1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2016 Intel Corporation
5  */
6 
7 #ifndef __I915_GEM_OBJECT_TYPES_H__
8 #define __I915_GEM_OBJECT_TYPES_H__
9 
10 #include <drm/drm_gem.h>
11 
12 #include "i915_active.h"
13 #include "i915_selftest.h"
14 
15 struct drm_i915_gem_object;
16 struct intel_fronbuffer;
17 
18 /*
19  * struct i915_lut_handle tracks the fast lookups from handle to vma used
20  * for execbuf. Although we use a radixtree for that mapping, in order to
21  * remove them as the object or context is closed, we need a secondary list
22  * and a translation entry (i915_lut_handle).
23  */
24 struct i915_lut_handle {
25 	struct list_head obj_link;
26 	struct i915_gem_context *ctx;
27 	u32 handle;
28 };
29 
30 struct drm_i915_gem_object_ops {
31 	unsigned int flags;
32 #define I915_GEM_OBJECT_HAS_STRUCT_PAGE	BIT(0)
33 #define I915_GEM_OBJECT_IS_SHRINKABLE	BIT(1)
34 #define I915_GEM_OBJECT_IS_PROXY	BIT(2)
35 #define I915_GEM_OBJECT_NO_GGTT		BIT(3)
36 #define I915_GEM_OBJECT_ASYNC_CANCEL	BIT(4)
37 
38 	/* Interface between the GEM object and its backing storage.
39 	 * get_pages() is called once prior to the use of the associated set
40 	 * of pages before to binding them into the GTT, and put_pages() is
41 	 * called after we no longer need them. As we expect there to be
42 	 * associated cost with migrating pages between the backing storage
43 	 * and making them available for the GPU (e.g. clflush), we may hold
44 	 * onto the pages after they are no longer referenced by the GPU
45 	 * in case they may be used again shortly (for example migrating the
46 	 * pages to a different memory domain within the GTT). put_pages()
47 	 * will therefore most likely be called when the object itself is
48 	 * being released or under memory pressure (where we attempt to
49 	 * reap pages for the shrinker).
50 	 */
51 	int (*get_pages)(struct drm_i915_gem_object *obj);
52 	void (*put_pages)(struct drm_i915_gem_object *obj,
53 			  struct sg_table *pages);
54 	void (*truncate)(struct drm_i915_gem_object *obj);
55 	void (*writeback)(struct drm_i915_gem_object *obj);
56 
57 	int (*pwrite)(struct drm_i915_gem_object *obj,
58 		      const struct drm_i915_gem_pwrite *arg);
59 
60 	int (*dmabuf_export)(struct drm_i915_gem_object *obj);
61 	void (*release)(struct drm_i915_gem_object *obj);
62 };
63 
64 struct drm_i915_gem_object {
65 	struct drm_gem_object base;
66 
67 	const struct drm_i915_gem_object_ops *ops;
68 
69 	struct {
70 		/**
71 		 * @vma.lock: protect the list/tree of vmas
72 		 */
73 		spinlock_t lock;
74 
75 		/**
76 		 * @vma.list: List of VMAs backed by this object
77 		 *
78 		 * The VMA on this list are ordered by type, all GGTT vma are
79 		 * placed at the head and all ppGTT vma are placed at the tail.
80 		 * The different types of GGTT vma are unordered between
81 		 * themselves, use the @vma.tree (which has a defined order
82 		 * between all VMA) to quickly find an exact match.
83 		 */
84 		struct list_head list;
85 
86 		/**
87 		 * @vma.tree: Ordered tree of VMAs backed by this object
88 		 *
89 		 * All VMA created for this object are placed in the @vma.tree
90 		 * for fast retrieval via a binary search in
91 		 * i915_vma_instance(). They are also added to @vma.list for
92 		 * easy iteration.
93 		 */
94 		struct rb_root tree;
95 	} vma;
96 
97 	/**
98 	 * @lut_list: List of vma lookup entries in use for this object.
99 	 *
100 	 * If this object is closed, we need to remove all of its VMA from
101 	 * the fast lookup index in associated contexts; @lut_list provides
102 	 * this translation from object to context->handles_vma.
103 	 */
104 	struct list_head lut_list;
105 
106 	/** Stolen memory for this object, instead of being backed by shmem. */
107 	struct drm_mm_node *stolen;
108 	union {
109 		struct rcu_head rcu;
110 		struct llist_node freed;
111 	};
112 
113 	/**
114 	 * Whether the object is currently in the GGTT mmap.
115 	 */
116 	unsigned int userfault_count;
117 	struct list_head userfault_link;
118 
119 	I915_SELFTEST_DECLARE(struct list_head st_link);
120 
121 	/*
122 	 * Is the object to be mapped as read-only to the GPU
123 	 * Only honoured if hardware has relevant pte bit
124 	 */
125 	unsigned int cache_level:3;
126 	unsigned int cache_coherent:2;
127 #define I915_BO_CACHE_COHERENT_FOR_READ BIT(0)
128 #define I915_BO_CACHE_COHERENT_FOR_WRITE BIT(1)
129 	unsigned int cache_dirty:1;
130 
131 	/**
132 	 * @read_domains: Read memory domains.
133 	 *
134 	 * These monitor which caches contain read/write data related to the
135 	 * object. When transitioning from one set of domains to another,
136 	 * the driver is called to ensure that caches are suitably flushed and
137 	 * invalidated.
138 	 */
139 	u16 read_domains;
140 
141 	/**
142 	 * @write_domain: Corresponding unique write memory domain.
143 	 */
144 	u16 write_domain;
145 
146 	struct intel_frontbuffer *frontbuffer;
147 
148 	/** Current tiling stride for the object, if it's tiled. */
149 	unsigned int tiling_and_stride;
150 #define FENCE_MINIMUM_STRIDE 128 /* See i915_tiling_ok() */
151 #define TILING_MASK (FENCE_MINIMUM_STRIDE - 1)
152 #define STRIDE_MASK (~TILING_MASK)
153 
154 	/** Count of VMA actually bound by this object */
155 	atomic_t bind_count;
156 	/** Count of how many global VMA are currently pinned for use by HW */
157 	unsigned int pin_global;
158 
159 	struct {
160 		struct mutex lock; /* protects the pages and their use */
161 		atomic_t pages_pin_count;
162 
163 		struct sg_table *pages;
164 		void *mapping;
165 
166 		/* TODO: whack some of this into the error state */
167 		struct i915_page_sizes {
168 			/**
169 			 * The sg mask of the pages sg_table. i.e the mask of
170 			 * of the lengths for each sg entry.
171 			 */
172 			unsigned int phys;
173 
174 			/**
175 			 * The gtt page sizes we are allowed to use given the
176 			 * sg mask and the supported page sizes. This will
177 			 * express the smallest unit we can use for the whole
178 			 * object, as well as the larger sizes we may be able
179 			 * to use opportunistically.
180 			 */
181 			unsigned int sg;
182 
183 			/**
184 			 * The actual gtt page size usage. Since we can have
185 			 * multiple vma associated with this object we need to
186 			 * prevent any trampling of state, hence a copy of this
187 			 * struct also lives in each vma, therefore the gtt
188 			 * value here should only be read/write through the vma.
189 			 */
190 			unsigned int gtt;
191 		} page_sizes;
192 
193 		I915_SELFTEST_DECLARE(unsigned int page_mask);
194 
195 		struct i915_gem_object_page_iter {
196 			struct scatterlist *sg_pos;
197 			unsigned int sg_idx; /* in pages, but 32bit eek! */
198 
199 			struct radix_tree_root radix;
200 			struct mutex lock; /* protects this cache */
201 		} get_page;
202 
203 		/**
204 		 * Element within i915->mm.unbound_list or i915->mm.bound_list,
205 		 * locked by i915->mm.obj_lock.
206 		 */
207 		struct list_head link;
208 
209 		/**
210 		 * Advice: are the backing pages purgeable?
211 		 */
212 		unsigned int madv:2;
213 
214 		/**
215 		 * This is set if the object has been written to since the
216 		 * pages were last acquired.
217 		 */
218 		bool dirty:1;
219 
220 		/**
221 		 * This is set if the object has been pinned due to unknown
222 		 * swizzling.
223 		 */
224 		bool quirked:1;
225 	} mm;
226 
227 	/** Record of address bit 17 of each page at last unbind. */
228 	unsigned long *bit_17;
229 
230 	union {
231 		struct i915_gem_userptr {
232 			uintptr_t ptr;
233 
234 			struct i915_mm_struct *mm;
235 			struct i915_mmu_object *mmu_object;
236 			struct work_struct *work;
237 		} userptr;
238 
239 		unsigned long scratch;
240 
241 		void *gvt_info;
242 	};
243 
244 	/** for phys allocated objects */
245 	struct drm_dma_handle *phys_handle;
246 };
247 
248 static inline struct drm_i915_gem_object *
to_intel_bo(struct drm_gem_object * gem)249 to_intel_bo(struct drm_gem_object *gem)
250 {
251 	/* Assert that to_intel_bo(NULL) == NULL */
252 	BUILD_BUG_ON(offsetof(struct drm_i915_gem_object, base));
253 
254 	return container_of(gem, struct drm_i915_gem_object, base);
255 }
256 
257 #endif
258