1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * SGI UV architectural definitions
7  *
8  * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9  */
10 
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
13 
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <linux/topology.h>
20 #include <asm/types.h>
21 #include <asm/percpu.h>
22 #include <asm/uv/uv_mmrs.h>
23 #include <asm/uv/bios.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/io_apic.h>
26 
27 
28 /*
29  * Addressing Terminology
30  *
31  *	M       - The low M bits of a physical address represent the offset
32  *		  into the blade local memory. RAM memory on a blade is physically
33  *		  contiguous (although various IO spaces may punch holes in
34  *		  it)..
35  *
36  *	N	- Number of bits in the node portion of a socket physical
37  *		  address.
38  *
39  *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
40  *		  routers always have low bit of 1, C/MBricks have low bit
41  *		  equal to 0. Most addressing macros that target UV hub chips
42  *		  right shift the NASID by 1 to exclude the always-zero bit.
43  *		  NASIDs contain up to 15 bits.
44  *
45  *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
46  *		  of nasids.
47  *
48  *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
49  *		  of the nasid for socket usage.
50  *
51  *	GPA	- (global physical address) a socket physical address converted
52  *		  so that it can be used by the GRU as a global address. Socket
53  *		  physical addresses 1) need additional NASID (node) bits added
54  *		  to the high end of the address, and 2) unaliased if the
55  *		  partition does not have a physical address 0. In addition, on
56  *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
57  *
58  *
59  *  NumaLink Global Physical Address Format:
60  *  +--------------------------------+---------------------+
61  *  |00..000|      GNODE             |      NodeOffset     |
62  *  +--------------------------------+---------------------+
63  *          |<-------53 - M bits --->|<--------M bits ----->
64  *
65  *	M - number of node offset bits (35 .. 40)
66  *
67  *
68  *  Memory/UV-HUB Processor Socket Address Format:
69  *  +----------------+---------------+---------------------+
70  *  |00..000000000000|   PNODE       |      NodeOffset     |
71  *  +----------------+---------------+---------------------+
72  *                   <--- N bits --->|<--------M bits ----->
73  *
74  *	M - number of node offset bits (35 .. 40)
75  *	N - number of PNODE bits (0 .. 10)
76  *
77  *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
78  *		The actual values are configuration dependent and are set at
79  *		boot time. M & N values are set by the hardware/BIOS at boot.
80  *
81  *
82  * APICID format
83  *	NOTE!!!!!! This is the current format of the APICID. However, code
84  *	should assume that this will change in the future. Use functions
85  *	in this file for all APICID bit manipulations and conversion.
86  *
87  *		1111110000000000
88  *		5432109876543210
89  *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
90  *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
91  *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
92  *		sssssssssss
93  *
94  *			p  = pnode bits
95  *			l =  socket number on board
96  *			c  = core
97  *			h  = hyperthread
98  *			s  = bits that are in the SOCKET_ID CSR
99  *
100  *	Note: Processor may support fewer bits in the APICID register. The ACPI
101  *	      tables hold all 16 bits. Software needs to be aware of this.
102  *
103  *	      Unless otherwise specified, all references to APICID refer to
104  *	      the FULL value contained in ACPI tables, not the subset in the
105  *	      processor APICID register.
106  */
107 
108 /*
109  * Maximum number of bricks in all partitions and in all coherency domains.
110  * This is the total number of bricks accessible in the numalink fabric. It
111  * includes all C & M bricks. Routers are NOT included.
112  *
113  * This value is also the value of the maximum number of non-router NASIDs
114  * in the numalink fabric.
115  *
116  * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
117  */
118 #define UV_MAX_NUMALINK_BLADES	16384
119 
120 /*
121  * Maximum number of C/Mbricks within a software SSI (hardware may support
122  * more).
123  */
124 #define UV_MAX_SSI_BLADES	256
125 
126 /*
127  * The largest possible NASID of a C or M brick (+ 2)
128  */
129 #define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
130 
131 /* System Controller Interface Reg info */
132 struct uv_scir_s {
133 	struct timer_list timer;
134 	unsigned long	offset;
135 	unsigned long	last;
136 	unsigned long	idle_on;
137 	unsigned long	idle_off;
138 	unsigned char	state;
139 	unsigned char	enabled;
140 };
141 
142 /* GAM (globally addressed memory) range table */
143 struct uv_gam_range_s {
144 	u32	limit;		/* PA bits 56:26 (GAM_RANGE_SHFT) */
145 	u16	nasid;		/* node's global physical address */
146 	s8	base;		/* entry index of node's base addr */
147 	u8	reserved;
148 };
149 
150 /*
151  * The following defines attributes of the HUB chip. These attributes are
152  * frequently referenced and are kept in a common per hub struct.
153  * After setup, the struct is read only, so it should be readily
154  * available in the L3 cache on the cpu socket for the node.
155  */
156 struct uv_hub_info_s {
157 	unsigned long		global_mmr_base;
158 	unsigned long		global_mmr_shift;
159 	unsigned long		gpa_mask;
160 	unsigned short		*socket_to_node;
161 	unsigned short		*socket_to_pnode;
162 	unsigned short		*pnode_to_socket;
163 	struct uv_gam_range_s	*gr_table;
164 	unsigned short		min_socket;
165 	unsigned short		min_pnode;
166 	unsigned char		m_val;
167 	unsigned char		n_val;
168 	unsigned char		gr_table_len;
169 	unsigned char		hub_revision;
170 	unsigned char		apic_pnode_shift;
171 	unsigned char		gpa_shift;
172 	unsigned char		m_shift;
173 	unsigned char		n_lshift;
174 	unsigned int		gnode_extra;
175 	unsigned long		gnode_upper;
176 	unsigned long		lowmem_remap_top;
177 	unsigned long		lowmem_remap_base;
178 	unsigned long		global_gru_base;
179 	unsigned long		global_gru_shift;
180 	unsigned short		pnode;
181 	unsigned short		pnode_mask;
182 	unsigned short		coherency_domain_number;
183 	unsigned short		numa_blade_id;
184 	unsigned short		nr_possible_cpus;
185 	unsigned short		nr_online_cpus;
186 	short			memory_nid;
187 };
188 
189 /* CPU specific info with a pointer to the hub common info struct */
190 struct uv_cpu_info_s {
191 	void			*p_uv_hub_info;
192 	unsigned char		blade_cpu_id;
193 	struct uv_scir_s	scir;
194 };
195 DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
196 
197 #define uv_cpu_info		this_cpu_ptr(&__uv_cpu_info)
198 #define uv_cpu_info_per(cpu)	(&per_cpu(__uv_cpu_info, cpu))
199 
200 #define	uv_scir_info		(&uv_cpu_info->scir)
201 #define	uv_cpu_scir_info(cpu)	(&uv_cpu_info_per(cpu)->scir)
202 
203 /* Node specific hub common info struct */
204 extern void **__uv_hub_info_list;
uv_hub_info_list(int node)205 static inline struct uv_hub_info_s *uv_hub_info_list(int node)
206 {
207 	return (struct uv_hub_info_s *)__uv_hub_info_list[node];
208 }
209 
_uv_hub_info(void)210 static inline struct uv_hub_info_s *_uv_hub_info(void)
211 {
212 	return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
213 }
214 #define	uv_hub_info	_uv_hub_info()
215 
uv_cpu_hub_info(int cpu)216 static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
217 {
218 	return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
219 }
220 
221 #define	UV_HUB_INFO_VERSION	0x7150
222 extern int uv_hub_info_version(void);
uv_hub_info_check(int version)223 static inline int uv_hub_info_check(int version)
224 {
225 	if (uv_hub_info_version() == version)
226 		return 0;
227 
228 	pr_crit("UV: uv_hub_info version(%x) mismatch, expecting(%x)\n",
229 		uv_hub_info_version(), version);
230 
231 	BUG();	/* Catastrophic - cannot continue on unknown UV system */
232 }
233 #define	_uv_hub_info_check()	uv_hub_info_check(UV_HUB_INFO_VERSION)
234 
235 /*
236  * HUB revision ranges for each UV HUB architecture.
237  * This is a software convention - NOT the hardware revision numbers in
238  * the hub chip.
239  */
240 #define UV1_HUB_REVISION_BASE		1
241 #define UV2_HUB_REVISION_BASE		3
242 #define UV3_HUB_REVISION_BASE		5
243 #define UV4_HUB_REVISION_BASE		7
244 #define UV4A_HUB_REVISION_BASE		8	/* UV4 (fixed) rev 2 */
245 
246 #ifdef	UV1_HUB_IS_SUPPORTED
is_uv1_hub(void)247 static inline int is_uv1_hub(void)
248 {
249 	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
250 }
251 #else
is_uv1_hub(void)252 static inline int is_uv1_hub(void)
253 {
254 	return 0;
255 }
256 #endif
257 
258 #ifdef	UV2_HUB_IS_SUPPORTED
is_uv2_hub(void)259 static inline int is_uv2_hub(void)
260 {
261 	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
262 		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
263 }
264 #else
is_uv2_hub(void)265 static inline int is_uv2_hub(void)
266 {
267 	return 0;
268 }
269 #endif
270 
271 #ifdef	UV3_HUB_IS_SUPPORTED
is_uv3_hub(void)272 static inline int is_uv3_hub(void)
273 {
274 	return ((uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE) &&
275 		(uv_hub_info->hub_revision < UV4_HUB_REVISION_BASE));
276 }
277 #else
is_uv3_hub(void)278 static inline int is_uv3_hub(void)
279 {
280 	return 0;
281 }
282 #endif
283 
284 /* First test "is UV4A", then "is UV4" */
285 #ifdef	UV4A_HUB_IS_SUPPORTED
is_uv4a_hub(void)286 static inline int is_uv4a_hub(void)
287 {
288 	return (uv_hub_info->hub_revision >= UV4A_HUB_REVISION_BASE);
289 }
290 #else
is_uv4a_hub(void)291 static inline int is_uv4a_hub(void)
292 {
293 	return 0;
294 }
295 #endif
296 
297 #ifdef	UV4_HUB_IS_SUPPORTED
is_uv4_hub(void)298 static inline int is_uv4_hub(void)
299 {
300 	return uv_hub_info->hub_revision >= UV4_HUB_REVISION_BASE;
301 }
302 #else
is_uv4_hub(void)303 static inline int is_uv4_hub(void)
304 {
305 	return 0;
306 }
307 #endif
308 
is_uvx_hub(void)309 static inline int is_uvx_hub(void)
310 {
311 	if (uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE)
312 		return uv_hub_info->hub_revision;
313 
314 	return 0;
315 }
316 
is_uv_hub(void)317 static inline int is_uv_hub(void)
318 {
319 #ifdef	UV1_HUB_IS_SUPPORTED
320 	return uv_hub_info->hub_revision;
321 #endif
322 	return is_uvx_hub();
323 }
324 
325 union uvh_apicid {
326     unsigned long       v;
327     struct uvh_apicid_s {
328         unsigned long   local_apic_mask  : 24;
329         unsigned long   local_apic_shift :  5;
330         unsigned long   unused1          :  3;
331         unsigned long   pnode_mask       : 24;
332         unsigned long   pnode_shift      :  5;
333         unsigned long   unused2          :  3;
334     } s;
335 };
336 
337 /*
338  * Local & Global MMR space macros.
339  *	Note: macros are intended to be used ONLY by inline functions
340  *	in this file - not by other kernel code.
341  *		n -  NASID (full 15-bit global nasid)
342  *		g -  GNODE (full 15-bit global nasid, right shifted 1)
343  *		p -  PNODE (local part of nsids, right shifted 1)
344  */
345 #define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
346 #define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
347 #define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
348 
349 #define UV1_LOCAL_MMR_BASE		0xf4000000UL
350 #define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
351 #define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
352 #define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
353 
354 #define UV2_LOCAL_MMR_BASE		0xfa000000UL
355 #define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
356 #define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
357 #define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
358 
359 #define UV3_LOCAL_MMR_BASE		0xfa000000UL
360 #define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
361 #define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
362 #define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
363 
364 #define UV4_LOCAL_MMR_BASE		0xfa000000UL
365 #define UV4_GLOBAL_MMR32_BASE		0xfc000000UL
366 #define UV4_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
367 #define UV4_GLOBAL_MMR32_SIZE		(16UL * 1024 * 1024)
368 
369 #define UV_LOCAL_MMR_BASE		(				\
370 					is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
371 					is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
372 					is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \
373 					/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE)
374 
375 #define UV_GLOBAL_MMR32_BASE		(				\
376 					is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE : \
377 					is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \
378 					is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \
379 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE)
380 
381 #define UV_LOCAL_MMR_SIZE		(				\
382 					is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
383 					is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
384 					is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \
385 					/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE)
386 
387 #define UV_GLOBAL_MMR32_SIZE		(				\
388 					is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE : \
389 					is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \
390 					is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \
391 					/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE)
392 
393 #define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
394 
395 #define UV_GLOBAL_GRU_MMR_BASE		0x4000000
396 
397 #define UV_GLOBAL_MMR32_PNODE_SHIFT	15
398 #define _UV_GLOBAL_MMR64_PNODE_SHIFT	26
399 #define UV_GLOBAL_MMR64_PNODE_SHIFT	(uv_hub_info->global_mmr_shift)
400 
401 #define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
402 
403 #define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
404 	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
405 
406 #define UVH_APICID		0x002D0E00L
407 #define UV_APIC_PNODE_SHIFT	6
408 
409 #define UV_APICID_HIBIT_MASK	0xffff0000
410 
411 /* Local Bus from cpu's perspective */
412 #define LOCAL_BUS_BASE		0x1c00000
413 #define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
414 
415 /*
416  * System Controller Interface Reg
417  *
418  * Note there are NO leds on a UV system.  This register is only
419  * used by the system controller to monitor system-wide operation.
420  * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
421  * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
422  * a node.
423  *
424  * The window is located at top of ACPI MMR space
425  */
426 #define SCIR_WINDOW_COUNT	64
427 #define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
428 				 LOCAL_BUS_SIZE - \
429 				 SCIR_WINDOW_COUNT)
430 
431 #define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
432 #define SCIR_CPU_ACTIVITY	0x02	/* not idle */
433 #define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
434 
435 /* Loop through all installed blades */
436 #define for_each_possible_blade(bid)		\
437 	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
438 
439 /*
440  * Macros for converting between kernel virtual addresses, socket local physical
441  * addresses, and UV global physical addresses.
442  *	Note: use the standard __pa() & __va() macros for converting
443  *	      between socket virtual and socket physical addresses.
444  */
445 
446 /* global bits offset - number of local address bits in gpa for this UV arch */
uv_gpa_shift(void)447 static inline unsigned int uv_gpa_shift(void)
448 {
449 	return uv_hub_info->gpa_shift;
450 }
451 #define	_uv_gpa_shift
452 
453 /* Find node that has the address range that contains global address  */
uv_gam_range(unsigned long pa)454 static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
455 {
456 	struct uv_gam_range_s *gr = uv_hub_info->gr_table;
457 	unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
458 	int i, num = uv_hub_info->gr_table_len;
459 
460 	if (gr) {
461 		for (i = 0; i < num; i++, gr++) {
462 			if (pal < gr->limit)
463 				return gr;
464 		}
465 	}
466 	pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
467 	BUG();
468 }
469 
470 /* Return base address of node that contains global address  */
uv_gam_range_base(unsigned long pa)471 static inline unsigned long uv_gam_range_base(unsigned long pa)
472 {
473 	struct uv_gam_range_s *gr = uv_gam_range(pa);
474 	int base = gr->base;
475 
476 	if (base < 0)
477 		return 0UL;
478 
479 	return uv_hub_info->gr_table[base].limit;
480 }
481 
482 /* socket phys RAM --> UV global NASID (UV4+) */
uv_soc_phys_ram_to_nasid(unsigned long paddr)483 static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
484 {
485 	return uv_gam_range(paddr)->nasid;
486 }
487 #define	_uv_soc_phys_ram_to_nasid
488 
489 /* socket virtual --> UV global NASID (UV4+) */
uv_gpa_nasid(void * v)490 static inline unsigned long uv_gpa_nasid(void *v)
491 {
492 	return uv_soc_phys_ram_to_nasid(__pa(v));
493 }
494 
495 /* socket phys RAM --> UV global physical address */
uv_soc_phys_ram_to_gpa(unsigned long paddr)496 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
497 {
498 	unsigned int m_val = uv_hub_info->m_val;
499 
500 	if (paddr < uv_hub_info->lowmem_remap_top)
501 		paddr |= uv_hub_info->lowmem_remap_base;
502 
503 	if (m_val) {
504 		paddr |= uv_hub_info->gnode_upper;
505 		paddr = ((paddr << uv_hub_info->m_shift)
506 						>> uv_hub_info->m_shift) |
507 			((paddr >> uv_hub_info->m_val)
508 						<< uv_hub_info->n_lshift);
509 	} else {
510 		paddr |= uv_soc_phys_ram_to_nasid(paddr)
511 						<< uv_hub_info->gpa_shift;
512 	}
513 	return paddr;
514 }
515 
516 /* socket virtual --> UV global physical address */
uv_gpa(void * v)517 static inline unsigned long uv_gpa(void *v)
518 {
519 	return uv_soc_phys_ram_to_gpa(__pa(v));
520 }
521 
522 /* Top two bits indicate the requested address is in MMR space.  */
523 static inline int
uv_gpa_in_mmr_space(unsigned long gpa)524 uv_gpa_in_mmr_space(unsigned long gpa)
525 {
526 	return (gpa >> 62) == 0x3UL;
527 }
528 
529 /* UV global physical address --> socket phys RAM */
uv_gpa_to_soc_phys_ram(unsigned long gpa)530 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
531 {
532 	unsigned long paddr;
533 	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
534 	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
535 	unsigned int m_val = uv_hub_info->m_val;
536 
537 	if (m_val)
538 		gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
539 			((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
540 
541 	paddr = gpa & uv_hub_info->gpa_mask;
542 	if (paddr >= remap_base && paddr < remap_base + remap_top)
543 		paddr -= remap_base;
544 	return paddr;
545 }
546 
547 /* gpa -> gnode */
uv_gpa_to_gnode(unsigned long gpa)548 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
549 {
550 	unsigned int n_lshift = uv_hub_info->n_lshift;
551 
552 	if (n_lshift)
553 		return gpa >> n_lshift;
554 
555 	return uv_gam_range(gpa)->nasid >> 1;
556 }
557 
558 /* gpa -> pnode */
uv_gpa_to_pnode(unsigned long gpa)559 static inline int uv_gpa_to_pnode(unsigned long gpa)
560 {
561 	return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
562 }
563 
564 /* gpa -> node offset */
uv_gpa_to_offset(unsigned long gpa)565 static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
566 {
567 	unsigned int m_shift = uv_hub_info->m_shift;
568 
569 	if (m_shift)
570 		return (gpa << m_shift) >> m_shift;
571 
572 	return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
573 }
574 
575 /* Convert socket to node */
_uv_socket_to_node(int socket,unsigned short * s2nid)576 static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
577 {
578 	return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
579 }
580 
uv_socket_to_node(int socket)581 static inline int uv_socket_to_node(int socket)
582 {
583 	return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
584 }
585 
586 /* pnode, offset --> socket virtual */
uv_pnode_offset_to_vaddr(int pnode,unsigned long offset)587 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
588 {
589 	unsigned int m_val = uv_hub_info->m_val;
590 	unsigned long base;
591 	unsigned short sockid, node, *p2s;
592 
593 	if (m_val)
594 		return __va(((unsigned long)pnode << m_val) | offset);
595 
596 	p2s = uv_hub_info->pnode_to_socket;
597 	sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
598 	node = uv_socket_to_node(sockid);
599 
600 	/* limit address of previous socket is our base, except node 0 is 0 */
601 	if (!node)
602 		return __va((unsigned long)offset);
603 
604 	base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
605 	return __va(base << UV_GAM_RANGE_SHFT | offset);
606 }
607 
608 /* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
uv_apicid_to_pnode(int apicid)609 static inline int uv_apicid_to_pnode(int apicid)
610 {
611 	int pnode = apicid >> uv_hub_info->apic_pnode_shift;
612 	unsigned short *s2pn = uv_hub_info->socket_to_pnode;
613 
614 	return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
615 }
616 
617 /* Convert an apicid to the socket number on the blade */
uv_apicid_to_socket(int apicid)618 static inline int uv_apicid_to_socket(int apicid)
619 {
620 	if (is_uv1_hub())
621 		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
622 	else
623 		return 0;
624 }
625 
626 /*
627  * Access global MMRs using the low memory MMR32 space. This region supports
628  * faster MMR access but not all MMRs are accessible in this space.
629  */
uv_global_mmr32_address(int pnode,unsigned long offset)630 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
631 {
632 	return __va(UV_GLOBAL_MMR32_BASE |
633 		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
634 }
635 
uv_write_global_mmr32(int pnode,unsigned long offset,unsigned long val)636 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
637 {
638 	writeq(val, uv_global_mmr32_address(pnode, offset));
639 }
640 
uv_read_global_mmr32(int pnode,unsigned long offset)641 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
642 {
643 	return readq(uv_global_mmr32_address(pnode, offset));
644 }
645 
646 /*
647  * Access Global MMR space using the MMR space located at the top of physical
648  * memory.
649  */
uv_global_mmr64_address(int pnode,unsigned long offset)650 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
651 {
652 	return __va(UV_GLOBAL_MMR64_BASE |
653 		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
654 }
655 
uv_write_global_mmr64(int pnode,unsigned long offset,unsigned long val)656 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
657 {
658 	writeq(val, uv_global_mmr64_address(pnode, offset));
659 }
660 
uv_read_global_mmr64(int pnode,unsigned long offset)661 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
662 {
663 	return readq(uv_global_mmr64_address(pnode, offset));
664 }
665 
uv_write_global_mmr8(int pnode,unsigned long offset,unsigned char val)666 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
667 {
668 	writeb(val, uv_global_mmr64_address(pnode, offset));
669 }
670 
uv_read_global_mmr8(int pnode,unsigned long offset)671 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
672 {
673 	return readb(uv_global_mmr64_address(pnode, offset));
674 }
675 
676 /*
677  * Access hub local MMRs. Faster than using global space but only local MMRs
678  * are accessible.
679  */
uv_local_mmr_address(unsigned long offset)680 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
681 {
682 	return __va(UV_LOCAL_MMR_BASE | offset);
683 }
684 
uv_read_local_mmr(unsigned long offset)685 static inline unsigned long uv_read_local_mmr(unsigned long offset)
686 {
687 	return readq(uv_local_mmr_address(offset));
688 }
689 
uv_write_local_mmr(unsigned long offset,unsigned long val)690 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
691 {
692 	writeq(val, uv_local_mmr_address(offset));
693 }
694 
uv_read_local_mmr8(unsigned long offset)695 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
696 {
697 	return readb(uv_local_mmr_address(offset));
698 }
699 
uv_write_local_mmr8(unsigned long offset,unsigned char val)700 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
701 {
702 	writeb(val, uv_local_mmr_address(offset));
703 }
704 
705 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
uv_blade_processor_id(void)706 static inline int uv_blade_processor_id(void)
707 {
708 	return uv_cpu_info->blade_cpu_id;
709 }
710 
711 /* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
uv_cpu_blade_processor_id(int cpu)712 static inline int uv_cpu_blade_processor_id(int cpu)
713 {
714 	return uv_cpu_info_per(cpu)->blade_cpu_id;
715 }
716 #define _uv_cpu_blade_processor_id 1	/* indicate function available */
717 
718 /* Blade number to Node number (UV1..UV4 is 1:1) */
uv_blade_to_node(int blade)719 static inline int uv_blade_to_node(int blade)
720 {
721 	return blade;
722 }
723 
724 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
uv_numa_blade_id(void)725 static inline int uv_numa_blade_id(void)
726 {
727 	return uv_hub_info->numa_blade_id;
728 }
729 
730 /*
731  * Convert linux node number to the UV blade number.
732  * .. Currently for UV1 thru UV4 the node and the blade are identical.
733  * .. If this changes then you MUST check references to this function!
734  */
uv_node_to_blade_id(int nid)735 static inline int uv_node_to_blade_id(int nid)
736 {
737 	return nid;
738 }
739 
740 /* Convert a cpu number to the the UV blade number */
uv_cpu_to_blade_id(int cpu)741 static inline int uv_cpu_to_blade_id(int cpu)
742 {
743 	return uv_node_to_blade_id(cpu_to_node(cpu));
744 }
745 
746 /* Convert a blade id to the PNODE of the blade */
uv_blade_to_pnode(int bid)747 static inline int uv_blade_to_pnode(int bid)
748 {
749 	return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
750 }
751 
752 /* Nid of memory node on blade. -1 if no blade-local memory */
uv_blade_to_memory_nid(int bid)753 static inline int uv_blade_to_memory_nid(int bid)
754 {
755 	return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
756 }
757 
758 /* Determine the number of possible cpus on a blade */
uv_blade_nr_possible_cpus(int bid)759 static inline int uv_blade_nr_possible_cpus(int bid)
760 {
761 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
762 }
763 
764 /* Determine the number of online cpus on a blade */
uv_blade_nr_online_cpus(int bid)765 static inline int uv_blade_nr_online_cpus(int bid)
766 {
767 	return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
768 }
769 
770 /* Convert a cpu id to the PNODE of the blade containing the cpu */
uv_cpu_to_pnode(int cpu)771 static inline int uv_cpu_to_pnode(int cpu)
772 {
773 	return uv_cpu_hub_info(cpu)->pnode;
774 }
775 
776 /* Convert a linux node number to the PNODE of the blade */
uv_node_to_pnode(int nid)777 static inline int uv_node_to_pnode(int nid)
778 {
779 	return uv_hub_info_list(nid)->pnode;
780 }
781 
782 /* Maximum possible number of blades */
783 extern short uv_possible_blades;
uv_num_possible_blades(void)784 static inline int uv_num_possible_blades(void)
785 {
786 	return uv_possible_blades;
787 }
788 
789 /* Per Hub NMI support */
790 extern void uv_nmi_setup(void);
791 extern void uv_nmi_setup_hubless(void);
792 
793 /* BIOS/Kernel flags exchange MMR */
794 #define UVH_BIOS_KERNEL_MMR		UVH_SCRATCH5
795 #define UVH_BIOS_KERNEL_MMR_ALIAS	UVH_SCRATCH5_ALIAS
796 #define UVH_BIOS_KERNEL_MMR_ALIAS_2	UVH_SCRATCH5_ALIAS_2
797 
798 /* TSC sync valid, set by BIOS */
799 #define UVH_TSC_SYNC_MMR	UVH_BIOS_KERNEL_MMR
800 #define UVH_TSC_SYNC_SHIFT	10
801 #define UVH_TSC_SYNC_SHIFT_UV2K	16	/* UV2/3k have different bits */
802 #define UVH_TSC_SYNC_MASK	3	/* 0011 */
803 #define UVH_TSC_SYNC_VALID	3	/* 0011 */
804 #define UVH_TSC_SYNC_INVALID	2	/* 0010 */
805 
806 /* BMC sets a bit this MMR non-zero before sending an NMI */
807 #define UVH_NMI_MMR		UVH_BIOS_KERNEL_MMR
808 #define UVH_NMI_MMR_CLEAR	UVH_BIOS_KERNEL_MMR_ALIAS
809 #define UVH_NMI_MMR_SHIFT	63
810 #define UVH_NMI_MMR_TYPE	"SCRATCH5"
811 
812 /* Newer SMM NMI handler, not present in all systems */
813 #define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
814 #define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
815 #define UVH_NMI_MMRX_SHIFT	UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
816 #define UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
817 
818 /* Non-zero indicates newer SMM NMI handler present */
819 #define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
820 
821 /* Indicates to BIOS that we want to use the newer SMM NMI handler */
822 #define UVH_NMI_MMRX_REQ	UVH_BIOS_KERNEL_MMR_ALIAS_2
823 #define UVH_NMI_MMRX_REQ_SHIFT	62
824 
825 struct uv_hub_nmi_s {
826 	raw_spinlock_t	nmi_lock;
827 	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
828 	atomic_t	cpu_owner;	/* last locker of this struct */
829 	atomic_t	read_mmr_count;	/* count of MMR reads */
830 	atomic_t	nmi_count;	/* count of true UV NMIs */
831 	unsigned long	nmi_value;	/* last value read from NMI MMR */
832 	bool		hub_present;	/* false means UV hubless system */
833 	bool		pch_owner;	/* indicates this hub owns PCH */
834 };
835 
836 struct uv_cpu_nmi_s {
837 	struct uv_hub_nmi_s	*hub;
838 	int			state;
839 	int			pinging;
840 	int			queries;
841 	int			pings;
842 };
843 
844 DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
845 
846 #define uv_hub_nmi			this_cpu_read(uv_cpu_nmi.hub)
847 #define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
848 #define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
849 
850 /* uv_cpu_nmi_states */
851 #define	UV_NMI_STATE_OUT		0
852 #define	UV_NMI_STATE_IN			1
853 #define	UV_NMI_STATE_DUMP		2
854 #define	UV_NMI_STATE_DUMP_DONE		3
855 
856 /* Update SCIR state */
uv_set_scir_bits(unsigned char value)857 static inline void uv_set_scir_bits(unsigned char value)
858 {
859 	if (uv_scir_info->state != value) {
860 		uv_scir_info->state = value;
861 		uv_write_local_mmr8(uv_scir_info->offset, value);
862 	}
863 }
864 
uv_scir_offset(int apicid)865 static inline unsigned long uv_scir_offset(int apicid)
866 {
867 	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
868 }
869 
uv_set_cpu_scir_bits(int cpu,unsigned char value)870 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
871 {
872 	if (uv_cpu_scir_info(cpu)->state != value) {
873 		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
874 				uv_cpu_scir_info(cpu)->offset, value);
875 		uv_cpu_scir_info(cpu)->state = value;
876 	}
877 }
878 
879 extern unsigned int uv_apicid_hibits;
uv_hub_ipi_value(int apicid,int vector,int mode)880 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
881 {
882 	apicid |= uv_apicid_hibits;
883 	return (1UL << UVH_IPI_INT_SEND_SHFT) |
884 			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
885 			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
886 			(vector << UVH_IPI_INT_VECTOR_SHFT);
887 }
888 
uv_hub_send_ipi(int pnode,int apicid,int vector)889 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
890 {
891 	unsigned long val;
892 	unsigned long dmode = dest_Fixed;
893 
894 	if (vector == NMI_VECTOR)
895 		dmode = dest_NMI;
896 
897 	val = uv_hub_ipi_value(apicid, vector, dmode);
898 	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
899 }
900 
901 /*
902  * Get the minimum revision number of the hub chips within the partition.
903  * (See UVx_HUB_REVISION_BASE above for specific values.)
904  */
uv_get_min_hub_revision_id(void)905 static inline int uv_get_min_hub_revision_id(void)
906 {
907 	return uv_hub_info->hub_revision;
908 }
909 
910 #endif /* CONFIG_X86_64 */
911 #endif /* _ASM_X86_UV_UV_HUB_H */
912