);
902
903 lpar_rc = plpar_pte_protect(flags, slot, want_v);
904
905 if (lpar_rc == H_NOT_FOUND) {
906 pr_devel("not found !\n");
907 return -1;
908 }
909
910 pr_devel("ok\n");
911
912 BUG_ON(lpar_rc != H_SUCCESS);
913
914 return 0;
915 }
916
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)917 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
918 {
919 long lpar_rc;
920 unsigned long i, j;
921 struct {
922 unsigned long pteh;
923 unsigned long ptel;
924 } ptes[4];
925
926 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
927
928 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
929 if (lpar_rc != H_SUCCESS) {
930 pr_info("Failed to read hash page table at %ld err %ld\n",
931 hpte_group, lpar_rc);
932 continue;
933 }
934
935 for (j = 0; j < 4; j++) {
936 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
937 (ptes[j].pteh & HPTE_V_VALID))
938 return i + j;
939 }
940 }
941
942 return -1;
943 }
944
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)945 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
946 {
947 long slot;
948 unsigned long hash;
949 unsigned long want_v;
950 unsigned long hpte_group;
951
952 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
953 want_v = hpte_encode_avpn(vpn, psize, ssize);
954
955 /*
956 * We try to keep bolted entries always in primary hash
957 * But in some case we can find them in secondary too.
958 */
959 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
960 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
961 if (slot < 0) {
962 /* Try in secondary */
963 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
964 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
965 if (slot < 0)
966 return -1;
967 }
968 return hpte_group + slot;
969 }
970
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)971 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
972 unsigned long ea,
973 int psize, int ssize)
974 {
975 unsigned long vpn;
976 unsigned long lpar_rc, slot, vsid, flags;
977
978 vsid = get_kernel_vsid(ea, ssize);
979 vpn = hpt_vpn(ea, vsid, ssize);
980
981 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
982 BUG_ON(slot == -1);
983
984 flags = newpp & (HPTE_R_PP | HPTE_R_N);
985 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
986 /* Move pp0 into bit 8 (IBM 55) */
987 flags |= (newpp & HPTE_R_PP0) >> 55;
988
989 flags |= ((newpp & HPTE_R_KEY_HI) >> 48) | (newpp & HPTE_R_KEY_LO);
990
991 lpar_rc = plpar_pte_protect(flags, slot, 0);
992
993 BUG_ON(lpar_rc != H_SUCCESS);
994 }
995
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)996 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
997 int psize, int apsize,
998 int ssize, int local)
999 {
1000 unsigned long want_v;
1001 unsigned long lpar_rc;
1002 unsigned long dummy1, dummy2;
1003
1004 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
1005 slot, vpn, psize, local);
1006
1007 want_v = hpte_encode_avpn(vpn, psize, ssize);
1008 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1009 if (lpar_rc == H_NOT_FOUND)
1010 return;
1011
1012 BUG_ON(lpar_rc != H_SUCCESS);
1013 }
1014
1015
1016 /*
1017 * As defined in the PAPR's section 14.5.4.1.8
1018 * The control mask doesn't include the returned reference and change bit from
1019 * the processed PTE.
1020 */
1021 #define HBLKR_AVPN 0x0100000000000000UL
1022 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1023 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1024 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1025 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1026
1027 /*
1028 * Returned true if we are supporting this block size for the specified segment
1029 * base page size and actual page size.
1030 *
1031 * Currently, we only support 8 size block.
1032 */
is_supported_hlbkrm(int bpsize,int psize)1033 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1034 {
1035 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1036 }
1037
1038 /**
1039 * H_BLOCK_REMOVE caller.
1040 * @idx should point to the latest @param entry set with a PTEX.
1041 * If PTE cannot be processed because another CPUs has already locked that
1042 * group, those entries are put back in @param starting at index 1.
1043 * If entries has to be retried and @retry_busy is set to true, these entries
1044 * are retried until success. If @retry_busy is set to false, the returned
1045 * is the number of entries yet to process.
1046 */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1047 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1048 bool retry_busy)
1049 {
1050 unsigned long i, rc, new_idx;
1051 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1052
1053 if (idx < 2) {
1054 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1055 return 0;
1056 }
1057 again:
1058 new_idx = 0;
1059 if (idx > PLPAR_HCALL9_BUFSIZE) {
1060 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1061 idx = PLPAR_HCALL9_BUFSIZE;
1062 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1063 param[idx] = HBR_END;
1064
1065 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1066 param[0], /* AVA */
1067 param[1], param[2], param[3], param[4], /* TS0-7 */
1068 param[5], param[6], param[7], param[8]);
1069 if (rc == H_SUCCESS)
1070 return 0;
1071
1072 BUG_ON(rc != H_PARTIAL);
1073
1074 /* Check that the unprocessed entries were 'not found' or 'busy' */
1075 for (i = 0; i < idx-1; i++) {
1076 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1077
1078 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1079 param[++new_idx] = param[i+1];
1080 continue;
1081 }
1082
1083 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1084 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1085 }
1086
1087 /*
1088 * If there were entries found busy, retry these entries if requested,
1089 * of if all the entries have to be retried.
1090 */
1091 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1092 idx = new_idx + 1;
1093 goto again;
1094 }
1095
1096 return new_idx;
1097 }
1098
1099 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1100 /*
1101 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1102 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1103 */
1104 #define PPC64_HUGE_HPTE_BATCH 12
1105
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1106 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1107 int count, int psize, int ssize)
1108 {
1109 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1110 unsigned long shift, current_vpgb, vpgb;
1111 int i, pix = 0;
1112
1113 shift = mmu_psize_defs[psize].shift;
1114
1115 for (i = 0; i < count; i++) {
1116 /*
1117 * Shifting 3 bits more on the right to get a
1118 * 8 pages aligned virtual addresse.
1119 */
1120 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1121 if (!pix || vpgb != current_vpgb) {
1122 /*
1123 * Need to start a new 8 pages block, flush
1124 * the current one if needed.
1125 */
1126 if (pix)
1127 (void)call_block_remove(pix, param, true);
1128 current_vpgb = vpgb;
1129 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1130 pix = 1;
1131 }
1132
1133 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1134 if (pix == PLPAR_HCALL9_BUFSIZE) {
1135 pix = call_block_remove(pix, param, false);
1136 /*
1137 * pix = 0 means that all the entries were
1138 * removed, we can start a new block.
1139 * Otherwise, this means that there are entries
1140 * to retry, and pix points to latest one, so
1141 * we should increment it and try to continue
1142 * the same block.
1143 */
1144 if (pix)
1145 pix++;
1146 }
1147 }
1148 if (pix)
1149 (void)call_block_remove(pix, param, true);
1150 }
1151
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1152 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1153 int count, int psize, int ssize)
1154 {
1155 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1156 int i = 0, pix = 0, rc;
1157
1158 for (i = 0; i < count; i++) {
1159
1160 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1161 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1162 ssize, 0);
1163 } else {
1164 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1165 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1166 pix += 2;
1167 if (pix == 8) {
1168 rc = plpar_hcall9(H_BULK_REMOVE, param,
1169 param[0], param[1], param[2],
1170 param[3], param[4], param[5],
1171 param[6], param[7]);
1172 BUG_ON(rc != H_SUCCESS);
1173 pix = 0;
1174 }
1175 }
1176 }
1177 if (pix) {
1178 param[pix] = HBR_END;
1179 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1180 param[2], param[3], param[4], param[5],
1181 param[6], param[7]);
1182 BUG_ON(rc != H_SUCCESS);
1183 }
1184 }
1185
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1186 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1187 unsigned long *vpn,
1188 int count, int psize,
1189 int ssize)
1190 {
1191 unsigned long flags = 0;
1192 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1193
1194 if (lock_tlbie)
1195 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1196
1197 /* Assuming THP size is 16M */
1198 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1199 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1200 else
1201 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1202
1203 if (lock_tlbie)
1204 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1205 }
1206
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1207 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1208 unsigned long addr,
1209 unsigned char *hpte_slot_array,
1210 int psize, int ssize, int local)
1211 {
1212 int i, index = 0;
1213 unsigned long s_addr = addr;
1214 unsigned int max_hpte_count, valid;
1215 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1216 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1217 unsigned long shift, hidx, vpn = 0, hash, slot;
1218
1219 shift = mmu_psize_defs[psize].shift;
1220 max_hpte_count = 1U << (PMD_SHIFT - shift);
1221
1222 for (i = 0; i < max_hpte_count; i++) {
1223 valid = hpte_valid(hpte_slot_array, i);
1224 if (!valid)
1225 continue;
1226 hidx = hpte_hash_index(hpte_slot_array, i);
1227
1228 /* get the vpn */
1229 addr = s_addr + (i * (1ul << shift));
1230 vpn = hpt_vpn(addr, vsid, ssize);
1231 hash = hpt_hash(vpn, shift, ssize);
1232 if (hidx & _PTEIDX_SECONDARY)
1233 hash = ~hash;
1234
1235 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1236 slot += hidx & _PTEIDX_GROUP_IX;
1237
1238 slot_array[index] = slot;
1239 vpn_array[index] = vpn;
1240 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1241 /*
1242 * Now do a bluk invalidate
1243 */
1244 __pSeries_lpar_hugepage_invalidate(slot_array,
1245 vpn_array,
1246 PPC64_HUGE_HPTE_BATCH,
1247 psize, ssize);
1248 index = 0;
1249 } else
1250 index++;
1251 }
1252 if (index)
1253 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1254 index, psize, ssize);
1255 }
1256 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1257 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1258 unsigned long addr,
1259 unsigned char *hpte_slot_array,
1260 int psize, int ssize, int local)
1261 {
1262 WARN(1, "%s called without THP support\n", __func__);
1263 }
1264 #endif
1265
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1266 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1267 int psize, int ssize)
1268 {
1269 unsigned long vpn;
1270 unsigned long slot, vsid;
1271
1272 vsid = get_kernel_vsid(ea, ssize);
1273 vpn = hpt_vpn(ea, vsid, ssize);
1274
1275 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1276 if (slot == -1)
1277 return -ENOENT;
1278
1279 /*
1280 * lpar doesn't use the passed actual page size
1281 */
1282 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1283 return 0;
1284 }
1285
1286
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1287 static inline unsigned long compute_slot(real_pte_t pte,
1288 unsigned long vpn,
1289 unsigned long index,
1290 unsigned long shift,
1291 int ssize)
1292 {
1293 unsigned long slot, hash, hidx;
1294
1295 hash = hpt_hash(vpn, shift, ssize);
1296 hidx = __rpte_to_hidx(pte, index);
1297 if (hidx & _PTEIDX_SECONDARY)
1298 hash = ~hash;
1299 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1300 slot += hidx & _PTEIDX_GROUP_IX;
1301 return slot;
1302 }
1303
1304 /**
1305 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1306 * "all within the same naturally aligned 8 page virtual address block".
1307 */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1308 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1309 unsigned long *param)
1310 {
1311 unsigned long vpn;
1312 unsigned long i, pix = 0;
1313 unsigned long index, shift, slot, current_vpgb, vpgb;
1314 real_pte_t pte;
1315 int psize, ssize;
1316
1317 psize = batch->psize;
1318 ssize = batch->ssize;
1319
1320 for (i = 0; i < number; i++) {
1321 vpn = batch->vpn[i];
1322 pte = batch->pte[i];
1323 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1324 /*
1325 * Shifting 3 bits more on the right to get a
1326 * 8 pages aligned virtual addresse.
1327 */
1328 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1329 if (!pix || vpgb != current_vpgb) {
1330 /*
1331 * Need to start a new 8 pages block, flush
1332 * the current one if needed.
1333 */
1334 if (pix)
1335 (void)call_block_remove(pix, param,
1336 true);
1337 current_vpgb = vpgb;
1338 param[0] = hpte_encode_avpn(vpn, psize,
1339 ssize);
1340 pix = 1;
1341 }
1342
1343 slot = compute_slot(pte, vpn, index, shift, ssize);
1344 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1345
1346 if (pix == PLPAR_HCALL9_BUFSIZE) {
1347 pix = call_block_remove(pix, param, false);
1348 /*
1349 * pix = 0 means that all the entries were
1350 * removed, we can start a new block.
1351 * Otherwise, this means that there are entries
1352 * to retry, and pix points to latest one, so
1353 * we should increment it and try to continue
1354 * the same block.
1355 */
1356 if (pix)
1357 pix++;
1358 }
1359 } pte_iterate_hashed_end();
1360 }
1361
1362 if (pix)
1363 (void)call_block_remove(pix, param, true);
1364 }
1365
1366 /*
1367 * TLB Block Invalidate Characteristics
1368 *
1369 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1370 * is able to process for each couple segment base page size, actual page size.
1371 *
1372 * The ibm,get-system-parameter properties is returning a buffer with the
1373 * following layout:
1374 *
1375 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1376 * -----------------
1377 * TLB Block Invalidate Specifiers:
1378 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1379 * [ 1 byte Number of page sizes (N) that are supported for the specified
1380 * TLB invalidate block size ]
1381 * [ 1 byte Encoded segment base page size and actual page size
1382 * MSB=0 means 4k segment base page size and actual page size
1383 * MSB=1 the penc value in mmu_psize_def ]
1384 * ...
1385 * -----------------
1386 * Next TLB Block Invalidate Specifiers...
1387 * -----------------
1388 * [ 0 ]
1389 */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1390 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1391 unsigned int block_size)
1392 {
1393 if (block_size > hblkrm_size[bpsize][psize])
1394 hblkrm_size[bpsize][psize] = block_size;
1395 }
1396
1397 /*
1398 * Decode the Encoded segment base page size and actual page size.
1399 * PAPR specifies:
1400 * - bit 7 is the L bit
1401 * - bits 0-5 are the penc value
1402 * If the L bit is 0, this means 4K segment base page size and actual page size
1403 * otherwise the penc value should be read.
1404 */
1405 #define HBLKRM_L_MASK 0x80
1406 #define HBLKRM_PENC_MASK 0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1407 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1408 unsigned int block_size)
1409 {
1410 unsigned int bpsize, psize;
1411
1412 /* First, check the L bit, if not set, this means 4K */
1413 if ((lp & HBLKRM_L_MASK) == 0) {
1414 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1415 return;
1416 }
1417
1418 lp &= HBLKRM_PENC_MASK;
1419 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1420 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1421
1422 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1423 if (def->penc[psize] == lp) {
1424 set_hblkrm_bloc_size(bpsize, psize, block_size);
1425 return;
1426 }
1427 }
1428 }
1429 }
1430
1431 #define SPLPAR_TLB_BIC_TOKEN 50
1432
1433 /*
1434 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1435 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1436 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1437 * (128 bytes) for the buffer to get plenty of space.
1438 */
1439 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1440
pseries_lpar_read_hblkrm_characteristics(void)1441 void __init pseries_lpar_read_hblkrm_characteristics(void)
1442 {
1443 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1444 int call_status, len, idx, bpsize;
1445
1446 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1447 return;
1448
1449 spin_lock(&rtas_data_buf_lock);
1450 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1451 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1452 NULL,
1453 SPLPAR_TLB_BIC_TOKEN,
1454 __pa(rtas_data_buf),
1455 RTAS_DATA_BUF_SIZE);
1456 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1457 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1458 spin_unlock(&rtas_data_buf_lock);
1459
1460 if (call_status != 0) {
1461 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1462 __FILE__, __func__, call_status);
1463 return;
1464 }
1465
1466 /*
1467 * The first two (2) bytes of the data in the buffer are the length of
1468 * the returned data, not counting these first two (2) bytes.
1469 */
1470 len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1471 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1472 pr_warn("%s too large returned buffer %d", __func__, len);
1473 return;
1474 }
1475
1476 idx = 2;
1477 while (idx < len) {
1478 u8 block_shift = local_buffer[idx++];
1479 u32 block_size;
1480 unsigned int npsize;
1481
1482 if (!block_shift)
1483 break;
1484
1485 block_size = 1 << block_shift;
1486
1487 for (npsize = local_buffer[idx++];
1488 npsize > 0 && idx < len; npsize--)
1489 check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1490 block_size);
1491 }
1492
1493 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1494 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1495 if (hblkrm_size[bpsize][idx])
1496 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1497 bpsize, idx, hblkrm_size[bpsize][idx]);
1498 }
1499
1500 /*
1501 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1502 * lock.
1503 */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1504 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1505 {
1506 unsigned long vpn;
1507 unsigned long i, pix, rc;
1508 unsigned long flags = 0;
1509 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1510 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1511 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1512 unsigned long index, shift, slot;
1513 real_pte_t pte;
1514 int psize, ssize;
1515
1516 if (lock_tlbie)
1517 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1518
1519 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1520 do_block_remove(number, batch, param);
1521 goto out;
1522 }
1523
1524 psize = batch->psize;
1525 ssize = batch->ssize;
1526 pix = 0;
1527 for (i = 0; i < number; i++) {
1528 vpn = batch->vpn[i];
1529 pte = batch->pte[i];
1530 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1531 slot = compute_slot(pte, vpn, index, shift, ssize);
1532 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1533 /*
1534 * lpar doesn't use the passed actual page size
1535 */
1536 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1537 0, ssize, local);
1538 } else {
1539 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1540 param[pix+1] = hpte_encode_avpn(vpn, psize,
1541 ssize);
1542 pix += 2;
1543 if (pix == 8) {
1544 rc = plpar_hcall9(H_BULK_REMOVE, param,
1545 param[0], param[1], param[2],
1546 param[3], param[4], param[5],
1547 param[6], param[7]);
1548 BUG_ON(rc != H_SUCCESS);
1549 pix = 0;
1550 }
1551 }
1552 } pte_iterate_hashed_end();
1553 }
1554 if (pix) {
1555 param[pix] = HBR_END;
1556 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1557 param[2], param[3], param[4], param[5],
1558 param[6], param[7]);
1559 BUG_ON(rc != H_SUCCESS);
1560 }
1561
1562 out:
1563 if (lock_tlbie)
1564 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1565 }
1566
disable_bulk_remove(char * str)1567 static int __init disable_bulk_remove(char *str)
1568 {
1569 if (strcmp(str, "off") == 0 &&
1570 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1571 pr_info("Disabling BULK_REMOVE firmware feature");
1572 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1573 }
1574 return 1;
1575 }
1576
1577 __setup("bulk_remove=", disable_bulk_remove);
1578
1579 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1580
1581 struct hpt_resize_state {
1582 unsigned long shift;
1583 int commit_rc;
1584 };
1585
pseries_lpar_resize_hpt_commit(void * data)1586 static int pseries_lpar_resize_hpt_commit(void *data)
1587 {
1588 struct hpt_resize_state *state = data;
1589
1590 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1591 if (state->commit_rc != H_SUCCESS)
1592 return -EIO;
1593
1594 /* Hypervisor has transitioned the HTAB, update our globals */
1595 ppc64_pft_size = state->shift;
1596 htab_size_bytes = 1UL << ppc64_pft_size;
1597 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * Must be called in process context. The caller must hold the
1604 * cpus_lock.
1605 */
pseries_lpar_resize_hpt(unsigned long shift)1606 static int pseries_lpar_resize_hpt(unsigned long shift)
1607 {
1608 struct hpt_resize_state state = {
1609 .shift = shift,
1610 .commit_rc = H_FUNCTION,
1611 };
1612 unsigned int delay, total_delay = 0;
1613 int rc;
1614 ktime_t t0, t1, t2;
1615
1616 might_sleep();
1617
1618 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1619 return -ENODEV;
1620
1621 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1622
1623 t0 = ktime_get();
1624
1625 rc = plpar_resize_hpt_prepare(0, shift);
1626 while (H_IS_LONG_BUSY(rc)) {
1627 delay = get_longbusy_msecs(rc);
1628 total_delay += delay;
1629 if (total_delay > HPT_RESIZE_TIMEOUT) {
1630 /* prepare with shift==0 cancels an in-progress resize */
1631 rc = plpar_resize_hpt_prepare(0, 0);
1632 if (rc != H_SUCCESS)
1633 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1634 rc);
1635 return -ETIMEDOUT;
1636 }
1637 msleep(delay);
1638 rc = plpar_resize_hpt_prepare(0, shift);
1639 }
1640
1641 switch (rc) {
1642 case H_SUCCESS:
1643 /* Continue on */
1644 break;
1645
1646 case H_PARAMETER:
1647 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1648 return -EINVAL;
1649 case H_RESOURCE:
1650 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1651 return -EPERM;
1652 default:
1653 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1654 return -EIO;
1655 }
1656
1657 t1 = ktime_get();
1658
1659 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1660 &state, NULL);
1661
1662 t2 = ktime_get();
1663
1664 if (rc != 0) {
1665 switch (state.commit_rc) {
1666 case H_PTEG_FULL:
1667 return -ENOSPC;
1668
1669 default:
1670 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1671 state.commit_rc);
1672 return -EIO;
1673 };
1674 }
1675
1676 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1677 shift, (long long) ktime_ms_delta(t1, t0),
1678 (long long) ktime_ms_delta(t2, t1));
1679
1680 return 0;
1681 }
1682
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1683 static int pseries_lpar_register_process_table(unsigned long base,
1684 unsigned long page_size, unsigned long table_size)
1685 {
1686 long rc;
1687 unsigned long flags = 0;
1688
1689 if (table_size)
1690 flags |= PROC_TABLE_NEW;
1691 if (radix_enabled()) {
1692 flags |= PROC_TABLE_RADIX;
1693 if (mmu_has_feature(MMU_FTR_GTSE))
1694 flags |= PROC_TABLE_GTSE;
1695 } else
1696 flags |= PROC_TABLE_HPT_SLB;
1697 for (;;) {
1698 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1699 page_size, table_size);
1700 if (!H_IS_LONG_BUSY(rc))
1701 break;
1702 mdelay(get_longbusy_msecs(rc));
1703 }
1704 if (rc != H_SUCCESS) {
1705 pr_err("Failed to register process table (rc=%ld)\n", rc);
1706 BUG();
1707 }
1708 return rc;
1709 }
1710
hpte_init_pseries(void)1711 void __init hpte_init_pseries(void)
1712 {
1713 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1714 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1715 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1716 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1717 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1718 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1719 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1720 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1721 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1722
1723 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1724 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1725
1726 /*
1727 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1728 * to inform the hypervisor that we wish to use the HPT.
1729 */
1730 if (cpu_has_feature(CPU_FTR_ARCH_300))
1731 pseries_lpar_register_process_table(0, 0, 0);
1732 }
1733
1734 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1735 void radix_init_pseries(void)
1736 {
1737 pr_info("Using radix MMU under hypervisor\n");
1738
1739 pseries_lpar_register_process_table(__pa(process_tb),
1740 0, PRTB_SIZE_SHIFT - 12);
1741 }
1742 #endif
1743
1744 #ifdef CONFIG_PPC_SMLPAR
1745 #define CMO_FREE_HINT_DEFAULT 1
1746 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1747
cmo_free_hint(char * str)1748 static int __init cmo_free_hint(char *str)
1749 {
1750 char *parm;
1751 parm = strstrip(str);
1752
1753 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1754 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1755 cmo_free_hint_flag = 0;
1756 return 1;
1757 }
1758
1759 cmo_free_hint_flag = 1;
1760 pr_info("%s: CMO free page hinting is active.\n", __func__);
1761
1762 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1763 return 1;
1764
1765 return 0;
1766 }
1767
1768 __setup("cmo_free_hint=", cmo_free_hint);
1769
pSeries_set_page_state(struct page * page,int order,unsigned long state)1770 static void pSeries_set_page_state(struct page *page, int order,
1771 unsigned long state)
1772 {
1773 int i, j;
1774 unsigned long cmo_page_sz, addr;
1775
1776 cmo_page_sz = cmo_get_page_size();
1777 addr = __pa((unsigned long)page_address(page));
1778
1779 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1780 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1781 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1782 }
1783 }
1784
arch_free_page(struct page * page,int order)1785 void arch_free_page(struct page *page, int order)
1786 {
1787 if (radix_enabled())
1788 return;
1789 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1790 return;
1791
1792 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1793 }
1794 EXPORT_SYMBOL(arch_free_page);
1795
1796 #endif /* CONFIG_PPC_SMLPAR */
1797 #endif /* CONFIG_PPC_BOOK3S_64 */
1798
1799 #ifdef CONFIG_TRACEPOINTS
1800 #ifdef CONFIG_JUMP_LABEL
1801 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1802
hcall_tracepoint_regfunc(void)1803 int hcall_tracepoint_regfunc(void)
1804 {
1805 static_key_slow_inc(&hcall_tracepoint_key);
1806 return 0;
1807 }
1808
hcall_tracepoint_unregfunc(void)1809 void hcall_tracepoint_unregfunc(void)
1810 {
1811 static_key_slow_dec(&hcall_tracepoint_key);
1812 }
1813 #else
1814 /*
1815 * We optimise our hcall path by placing hcall_tracepoint_refcount
1816 * directly in the TOC so we can check if the hcall tracepoints are
1817 * enabled via a single load.
1818 */
1819
1820 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1821 extern long hcall_tracepoint_refcount;
1822
hcall_tracepoint_regfunc(void)1823 int hcall_tracepoint_regfunc(void)
1824 {
1825 hcall_tracepoint_refcount++;
1826 return 0;
1827 }
1828
hcall_tracepoint_unregfunc(void)1829 void hcall_tracepoint_unregfunc(void)
1830 {
1831 hcall_tracepoint_refcount--;
1832 }
1833 #endif
1834
1835 /*
1836 * Keep track of hcall tracing depth and prevent recursion. Warn if any is
1837 * detected because it may indicate a problem. This will not catch all
1838 * problems with tracing code making hcalls, because the tracing might have
1839 * been invoked from a non-hcall, so the first hcall could recurse into it
1840 * without warning here, but this better than nothing.
1841 *
1842 * Hcalls with specific problems being traced should use the _notrace
1843 * plpar_hcall variants.
1844 */
1845 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1846
1847
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1848 notrace void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1849 {
1850 unsigned long flags;
1851 unsigned int *depth;
1852
1853 local_irq_save(flags);
1854
1855 depth = this_cpu_ptr(&hcall_trace_depth);
1856
1857 if (WARN_ON_ONCE(*depth))
1858 goto out;
1859
1860 (*depth)++;
1861 preempt_disable();
1862 trace_hcall_entry(opcode, args);
1863 (*depth)--;
1864
1865 out:
1866 local_irq_restore(flags);
1867 }
1868
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1869 notrace void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1870 {
1871 unsigned long flags;
1872 unsigned int *depth;
1873
1874 local_irq_save(flags);
1875
1876 depth = this_cpu_ptr(&hcall_trace_depth);
1877
1878 if (*depth) /* Don't warn again on the way out */
1879 goto out;
1880
1881 (*depth)++;
1882 trace_hcall_exit(opcode, retval, retbuf);
1883 preempt_enable();
1884 (*depth)--;
1885
1886 out:
1887 local_irq_restore(flags);
1888 }
1889 #endif
1890
1891 /**
1892 * h_get_mpp
1893 * H_GET_MPP hcall returns info in 7 parms
1894 */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1895 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1896 {
1897 int rc;
1898 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1899
1900 rc = plpar_hcall9(H_GET_MPP, retbuf);
1901
1902 mpp_data->entitled_mem = retbuf[0];
1903 mpp_data->mapped_mem = retbuf[1];
1904
1905 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1906 mpp_data->pool_num = retbuf[2] & 0xffff;
1907
1908 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1909 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1910 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1911
1912 mpp_data->pool_size = retbuf[4];
1913 mpp_data->loan_request = retbuf[5];
1914 mpp_data->backing_mem = retbuf[6];
1915
1916 return rc;
1917 }
1918 EXPORT_SYMBOL(h_get_mpp);
1919
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1920 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1921 {
1922 int rc;
1923 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1924
1925 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1926
1927 mpp_x_data->coalesced_bytes = retbuf[0];
1928 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1929 mpp_x_data->pool_purr_cycles = retbuf[2];
1930 mpp_x_data->pool_spurr_cycles = retbuf[3];
1931
1932 return rc;
1933 }
1934
vsid_unscramble(unsigned long vsid,int ssize)1935 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1936 {
1937 unsigned long protovsid;
1938 unsigned long va_bits = VA_BITS;
1939 unsigned long modinv, vsid_modulus;
1940 unsigned long max_mod_inv, tmp_modinv;
1941
1942 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1943 va_bits = 65;
1944
1945 if (ssize == MMU_SEGSIZE_256M) {
1946 modinv = VSID_MULINV_256M;
1947 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1948 } else {
1949 modinv = VSID_MULINV_1T;
1950 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1951 }
1952
1953 /*
1954 * vsid outside our range.
1955 */
1956 if (vsid >= vsid_modulus)
1957 return 0;
1958
1959 /*
1960 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1961 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1962 * protovsid = (vsid * modinv) % vsid_modulus
1963 */
1964
1965 /* Check if (vsid * modinv) overflow (63 bits) */
1966 max_mod_inv = 0x7fffffffffffffffull / vsid;
1967 if (modinv < max_mod_inv)
1968 return (vsid * modinv) % vsid_modulus;
1969
1970 tmp_modinv = modinv/max_mod_inv;
1971 modinv %= max_mod_inv;
1972
1973 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1974 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1975
1976 return protovsid;
1977 }
1978
reserve_vrma_context_id(void)1979 static int __init reserve_vrma_context_id(void)
1980 {
1981 unsigned long protovsid;
1982
1983 /*
1984 * Reserve context ids which map to reserved virtual addresses. For now
1985 * we only reserve the context id which maps to the VRMA VSID. We ignore
1986 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1987 * enable adjunct support via the "ibm,client-architecture-support"
1988 * interface.
1989 */
1990 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1991 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1992 return 0;
1993 }
1994 machine_device_initcall(pseries, reserve_vrma_context_id);
1995
1996 #ifdef CONFIG_DEBUG_FS
1997 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1998 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1999 loff_t *pos)
2000 {
2001 int cpu = (long)filp->private_data;
2002 struct lppaca *lppaca = &lppaca_of(cpu);
2003
2004 return simple_read_from_buffer(buf, len, pos, lppaca,
2005 sizeof(struct lppaca));
2006 }
2007
2008 static const struct file_operations vpa_fops = {
2009 .open = simple_open,
2010 .read = vpa_file_read,
2011 .llseek = default_llseek,
2012 };
2013
vpa_debugfs_init(void)2014 static int __init vpa_debugfs_init(void)
2015 {
2016 char name[16];
2017 long i;
2018 struct dentry *vpa_dir;
2019
2020 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2021 return 0;
2022
2023 vpa_dir = debugfs_create_dir("vpa", arch_debugfs_dir);
2024
2025 /* set up the per-cpu vpa file*/
2026 for_each_possible_cpu(i) {
2027 sprintf(name, "cpu-%ld", i);
2028 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2029 }
2030
2031 return 0;
2032 }
2033 machine_arch_initcall(pseries, vpa_debugfs_init);
2034 #endif /* CONFIG_DEBUG_FS */
2035