1 // SPDX-License-Identifier: GPL-2.0
2
3 /* Copyright (c) 2015-2018, The Linux Foundation. All rights reserved.
4 * Copyright (C) 2018-2021 Linaro Ltd.
5 */
6
7 #include <linux/types.h>
8 #include <linux/bits.h>
9 #include <linux/bitfield.h>
10 #include <linux/mutex.h>
11 #include <linux/completion.h>
12 #include <linux/io.h>
13 #include <linux/bug.h>
14 #include <linux/interrupt.h>
15 #include <linux/platform_device.h>
16 #include <linux/netdevice.h>
17
18 #include "gsi.h"
19 #include "gsi_reg.h"
20 #include "gsi_private.h"
21 #include "gsi_trans.h"
22 #include "ipa_gsi.h"
23 #include "ipa_data.h"
24 #include "ipa_version.h"
25
26 /**
27 * DOC: The IPA Generic Software Interface
28 *
29 * The generic software interface (GSI) is an integral component of the IPA,
30 * providing a well-defined communication layer between the AP subsystem
31 * and the IPA core. The modem uses the GSI layer as well.
32 *
33 * -------- ---------
34 * | | | |
35 * | AP +<---. .----+ Modem |
36 * | +--. | | .->+ |
37 * | | | | | | | |
38 * -------- | | | | ---------
39 * v | v |
40 * --+-+---+-+--
41 * | GSI |
42 * |-----------|
43 * | |
44 * | IPA |
45 * | |
46 * -------------
47 *
48 * In the above diagram, the AP and Modem represent "execution environments"
49 * (EEs), which are independent operating environments that use the IPA for
50 * data transfer.
51 *
52 * Each EE uses a set of unidirectional GSI "channels," which allow transfer
53 * of data to or from the IPA. A channel is implemented as a ring buffer,
54 * with a DRAM-resident array of "transfer elements" (TREs) available to
55 * describe transfers to or from other EEs through the IPA. A transfer
56 * element can also contain an immediate command, requesting the IPA perform
57 * actions other than data transfer.
58 *
59 * Each TRE refers to a block of data--also located DRAM. After writing one
60 * or more TREs to a channel, the writer (either the IPA or an EE) writes a
61 * doorbell register to inform the receiving side how many elements have
62 * been written.
63 *
64 * Each channel has a GSI "event ring" associated with it. An event ring
65 * is implemented very much like a channel ring, but is always directed from
66 * the IPA to an EE. The IPA notifies an EE (such as the AP) about channel
67 * events by adding an entry to the event ring associated with the channel.
68 * The GSI then writes its doorbell for the event ring, causing the target
69 * EE to be interrupted. Each entry in an event ring contains a pointer
70 * to the channel TRE whose completion the event represents.
71 *
72 * Each TRE in a channel ring has a set of flags. One flag indicates whether
73 * the completion of the transfer operation generates an entry (and possibly
74 * an interrupt) in the channel's event ring. Other flags allow transfer
75 * elements to be chained together, forming a single logical transaction.
76 * TRE flags are used to control whether and when interrupts are generated
77 * to signal completion of channel transfers.
78 *
79 * Elements in channel and event rings are completed (or consumed) strictly
80 * in order. Completion of one entry implies the completion of all preceding
81 * entries. A single completion interrupt can therefore communicate the
82 * completion of many transfers.
83 *
84 * Note that all GSI registers are little-endian, which is the assumed
85 * endianness of I/O space accesses. The accessor functions perform byte
86 * swapping if needed (i.e., for a big endian CPU).
87 */
88
89 /* Delay period for interrupt moderation (in 32KHz IPA internal timer ticks) */
90 #define GSI_EVT_RING_INT_MODT (32 * 1) /* 1ms under 32KHz clock */
91
92 #define GSI_CMD_TIMEOUT 50 /* milliseconds */
93
94 #define GSI_CHANNEL_STOP_RETRIES 10
95 #define GSI_CHANNEL_MODEM_HALT_RETRIES 10
96
97 #define GSI_MHI_EVENT_ID_START 10 /* 1st reserved event id */
98 #define GSI_MHI_EVENT_ID_END 16 /* Last reserved event id */
99
100 #define GSI_ISR_MAX_ITER 50 /* Detect interrupt storms */
101
102 /* An entry in an event ring */
103 struct gsi_event {
104 __le64 xfer_ptr;
105 __le16 len;
106 u8 reserved1;
107 u8 code;
108 __le16 reserved2;
109 u8 type;
110 u8 chid;
111 };
112
113 /** gsi_channel_scratch_gpi - GPI protocol scratch register
114 * @max_outstanding_tre:
115 * Defines the maximum number of TREs allowed in a single transaction
116 * on a channel (in bytes). This determines the amount of prefetch
117 * performed by the hardware. We configure this to equal the size of
118 * the TLV FIFO for the channel.
119 * @outstanding_threshold:
120 * Defines the threshold (in bytes) determining when the sequencer
121 * should update the channel doorbell. We configure this to equal
122 * the size of two TREs.
123 */
124 struct gsi_channel_scratch_gpi {
125 u64 reserved1;
126 u16 reserved2;
127 u16 max_outstanding_tre;
128 u16 reserved3;
129 u16 outstanding_threshold;
130 };
131
132 /** gsi_channel_scratch - channel scratch configuration area
133 *
134 * The exact interpretation of this register is protocol-specific.
135 * We only use GPI channels; see struct gsi_channel_scratch_gpi, above.
136 */
137 union gsi_channel_scratch {
138 struct gsi_channel_scratch_gpi gpi;
139 struct {
140 u32 word1;
141 u32 word2;
142 u32 word3;
143 u32 word4;
144 } data;
145 };
146
147 /* Check things that can be validated at build time. */
gsi_validate_build(void)148 static void gsi_validate_build(void)
149 {
150 /* This is used as a divisor */
151 BUILD_BUG_ON(!GSI_RING_ELEMENT_SIZE);
152
153 /* Code assumes the size of channel and event ring element are
154 * the same (and fixed). Make sure the size of an event ring
155 * element is what's expected.
156 */
157 BUILD_BUG_ON(sizeof(struct gsi_event) != GSI_RING_ELEMENT_SIZE);
158
159 /* Hardware requires a 2^n ring size. We ensure the number of
160 * elements in an event ring is a power of 2 elsewhere; this
161 * ensure the elements themselves meet the requirement.
162 */
163 BUILD_BUG_ON(!is_power_of_2(GSI_RING_ELEMENT_SIZE));
164
165 /* The channel element size must fit in this field */
166 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(ELEMENT_SIZE_FMASK));
167
168 /* The event ring element size must fit in this field */
169 BUILD_BUG_ON(GSI_RING_ELEMENT_SIZE > field_max(EV_ELEMENT_SIZE_FMASK));
170 }
171
172 /* Return the channel id associated with a given channel */
gsi_channel_id(struct gsi_channel * channel)173 static u32 gsi_channel_id(struct gsi_channel *channel)
174 {
175 return channel - &channel->gsi->channel[0];
176 }
177
178 /* An initialized channel has a non-null GSI pointer */
gsi_channel_initialized(struct gsi_channel * channel)179 static bool gsi_channel_initialized(struct gsi_channel *channel)
180 {
181 return !!channel->gsi;
182 }
183
184 /* Update the GSI IRQ type register with the cached value */
gsi_irq_type_update(struct gsi * gsi,u32 val)185 static void gsi_irq_type_update(struct gsi *gsi, u32 val)
186 {
187 gsi->type_enabled_bitmap = val;
188 iowrite32(val, gsi->virt + GSI_CNTXT_TYPE_IRQ_MSK_OFFSET);
189 }
190
gsi_irq_type_enable(struct gsi * gsi,enum gsi_irq_type_id type_id)191 static void gsi_irq_type_enable(struct gsi *gsi, enum gsi_irq_type_id type_id)
192 {
193 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(type_id));
194 }
195
gsi_irq_type_disable(struct gsi * gsi,enum gsi_irq_type_id type_id)196 static void gsi_irq_type_disable(struct gsi *gsi, enum gsi_irq_type_id type_id)
197 {
198 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap & ~BIT(type_id));
199 }
200
201 /* Event ring commands are performed one at a time. Their completion
202 * is signaled by the event ring control GSI interrupt type, which is
203 * only enabled when we issue an event ring command. Only the event
204 * ring being operated on has this interrupt enabled.
205 */
gsi_irq_ev_ctrl_enable(struct gsi * gsi,u32 evt_ring_id)206 static void gsi_irq_ev_ctrl_enable(struct gsi *gsi, u32 evt_ring_id)
207 {
208 u32 val = BIT(evt_ring_id);
209
210 /* There's a small chance that a previous command completed
211 * after the interrupt was disabled, so make sure we have no
212 * pending interrupts before we enable them.
213 */
214 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
215
216 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
217 gsi_irq_type_enable(gsi, GSI_EV_CTRL);
218 }
219
220 /* Disable event ring control interrupts */
gsi_irq_ev_ctrl_disable(struct gsi * gsi)221 static void gsi_irq_ev_ctrl_disable(struct gsi *gsi)
222 {
223 gsi_irq_type_disable(gsi, GSI_EV_CTRL);
224 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
225 }
226
227 /* Channel commands are performed one at a time. Their completion is
228 * signaled by the channel control GSI interrupt type, which is only
229 * enabled when we issue a channel command. Only the channel being
230 * operated on has this interrupt enabled.
231 */
gsi_irq_ch_ctrl_enable(struct gsi * gsi,u32 channel_id)232 static void gsi_irq_ch_ctrl_enable(struct gsi *gsi, u32 channel_id)
233 {
234 u32 val = BIT(channel_id);
235
236 /* There's a small chance that a previous command completed
237 * after the interrupt was disabled, so make sure we have no
238 * pending interrupts before we enable them.
239 */
240 iowrite32(~0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
241
242 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
243 gsi_irq_type_enable(gsi, GSI_CH_CTRL);
244 }
245
246 /* Disable channel control interrupts */
gsi_irq_ch_ctrl_disable(struct gsi * gsi)247 static void gsi_irq_ch_ctrl_disable(struct gsi *gsi)
248 {
249 gsi_irq_type_disable(gsi, GSI_CH_CTRL);
250 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
251 }
252
gsi_irq_ieob_enable_one(struct gsi * gsi,u32 evt_ring_id)253 static void gsi_irq_ieob_enable_one(struct gsi *gsi, u32 evt_ring_id)
254 {
255 bool enable_ieob = !gsi->ieob_enabled_bitmap;
256 u32 val;
257
258 gsi->ieob_enabled_bitmap |= BIT(evt_ring_id);
259 val = gsi->ieob_enabled_bitmap;
260 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
261
262 /* Enable the interrupt type if this is the first channel enabled */
263 if (enable_ieob)
264 gsi_irq_type_enable(gsi, GSI_IEOB);
265 }
266
gsi_irq_ieob_disable(struct gsi * gsi,u32 event_mask)267 static void gsi_irq_ieob_disable(struct gsi *gsi, u32 event_mask)
268 {
269 u32 val;
270
271 gsi->ieob_enabled_bitmap &= ~event_mask;
272
273 /* Disable the interrupt type if this was the last enabled channel */
274 if (!gsi->ieob_enabled_bitmap)
275 gsi_irq_type_disable(gsi, GSI_IEOB);
276
277 val = gsi->ieob_enabled_bitmap;
278 iowrite32(val, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
279 }
280
gsi_irq_ieob_disable_one(struct gsi * gsi,u32 evt_ring_id)281 static void gsi_irq_ieob_disable_one(struct gsi *gsi, u32 evt_ring_id)
282 {
283 gsi_irq_ieob_disable(gsi, BIT(evt_ring_id));
284 }
285
286 /* Enable all GSI_interrupt types */
gsi_irq_enable(struct gsi * gsi)287 static void gsi_irq_enable(struct gsi *gsi)
288 {
289 u32 val;
290
291 /* Global interrupts include hardware error reports. Enable
292 * that so we can at least report the error should it occur.
293 */
294 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
295 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GLOB_EE));
296
297 /* General GSI interrupts are reported to all EEs; if they occur
298 * they are unrecoverable (without reset). A breakpoint interrupt
299 * also exists, but we don't support that. We want to be notified
300 * of errors so we can report them, even if they can't be handled.
301 */
302 val = BIT(BUS_ERROR);
303 val |= BIT(CMD_FIFO_OVRFLOW);
304 val |= BIT(MCS_STACK_OVRFLOW);
305 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
306 gsi_irq_type_update(gsi, gsi->type_enabled_bitmap | BIT(GSI_GENERAL));
307 }
308
309 /* Disable all GSI interrupt types */
gsi_irq_disable(struct gsi * gsi)310 static void gsi_irq_disable(struct gsi *gsi)
311 {
312 gsi_irq_type_update(gsi, 0);
313
314 /* Clear the type-specific interrupt masks set by gsi_irq_enable() */
315 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
316 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
317 }
318
319 /* Return the virtual address associated with a ring index */
gsi_ring_virt(struct gsi_ring * ring,u32 index)320 void *gsi_ring_virt(struct gsi_ring *ring, u32 index)
321 {
322 /* Note: index *must* be used modulo the ring count here */
323 return ring->virt + (index % ring->count) * GSI_RING_ELEMENT_SIZE;
324 }
325
326 /* Return the 32-bit DMA address associated with a ring index */
gsi_ring_addr(struct gsi_ring * ring,u32 index)327 static u32 gsi_ring_addr(struct gsi_ring *ring, u32 index)
328 {
329 return lower_32_bits(ring->addr) + index * GSI_RING_ELEMENT_SIZE;
330 }
331
332 /* Return the ring index of a 32-bit ring offset */
gsi_ring_index(struct gsi_ring * ring,u32 offset)333 static u32 gsi_ring_index(struct gsi_ring *ring, u32 offset)
334 {
335 return (offset - gsi_ring_addr(ring, 0)) / GSI_RING_ELEMENT_SIZE;
336 }
337
338 /* Issue a GSI command by writing a value to a register, then wait for
339 * completion to be signaled. Returns true if the command completes
340 * or false if it times out.
341 */
342 static bool
gsi_command(struct gsi * gsi,u32 reg,u32 val,struct completion * completion)343 gsi_command(struct gsi *gsi, u32 reg, u32 val, struct completion *completion)
344 {
345 unsigned long timeout = msecs_to_jiffies(GSI_CMD_TIMEOUT);
346
347 reinit_completion(completion);
348
349 iowrite32(val, gsi->virt + reg);
350
351 return !!wait_for_completion_timeout(completion, timeout);
352 }
353
354 /* Return the hardware's notion of the current state of an event ring */
355 static enum gsi_evt_ring_state
gsi_evt_ring_state(struct gsi * gsi,u32 evt_ring_id)356 gsi_evt_ring_state(struct gsi *gsi, u32 evt_ring_id)
357 {
358 u32 val;
359
360 val = ioread32(gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
361
362 return u32_get_bits(val, EV_CHSTATE_FMASK);
363 }
364
365 /* Issue an event ring command and wait for it to complete */
gsi_evt_ring_command(struct gsi * gsi,u32 evt_ring_id,enum gsi_evt_cmd_opcode opcode)366 static void gsi_evt_ring_command(struct gsi *gsi, u32 evt_ring_id,
367 enum gsi_evt_cmd_opcode opcode)
368 {
369 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
370 struct completion *completion = &evt_ring->completion;
371 struct device *dev = gsi->dev;
372 bool timeout;
373 u32 val;
374
375 /* Enable the completion interrupt for the command */
376 gsi_irq_ev_ctrl_enable(gsi, evt_ring_id);
377
378 val = u32_encode_bits(evt_ring_id, EV_CHID_FMASK);
379 val |= u32_encode_bits(opcode, EV_OPCODE_FMASK);
380
381 timeout = !gsi_command(gsi, GSI_EV_CH_CMD_OFFSET, val, completion);
382
383 gsi_irq_ev_ctrl_disable(gsi);
384
385 if (!timeout)
386 return;
387
388 dev_err(dev, "GSI command %u for event ring %u timed out, state %u\n",
389 opcode, evt_ring_id, gsi_evt_ring_state(gsi, evt_ring_id));
390 }
391
392 /* Allocate an event ring in NOT_ALLOCATED state */
gsi_evt_ring_alloc_command(struct gsi * gsi,u32 evt_ring_id)393 static int gsi_evt_ring_alloc_command(struct gsi *gsi, u32 evt_ring_id)
394 {
395 enum gsi_evt_ring_state state;
396
397 /* Get initial event ring state */
398 state = gsi_evt_ring_state(gsi, evt_ring_id);
399 if (state != GSI_EVT_RING_STATE_NOT_ALLOCATED) {
400 dev_err(gsi->dev, "event ring %u bad state %u before alloc\n",
401 evt_ring_id, state);
402 return -EINVAL;
403 }
404
405 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_ALLOCATE);
406
407 /* If successful the event ring state will have changed */
408 state = gsi_evt_ring_state(gsi, evt_ring_id);
409 if (state == GSI_EVT_RING_STATE_ALLOCATED)
410 return 0;
411
412 dev_err(gsi->dev, "event ring %u bad state %u after alloc\n",
413 evt_ring_id, state);
414
415 return -EIO;
416 }
417
418 /* Reset a GSI event ring in ALLOCATED or ERROR state. */
gsi_evt_ring_reset_command(struct gsi * gsi,u32 evt_ring_id)419 static void gsi_evt_ring_reset_command(struct gsi *gsi, u32 evt_ring_id)
420 {
421 enum gsi_evt_ring_state state;
422
423 state = gsi_evt_ring_state(gsi, evt_ring_id);
424 if (state != GSI_EVT_RING_STATE_ALLOCATED &&
425 state != GSI_EVT_RING_STATE_ERROR) {
426 dev_err(gsi->dev, "event ring %u bad state %u before reset\n",
427 evt_ring_id, state);
428 return;
429 }
430
431 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_RESET);
432
433 /* If successful the event ring state will have changed */
434 state = gsi_evt_ring_state(gsi, evt_ring_id);
435 if (state == GSI_EVT_RING_STATE_ALLOCATED)
436 return;
437
438 dev_err(gsi->dev, "event ring %u bad state %u after reset\n",
439 evt_ring_id, state);
440 }
441
442 /* Issue a hardware de-allocation request for an allocated event ring */
gsi_evt_ring_de_alloc_command(struct gsi * gsi,u32 evt_ring_id)443 static void gsi_evt_ring_de_alloc_command(struct gsi *gsi, u32 evt_ring_id)
444 {
445 enum gsi_evt_ring_state state;
446
447 state = gsi_evt_ring_state(gsi, evt_ring_id);
448 if (state != GSI_EVT_RING_STATE_ALLOCATED) {
449 dev_err(gsi->dev, "event ring %u state %u before dealloc\n",
450 evt_ring_id, state);
451 return;
452 }
453
454 gsi_evt_ring_command(gsi, evt_ring_id, GSI_EVT_DE_ALLOC);
455
456 /* If successful the event ring state will have changed */
457 state = gsi_evt_ring_state(gsi, evt_ring_id);
458 if (state == GSI_EVT_RING_STATE_NOT_ALLOCATED)
459 return;
460
461 dev_err(gsi->dev, "event ring %u bad state %u after dealloc\n",
462 evt_ring_id, state);
463 }
464
465 /* Fetch the current state of a channel from hardware */
gsi_channel_state(struct gsi_channel * channel)466 static enum gsi_channel_state gsi_channel_state(struct gsi_channel *channel)
467 {
468 u32 channel_id = gsi_channel_id(channel);
469 void __iomem *virt = channel->gsi->virt;
470 u32 val;
471
472 val = ioread32(virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
473
474 return u32_get_bits(val, CHSTATE_FMASK);
475 }
476
477 /* Issue a channel command and wait for it to complete */
478 static void
gsi_channel_command(struct gsi_channel * channel,enum gsi_ch_cmd_opcode opcode)479 gsi_channel_command(struct gsi_channel *channel, enum gsi_ch_cmd_opcode opcode)
480 {
481 struct completion *completion = &channel->completion;
482 u32 channel_id = gsi_channel_id(channel);
483 struct gsi *gsi = channel->gsi;
484 struct device *dev = gsi->dev;
485 bool timeout;
486 u32 val;
487
488 /* Enable the completion interrupt for the command */
489 gsi_irq_ch_ctrl_enable(gsi, channel_id);
490
491 val = u32_encode_bits(channel_id, CH_CHID_FMASK);
492 val |= u32_encode_bits(opcode, CH_OPCODE_FMASK);
493 timeout = !gsi_command(gsi, GSI_CH_CMD_OFFSET, val, completion);
494
495 gsi_irq_ch_ctrl_disable(gsi);
496
497 if (!timeout)
498 return;
499
500 dev_err(dev, "GSI command %u for channel %u timed out, state %u\n",
501 opcode, channel_id, gsi_channel_state(channel));
502 }
503
504 /* Allocate GSI channel in NOT_ALLOCATED state */
gsi_channel_alloc_command(struct gsi * gsi,u32 channel_id)505 static int gsi_channel_alloc_command(struct gsi *gsi, u32 channel_id)
506 {
507 struct gsi_channel *channel = &gsi->channel[channel_id];
508 struct device *dev = gsi->dev;
509 enum gsi_channel_state state;
510
511 /* Get initial channel state */
512 state = gsi_channel_state(channel);
513 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED) {
514 dev_err(dev, "channel %u bad state %u before alloc\n",
515 channel_id, state);
516 return -EINVAL;
517 }
518
519 gsi_channel_command(channel, GSI_CH_ALLOCATE);
520
521 /* If successful the channel state will have changed */
522 state = gsi_channel_state(channel);
523 if (state == GSI_CHANNEL_STATE_ALLOCATED)
524 return 0;
525
526 dev_err(dev, "channel %u bad state %u after alloc\n",
527 channel_id, state);
528
529 return -EIO;
530 }
531
532 /* Start an ALLOCATED channel */
gsi_channel_start_command(struct gsi_channel * channel)533 static int gsi_channel_start_command(struct gsi_channel *channel)
534 {
535 struct device *dev = channel->gsi->dev;
536 enum gsi_channel_state state;
537
538 state = gsi_channel_state(channel);
539 if (state != GSI_CHANNEL_STATE_ALLOCATED &&
540 state != GSI_CHANNEL_STATE_STOPPED) {
541 dev_err(dev, "channel %u bad state %u before start\n",
542 gsi_channel_id(channel), state);
543 return -EINVAL;
544 }
545
546 gsi_channel_command(channel, GSI_CH_START);
547
548 /* If successful the channel state will have changed */
549 state = gsi_channel_state(channel);
550 if (state == GSI_CHANNEL_STATE_STARTED)
551 return 0;
552
553 dev_err(dev, "channel %u bad state %u after start\n",
554 gsi_channel_id(channel), state);
555
556 return -EIO;
557 }
558
559 /* Stop a GSI channel in STARTED state */
gsi_channel_stop_command(struct gsi_channel * channel)560 static int gsi_channel_stop_command(struct gsi_channel *channel)
561 {
562 struct device *dev = channel->gsi->dev;
563 enum gsi_channel_state state;
564
565 state = gsi_channel_state(channel);
566
567 /* Channel could have entered STOPPED state since last call
568 * if it timed out. If so, we're done.
569 */
570 if (state == GSI_CHANNEL_STATE_STOPPED)
571 return 0;
572
573 if (state != GSI_CHANNEL_STATE_STARTED &&
574 state != GSI_CHANNEL_STATE_STOP_IN_PROC) {
575 dev_err(dev, "channel %u bad state %u before stop\n",
576 gsi_channel_id(channel), state);
577 return -EINVAL;
578 }
579
580 gsi_channel_command(channel, GSI_CH_STOP);
581
582 /* If successful the channel state will have changed */
583 state = gsi_channel_state(channel);
584 if (state == GSI_CHANNEL_STATE_STOPPED)
585 return 0;
586
587 /* We may have to try again if stop is in progress */
588 if (state == GSI_CHANNEL_STATE_STOP_IN_PROC)
589 return -EAGAIN;
590
591 dev_err(dev, "channel %u bad state %u after stop\n",
592 gsi_channel_id(channel), state);
593
594 return -EIO;
595 }
596
597 /* Reset a GSI channel in ALLOCATED or ERROR state. */
gsi_channel_reset_command(struct gsi_channel * channel)598 static void gsi_channel_reset_command(struct gsi_channel *channel)
599 {
600 struct device *dev = channel->gsi->dev;
601 enum gsi_channel_state state;
602
603 /* A short delay is required before a RESET command */
604 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
605
606 state = gsi_channel_state(channel);
607 if (state != GSI_CHANNEL_STATE_STOPPED &&
608 state != GSI_CHANNEL_STATE_ERROR) {
609 /* No need to reset a channel already in ALLOCATED state */
610 if (state != GSI_CHANNEL_STATE_ALLOCATED)
611 dev_err(dev, "channel %u bad state %u before reset\n",
612 gsi_channel_id(channel), state);
613 return;
614 }
615
616 gsi_channel_command(channel, GSI_CH_RESET);
617
618 /* If successful the channel state will have changed */
619 state = gsi_channel_state(channel);
620 if (state != GSI_CHANNEL_STATE_ALLOCATED)
621 dev_err(dev, "channel %u bad state %u after reset\n",
622 gsi_channel_id(channel), state);
623 }
624
625 /* Deallocate an ALLOCATED GSI channel */
gsi_channel_de_alloc_command(struct gsi * gsi,u32 channel_id)626 static void gsi_channel_de_alloc_command(struct gsi *gsi, u32 channel_id)
627 {
628 struct gsi_channel *channel = &gsi->channel[channel_id];
629 struct device *dev = gsi->dev;
630 enum gsi_channel_state state;
631
632 state = gsi_channel_state(channel);
633 if (state != GSI_CHANNEL_STATE_ALLOCATED) {
634 dev_err(dev, "channel %u bad state %u before dealloc\n",
635 channel_id, state);
636 return;
637 }
638
639 gsi_channel_command(channel, GSI_CH_DE_ALLOC);
640
641 /* If successful the channel state will have changed */
642 state = gsi_channel_state(channel);
643
644 if (state != GSI_CHANNEL_STATE_NOT_ALLOCATED)
645 dev_err(dev, "channel %u bad state %u after dealloc\n",
646 channel_id, state);
647 }
648
649 /* Ring an event ring doorbell, reporting the last entry processed by the AP.
650 * The index argument (modulo the ring count) is the first unfilled entry, so
651 * we supply one less than that with the doorbell. Update the event ring
652 * index field with the value provided.
653 */
gsi_evt_ring_doorbell(struct gsi * gsi,u32 evt_ring_id,u32 index)654 static void gsi_evt_ring_doorbell(struct gsi *gsi, u32 evt_ring_id, u32 index)
655 {
656 struct gsi_ring *ring = &gsi->evt_ring[evt_ring_id].ring;
657 u32 val;
658
659 ring->index = index; /* Next unused entry */
660
661 /* Note: index *must* be used modulo the ring count here */
662 val = gsi_ring_addr(ring, (index - 1) % ring->count);
663 iowrite32(val, gsi->virt + GSI_EV_CH_E_DOORBELL_0_OFFSET(evt_ring_id));
664 }
665
666 /* Program an event ring for use */
gsi_evt_ring_program(struct gsi * gsi,u32 evt_ring_id)667 static void gsi_evt_ring_program(struct gsi *gsi, u32 evt_ring_id)
668 {
669 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
670 size_t size = evt_ring->ring.count * GSI_RING_ELEMENT_SIZE;
671 u32 val;
672
673 /* We program all event rings as GPI type/protocol */
674 val = u32_encode_bits(GSI_CHANNEL_TYPE_GPI, EV_CHTYPE_FMASK);
675 val |= EV_INTYPE_FMASK;
676 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, EV_ELEMENT_SIZE_FMASK);
677 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_0_OFFSET(evt_ring_id));
678
679 val = ev_r_length_encoded(gsi->version, size);
680 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_1_OFFSET(evt_ring_id));
681
682 /* The context 2 and 3 registers store the low-order and
683 * high-order 32 bits of the address of the event ring,
684 * respectively.
685 */
686 val = lower_32_bits(evt_ring->ring.addr);
687 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_2_OFFSET(evt_ring_id));
688 val = upper_32_bits(evt_ring->ring.addr);
689 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_3_OFFSET(evt_ring_id));
690
691 /* Enable interrupt moderation by setting the moderation delay */
692 val = u32_encode_bits(GSI_EVT_RING_INT_MODT, MODT_FMASK);
693 val |= u32_encode_bits(1, MODC_FMASK); /* comes from channel */
694 iowrite32(val, gsi->virt + GSI_EV_CH_E_CNTXT_8_OFFSET(evt_ring_id));
695
696 /* No MSI write data, and MSI address high and low address is 0 */
697 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_9_OFFSET(evt_ring_id));
698 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_10_OFFSET(evt_ring_id));
699 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_11_OFFSET(evt_ring_id));
700
701 /* We don't need to get event read pointer updates */
702 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_12_OFFSET(evt_ring_id));
703 iowrite32(0, gsi->virt + GSI_EV_CH_E_CNTXT_13_OFFSET(evt_ring_id));
704
705 /* Finally, tell the hardware we've completed event 0 (arbitrary) */
706 gsi_evt_ring_doorbell(gsi, evt_ring_id, 0);
707 }
708
709 /* Find the transaction whose completion indicates a channel is quiesced */
gsi_channel_trans_last(struct gsi_channel * channel)710 static struct gsi_trans *gsi_channel_trans_last(struct gsi_channel *channel)
711 {
712 struct gsi_trans_info *trans_info = &channel->trans_info;
713 const struct list_head *list;
714 struct gsi_trans *trans;
715
716 spin_lock_bh(&trans_info->spinlock);
717
718 /* There is a small chance a TX transaction got allocated just
719 * before we disabled transmits, so check for that.
720 */
721 if (channel->toward_ipa) {
722 list = &trans_info->alloc;
723 if (!list_empty(list))
724 goto done;
725 list = &trans_info->pending;
726 if (!list_empty(list))
727 goto done;
728 }
729
730 /* Otherwise (TX or RX) we want to wait for anything that
731 * has completed, or has been polled but not released yet.
732 */
733 list = &trans_info->complete;
734 if (!list_empty(list))
735 goto done;
736 list = &trans_info->polled;
737 if (list_empty(list))
738 list = NULL;
739 done:
740 trans = list ? list_last_entry(list, struct gsi_trans, links) : NULL;
741
742 /* Caller will wait for this, so take a reference */
743 if (trans)
744 refcount_inc(&trans->refcount);
745
746 spin_unlock_bh(&trans_info->spinlock);
747
748 return trans;
749 }
750
751 /* Wait for transaction activity on a channel to complete */
gsi_channel_trans_quiesce(struct gsi_channel * channel)752 static void gsi_channel_trans_quiesce(struct gsi_channel *channel)
753 {
754 struct gsi_trans *trans;
755
756 /* Get the last transaction, and wait for it to complete */
757 trans = gsi_channel_trans_last(channel);
758 if (trans) {
759 wait_for_completion(&trans->completion);
760 gsi_trans_free(trans);
761 }
762 }
763
764 /* Program a channel for use; there is no gsi_channel_deprogram() */
gsi_channel_program(struct gsi_channel * channel,bool doorbell)765 static void gsi_channel_program(struct gsi_channel *channel, bool doorbell)
766 {
767 size_t size = channel->tre_ring.count * GSI_RING_ELEMENT_SIZE;
768 u32 channel_id = gsi_channel_id(channel);
769 union gsi_channel_scratch scr = { };
770 struct gsi_channel_scratch_gpi *gpi;
771 struct gsi *gsi = channel->gsi;
772 u32 wrr_weight = 0;
773 u32 val;
774
775 /* Arbitrarily pick TRE 0 as the first channel element to use */
776 channel->tre_ring.index = 0;
777
778 /* We program all channels as GPI type/protocol */
779 val = chtype_protocol_encoded(gsi->version, GSI_CHANNEL_TYPE_GPI);
780 if (channel->toward_ipa)
781 val |= CHTYPE_DIR_FMASK;
782 val |= u32_encode_bits(channel->evt_ring_id, ERINDEX_FMASK);
783 val |= u32_encode_bits(GSI_RING_ELEMENT_SIZE, ELEMENT_SIZE_FMASK);
784 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_0_OFFSET(channel_id));
785
786 val = r_length_encoded(gsi->version, size);
787 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_1_OFFSET(channel_id));
788
789 /* The context 2 and 3 registers store the low-order and
790 * high-order 32 bits of the address of the channel ring,
791 * respectively.
792 */
793 val = lower_32_bits(channel->tre_ring.addr);
794 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_2_OFFSET(channel_id));
795 val = upper_32_bits(channel->tre_ring.addr);
796 iowrite32(val, gsi->virt + GSI_CH_C_CNTXT_3_OFFSET(channel_id));
797
798 /* Command channel gets low weighted round-robin priority */
799 if (channel->command)
800 wrr_weight = field_max(WRR_WEIGHT_FMASK);
801 val = u32_encode_bits(wrr_weight, WRR_WEIGHT_FMASK);
802
803 /* Max prefetch is 1 segment (do not set MAX_PREFETCH_FMASK) */
804
805 /* No need to use the doorbell engine starting at IPA v4.0 */
806 if (gsi->version < IPA_VERSION_4_0 && doorbell)
807 val |= USE_DB_ENG_FMASK;
808
809 /* v4.0 introduces an escape buffer for prefetch. We use it
810 * on all but the AP command channel.
811 */
812 if (gsi->version >= IPA_VERSION_4_0 && !channel->command) {
813 /* If not otherwise set, prefetch buffers are used */
814 if (gsi->version < IPA_VERSION_4_5)
815 val |= USE_ESCAPE_BUF_ONLY_FMASK;
816 else
817 val |= u32_encode_bits(GSI_ESCAPE_BUF_ONLY,
818 PREFETCH_MODE_FMASK);
819 }
820 /* All channels set DB_IN_BYTES */
821 if (gsi->version >= IPA_VERSION_4_9)
822 val |= DB_IN_BYTES;
823
824 iowrite32(val, gsi->virt + GSI_CH_C_QOS_OFFSET(channel_id));
825
826 /* Now update the scratch registers for GPI protocol */
827 gpi = &scr.gpi;
828 gpi->max_outstanding_tre = gsi_channel_trans_tre_max(gsi, channel_id) *
829 GSI_RING_ELEMENT_SIZE;
830 gpi->outstanding_threshold = 2 * GSI_RING_ELEMENT_SIZE;
831
832 val = scr.data.word1;
833 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_0_OFFSET(channel_id));
834
835 val = scr.data.word2;
836 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_1_OFFSET(channel_id));
837
838 val = scr.data.word3;
839 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_2_OFFSET(channel_id));
840
841 /* We must preserve the upper 16 bits of the last scratch register.
842 * The next sequence assumes those bits remain unchanged between the
843 * read and the write.
844 */
845 val = ioread32(gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
846 val = (scr.data.word4 & GENMASK(31, 16)) | (val & GENMASK(15, 0));
847 iowrite32(val, gsi->virt + GSI_CH_C_SCRATCH_3_OFFSET(channel_id));
848
849 /* All done! */
850 }
851
__gsi_channel_start(struct gsi_channel * channel,bool resume)852 static int __gsi_channel_start(struct gsi_channel *channel, bool resume)
853 {
854 struct gsi *gsi = channel->gsi;
855 int ret;
856
857 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
858 if (resume && gsi->version < IPA_VERSION_4_0)
859 return 0;
860
861 mutex_lock(&gsi->mutex);
862
863 ret = gsi_channel_start_command(channel);
864
865 mutex_unlock(&gsi->mutex);
866
867 return ret;
868 }
869
870 /* Start an allocated GSI channel */
gsi_channel_start(struct gsi * gsi,u32 channel_id)871 int gsi_channel_start(struct gsi *gsi, u32 channel_id)
872 {
873 struct gsi_channel *channel = &gsi->channel[channel_id];
874 int ret;
875
876 /* Enable NAPI and the completion interrupt */
877 napi_enable(&channel->napi);
878 gsi_irq_ieob_enable_one(gsi, channel->evt_ring_id);
879
880 ret = __gsi_channel_start(channel, false);
881 if (ret) {
882 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
883 napi_disable(&channel->napi);
884 }
885
886 return ret;
887 }
888
gsi_channel_stop_retry(struct gsi_channel * channel)889 static int gsi_channel_stop_retry(struct gsi_channel *channel)
890 {
891 u32 retries = GSI_CHANNEL_STOP_RETRIES;
892 int ret;
893
894 do {
895 ret = gsi_channel_stop_command(channel);
896 if (ret != -EAGAIN)
897 break;
898 usleep_range(3 * USEC_PER_MSEC, 5 * USEC_PER_MSEC);
899 } while (retries--);
900
901 return ret;
902 }
903
__gsi_channel_stop(struct gsi_channel * channel,bool suspend)904 static int __gsi_channel_stop(struct gsi_channel *channel, bool suspend)
905 {
906 struct gsi *gsi = channel->gsi;
907 int ret;
908
909 /* Wait for any underway transactions to complete before stopping. */
910 gsi_channel_trans_quiesce(channel);
911
912 /* Prior to IPA v4.0 suspend/resume is not implemented by GSI */
913 if (suspend && gsi->version < IPA_VERSION_4_0)
914 return 0;
915
916 mutex_lock(&gsi->mutex);
917
918 ret = gsi_channel_stop_retry(channel);
919
920 mutex_unlock(&gsi->mutex);
921
922 return ret;
923 }
924
925 /* Stop a started channel */
gsi_channel_stop(struct gsi * gsi,u32 channel_id)926 int gsi_channel_stop(struct gsi *gsi, u32 channel_id)
927 {
928 struct gsi_channel *channel = &gsi->channel[channel_id];
929 int ret;
930
931 ret = __gsi_channel_stop(channel, false);
932 if (ret)
933 return ret;
934
935 /* Disable the completion interrupt and NAPI if successful */
936 gsi_irq_ieob_disable_one(gsi, channel->evt_ring_id);
937 napi_disable(&channel->napi);
938
939 return 0;
940 }
941
942 /* Reset and reconfigure a channel, (possibly) enabling the doorbell engine */
gsi_channel_reset(struct gsi * gsi,u32 channel_id,bool doorbell)943 void gsi_channel_reset(struct gsi *gsi, u32 channel_id, bool doorbell)
944 {
945 struct gsi_channel *channel = &gsi->channel[channel_id];
946
947 mutex_lock(&gsi->mutex);
948
949 gsi_channel_reset_command(channel);
950 /* Due to a hardware quirk we may need to reset RX channels twice. */
951 if (gsi->version < IPA_VERSION_4_0 && !channel->toward_ipa)
952 gsi_channel_reset_command(channel);
953
954 gsi_channel_program(channel, doorbell);
955 gsi_channel_trans_cancel_pending(channel);
956
957 mutex_unlock(&gsi->mutex);
958 }
959
960 /* Stop a started channel for suspend */
gsi_channel_suspend(struct gsi * gsi,u32 channel_id)961 int gsi_channel_suspend(struct gsi *gsi, u32 channel_id)
962 {
963 struct gsi_channel *channel = &gsi->channel[channel_id];
964 int ret;
965
966 ret = __gsi_channel_stop(channel, true);
967 if (ret)
968 return ret;
969
970 /* Ensure NAPI polling has finished. */
971 napi_synchronize(&channel->napi);
972
973 return 0;
974 }
975
976 /* Resume a suspended channel (starting if stopped) */
gsi_channel_resume(struct gsi * gsi,u32 channel_id)977 int gsi_channel_resume(struct gsi *gsi, u32 channel_id)
978 {
979 struct gsi_channel *channel = &gsi->channel[channel_id];
980
981 return __gsi_channel_start(channel, true);
982 }
983
984 /* Prevent all GSI interrupts while suspended */
gsi_suspend(struct gsi * gsi)985 void gsi_suspend(struct gsi *gsi)
986 {
987 disable_irq(gsi->irq);
988 }
989
990 /* Allow all GSI interrupts again when resuming */
gsi_resume(struct gsi * gsi)991 void gsi_resume(struct gsi *gsi)
992 {
993 enable_irq(gsi->irq);
994 }
995
996 /**
997 * gsi_channel_tx_queued() - Report queued TX transfers for a channel
998 * @channel: Channel for which to report
999 *
1000 * Report to the network stack the number of bytes and transactions that
1001 * have been queued to hardware since last call. This and the next function
1002 * supply information used by the network stack for throttling.
1003 *
1004 * For each channel we track the number of transactions used and bytes of
1005 * data those transactions represent. We also track what those values are
1006 * each time this function is called. Subtracting the two tells us
1007 * the number of bytes and transactions that have been added between
1008 * successive calls.
1009 *
1010 * Calling this each time we ring the channel doorbell allows us to
1011 * provide accurate information to the network stack about how much
1012 * work we've given the hardware at any point in time.
1013 */
gsi_channel_tx_queued(struct gsi_channel * channel)1014 void gsi_channel_tx_queued(struct gsi_channel *channel)
1015 {
1016 u32 trans_count;
1017 u32 byte_count;
1018
1019 byte_count = channel->byte_count - channel->queued_byte_count;
1020 trans_count = channel->trans_count - channel->queued_trans_count;
1021 channel->queued_byte_count = channel->byte_count;
1022 channel->queued_trans_count = channel->trans_count;
1023
1024 ipa_gsi_channel_tx_queued(channel->gsi, gsi_channel_id(channel),
1025 trans_count, byte_count);
1026 }
1027
1028 /**
1029 * gsi_channel_tx_update() - Report completed TX transfers
1030 * @channel: Channel that has completed transmitting packets
1031 * @trans: Last transation known to be complete
1032 *
1033 * Compute the number of transactions and bytes that have been transferred
1034 * over a TX channel since the given transaction was committed. Report this
1035 * information to the network stack.
1036 *
1037 * At the time a transaction is committed, we record its channel's
1038 * committed transaction and byte counts *in the transaction*.
1039 * Completions are signaled by the hardware with an interrupt, and
1040 * we can determine the latest completed transaction at that time.
1041 *
1042 * The difference between the byte/transaction count recorded in
1043 * the transaction and the count last time we recorded a completion
1044 * tells us exactly how much data has been transferred between
1045 * completions.
1046 *
1047 * Calling this each time we learn of a newly-completed transaction
1048 * allows us to provide accurate information to the network stack
1049 * about how much work has been completed by the hardware at a given
1050 * point in time.
1051 */
1052 static void
gsi_channel_tx_update(struct gsi_channel * channel,struct gsi_trans * trans)1053 gsi_channel_tx_update(struct gsi_channel *channel, struct gsi_trans *trans)
1054 {
1055 u64 byte_count = trans->byte_count + trans->len;
1056 u64 trans_count = trans->trans_count + 1;
1057
1058 byte_count -= channel->compl_byte_count;
1059 channel->compl_byte_count += byte_count;
1060 trans_count -= channel->compl_trans_count;
1061 channel->compl_trans_count += trans_count;
1062
1063 ipa_gsi_channel_tx_completed(channel->gsi, gsi_channel_id(channel),
1064 trans_count, byte_count);
1065 }
1066
1067 /* Channel control interrupt handler */
gsi_isr_chan_ctrl(struct gsi * gsi)1068 static void gsi_isr_chan_ctrl(struct gsi *gsi)
1069 {
1070 u32 channel_mask;
1071
1072 channel_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_CH_IRQ_OFFSET);
1073 iowrite32(channel_mask, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_CLR_OFFSET);
1074
1075 while (channel_mask) {
1076 u32 channel_id = __ffs(channel_mask);
1077 struct gsi_channel *channel;
1078
1079 channel_mask ^= BIT(channel_id);
1080
1081 channel = &gsi->channel[channel_id];
1082
1083 complete(&channel->completion);
1084 }
1085 }
1086
1087 /* Event ring control interrupt handler */
gsi_isr_evt_ctrl(struct gsi * gsi)1088 static void gsi_isr_evt_ctrl(struct gsi *gsi)
1089 {
1090 u32 event_mask;
1091
1092 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_OFFSET);
1093 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_CLR_OFFSET);
1094
1095 while (event_mask) {
1096 u32 evt_ring_id = __ffs(event_mask);
1097 struct gsi_evt_ring *evt_ring;
1098
1099 event_mask ^= BIT(evt_ring_id);
1100
1101 evt_ring = &gsi->evt_ring[evt_ring_id];
1102
1103 complete(&evt_ring->completion);
1104 }
1105 }
1106
1107 /* Global channel error interrupt handler */
1108 static void
gsi_isr_glob_chan_err(struct gsi * gsi,u32 err_ee,u32 channel_id,u32 code)1109 gsi_isr_glob_chan_err(struct gsi *gsi, u32 err_ee, u32 channel_id, u32 code)
1110 {
1111 if (code == GSI_OUT_OF_RESOURCES) {
1112 dev_err(gsi->dev, "channel %u out of resources\n", channel_id);
1113 complete(&gsi->channel[channel_id].completion);
1114 return;
1115 }
1116
1117 /* Report, but otherwise ignore all other error codes */
1118 dev_err(gsi->dev, "channel %u global error ee 0x%08x code 0x%08x\n",
1119 channel_id, err_ee, code);
1120 }
1121
1122 /* Global event error interrupt handler */
1123 static void
gsi_isr_glob_evt_err(struct gsi * gsi,u32 err_ee,u32 evt_ring_id,u32 code)1124 gsi_isr_glob_evt_err(struct gsi *gsi, u32 err_ee, u32 evt_ring_id, u32 code)
1125 {
1126 if (code == GSI_OUT_OF_RESOURCES) {
1127 struct gsi_evt_ring *evt_ring = &gsi->evt_ring[evt_ring_id];
1128 u32 channel_id = gsi_channel_id(evt_ring->channel);
1129
1130 complete(&evt_ring->completion);
1131 dev_err(gsi->dev, "evt_ring for channel %u out of resources\n",
1132 channel_id);
1133 return;
1134 }
1135
1136 /* Report, but otherwise ignore all other error codes */
1137 dev_err(gsi->dev, "event ring %u global error ee %u code 0x%08x\n",
1138 evt_ring_id, err_ee, code);
1139 }
1140
1141 /* Global error interrupt handler */
gsi_isr_glob_err(struct gsi * gsi)1142 static void gsi_isr_glob_err(struct gsi *gsi)
1143 {
1144 enum gsi_err_type type;
1145 enum gsi_err_code code;
1146 u32 which;
1147 u32 val;
1148 u32 ee;
1149
1150 /* Get the logged error, then reinitialize the log */
1151 val = ioread32(gsi->virt + GSI_ERROR_LOG_OFFSET);
1152 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1153 iowrite32(~0, gsi->virt + GSI_ERROR_LOG_CLR_OFFSET);
1154
1155 ee = u32_get_bits(val, ERR_EE_FMASK);
1156 type = u32_get_bits(val, ERR_TYPE_FMASK);
1157 which = u32_get_bits(val, ERR_VIRT_IDX_FMASK);
1158 code = u32_get_bits(val, ERR_CODE_FMASK);
1159
1160 if (type == GSI_ERR_TYPE_CHAN)
1161 gsi_isr_glob_chan_err(gsi, ee, which, code);
1162 else if (type == GSI_ERR_TYPE_EVT)
1163 gsi_isr_glob_evt_err(gsi, ee, which, code);
1164 else /* type GSI_ERR_TYPE_GLOB should be fatal */
1165 dev_err(gsi->dev, "unexpected global error 0x%08x\n", type);
1166 }
1167
1168 /* Generic EE interrupt handler */
gsi_isr_gp_int1(struct gsi * gsi)1169 static void gsi_isr_gp_int1(struct gsi *gsi)
1170 {
1171 u32 result;
1172 u32 val;
1173
1174 /* This interrupt is used to handle completions of the two GENERIC
1175 * GSI commands. We use these to allocate and halt channels on
1176 * the modem's behalf due to a hardware quirk on IPA v4.2. Once
1177 * allocated, the modem "owns" these channels, and as a result we
1178 * have no way of knowing the channel's state at any given time.
1179 *
1180 * It is recommended that we halt the modem channels we allocated
1181 * when shutting down, but it's possible the channel isn't running
1182 * at the time we issue the HALT command. We'll get an error in
1183 * that case, but it's harmless (the channel is already halted).
1184 *
1185 * For this reason, we silently ignore a CHANNEL_NOT_RUNNING error
1186 * if we receive it.
1187 */
1188 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1189 result = u32_get_bits(val, GENERIC_EE_RESULT_FMASK);
1190
1191 switch (result) {
1192 case GENERIC_EE_SUCCESS:
1193 case GENERIC_EE_CHANNEL_NOT_RUNNING:
1194 gsi->result = 0;
1195 break;
1196
1197 case GENERIC_EE_RETRY:
1198 gsi->result = -EAGAIN;
1199 break;
1200
1201 default:
1202 dev_err(gsi->dev, "global INT1 generic result %u\n", result);
1203 gsi->result = -EIO;
1204 break;
1205 }
1206
1207 complete(&gsi->completion);
1208 }
1209
1210 /* Inter-EE interrupt handler */
gsi_isr_glob_ee(struct gsi * gsi)1211 static void gsi_isr_glob_ee(struct gsi *gsi)
1212 {
1213 u32 val;
1214
1215 val = ioread32(gsi->virt + GSI_CNTXT_GLOB_IRQ_STTS_OFFSET);
1216
1217 if (val & BIT(ERROR_INT))
1218 gsi_isr_glob_err(gsi);
1219
1220 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_CLR_OFFSET);
1221
1222 val &= ~BIT(ERROR_INT);
1223
1224 if (val & BIT(GP_INT1)) {
1225 val ^= BIT(GP_INT1);
1226 gsi_isr_gp_int1(gsi);
1227 }
1228
1229 if (val)
1230 dev_err(gsi->dev, "unexpected global interrupt 0x%08x\n", val);
1231 }
1232
1233 /* I/O completion interrupt event */
gsi_isr_ieob(struct gsi * gsi)1234 static void gsi_isr_ieob(struct gsi *gsi)
1235 {
1236 u32 event_mask;
1237
1238 event_mask = ioread32(gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_OFFSET);
1239 gsi_irq_ieob_disable(gsi, event_mask);
1240 iowrite32(event_mask, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_CLR_OFFSET);
1241
1242 while (event_mask) {
1243 u32 evt_ring_id = __ffs(event_mask);
1244
1245 event_mask ^= BIT(evt_ring_id);
1246
1247 napi_schedule(&gsi->evt_ring[evt_ring_id].channel->napi);
1248 }
1249 }
1250
1251 /* General event interrupts represent serious problems, so report them */
gsi_isr_general(struct gsi * gsi)1252 static void gsi_isr_general(struct gsi *gsi)
1253 {
1254 struct device *dev = gsi->dev;
1255 u32 val;
1256
1257 val = ioread32(gsi->virt + GSI_CNTXT_GSI_IRQ_STTS_OFFSET);
1258 iowrite32(val, gsi->virt + GSI_CNTXT_GSI_IRQ_CLR_OFFSET);
1259
1260 dev_err(dev, "unexpected general interrupt 0x%08x\n", val);
1261 }
1262
1263 /**
1264 * gsi_isr() - Top level GSI interrupt service routine
1265 * @irq: Interrupt number (ignored)
1266 * @dev_id: GSI pointer supplied to request_irq()
1267 *
1268 * This is the main handler function registered for the GSI IRQ. Each type
1269 * of interrupt has a separate handler function that is called from here.
1270 */
gsi_isr(int irq,void * dev_id)1271 static irqreturn_t gsi_isr(int irq, void *dev_id)
1272 {
1273 struct gsi *gsi = dev_id;
1274 u32 intr_mask;
1275 u32 cnt = 0;
1276
1277 /* enum gsi_irq_type_id defines GSI interrupt types */
1278 while ((intr_mask = ioread32(gsi->virt + GSI_CNTXT_TYPE_IRQ_OFFSET))) {
1279 /* intr_mask contains bitmask of pending GSI interrupts */
1280 do {
1281 u32 gsi_intr = BIT(__ffs(intr_mask));
1282
1283 intr_mask ^= gsi_intr;
1284
1285 switch (gsi_intr) {
1286 case BIT(GSI_CH_CTRL):
1287 gsi_isr_chan_ctrl(gsi);
1288 break;
1289 case BIT(GSI_EV_CTRL):
1290 gsi_isr_evt_ctrl(gsi);
1291 break;
1292 case BIT(GSI_GLOB_EE):
1293 gsi_isr_glob_ee(gsi);
1294 break;
1295 case BIT(GSI_IEOB):
1296 gsi_isr_ieob(gsi);
1297 break;
1298 case BIT(GSI_GENERAL):
1299 gsi_isr_general(gsi);
1300 break;
1301 default:
1302 dev_err(gsi->dev,
1303 "unrecognized interrupt type 0x%08x\n",
1304 gsi_intr);
1305 break;
1306 }
1307 } while (intr_mask);
1308
1309 if (++cnt > GSI_ISR_MAX_ITER) {
1310 dev_err(gsi->dev, "interrupt flood\n");
1311 break;
1312 }
1313 }
1314
1315 return IRQ_HANDLED;
1316 }
1317
1318 /* Init function for GSI IRQ lookup; there is no gsi_irq_exit() */
gsi_irq_init(struct gsi * gsi,struct platform_device * pdev)1319 static int gsi_irq_init(struct gsi *gsi, struct platform_device *pdev)
1320 {
1321 int ret;
1322
1323 ret = platform_get_irq_byname(pdev, "gsi");
1324 if (ret <= 0)
1325 return ret ? : -EINVAL;
1326
1327 gsi->irq = ret;
1328
1329 return 0;
1330 }
1331
1332 /* Return the transaction associated with a transfer completion event */
gsi_event_trans(struct gsi_channel * channel,struct gsi_event * event)1333 static struct gsi_trans *gsi_event_trans(struct gsi_channel *channel,
1334 struct gsi_event *event)
1335 {
1336 u32 tre_offset;
1337 u32 tre_index;
1338
1339 /* Event xfer_ptr records the TRE it's associated with */
1340 tre_offset = lower_32_bits(le64_to_cpu(event->xfer_ptr));
1341 tre_index = gsi_ring_index(&channel->tre_ring, tre_offset);
1342
1343 return gsi_channel_trans_mapped(channel, tre_index);
1344 }
1345
1346 /**
1347 * gsi_evt_ring_rx_update() - Record lengths of received data
1348 * @evt_ring: Event ring associated with channel that received packets
1349 * @index: Event index in ring reported by hardware
1350 *
1351 * Events for RX channels contain the actual number of bytes received into
1352 * the buffer. Every event has a transaction associated with it, and here
1353 * we update transactions to record their actual received lengths.
1354 *
1355 * This function is called whenever we learn that the GSI hardware has filled
1356 * new events since the last time we checked. The ring's index field tells
1357 * the first entry in need of processing. The index provided is the
1358 * first *unfilled* event in the ring (following the last filled one).
1359 *
1360 * Events are sequential within the event ring, and transactions are
1361 * sequential within the transaction pool.
1362 *
1363 * Note that @index always refers to an element *within* the event ring.
1364 */
gsi_evt_ring_rx_update(struct gsi_evt_ring * evt_ring,u32 index)1365 static void gsi_evt_ring_rx_update(struct gsi_evt_ring *evt_ring, u32 index)
1366 {
1367 struct gsi_channel *channel = evt_ring->channel;
1368 struct gsi_ring *ring = &evt_ring->ring;
1369 struct gsi_trans_info *trans_info;
1370 struct gsi_event *event_done;
1371 struct gsi_event *event;
1372 struct gsi_trans *trans;
1373 u32 byte_count = 0;
1374 u32 old_index;
1375 u32 event_avail;
1376
1377 trans_info = &channel->trans_info;
1378
1379 /* We'll start with the oldest un-processed event. RX channels
1380 * replenish receive buffers in single-TRE transactions, so we
1381 * can just map that event to its transaction. Transactions
1382 * associated with completion events are consecutive.
1383 */
1384 old_index = ring->index;
1385 event = gsi_ring_virt(ring, old_index);
1386 trans = gsi_event_trans(channel, event);
1387
1388 /* Compute the number of events to process before we wrap,
1389 * and determine when we'll be done processing events.
1390 */
1391 event_avail = ring->count - old_index % ring->count;
1392 event_done = gsi_ring_virt(ring, index);
1393 do {
1394 trans->len = __le16_to_cpu(event->len);
1395 byte_count += trans->len;
1396
1397 /* Move on to the next event and transaction */
1398 if (--event_avail)
1399 event++;
1400 else
1401 event = gsi_ring_virt(ring, 0);
1402 trans = gsi_trans_pool_next(&trans_info->pool, trans);
1403 } while (event != event_done);
1404
1405 /* We record RX bytes when they are received */
1406 channel->byte_count += byte_count;
1407 channel->trans_count++;
1408 }
1409
1410 /* Initialize a ring, including allocating DMA memory for its entries */
gsi_ring_alloc(struct gsi * gsi,struct gsi_ring * ring,u32 count)1411 static int gsi_ring_alloc(struct gsi *gsi, struct gsi_ring *ring, u32 count)
1412 {
1413 u32 size = count * GSI_RING_ELEMENT_SIZE;
1414 struct device *dev = gsi->dev;
1415 dma_addr_t addr;
1416
1417 /* Hardware requires a 2^n ring size, with alignment equal to size.
1418 * The DMA address returned by dma_alloc_coherent() is guaranteed to
1419 * be a power-of-2 number of pages, which satisfies the requirement.
1420 */
1421 ring->virt = dma_alloc_coherent(dev, size, &addr, GFP_KERNEL);
1422 if (!ring->virt)
1423 return -ENOMEM;
1424
1425 ring->addr = addr;
1426 ring->count = count;
1427
1428 return 0;
1429 }
1430
1431 /* Free a previously-allocated ring */
gsi_ring_free(struct gsi * gsi,struct gsi_ring * ring)1432 static void gsi_ring_free(struct gsi *gsi, struct gsi_ring *ring)
1433 {
1434 size_t size = ring->count * GSI_RING_ELEMENT_SIZE;
1435
1436 dma_free_coherent(gsi->dev, size, ring->virt, ring->addr);
1437 }
1438
1439 /* Allocate an available event ring id */
gsi_evt_ring_id_alloc(struct gsi * gsi)1440 static int gsi_evt_ring_id_alloc(struct gsi *gsi)
1441 {
1442 u32 evt_ring_id;
1443
1444 if (gsi->event_bitmap == ~0U) {
1445 dev_err(gsi->dev, "event rings exhausted\n");
1446 return -ENOSPC;
1447 }
1448
1449 evt_ring_id = ffz(gsi->event_bitmap);
1450 gsi->event_bitmap |= BIT(evt_ring_id);
1451
1452 return (int)evt_ring_id;
1453 }
1454
1455 /* Free a previously-allocated event ring id */
gsi_evt_ring_id_free(struct gsi * gsi,u32 evt_ring_id)1456 static void gsi_evt_ring_id_free(struct gsi *gsi, u32 evt_ring_id)
1457 {
1458 gsi->event_bitmap &= ~BIT(evt_ring_id);
1459 }
1460
1461 /* Ring a channel doorbell, reporting the first un-filled entry */
gsi_channel_doorbell(struct gsi_channel * channel)1462 void gsi_channel_doorbell(struct gsi_channel *channel)
1463 {
1464 struct gsi_ring *tre_ring = &channel->tre_ring;
1465 u32 channel_id = gsi_channel_id(channel);
1466 struct gsi *gsi = channel->gsi;
1467 u32 val;
1468
1469 /* Note: index *must* be used modulo the ring count here */
1470 val = gsi_ring_addr(tre_ring, tre_ring->index % tre_ring->count);
1471 iowrite32(val, gsi->virt + GSI_CH_C_DOORBELL_0_OFFSET(channel_id));
1472 }
1473
1474 /* Consult hardware, move any newly completed transactions to completed list */
gsi_channel_update(struct gsi_channel * channel)1475 static struct gsi_trans *gsi_channel_update(struct gsi_channel *channel)
1476 {
1477 u32 evt_ring_id = channel->evt_ring_id;
1478 struct gsi *gsi = channel->gsi;
1479 struct gsi_evt_ring *evt_ring;
1480 struct gsi_trans *trans;
1481 struct gsi_ring *ring;
1482 u32 offset;
1483 u32 index;
1484
1485 evt_ring = &gsi->evt_ring[evt_ring_id];
1486 ring = &evt_ring->ring;
1487
1488 /* See if there's anything new to process; if not, we're done. Note
1489 * that index always refers to an entry *within* the event ring.
1490 */
1491 offset = GSI_EV_CH_E_CNTXT_4_OFFSET(evt_ring_id);
1492 index = gsi_ring_index(ring, ioread32(gsi->virt + offset));
1493 if (index == ring->index % ring->count)
1494 return NULL;
1495
1496 /* Get the transaction for the latest completed event. Take a
1497 * reference to keep it from completing before we give the events
1498 * for this and previous transactions back to the hardware.
1499 */
1500 trans = gsi_event_trans(channel, gsi_ring_virt(ring, index - 1));
1501 refcount_inc(&trans->refcount);
1502
1503 /* For RX channels, update each completed transaction with the number
1504 * of bytes that were actually received. For TX channels, report
1505 * the number of transactions and bytes this completion represents
1506 * up the network stack.
1507 */
1508 if (channel->toward_ipa)
1509 gsi_channel_tx_update(channel, trans);
1510 else
1511 gsi_evt_ring_rx_update(evt_ring, index);
1512
1513 gsi_trans_move_complete(trans);
1514
1515 /* Tell the hardware we've handled these events */
1516 gsi_evt_ring_doorbell(channel->gsi, channel->evt_ring_id, index);
1517
1518 gsi_trans_free(trans);
1519
1520 return gsi_channel_trans_complete(channel);
1521 }
1522
1523 /**
1524 * gsi_channel_poll_one() - Return a single completed transaction on a channel
1525 * @channel: Channel to be polled
1526 *
1527 * Return: Transaction pointer, or null if none are available
1528 *
1529 * This function returns the first entry on a channel's completed transaction
1530 * list. If that list is empty, the hardware is consulted to determine
1531 * whether any new transactions have completed. If so, they're moved to the
1532 * completed list and the new first entry is returned. If there are no more
1533 * completed transactions, a null pointer is returned.
1534 */
gsi_channel_poll_one(struct gsi_channel * channel)1535 static struct gsi_trans *gsi_channel_poll_one(struct gsi_channel *channel)
1536 {
1537 struct gsi_trans *trans;
1538
1539 /* Get the first transaction from the completed list */
1540 trans = gsi_channel_trans_complete(channel);
1541 if (!trans) /* List is empty; see if there's more to do */
1542 trans = gsi_channel_update(channel);
1543
1544 if (trans)
1545 gsi_trans_move_polled(trans);
1546
1547 return trans;
1548 }
1549
1550 /**
1551 * gsi_channel_poll() - NAPI poll function for a channel
1552 * @napi: NAPI structure for the channel
1553 * @budget: Budget supplied by NAPI core
1554 *
1555 * Return: Number of items polled (<= budget)
1556 *
1557 * Single transactions completed by hardware are polled until either
1558 * the budget is exhausted, or there are no more. Each transaction
1559 * polled is passed to gsi_trans_complete(), to perform remaining
1560 * completion processing and retire/free the transaction.
1561 */
gsi_channel_poll(struct napi_struct * napi,int budget)1562 static int gsi_channel_poll(struct napi_struct *napi, int budget)
1563 {
1564 struct gsi_channel *channel;
1565 int count;
1566
1567 channel = container_of(napi, struct gsi_channel, napi);
1568 for (count = 0; count < budget; count++) {
1569 struct gsi_trans *trans;
1570
1571 trans = gsi_channel_poll_one(channel);
1572 if (!trans)
1573 break;
1574 gsi_trans_complete(trans);
1575 }
1576
1577 if (count < budget && napi_complete(napi))
1578 gsi_irq_ieob_enable_one(channel->gsi, channel->evt_ring_id);
1579
1580 return count;
1581 }
1582
1583 /* The event bitmap represents which event ids are available for allocation.
1584 * Set bits are not available, clear bits can be used. This function
1585 * initializes the map so all events supported by the hardware are available,
1586 * then precludes any reserved events from being allocated.
1587 */
gsi_event_bitmap_init(u32 evt_ring_max)1588 static u32 gsi_event_bitmap_init(u32 evt_ring_max)
1589 {
1590 u32 event_bitmap = GENMASK(BITS_PER_LONG - 1, evt_ring_max);
1591
1592 event_bitmap |= GENMASK(GSI_MHI_EVENT_ID_END, GSI_MHI_EVENT_ID_START);
1593
1594 return event_bitmap;
1595 }
1596
1597 /* Setup function for a single channel */
gsi_channel_setup_one(struct gsi * gsi,u32 channel_id)1598 static int gsi_channel_setup_one(struct gsi *gsi, u32 channel_id)
1599 {
1600 struct gsi_channel *channel = &gsi->channel[channel_id];
1601 u32 evt_ring_id = channel->evt_ring_id;
1602 int ret;
1603
1604 if (!gsi_channel_initialized(channel))
1605 return 0;
1606
1607 ret = gsi_evt_ring_alloc_command(gsi, evt_ring_id);
1608 if (ret)
1609 return ret;
1610
1611 gsi_evt_ring_program(gsi, evt_ring_id);
1612
1613 ret = gsi_channel_alloc_command(gsi, channel_id);
1614 if (ret)
1615 goto err_evt_ring_de_alloc;
1616
1617 gsi_channel_program(channel, true);
1618
1619 if (channel->toward_ipa)
1620 netif_tx_napi_add(&gsi->dummy_dev, &channel->napi,
1621 gsi_channel_poll, NAPI_POLL_WEIGHT);
1622 else
1623 netif_napi_add(&gsi->dummy_dev, &channel->napi,
1624 gsi_channel_poll, NAPI_POLL_WEIGHT);
1625
1626 return 0;
1627
1628 err_evt_ring_de_alloc:
1629 /* We've done nothing with the event ring yet so don't reset */
1630 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1631
1632 return ret;
1633 }
1634
1635 /* Inverse of gsi_channel_setup_one() */
gsi_channel_teardown_one(struct gsi * gsi,u32 channel_id)1636 static void gsi_channel_teardown_one(struct gsi *gsi, u32 channel_id)
1637 {
1638 struct gsi_channel *channel = &gsi->channel[channel_id];
1639 u32 evt_ring_id = channel->evt_ring_id;
1640
1641 if (!gsi_channel_initialized(channel))
1642 return;
1643
1644 netif_napi_del(&channel->napi);
1645
1646 gsi_channel_de_alloc_command(gsi, channel_id);
1647 gsi_evt_ring_reset_command(gsi, evt_ring_id);
1648 gsi_evt_ring_de_alloc_command(gsi, evt_ring_id);
1649 }
1650
gsi_generic_command(struct gsi * gsi,u32 channel_id,enum gsi_generic_cmd_opcode opcode)1651 static int gsi_generic_command(struct gsi *gsi, u32 channel_id,
1652 enum gsi_generic_cmd_opcode opcode)
1653 {
1654 struct completion *completion = &gsi->completion;
1655 bool timeout;
1656 u32 val;
1657
1658 /* The error global interrupt type is always enabled (until we
1659 * teardown), so we won't change that. A generic EE command
1660 * completes with a GSI global interrupt of type GP_INT1. We
1661 * only perform one generic command at a time (to allocate or
1662 * halt a modem channel) and only from this function. So we
1663 * enable the GP_INT1 IRQ type here while we're expecting it.
1664 */
1665 val = BIT(ERROR_INT) | BIT(GP_INT1);
1666 iowrite32(val, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1667
1668 /* First zero the result code field */
1669 val = ioread32(gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1670 val &= ~GENERIC_EE_RESULT_FMASK;
1671 iowrite32(val, gsi->virt + GSI_CNTXT_SCRATCH_0_OFFSET);
1672
1673 /* Now issue the command */
1674 val = u32_encode_bits(opcode, GENERIC_OPCODE_FMASK);
1675 val |= u32_encode_bits(channel_id, GENERIC_CHID_FMASK);
1676 val |= u32_encode_bits(GSI_EE_MODEM, GENERIC_EE_FMASK);
1677
1678 timeout = !gsi_command(gsi, GSI_GENERIC_CMD_OFFSET, val, completion);
1679
1680 /* Disable the GP_INT1 IRQ type again */
1681 iowrite32(BIT(ERROR_INT), gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1682
1683 if (!timeout)
1684 return gsi->result;
1685
1686 dev_err(gsi->dev, "GSI generic command %u to channel %u timed out\n",
1687 opcode, channel_id);
1688
1689 return -ETIMEDOUT;
1690 }
1691
gsi_modem_channel_alloc(struct gsi * gsi,u32 channel_id)1692 static int gsi_modem_channel_alloc(struct gsi *gsi, u32 channel_id)
1693 {
1694 return gsi_generic_command(gsi, channel_id,
1695 GSI_GENERIC_ALLOCATE_CHANNEL);
1696 }
1697
gsi_modem_channel_halt(struct gsi * gsi,u32 channel_id)1698 static void gsi_modem_channel_halt(struct gsi *gsi, u32 channel_id)
1699 {
1700 u32 retries = GSI_CHANNEL_MODEM_HALT_RETRIES;
1701 int ret;
1702
1703 do
1704 ret = gsi_generic_command(gsi, channel_id,
1705 GSI_GENERIC_HALT_CHANNEL);
1706 while (ret == -EAGAIN && retries--);
1707
1708 if (ret)
1709 dev_err(gsi->dev, "error %d halting modem channel %u\n",
1710 ret, channel_id);
1711 }
1712
1713 /* Setup function for channels */
gsi_channel_setup(struct gsi * gsi)1714 static int gsi_channel_setup(struct gsi *gsi)
1715 {
1716 u32 channel_id = 0;
1717 u32 mask;
1718 int ret;
1719
1720 gsi_irq_enable(gsi);
1721
1722 mutex_lock(&gsi->mutex);
1723
1724 do {
1725 ret = gsi_channel_setup_one(gsi, channel_id);
1726 if (ret)
1727 goto err_unwind;
1728 } while (++channel_id < gsi->channel_count);
1729
1730 /* Make sure no channels were defined that hardware does not support */
1731 while (channel_id < GSI_CHANNEL_COUNT_MAX) {
1732 struct gsi_channel *channel = &gsi->channel[channel_id++];
1733
1734 if (!gsi_channel_initialized(channel))
1735 continue;
1736
1737 ret = -EINVAL;
1738 dev_err(gsi->dev, "channel %u not supported by hardware\n",
1739 channel_id - 1);
1740 channel_id = gsi->channel_count;
1741 goto err_unwind;
1742 }
1743
1744 /* Allocate modem channels if necessary */
1745 mask = gsi->modem_channel_bitmap;
1746 while (mask) {
1747 u32 modem_channel_id = __ffs(mask);
1748
1749 ret = gsi_modem_channel_alloc(gsi, modem_channel_id);
1750 if (ret)
1751 goto err_unwind_modem;
1752
1753 /* Clear bit from mask only after success (for unwind) */
1754 mask ^= BIT(modem_channel_id);
1755 }
1756
1757 mutex_unlock(&gsi->mutex);
1758
1759 return 0;
1760
1761 err_unwind_modem:
1762 /* Compute which modem channels need to be deallocated */
1763 mask ^= gsi->modem_channel_bitmap;
1764 while (mask) {
1765 channel_id = __fls(mask);
1766
1767 mask ^= BIT(channel_id);
1768
1769 gsi_modem_channel_halt(gsi, channel_id);
1770 }
1771
1772 err_unwind:
1773 while (channel_id--)
1774 gsi_channel_teardown_one(gsi, channel_id);
1775
1776 mutex_unlock(&gsi->mutex);
1777
1778 gsi_irq_disable(gsi);
1779
1780 return ret;
1781 }
1782
1783 /* Inverse of gsi_channel_setup() */
gsi_channel_teardown(struct gsi * gsi)1784 static void gsi_channel_teardown(struct gsi *gsi)
1785 {
1786 u32 mask = gsi->modem_channel_bitmap;
1787 u32 channel_id;
1788
1789 mutex_lock(&gsi->mutex);
1790
1791 while (mask) {
1792 channel_id = __fls(mask);
1793
1794 mask ^= BIT(channel_id);
1795
1796 gsi_modem_channel_halt(gsi, channel_id);
1797 }
1798
1799 channel_id = gsi->channel_count - 1;
1800 do
1801 gsi_channel_teardown_one(gsi, channel_id);
1802 while (channel_id--);
1803
1804 mutex_unlock(&gsi->mutex);
1805
1806 gsi_irq_disable(gsi);
1807 }
1808
1809 /* Turn off all GSI interrupts initially */
gsi_irq_setup(struct gsi * gsi)1810 static int gsi_irq_setup(struct gsi *gsi)
1811 {
1812 int ret;
1813
1814 /* Writing 1 indicates IRQ interrupts; 0 would be MSI */
1815 iowrite32(1, gsi->virt + GSI_CNTXT_INTSET_OFFSET);
1816
1817 /* Disable all interrupt types */
1818 gsi_irq_type_update(gsi, 0);
1819
1820 /* Clear all type-specific interrupt masks */
1821 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_CH_IRQ_MSK_OFFSET);
1822 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_EV_CH_IRQ_MSK_OFFSET);
1823 iowrite32(0, gsi->virt + GSI_CNTXT_GLOB_IRQ_EN_OFFSET);
1824 iowrite32(0, gsi->virt + GSI_CNTXT_SRC_IEOB_IRQ_MSK_OFFSET);
1825
1826 /* The inter-EE interrupts are not supported for IPA v3.0-v3.1 */
1827 if (gsi->version > IPA_VERSION_3_1) {
1828 u32 offset;
1829
1830 /* These registers are in the non-adjusted address range */
1831 offset = GSI_INTER_EE_SRC_CH_IRQ_MSK_OFFSET;
1832 iowrite32(0, gsi->virt_raw + offset);
1833 offset = GSI_INTER_EE_SRC_EV_CH_IRQ_MSK_OFFSET;
1834 iowrite32(0, gsi->virt_raw + offset);
1835 }
1836
1837 iowrite32(0, gsi->virt + GSI_CNTXT_GSI_IRQ_EN_OFFSET);
1838
1839 ret = request_irq(gsi->irq, gsi_isr, 0, "gsi", gsi);
1840 if (ret)
1841 dev_err(gsi->dev, "error %d requesting \"gsi\" IRQ\n", ret);
1842
1843 return ret;
1844 }
1845
gsi_irq_teardown(struct gsi * gsi)1846 static void gsi_irq_teardown(struct gsi *gsi)
1847 {
1848 free_irq(gsi->irq, gsi);
1849 }
1850
1851 /* Get # supported channel and event rings; there is no gsi_ring_teardown() */
gsi_ring_setup(struct gsi * gsi)1852 static int gsi_ring_setup(struct gsi *gsi)
1853 {
1854 struct device *dev = gsi->dev;
1855 u32 count;
1856 u32 val;
1857
1858 if (gsi->version < IPA_VERSION_3_5_1) {
1859 /* No HW_PARAM_2 register prior to IPA v3.5.1, assume the max */
1860 gsi->channel_count = GSI_CHANNEL_COUNT_MAX;
1861 gsi->evt_ring_count = GSI_EVT_RING_COUNT_MAX;
1862
1863 return 0;
1864 }
1865
1866 val = ioread32(gsi->virt + GSI_GSI_HW_PARAM_2_OFFSET);
1867
1868 count = u32_get_bits(val, NUM_CH_PER_EE_FMASK);
1869 if (!count) {
1870 dev_err(dev, "GSI reports zero channels supported\n");
1871 return -EINVAL;
1872 }
1873 if (count > GSI_CHANNEL_COUNT_MAX) {
1874 dev_warn(dev, "limiting to %u channels; hardware supports %u\n",
1875 GSI_CHANNEL_COUNT_MAX, count);
1876 count = GSI_CHANNEL_COUNT_MAX;
1877 }
1878 gsi->channel_count = count;
1879
1880 count = u32_get_bits(val, NUM_EV_PER_EE_FMASK);
1881 if (!count) {
1882 dev_err(dev, "GSI reports zero event rings supported\n");
1883 return -EINVAL;
1884 }
1885 if (count > GSI_EVT_RING_COUNT_MAX) {
1886 dev_warn(dev,
1887 "limiting to %u event rings; hardware supports %u\n",
1888 GSI_EVT_RING_COUNT_MAX, count);
1889 count = GSI_EVT_RING_COUNT_MAX;
1890 }
1891 gsi->evt_ring_count = count;
1892
1893 return 0;
1894 }
1895
1896 /* Setup function for GSI. GSI firmware must be loaded and initialized */
gsi_setup(struct gsi * gsi)1897 int gsi_setup(struct gsi *gsi)
1898 {
1899 u32 val;
1900 int ret;
1901
1902 /* Here is where we first touch the GSI hardware */
1903 val = ioread32(gsi->virt + GSI_GSI_STATUS_OFFSET);
1904 if (!(val & ENABLED_FMASK)) {
1905 dev_err(gsi->dev, "GSI has not been enabled\n");
1906 return -EIO;
1907 }
1908
1909 ret = gsi_irq_setup(gsi);
1910 if (ret)
1911 return ret;
1912
1913 ret = gsi_ring_setup(gsi); /* No matching teardown required */
1914 if (ret)
1915 goto err_irq_teardown;
1916
1917 /* Initialize the error log */
1918 iowrite32(0, gsi->virt + GSI_ERROR_LOG_OFFSET);
1919
1920 ret = gsi_channel_setup(gsi);
1921 if (ret)
1922 goto err_irq_teardown;
1923
1924 return 0;
1925
1926 err_irq_teardown:
1927 gsi_irq_teardown(gsi);
1928
1929 return ret;
1930 }
1931
1932 /* Inverse of gsi_setup() */
gsi_teardown(struct gsi * gsi)1933 void gsi_teardown(struct gsi *gsi)
1934 {
1935 gsi_channel_teardown(gsi);
1936 gsi_irq_teardown(gsi);
1937 }
1938
1939 /* Initialize a channel's event ring */
gsi_channel_evt_ring_init(struct gsi_channel * channel)1940 static int gsi_channel_evt_ring_init(struct gsi_channel *channel)
1941 {
1942 struct gsi *gsi = channel->gsi;
1943 struct gsi_evt_ring *evt_ring;
1944 int ret;
1945
1946 ret = gsi_evt_ring_id_alloc(gsi);
1947 if (ret < 0)
1948 return ret;
1949 channel->evt_ring_id = ret;
1950
1951 evt_ring = &gsi->evt_ring[channel->evt_ring_id];
1952 evt_ring->channel = channel;
1953
1954 ret = gsi_ring_alloc(gsi, &evt_ring->ring, channel->event_count);
1955 if (!ret)
1956 return 0; /* Success! */
1957
1958 dev_err(gsi->dev, "error %d allocating channel %u event ring\n",
1959 ret, gsi_channel_id(channel));
1960
1961 gsi_evt_ring_id_free(gsi, channel->evt_ring_id);
1962
1963 return ret;
1964 }
1965
1966 /* Inverse of gsi_channel_evt_ring_init() */
gsi_channel_evt_ring_exit(struct gsi_channel * channel)1967 static void gsi_channel_evt_ring_exit(struct gsi_channel *channel)
1968 {
1969 u32 evt_ring_id = channel->evt_ring_id;
1970 struct gsi *gsi = channel->gsi;
1971 struct gsi_evt_ring *evt_ring;
1972
1973 evt_ring = &gsi->evt_ring[evt_ring_id];
1974 gsi_ring_free(gsi, &evt_ring->ring);
1975 gsi_evt_ring_id_free(gsi, evt_ring_id);
1976 }
1977
1978 /* Init function for event rings; there is no gsi_evt_ring_exit() */
gsi_evt_ring_init(struct gsi * gsi)1979 static void gsi_evt_ring_init(struct gsi *gsi)
1980 {
1981 u32 evt_ring_id = 0;
1982
1983 gsi->event_bitmap = gsi_event_bitmap_init(GSI_EVT_RING_COUNT_MAX);
1984 gsi->ieob_enabled_bitmap = 0;
1985 do
1986 init_completion(&gsi->evt_ring[evt_ring_id].completion);
1987 while (++evt_ring_id < GSI_EVT_RING_COUNT_MAX);
1988 }
1989
gsi_channel_data_valid(struct gsi * gsi,const struct ipa_gsi_endpoint_data * data)1990 static bool gsi_channel_data_valid(struct gsi *gsi,
1991 const struct ipa_gsi_endpoint_data *data)
1992 {
1993 u32 channel_id = data->channel_id;
1994 struct device *dev = gsi->dev;
1995
1996 /* Make sure channel ids are in the range driver supports */
1997 if (channel_id >= GSI_CHANNEL_COUNT_MAX) {
1998 dev_err(dev, "bad channel id %u; must be less than %u\n",
1999 channel_id, GSI_CHANNEL_COUNT_MAX);
2000 return false;
2001 }
2002
2003 if (data->ee_id != GSI_EE_AP && data->ee_id != GSI_EE_MODEM) {
2004 dev_err(dev, "bad EE id %u; not AP or modem\n", data->ee_id);
2005 return false;
2006 }
2007
2008 if (!data->channel.tlv_count ||
2009 data->channel.tlv_count > GSI_TLV_MAX) {
2010 dev_err(dev, "channel %u bad tlv_count %u; must be 1..%u\n",
2011 channel_id, data->channel.tlv_count, GSI_TLV_MAX);
2012 return false;
2013 }
2014
2015 /* We have to allow at least one maximally-sized transaction to
2016 * be outstanding (which would use tlv_count TREs). Given how
2017 * gsi_channel_tre_max() is computed, tre_count has to be almost
2018 * twice the TLV FIFO size to satisfy this requirement.
2019 */
2020 if (data->channel.tre_count < 2 * data->channel.tlv_count - 1) {
2021 dev_err(dev, "channel %u TLV count %u exceeds TRE count %u\n",
2022 channel_id, data->channel.tlv_count,
2023 data->channel.tre_count);
2024 return false;
2025 }
2026
2027 if (!is_power_of_2(data->channel.tre_count)) {
2028 dev_err(dev, "channel %u bad tre_count %u; not power of 2\n",
2029 channel_id, data->channel.tre_count);
2030 return false;
2031 }
2032
2033 if (!is_power_of_2(data->channel.event_count)) {
2034 dev_err(dev, "channel %u bad event_count %u; not power of 2\n",
2035 channel_id, data->channel.event_count);
2036 return false;
2037 }
2038
2039 return true;
2040 }
2041
2042 /* Init function for a single channel */
gsi_channel_init_one(struct gsi * gsi,const struct ipa_gsi_endpoint_data * data,bool command)2043 static int gsi_channel_init_one(struct gsi *gsi,
2044 const struct ipa_gsi_endpoint_data *data,
2045 bool command)
2046 {
2047 struct gsi_channel *channel;
2048 u32 tre_count;
2049 int ret;
2050
2051 if (!gsi_channel_data_valid(gsi, data))
2052 return -EINVAL;
2053
2054 /* Worst case we need an event for every outstanding TRE */
2055 if (data->channel.tre_count > data->channel.event_count) {
2056 tre_count = data->channel.event_count;
2057 dev_warn(gsi->dev, "channel %u limited to %u TREs\n",
2058 data->channel_id, tre_count);
2059 } else {
2060 tre_count = data->channel.tre_count;
2061 }
2062
2063 channel = &gsi->channel[data->channel_id];
2064 memset(channel, 0, sizeof(*channel));
2065
2066 channel->gsi = gsi;
2067 channel->toward_ipa = data->toward_ipa;
2068 channel->command = command;
2069 channel->tlv_count = data->channel.tlv_count;
2070 channel->tre_count = tre_count;
2071 channel->event_count = data->channel.event_count;
2072 init_completion(&channel->completion);
2073
2074 ret = gsi_channel_evt_ring_init(channel);
2075 if (ret)
2076 goto err_clear_gsi;
2077
2078 ret = gsi_ring_alloc(gsi, &channel->tre_ring, data->channel.tre_count);
2079 if (ret) {
2080 dev_err(gsi->dev, "error %d allocating channel %u ring\n",
2081 ret, data->channel_id);
2082 goto err_channel_evt_ring_exit;
2083 }
2084
2085 ret = gsi_channel_trans_init(gsi, data->channel_id);
2086 if (ret)
2087 goto err_ring_free;
2088
2089 if (command) {
2090 u32 tre_max = gsi_channel_tre_max(gsi, data->channel_id);
2091
2092 ret = ipa_cmd_pool_init(channel, tre_max);
2093 }
2094 if (!ret)
2095 return 0; /* Success! */
2096
2097 gsi_channel_trans_exit(channel);
2098 err_ring_free:
2099 gsi_ring_free(gsi, &channel->tre_ring);
2100 err_channel_evt_ring_exit:
2101 gsi_channel_evt_ring_exit(channel);
2102 err_clear_gsi:
2103 channel->gsi = NULL; /* Mark it not (fully) initialized */
2104
2105 return ret;
2106 }
2107
2108 /* Inverse of gsi_channel_init_one() */
gsi_channel_exit_one(struct gsi_channel * channel)2109 static void gsi_channel_exit_one(struct gsi_channel *channel)
2110 {
2111 if (!gsi_channel_initialized(channel))
2112 return;
2113
2114 if (channel->command)
2115 ipa_cmd_pool_exit(channel);
2116 gsi_channel_trans_exit(channel);
2117 gsi_ring_free(channel->gsi, &channel->tre_ring);
2118 gsi_channel_evt_ring_exit(channel);
2119 }
2120
2121 /* Init function for channels */
gsi_channel_init(struct gsi * gsi,u32 count,const struct ipa_gsi_endpoint_data * data)2122 static int gsi_channel_init(struct gsi *gsi, u32 count,
2123 const struct ipa_gsi_endpoint_data *data)
2124 {
2125 bool modem_alloc;
2126 int ret = 0;
2127 u32 i;
2128
2129 /* IPA v4.2 requires the AP to allocate channels for the modem */
2130 modem_alloc = gsi->version == IPA_VERSION_4_2;
2131
2132 gsi_evt_ring_init(gsi); /* No matching exit required */
2133
2134 /* The endpoint data array is indexed by endpoint name */
2135 for (i = 0; i < count; i++) {
2136 bool command = i == IPA_ENDPOINT_AP_COMMAND_TX;
2137
2138 if (ipa_gsi_endpoint_data_empty(&data[i]))
2139 continue; /* Skip over empty slots */
2140
2141 /* Mark modem channels to be allocated (hardware workaround) */
2142 if (data[i].ee_id == GSI_EE_MODEM) {
2143 if (modem_alloc)
2144 gsi->modem_channel_bitmap |=
2145 BIT(data[i].channel_id);
2146 continue;
2147 }
2148
2149 ret = gsi_channel_init_one(gsi, &data[i], command);
2150 if (ret)
2151 goto err_unwind;
2152 }
2153
2154 return ret;
2155
2156 err_unwind:
2157 while (i--) {
2158 if (ipa_gsi_endpoint_data_empty(&data[i]))
2159 continue;
2160 if (modem_alloc && data[i].ee_id == GSI_EE_MODEM) {
2161 gsi->modem_channel_bitmap &= ~BIT(data[i].channel_id);
2162 continue;
2163 }
2164 gsi_channel_exit_one(&gsi->channel[data->channel_id]);
2165 }
2166
2167 return ret;
2168 }
2169
2170 /* Inverse of gsi_channel_init() */
gsi_channel_exit(struct gsi * gsi)2171 static void gsi_channel_exit(struct gsi *gsi)
2172 {
2173 u32 channel_id = GSI_CHANNEL_COUNT_MAX - 1;
2174
2175 do
2176 gsi_channel_exit_one(&gsi->channel[channel_id]);
2177 while (channel_id--);
2178 gsi->modem_channel_bitmap = 0;
2179 }
2180
2181 /* Init function for GSI. GSI hardware does not need to be "ready" */
gsi_init(struct gsi * gsi,struct platform_device * pdev,enum ipa_version version,u32 count,const struct ipa_gsi_endpoint_data * data)2182 int gsi_init(struct gsi *gsi, struct platform_device *pdev,
2183 enum ipa_version version, u32 count,
2184 const struct ipa_gsi_endpoint_data *data)
2185 {
2186 struct device *dev = &pdev->dev;
2187 struct resource *res;
2188 resource_size_t size;
2189 u32 adjust;
2190 int ret;
2191
2192 gsi_validate_build();
2193
2194 gsi->dev = dev;
2195 gsi->version = version;
2196
2197 /* GSI uses NAPI on all channels. Create a dummy network device
2198 * for the channel NAPI contexts to be associated with.
2199 */
2200 init_dummy_netdev(&gsi->dummy_dev);
2201
2202 /* Get GSI memory range and map it */
2203 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "gsi");
2204 if (!res) {
2205 dev_err(dev, "DT error getting \"gsi\" memory property\n");
2206 return -ENODEV;
2207 }
2208
2209 size = resource_size(res);
2210 if (res->start > U32_MAX || size > U32_MAX - res->start) {
2211 dev_err(dev, "DT memory resource \"gsi\" out of range\n");
2212 return -EINVAL;
2213 }
2214
2215 /* Make sure we can make our pointer adjustment if necessary */
2216 adjust = gsi->version < IPA_VERSION_4_5 ? 0 : GSI_EE_REG_ADJUST;
2217 if (res->start < adjust) {
2218 dev_err(dev, "DT memory resource \"gsi\" too low (< %u)\n",
2219 adjust);
2220 return -EINVAL;
2221 }
2222
2223 gsi->virt_raw = ioremap(res->start, size);
2224 if (!gsi->virt_raw) {
2225 dev_err(dev, "unable to remap \"gsi\" memory\n");
2226 return -ENOMEM;
2227 }
2228 /* Most registers are accessed using an adjusted register range */
2229 gsi->virt = gsi->virt_raw - adjust;
2230
2231 init_completion(&gsi->completion);
2232
2233 ret = gsi_irq_init(gsi, pdev); /* No matching exit required */
2234 if (ret)
2235 goto err_iounmap;
2236
2237 ret = gsi_channel_init(gsi, count, data);
2238 if (ret)
2239 goto err_iounmap;
2240
2241 mutex_init(&gsi->mutex);
2242
2243 return 0;
2244
2245 err_iounmap:
2246 iounmap(gsi->virt_raw);
2247
2248 return ret;
2249 }
2250
2251 /* Inverse of gsi_init() */
gsi_exit(struct gsi * gsi)2252 void gsi_exit(struct gsi *gsi)
2253 {
2254 mutex_destroy(&gsi->mutex);
2255 gsi_channel_exit(gsi);
2256 iounmap(gsi->virt_raw);
2257 }
2258
2259 /* The maximum number of outstanding TREs on a channel. This limits
2260 * a channel's maximum number of transactions outstanding (worst case
2261 * is one TRE per transaction).
2262 *
2263 * The absolute limit is the number of TREs in the channel's TRE ring,
2264 * and in theory we should be able use all of them. But in practice,
2265 * doing that led to the hardware reporting exhaustion of event ring
2266 * slots for writing completion information. So the hardware limit
2267 * would be (tre_count - 1).
2268 *
2269 * We reduce it a bit further though. Transaction resource pools are
2270 * sized to be a little larger than this maximum, to allow resource
2271 * allocations to always be contiguous. The number of entries in a
2272 * TRE ring buffer is a power of 2, and the extra resources in a pool
2273 * tends to nearly double the memory allocated for it. Reducing the
2274 * maximum number of outstanding TREs allows the number of entries in
2275 * a pool to avoid crossing that power-of-2 boundary, and this can
2276 * substantially reduce pool memory requirements. The number we
2277 * reduce it by matches the number added in gsi_trans_pool_init().
2278 */
gsi_channel_tre_max(struct gsi * gsi,u32 channel_id)2279 u32 gsi_channel_tre_max(struct gsi *gsi, u32 channel_id)
2280 {
2281 struct gsi_channel *channel = &gsi->channel[channel_id];
2282
2283 /* Hardware limit is channel->tre_count - 1 */
2284 return channel->tre_count - (channel->tlv_count - 1);
2285 }
2286
2287 /* Returns the maximum number of TREs in a single transaction for a channel */
gsi_channel_trans_tre_max(struct gsi * gsi,u32 channel_id)2288 u32 gsi_channel_trans_tre_max(struct gsi *gsi, u32 channel_id)
2289 {
2290 struct gsi_channel *channel = &gsi->channel[channel_id];
2291
2292 return channel->tlv_count;
2293 }
2294