1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SN Platform GRU Driver
4  *
5  *              KERNEL SERVICES THAT USE THE GRU
6  *
7  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/slab.h>
13 #include <linux/mm.h>
14 #include <linux/spinlock.h>
15 #include <linux/device.h>
16 #include <linux/miscdevice.h>
17 #include <linux/proc_fs.h>
18 #include <linux/interrupt.h>
19 #include <linux/uaccess.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <asm/io_apic.h>
23 #include "gru.h"
24 #include "grulib.h"
25 #include "grutables.h"
26 #include "grukservices.h"
27 #include "gru_instructions.h"
28 #include <asm/uv/uv_hub.h>
29 
30 /*
31  * Kernel GRU Usage
32  *
33  * The following is an interim algorithm for management of kernel GRU
34  * resources. This will likely be replaced when we better understand the
35  * kernel/user requirements.
36  *
37  * Blade percpu resources reserved for kernel use. These resources are
38  * reserved whenever the the kernel context for the blade is loaded. Note
39  * that the kernel context is not guaranteed to be always available. It is
40  * loaded on demand & can be stolen by a user if the user demand exceeds the
41  * kernel demand. The kernel can always reload the kernel context but
42  * a SLEEP may be required!!!.
43  *
44  * Async Overview:
45  *
46  * 	Each blade has one "kernel context" that owns GRU kernel resources
47  * 	located on the blade. Kernel drivers use GRU resources in this context
48  * 	for sending messages, zeroing memory, etc.
49  *
50  * 	The kernel context is dynamically loaded on demand. If it is not in
51  * 	use by the kernel, the kernel context can be unloaded & given to a user.
52  * 	The kernel context will be reloaded when needed. This may require that
53  * 	a context be stolen from a user.
54  * 		NOTE: frequent unloading/reloading of the kernel context is
55  * 		expensive. We are depending on batch schedulers, cpusets, sane
56  * 		drivers or some other mechanism to prevent the need for frequent
57  *	 	stealing/reloading.
58  *
59  * 	The kernel context consists of two parts:
60  * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
61  * 		  Each cpu has it's own private resources & does not share them
62  * 		  with other cpus. These resources are used serially, ie,
63  * 		  locked, used & unlocked  on each call to a function in
64  * 		  grukservices.
65  * 		  	(Now that we have dynamic loading of kernel contexts, I
66  * 		  	 may rethink this & allow sharing between cpus....)
67  *
68  *		- Additional resources can be reserved long term & used directly
69  *		  by UV drivers located in the kernel. Drivers using these GRU
70  *		  resources can use asynchronous GRU instructions that send
71  *		  interrupts on completion.
72  *		  	- these resources must be explicitly locked/unlocked
73  *		  	- locked resources prevent (obviously) the kernel
74  *		  	  context from being unloaded.
75  *			- drivers using these resource directly issue their own
76  *			  GRU instruction and must wait/check completion.
77  *
78  * 		  When these resources are reserved, the caller can optionally
79  * 		  associate a wait_queue with the resources and use asynchronous
80  * 		  GRU instructions. When an async GRU instruction completes, the
81  * 		  driver will do a wakeup on the event.
82  *
83  */
84 
85 
86 #define ASYNC_HAN_TO_BID(h)	((h) - 1)
87 #define ASYNC_BID_TO_HAN(b)	((b) + 1)
88 #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
89 
90 #define GRU_NUM_KERNEL_CBR	1
91 #define GRU_NUM_KERNEL_DSR_BYTES 256
92 #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
93 					GRU_CACHE_LINE_BYTES)
94 
95 /* GRU instruction attributes for all instructions */
96 #define IMA			IMA_CB_DELAY
97 
98 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
99 #define __gru_cacheline_aligned__                               \
100 	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
101 
102 #define MAGIC	0x1234567887654321UL
103 
104 /* Default retry count for GRU errors on kernel instructions */
105 #define EXCEPTION_RETRY_LIMIT	3
106 
107 /* Status of message queue sections */
108 #define MQS_EMPTY		0
109 #define MQS_FULL		1
110 #define MQS_NOOP		2
111 
112 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
113 /* optimized for x86_64 */
114 struct message_queue {
115 	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
116 	int			qlines;				/* DW 1 */
117 	long 			hstatus[2];
118 	void 			*next __gru_cacheline_aligned__;/* CL 1 */
119 	void 			*limit;
120 	void 			*start;
121 	void 			*start2;
122 	char			data ____cacheline_aligned;	/* CL 2 */
123 };
124 
125 /* First word in every message - used by mesq interface */
126 struct message_header {
127 	char	present;
128 	char	present2;
129 	char 	lines;
130 	char	fill;
131 };
132 
133 #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
134 
135 /*
136  * Reload the blade's kernel context into a GRU chiplet. Called holding
137  * the bs_kgts_sema for READ. Will steal user contexts if necessary.
138  */
gru_load_kernel_context(struct gru_blade_state * bs,int blade_id)139 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
140 {
141 	struct gru_state *gru;
142 	struct gru_thread_state *kgts;
143 	void *vaddr;
144 	int ctxnum, ncpus;
145 
146 	up_read(&bs->bs_kgts_sema);
147 	down_write(&bs->bs_kgts_sema);
148 
149 	if (!bs->bs_kgts) {
150 		do {
151 			bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
152 			if (!IS_ERR(bs->bs_kgts))
153 				break;
154 			msleep(1);
155 		} while (true);
156 		bs->bs_kgts->ts_user_blade_id = blade_id;
157 	}
158 	kgts = bs->bs_kgts;
159 
160 	if (!kgts->ts_gru) {
161 		STAT(load_kernel_context);
162 		ncpus = uv_blade_nr_possible_cpus(blade_id);
163 		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
164 			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
165 		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
166 			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
167 				bs->bs_async_dsr_bytes);
168 		while (!gru_assign_gru_context(kgts)) {
169 			msleep(1);
170 			gru_steal_context(kgts);
171 		}
172 		gru_load_context(kgts);
173 		gru = bs->bs_kgts->ts_gru;
174 		vaddr = gru->gs_gru_base_vaddr;
175 		ctxnum = kgts->ts_ctxnum;
176 		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
177 		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
178 	}
179 	downgrade_write(&bs->bs_kgts_sema);
180 }
181 
182 /*
183  * Free all kernel contexts that are not currently in use.
184  *   Returns 0 if all freed, else number of inuse context.
185  */
gru_free_kernel_contexts(void)186 static int gru_free_kernel_contexts(void)
187 {
188 	struct gru_blade_state *bs;
189 	struct gru_thread_state *kgts;
190 	int bid, ret = 0;
191 
192 	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
193 		bs = gru_base[bid];
194 		if (!bs)
195 			continue;
196 
197 		/* Ignore busy contexts. Don't want to block here.  */
198 		if (down_write_trylock(&bs->bs_kgts_sema)) {
199 			kgts = bs->bs_kgts;
200 			if (kgts && kgts->ts_gru)
201 				gru_unload_context(kgts, 0);
202 			bs->bs_kgts = NULL;
203 			up_write(&bs->bs_kgts_sema);
204 			kfree(kgts);
205 		} else {
206 			ret++;
207 		}
208 	}
209 	return ret;
210 }
211 
212 /*
213  * Lock & load the kernel context for the specified blade.
214  */
gru_lock_kernel_context(int blade_id)215 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
216 {
217 	struct gru_blade_state *bs;
218 	int bid;
219 
220 	STAT(lock_kernel_context);
221 again:
222 	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
223 	bs = gru_base[bid];
224 
225 	/* Handle the case where migration occurred while waiting for the sema */
226 	down_read(&bs->bs_kgts_sema);
227 	if (blade_id < 0 && bid != uv_numa_blade_id()) {
228 		up_read(&bs->bs_kgts_sema);
229 		goto again;
230 	}
231 	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
232 		gru_load_kernel_context(bs, bid);
233 	return bs;
234 
235 }
236 
237 /*
238  * Unlock the kernel context for the specified blade. Context is not
239  * unloaded but may be stolen before next use.
240  */
gru_unlock_kernel_context(int blade_id)241 static void gru_unlock_kernel_context(int blade_id)
242 {
243 	struct gru_blade_state *bs;
244 
245 	bs = gru_base[blade_id];
246 	up_read(&bs->bs_kgts_sema);
247 	STAT(unlock_kernel_context);
248 }
249 
250 /*
251  * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
252  * 	- returns with preemption disabled
253  */
gru_get_cpu_resources(int dsr_bytes,void ** cb,void ** dsr)254 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
255 {
256 	struct gru_blade_state *bs;
257 	int lcpu;
258 
259 	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
260 	preempt_disable();
261 	bs = gru_lock_kernel_context(-1);
262 	lcpu = uv_blade_processor_id();
263 	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
264 	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
265 	return 0;
266 }
267 
268 /*
269  * Free the current cpus reserved DSR/CBR resources.
270  */
gru_free_cpu_resources(void * cb,void * dsr)271 static void gru_free_cpu_resources(void *cb, void *dsr)
272 {
273 	gru_unlock_kernel_context(uv_numa_blade_id());
274 	preempt_enable();
275 }
276 
277 /*
278  * Reserve GRU resources to be used asynchronously.
279  *   Note: currently supports only 1 reservation per blade.
280  *
281  * 	input:
282  * 		blade_id  - blade on which resources should be reserved
283  * 		cbrs	  - number of CBRs
284  * 		dsr_bytes - number of DSR bytes needed
285  *	output:
286  *		handle to identify resource
287  *		(0 = async resources already reserved)
288  */
gru_reserve_async_resources(int blade_id,int cbrs,int dsr_bytes,struct completion * cmp)289 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
290 			struct completion *cmp)
291 {
292 	struct gru_blade_state *bs;
293 	struct gru_thread_state *kgts;
294 	int ret = 0;
295 
296 	bs = gru_base[blade_id];
297 
298 	down_write(&bs->bs_kgts_sema);
299 
300 	/* Verify no resources already reserved */
301 	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
302 		goto done;
303 	bs->bs_async_dsr_bytes = dsr_bytes;
304 	bs->bs_async_cbrs = cbrs;
305 	bs->bs_async_wq = cmp;
306 	kgts = bs->bs_kgts;
307 
308 	/* Resources changed. Unload context if already loaded */
309 	if (kgts && kgts->ts_gru)
310 		gru_unload_context(kgts, 0);
311 	ret = ASYNC_BID_TO_HAN(blade_id);
312 
313 done:
314 	up_write(&bs->bs_kgts_sema);
315 	return ret;
316 }
317 
318 /*
319  * Release async resources previously reserved.
320  *
321  *	input:
322  *		han - handle to identify resources
323  */
gru_release_async_resources(unsigned long han)324 void gru_release_async_resources(unsigned long han)
325 {
326 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
327 
328 	down_write(&bs->bs_kgts_sema);
329 	bs->bs_async_dsr_bytes = 0;
330 	bs->bs_async_cbrs = 0;
331 	bs->bs_async_wq = NULL;
332 	up_write(&bs->bs_kgts_sema);
333 }
334 
335 /*
336  * Wait for async GRU instructions to complete.
337  *
338  *	input:
339  *		han - handle to identify resources
340  */
gru_wait_async_cbr(unsigned long han)341 void gru_wait_async_cbr(unsigned long han)
342 {
343 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
344 
345 	wait_for_completion(bs->bs_async_wq);
346 	mb();
347 }
348 
349 /*
350  * Lock previous reserved async GRU resources
351  *
352  *	input:
353  *		han - handle to identify resources
354  *	output:
355  *		cb  - pointer to first CBR
356  *		dsr - pointer to first DSR
357  */
gru_lock_async_resource(unsigned long han,void ** cb,void ** dsr)358 void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
359 {
360 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
361 	int blade_id = ASYNC_HAN_TO_BID(han);
362 	int ncpus;
363 
364 	gru_lock_kernel_context(blade_id);
365 	ncpus = uv_blade_nr_possible_cpus(blade_id);
366 	if (cb)
367 		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
368 	if (dsr)
369 		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
370 }
371 
372 /*
373  * Unlock previous reserved async GRU resources
374  *
375  *	input:
376  *		han - handle to identify resources
377  */
gru_unlock_async_resource(unsigned long han)378 void gru_unlock_async_resource(unsigned long han)
379 {
380 	int blade_id = ASYNC_HAN_TO_BID(han);
381 
382 	gru_unlock_kernel_context(blade_id);
383 }
384 
385 /*----------------------------------------------------------------------*/
gru_get_cb_exception_detail(void * cb,struct control_block_extended_exc_detail * excdet)386 int gru_get_cb_exception_detail(void *cb,
387 		struct control_block_extended_exc_detail *excdet)
388 {
389 	struct gru_control_block_extended *cbe;
390 	struct gru_thread_state *kgts = NULL;
391 	unsigned long off;
392 	int cbrnum, bid;
393 
394 	/*
395 	 * Locate kgts for cb. This algorithm is SLOW but
396 	 * this function is rarely called (ie., almost never).
397 	 * Performance does not matter.
398 	 */
399 	for_each_possible_blade(bid) {
400 		if (!gru_base[bid])
401 			break;
402 		kgts = gru_base[bid]->bs_kgts;
403 		if (!kgts || !kgts->ts_gru)
404 			continue;
405 		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
406 		if (off < GRU_SIZE)
407 			break;
408 		kgts = NULL;
409 	}
410 	BUG_ON(!kgts);
411 	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
412 	cbe = get_cbe(GRUBASE(cb), cbrnum);
413 	gru_flush_cache(cbe);	/* CBE not coherent */
414 	sync_core();
415 	excdet->opc = cbe->opccpy;
416 	excdet->exopc = cbe->exopccpy;
417 	excdet->ecause = cbe->ecause;
418 	excdet->exceptdet0 = cbe->idef1upd;
419 	excdet->exceptdet1 = cbe->idef3upd;
420 	gru_flush_cache(cbe);
421 	return 0;
422 }
423 
gru_get_cb_exception_detail_str(int ret,void * cb,char * buf,int size)424 static char *gru_get_cb_exception_detail_str(int ret, void *cb,
425 					     char *buf, int size)
426 {
427 	struct gru_control_block_status *gen = (void *)cb;
428 	struct control_block_extended_exc_detail excdet;
429 
430 	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
431 		gru_get_cb_exception_detail(cb, &excdet);
432 		snprintf(buf, size,
433 			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
434 			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
435 			gen, excdet.opc, excdet.exopc, excdet.ecause,
436 			excdet.exceptdet0, excdet.exceptdet1);
437 	} else {
438 		snprintf(buf, size, "No exception");
439 	}
440 	return buf;
441 }
442 
gru_wait_idle_or_exception(struct gru_control_block_status * gen)443 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
444 {
445 	while (gen->istatus >= CBS_ACTIVE) {
446 		cpu_relax();
447 		barrier();
448 	}
449 	return gen->istatus;
450 }
451 
gru_retry_exception(void * cb)452 static int gru_retry_exception(void *cb)
453 {
454 	struct gru_control_block_status *gen = (void *)cb;
455 	struct control_block_extended_exc_detail excdet;
456 	int retry = EXCEPTION_RETRY_LIMIT;
457 
458 	while (1)  {
459 		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
460 			return CBS_IDLE;
461 		if (gru_get_cb_message_queue_substatus(cb))
462 			return CBS_EXCEPTION;
463 		gru_get_cb_exception_detail(cb, &excdet);
464 		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
465 				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
466 			break;
467 		if (retry-- == 0)
468 			break;
469 		gen->icmd = 1;
470 		gru_flush_cache(gen);
471 	}
472 	return CBS_EXCEPTION;
473 }
474 
gru_check_status_proc(void * cb)475 int gru_check_status_proc(void *cb)
476 {
477 	struct gru_control_block_status *gen = (void *)cb;
478 	int ret;
479 
480 	ret = gen->istatus;
481 	if (ret == CBS_EXCEPTION)
482 		ret = gru_retry_exception(cb);
483 	rmb();
484 	return ret;
485 
486 }
487 
gru_wait_proc(void * cb)488 int gru_wait_proc(void *cb)
489 {
490 	struct gru_control_block_status *gen = (void *)cb;
491 	int ret;
492 
493 	ret = gru_wait_idle_or_exception(gen);
494 	if (ret == CBS_EXCEPTION)
495 		ret = gru_retry_exception(cb);
496 	rmb();
497 	return ret;
498 }
499 
gru_abort(int ret,void * cb,char * str)500 static void gru_abort(int ret, void *cb, char *str)
501 {
502 	char buf[GRU_EXC_STR_SIZE];
503 
504 	panic("GRU FATAL ERROR: %s - %s\n", str,
505 	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
506 }
507 
gru_wait_abort_proc(void * cb)508 void gru_wait_abort_proc(void *cb)
509 {
510 	int ret;
511 
512 	ret = gru_wait_proc(cb);
513 	if (ret)
514 		gru_abort(ret, cb, "gru_wait_abort");
515 }
516 
517 
518 /*------------------------------ MESSAGE QUEUES -----------------------------*/
519 
520 /* Internal status . These are NOT returned to the user. */
521 #define MQIE_AGAIN		-1	/* try again */
522 
523 
524 /*
525  * Save/restore the "present" flag that is in the second line of 2-line
526  * messages
527  */
get_present2(void * p)528 static inline int get_present2(void *p)
529 {
530 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
531 	return mhdr->present;
532 }
533 
restore_present2(void * p,int val)534 static inline void restore_present2(void *p, int val)
535 {
536 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
537 	mhdr->present = val;
538 }
539 
540 /*
541  * Create a message queue.
542  * 	qlines - message queue size in cache lines. Includes 2-line header.
543  */
gru_create_message_queue(struct gru_message_queue_desc * mqd,void * p,unsigned int bytes,int nasid,int vector,int apicid)544 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
545 		void *p, unsigned int bytes, int nasid, int vector, int apicid)
546 {
547 	struct message_queue *mq = p;
548 	unsigned int qlines;
549 
550 	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
551 	memset(mq, 0, bytes);
552 	mq->start = &mq->data;
553 	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
554 	mq->next = &mq->data;
555 	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
556 	mq->qlines = qlines;
557 	mq->hstatus[0] = 0;
558 	mq->hstatus[1] = 1;
559 	mq->head = gru_mesq_head(2, qlines / 2 + 1);
560 	mqd->mq = mq;
561 	mqd->mq_gpa = uv_gpa(mq);
562 	mqd->qlines = qlines;
563 	mqd->interrupt_pnode = nasid >> 1;
564 	mqd->interrupt_vector = vector;
565 	mqd->interrupt_apicid = apicid;
566 	return 0;
567 }
568 EXPORT_SYMBOL_GPL(gru_create_message_queue);
569 
570 /*
571  * Send a NOOP message to a message queue
572  * 	Returns:
573  * 		 0 - if queue is full after the send. This is the normal case
574  * 		     but various races can change this.
575  *		-1 - if mesq sent successfully but queue not full
576  *		>0 - unexpected error. MQE_xxx returned
577  */
send_noop_message(void * cb,struct gru_message_queue_desc * mqd,void * mesg)578 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
579 				void *mesg)
580 {
581 	const struct message_header noop_header = {
582 					.present = MQS_NOOP, .lines = 1};
583 	unsigned long m;
584 	int substatus, ret;
585 	struct message_header save_mhdr, *mhdr = mesg;
586 
587 	STAT(mesq_noop);
588 	save_mhdr = *mhdr;
589 	*mhdr = noop_header;
590 	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
591 	ret = gru_wait(cb);
592 
593 	if (ret) {
594 		substatus = gru_get_cb_message_queue_substatus(cb);
595 		switch (substatus) {
596 		case CBSS_NO_ERROR:
597 			STAT(mesq_noop_unexpected_error);
598 			ret = MQE_UNEXPECTED_CB_ERR;
599 			break;
600 		case CBSS_LB_OVERFLOWED:
601 			STAT(mesq_noop_lb_overflow);
602 			ret = MQE_CONGESTION;
603 			break;
604 		case CBSS_QLIMIT_REACHED:
605 			STAT(mesq_noop_qlimit_reached);
606 			ret = 0;
607 			break;
608 		case CBSS_AMO_NACKED:
609 			STAT(mesq_noop_amo_nacked);
610 			ret = MQE_CONGESTION;
611 			break;
612 		case CBSS_PUT_NACKED:
613 			STAT(mesq_noop_put_nacked);
614 			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
615 			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
616 						IMA);
617 			if (gru_wait(cb) == CBS_IDLE)
618 				ret = MQIE_AGAIN;
619 			else
620 				ret = MQE_UNEXPECTED_CB_ERR;
621 			break;
622 		case CBSS_PAGE_OVERFLOW:
623 			STAT(mesq_noop_page_overflow);
624 			/* fall through */
625 		default:
626 			BUG();
627 		}
628 	}
629 	*mhdr = save_mhdr;
630 	return ret;
631 }
632 
633 /*
634  * Handle a gru_mesq full.
635  */
send_message_queue_full(void * cb,struct gru_message_queue_desc * mqd,void * mesg,int lines)636 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
637 				void *mesg, int lines)
638 {
639 	union gru_mesqhead mqh;
640 	unsigned int limit, head;
641 	unsigned long avalue;
642 	int half, qlines;
643 
644 	/* Determine if switching to first/second half of q */
645 	avalue = gru_get_amo_value(cb);
646 	head = gru_get_amo_value_head(cb);
647 	limit = gru_get_amo_value_limit(cb);
648 
649 	qlines = mqd->qlines;
650 	half = (limit != qlines);
651 
652 	if (half)
653 		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
654 	else
655 		mqh = gru_mesq_head(2, qlines / 2 + 1);
656 
657 	/* Try to get lock for switching head pointer */
658 	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
659 	if (gru_wait(cb) != CBS_IDLE)
660 		goto cberr;
661 	if (!gru_get_amo_value(cb)) {
662 		STAT(mesq_qf_locked);
663 		return MQE_QUEUE_FULL;
664 	}
665 
666 	/* Got the lock. Send optional NOP if queue not full, */
667 	if (head != limit) {
668 		if (send_noop_message(cb, mqd, mesg)) {
669 			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
670 					XTYPE_DW, IMA);
671 			if (gru_wait(cb) != CBS_IDLE)
672 				goto cberr;
673 			STAT(mesq_qf_noop_not_full);
674 			return MQIE_AGAIN;
675 		}
676 		avalue++;
677 	}
678 
679 	/* Then flip queuehead to other half of queue. */
680 	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
681 							IMA);
682 	if (gru_wait(cb) != CBS_IDLE)
683 		goto cberr;
684 
685 	/* If not successfully in swapping queue head, clear the hstatus lock */
686 	if (gru_get_amo_value(cb) != avalue) {
687 		STAT(mesq_qf_switch_head_failed);
688 		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
689 							IMA);
690 		if (gru_wait(cb) != CBS_IDLE)
691 			goto cberr;
692 	}
693 	return MQIE_AGAIN;
694 cberr:
695 	STAT(mesq_qf_unexpected_error);
696 	return MQE_UNEXPECTED_CB_ERR;
697 }
698 
699 /*
700  * Handle a PUT failure. Note: if message was a 2-line message, one of the
701  * lines might have successfully have been written. Before sending the
702  * message, "present" must be cleared in BOTH lines to prevent the receiver
703  * from prematurely seeing the full message.
704  */
send_message_put_nacked(void * cb,struct gru_message_queue_desc * mqd,void * mesg,int lines)705 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
706 			void *mesg, int lines)
707 {
708 	unsigned long m;
709 	int ret, loops = 200;	/* experimentally determined */
710 
711 	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
712 	if (lines == 2) {
713 		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
714 		if (gru_wait(cb) != CBS_IDLE)
715 			return MQE_UNEXPECTED_CB_ERR;
716 	}
717 	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
718 	if (gru_wait(cb) != CBS_IDLE)
719 		return MQE_UNEXPECTED_CB_ERR;
720 
721 	if (!mqd->interrupt_vector)
722 		return MQE_OK;
723 
724 	/*
725 	 * Send a noop message in order to deliver a cross-partition interrupt
726 	 * to the SSI that contains the target message queue. Normally, the
727 	 * interrupt is automatically delivered by hardware following mesq
728 	 * operations, but some error conditions require explicit delivery.
729 	 * The noop message will trigger delivery. Otherwise partition failures
730 	 * could cause unrecovered errors.
731 	 */
732 	do {
733 		ret = send_noop_message(cb, mqd, mesg);
734 	} while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
735 
736 	if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
737 		/*
738 		 * Don't indicate to the app to resend the message, as it's
739 		 * already been successfully sent.  We simply send an OK
740 		 * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
741 		 * assuming that the other side is receiving enough
742 		 * interrupts to get this message processed anyway.
743 		 */
744 		ret = MQE_OK;
745 	}
746 	return ret;
747 }
748 
749 /*
750  * Handle a gru_mesq failure. Some of these failures are software recoverable
751  * or retryable.
752  */
send_message_failure(void * cb,struct gru_message_queue_desc * mqd,void * mesg,int lines)753 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
754 				void *mesg, int lines)
755 {
756 	int substatus, ret = 0;
757 
758 	substatus = gru_get_cb_message_queue_substatus(cb);
759 	switch (substatus) {
760 	case CBSS_NO_ERROR:
761 		STAT(mesq_send_unexpected_error);
762 		ret = MQE_UNEXPECTED_CB_ERR;
763 		break;
764 	case CBSS_LB_OVERFLOWED:
765 		STAT(mesq_send_lb_overflow);
766 		ret = MQE_CONGESTION;
767 		break;
768 	case CBSS_QLIMIT_REACHED:
769 		STAT(mesq_send_qlimit_reached);
770 		ret = send_message_queue_full(cb, mqd, mesg, lines);
771 		break;
772 	case CBSS_AMO_NACKED:
773 		STAT(mesq_send_amo_nacked);
774 		ret = MQE_CONGESTION;
775 		break;
776 	case CBSS_PUT_NACKED:
777 		STAT(mesq_send_put_nacked);
778 		ret = send_message_put_nacked(cb, mqd, mesg, lines);
779 		break;
780 	case CBSS_PAGE_OVERFLOW:
781 		STAT(mesq_page_overflow);
782 		/* fall through */
783 	default:
784 		BUG();
785 	}
786 	return ret;
787 }
788 
789 /*
790  * Send a message to a message queue
791  * 	mqd	message queue descriptor
792  * 	mesg	message. ust be vaddr within a GSEG
793  * 	bytes	message size (<= 2 CL)
794  */
gru_send_message_gpa(struct gru_message_queue_desc * mqd,void * mesg,unsigned int bytes)795 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
796 				unsigned int bytes)
797 {
798 	struct message_header *mhdr;
799 	void *cb;
800 	void *dsr;
801 	int istatus, clines, ret;
802 
803 	STAT(mesq_send);
804 	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
805 
806 	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
807 	if (gru_get_cpu_resources(bytes, &cb, &dsr))
808 		return MQE_BUG_NO_RESOURCES;
809 	memcpy(dsr, mesg, bytes);
810 	mhdr = dsr;
811 	mhdr->present = MQS_FULL;
812 	mhdr->lines = clines;
813 	if (clines == 2) {
814 		mhdr->present2 = get_present2(mhdr);
815 		restore_present2(mhdr, MQS_FULL);
816 	}
817 
818 	do {
819 		ret = MQE_OK;
820 		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
821 		istatus = gru_wait(cb);
822 		if (istatus != CBS_IDLE)
823 			ret = send_message_failure(cb, mqd, dsr, clines);
824 	} while (ret == MQIE_AGAIN);
825 	gru_free_cpu_resources(cb, dsr);
826 
827 	if (ret)
828 		STAT(mesq_send_failed);
829 	return ret;
830 }
831 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
832 
833 /*
834  * Advance the receive pointer for the queue to the next message.
835  */
gru_free_message(struct gru_message_queue_desc * mqd,void * mesg)836 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
837 {
838 	struct message_queue *mq = mqd->mq;
839 	struct message_header *mhdr = mq->next;
840 	void *next, *pnext;
841 	int half = -1;
842 	int lines = mhdr->lines;
843 
844 	if (lines == 2)
845 		restore_present2(mhdr, MQS_EMPTY);
846 	mhdr->present = MQS_EMPTY;
847 
848 	pnext = mq->next;
849 	next = pnext + GRU_CACHE_LINE_BYTES * lines;
850 	if (next == mq->limit) {
851 		next = mq->start;
852 		half = 1;
853 	} else if (pnext < mq->start2 && next >= mq->start2) {
854 		half = 0;
855 	}
856 
857 	if (half >= 0)
858 		mq->hstatus[half] = 1;
859 	mq->next = next;
860 }
861 EXPORT_SYMBOL_GPL(gru_free_message);
862 
863 /*
864  * Get next message from message queue. Return NULL if no message
865  * present. User must call next_message() to move to next message.
866  * 	rmq	message queue
867  */
gru_get_next_message(struct gru_message_queue_desc * mqd)868 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
869 {
870 	struct message_queue *mq = mqd->mq;
871 	struct message_header *mhdr = mq->next;
872 	int present = mhdr->present;
873 
874 	/* skip NOOP messages */
875 	while (present == MQS_NOOP) {
876 		gru_free_message(mqd, mhdr);
877 		mhdr = mq->next;
878 		present = mhdr->present;
879 	}
880 
881 	/* Wait for both halves of 2 line messages */
882 	if (present == MQS_FULL && mhdr->lines == 2 &&
883 				get_present2(mhdr) == MQS_EMPTY)
884 		present = MQS_EMPTY;
885 
886 	if (!present) {
887 		STAT(mesq_receive_none);
888 		return NULL;
889 	}
890 
891 	if (mhdr->lines == 2)
892 		restore_present2(mhdr, mhdr->present2);
893 
894 	STAT(mesq_receive);
895 	return mhdr;
896 }
897 EXPORT_SYMBOL_GPL(gru_get_next_message);
898 
899 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
900 
901 /*
902  * Load a DW from a global GPA. The GPA can be a memory or MMR address.
903  */
gru_read_gpa(unsigned long * value,unsigned long gpa)904 int gru_read_gpa(unsigned long *value, unsigned long gpa)
905 {
906 	void *cb;
907 	void *dsr;
908 	int ret, iaa;
909 
910 	STAT(read_gpa);
911 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
912 		return MQE_BUG_NO_RESOURCES;
913 	iaa = gpa >> 62;
914 	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
915 	ret = gru_wait(cb);
916 	if (ret == CBS_IDLE)
917 		*value = *(unsigned long *)dsr;
918 	gru_free_cpu_resources(cb, dsr);
919 	return ret;
920 }
921 EXPORT_SYMBOL_GPL(gru_read_gpa);
922 
923 
924 /*
925  * Copy a block of data using the GRU resources
926  */
gru_copy_gpa(unsigned long dest_gpa,unsigned long src_gpa,unsigned int bytes)927 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
928 				unsigned int bytes)
929 {
930 	void *cb;
931 	void *dsr;
932 	int ret;
933 
934 	STAT(copy_gpa);
935 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
936 		return MQE_BUG_NO_RESOURCES;
937 	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
938 		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
939 	ret = gru_wait(cb);
940 	gru_free_cpu_resources(cb, dsr);
941 	return ret;
942 }
943 EXPORT_SYMBOL_GPL(gru_copy_gpa);
944 
945 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
946 /* 	Temp - will delete after we gain confidence in the GRU		*/
947 
quicktest0(unsigned long arg)948 static int quicktest0(unsigned long arg)
949 {
950 	unsigned long word0;
951 	unsigned long word1;
952 	void *cb;
953 	void *dsr;
954 	unsigned long *p;
955 	int ret = -EIO;
956 
957 	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
958 		return MQE_BUG_NO_RESOURCES;
959 	p = dsr;
960 	word0 = MAGIC;
961 	word1 = 0;
962 
963 	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
964 	if (gru_wait(cb) != CBS_IDLE) {
965 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
966 		goto done;
967 	}
968 
969 	if (*p != MAGIC) {
970 		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
971 		goto done;
972 	}
973 	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
974 	if (gru_wait(cb) != CBS_IDLE) {
975 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
976 		goto done;
977 	}
978 
979 	if (word0 != word1 || word1 != MAGIC) {
980 		printk(KERN_DEBUG
981 		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
982 		     smp_processor_id(), word1, MAGIC);
983 		goto done;
984 	}
985 	ret = 0;
986 
987 done:
988 	gru_free_cpu_resources(cb, dsr);
989 	return ret;
990 }
991 
992 #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
993 
quicktest1(unsigned long arg)994 static int quicktest1(unsigned long arg)
995 {
996 	struct gru_message_queue_desc mqd;
997 	void *p, *mq;
998 	int i, ret = -EIO;
999 	char mes[GRU_CACHE_LINE_BYTES], *m;
1000 
1001 	/* Need  1K cacheline aligned that does not cross page boundary */
1002 	p = kmalloc(4096, 0);
1003 	if (p == NULL)
1004 		return -ENOMEM;
1005 	mq = ALIGNUP(p, 1024);
1006 	memset(mes, 0xee, sizeof(mes));
1007 
1008 	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1009 	for (i = 0; i < 6; i++) {
1010 		mes[8] = i;
1011 		do {
1012 			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1013 		} while (ret == MQE_CONGESTION);
1014 		if (ret)
1015 			break;
1016 	}
1017 	if (ret != MQE_QUEUE_FULL || i != 4) {
1018 		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1019 		       smp_processor_id(), ret, i);
1020 		goto done;
1021 	}
1022 
1023 	for (i = 0; i < 6; i++) {
1024 		m = gru_get_next_message(&mqd);
1025 		if (!m || m[8] != i)
1026 			break;
1027 		gru_free_message(&mqd, m);
1028 	}
1029 	if (i != 4) {
1030 		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1031 			smp_processor_id(), i, m, m ? m[8] : -1);
1032 		goto done;
1033 	}
1034 	ret = 0;
1035 
1036 done:
1037 	kfree(p);
1038 	return ret;
1039 }
1040 
quicktest2(unsigned long arg)1041 static int quicktest2(unsigned long arg)
1042 {
1043 	static DECLARE_COMPLETION(cmp);
1044 	unsigned long han;
1045 	int blade_id = 0;
1046 	int numcb = 4;
1047 	int ret = 0;
1048 	unsigned long *buf;
1049 	void *cb0, *cb;
1050 	struct gru_control_block_status *gen;
1051 	int i, k, istatus, bytes;
1052 
1053 	bytes = numcb * 4 * 8;
1054 	buf = kmalloc(bytes, GFP_KERNEL);
1055 	if (!buf)
1056 		return -ENOMEM;
1057 
1058 	ret = -EBUSY;
1059 	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1060 	if (!han)
1061 		goto done;
1062 
1063 	gru_lock_async_resource(han, &cb0, NULL);
1064 	memset(buf, 0xee, bytes);
1065 	for (i = 0; i < numcb; i++)
1066 		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1067 				XTYPE_DW, 4, 1, IMA_INTERRUPT);
1068 
1069 	ret = 0;
1070 	k = numcb;
1071 	do {
1072 		gru_wait_async_cbr(han);
1073 		for (i = 0; i < numcb; i++) {
1074 			cb = cb0 + i * GRU_HANDLE_STRIDE;
1075 			istatus = gru_check_status(cb);
1076 			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1077 				break;
1078 		}
1079 		if (i == numcb)
1080 			continue;
1081 		if (istatus != CBS_IDLE) {
1082 			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1083 			ret = -EFAULT;
1084 		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1085 				buf[4 * i + 3]) {
1086 			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1087 			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1088 			ret = -EIO;
1089 		}
1090 		k--;
1091 		gen = cb;
1092 		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1093 	} while (k);
1094 	BUG_ON(cmp.done);
1095 
1096 	gru_unlock_async_resource(han);
1097 	gru_release_async_resources(han);
1098 done:
1099 	kfree(buf);
1100 	return ret;
1101 }
1102 
1103 #define BUFSIZE 200
quicktest3(unsigned long arg)1104 static int quicktest3(unsigned long arg)
1105 {
1106 	char buf1[BUFSIZE], buf2[BUFSIZE];
1107 	int ret = 0;
1108 
1109 	memset(buf2, 0, sizeof(buf2));
1110 	memset(buf1, get_cycles() & 255, sizeof(buf1));
1111 	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1112 	if (memcmp(buf1, buf2, BUFSIZE)) {
1113 		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1114 		ret = -EIO;
1115 	}
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Debugging only. User hook for various kernel tests
1121  * of driver & gru.
1122  */
gru_ktest(unsigned long arg)1123 int gru_ktest(unsigned long arg)
1124 {
1125 	int ret = -EINVAL;
1126 
1127 	switch (arg & 0xff) {
1128 	case 0:
1129 		ret = quicktest0(arg);
1130 		break;
1131 	case 1:
1132 		ret = quicktest1(arg);
1133 		break;
1134 	case 2:
1135 		ret = quicktest2(arg);
1136 		break;
1137 	case 3:
1138 		ret = quicktest3(arg);
1139 		break;
1140 	case 99:
1141 		ret = gru_free_kernel_contexts();
1142 		break;
1143 	}
1144 	return ret;
1145 
1146 }
1147 
gru_kservices_init(void)1148 int gru_kservices_init(void)
1149 {
1150 	return 0;
1151 }
1152 
gru_kservices_exit(void)1153 void gru_kservices_exit(void)
1154 {
1155 	if (gru_free_kernel_contexts())
1156 		BUG();
1157 }
1158 
1159