1 /*
2 * Copyright (C) 2013 Red Hat
3 * Author: Rob Clark <robdclark@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published by
7 * the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #ifndef __MSM_GPU_H__
19 #define __MSM_GPU_H__
20
21 #include <linux/clk.h>
22 #include <linux/regulator/consumer.h>
23
24 #include "msm_drv.h"
25 #include "msm_fence.h"
26 #include "msm_ringbuffer.h"
27
28 struct msm_gem_submit;
29 struct msm_gpu_perfcntr;
30 struct msm_gpu_state;
31
32 struct msm_gpu_config {
33 const char *ioname;
34 const char *irqname;
35 uint64_t va_start;
36 uint64_t va_end;
37 unsigned int nr_rings;
38 };
39
40 /* So far, with hardware that I've seen to date, we can have:
41 * + zero, one, or two z180 2d cores
42 * + a3xx or a2xx 3d core, which share a common CP (the firmware
43 * for the CP seems to implement some different PM4 packet types
44 * but the basics of cmdstream submission are the same)
45 *
46 * Which means that the eventual complete "class" hierarchy, once
47 * support for all past and present hw is in place, becomes:
48 * + msm_gpu
49 * + adreno_gpu
50 * + a3xx_gpu
51 * + a2xx_gpu
52 * + z180_gpu
53 */
54 struct msm_gpu_funcs {
55 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
56 int (*hw_init)(struct msm_gpu *gpu);
57 int (*pm_suspend)(struct msm_gpu *gpu);
58 int (*pm_resume)(struct msm_gpu *gpu);
59 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit,
60 struct msm_file_private *ctx);
61 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
62 irqreturn_t (*irq)(struct msm_gpu *irq);
63 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
64 void (*recover)(struct msm_gpu *gpu);
65 void (*destroy)(struct msm_gpu *gpu);
66 #ifdef CONFIG_DEBUG_FS
67 /* show GPU status in debugfs: */
68 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
69 struct drm_printer *p);
70 /* for generation specific debugfs: */
71 int (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
72 #endif
73 int (*gpu_busy)(struct msm_gpu *gpu, uint64_t *value);
74 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
75 int (*gpu_state_put)(struct msm_gpu_state *state);
76 };
77
78 struct msm_gpu {
79 const char *name;
80 struct drm_device *dev;
81 struct platform_device *pdev;
82 const struct msm_gpu_funcs *funcs;
83
84 /* performance counters (hw & sw): */
85 spinlock_t perf_lock;
86 bool perfcntr_active;
87 struct {
88 bool active;
89 ktime_t time;
90 } last_sample;
91 uint32_t totaltime, activetime; /* sw counters */
92 uint32_t last_cntrs[5]; /* hw counters */
93 const struct msm_gpu_perfcntr *perfcntrs;
94 uint32_t num_perfcntrs;
95
96 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
97 int nr_rings;
98
99 /* list of GEM active objects: */
100 struct list_head active_list;
101
102 /* does gpu need hw_init? */
103 bool needs_hw_init;
104
105 /* worker for handling active-list retiring: */
106 struct work_struct retire_work;
107
108 void __iomem *mmio;
109 int irq;
110
111 struct msm_gem_address_space *aspace;
112
113 /* Power Control: */
114 struct regulator *gpu_reg, *gpu_cx;
115 struct clk_bulk_data *grp_clks;
116 int nr_clocks;
117 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
118 uint32_t fast_rate;
119
120 /* Hang and Inactivity Detection:
121 */
122 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
123
124 #define DRM_MSM_HANGCHECK_PERIOD 500 /* in ms */
125 #define DRM_MSM_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_MSM_HANGCHECK_PERIOD)
126 struct timer_list hangcheck_timer;
127 struct work_struct recover_work;
128
129 struct drm_gem_object *memptrs_bo;
130
131 struct {
132 struct devfreq *devfreq;
133 u64 busy_cycles;
134 ktime_t time;
135 } devfreq;
136
137 struct msm_gpu_state *crashstate;
138 };
139
140 /* It turns out that all targets use the same ringbuffer size */
141 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
142 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
143
144 #define MSM_GPU_RB_CNTL_DEFAULT \
145 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
146 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
147
msm_gpu_active(struct msm_gpu * gpu)148 static inline bool msm_gpu_active(struct msm_gpu *gpu)
149 {
150 int i;
151
152 for (i = 0; i < gpu->nr_rings; i++) {
153 struct msm_ringbuffer *ring = gpu->rb[i];
154
155 if (ring->seqno > ring->memptrs->fence)
156 return true;
157 }
158
159 return false;
160 }
161
162 /* Perf-Counters:
163 * The select_reg and select_val are just there for the benefit of the child
164 * class that actually enables the perf counter.. but msm_gpu base class
165 * will handle sampling/displaying the counters.
166 */
167
168 struct msm_gpu_perfcntr {
169 uint32_t select_reg;
170 uint32_t sample_reg;
171 uint32_t select_val;
172 const char *name;
173 };
174
175 struct msm_gpu_submitqueue {
176 int id;
177 u32 flags;
178 u32 prio;
179 int faults;
180 struct list_head node;
181 struct kref ref;
182 };
183
184 struct msm_gpu_state_bo {
185 u64 iova;
186 size_t size;
187 void *data;
188 };
189
190 struct msm_gpu_state {
191 struct kref ref;
192 struct timespec64 time;
193
194 struct {
195 u64 iova;
196 u32 fence;
197 u32 seqno;
198 u32 rptr;
199 u32 wptr;
200 void *data;
201 int data_size;
202 } ring[MSM_GPU_MAX_RINGS];
203
204 int nr_registers;
205 u32 *registers;
206
207 u32 rbbm_status;
208
209 char *comm;
210 char *cmd;
211
212 int nr_bos;
213 struct msm_gpu_state_bo *bos;
214 };
215
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)216 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
217 {
218 msm_writel(data, gpu->mmio + (reg << 2));
219 }
220
gpu_read(struct msm_gpu * gpu,u32 reg)221 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
222 {
223 return msm_readl(gpu->mmio + (reg << 2));
224 }
225
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)226 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
227 {
228 uint32_t val = gpu_read(gpu, reg);
229
230 val &= ~mask;
231 gpu_write(gpu, reg, val | or);
232 }
233
gpu_read64(struct msm_gpu * gpu,u32 lo,u32 hi)234 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
235 {
236 u64 val;
237
238 /*
239 * Why not a readq here? Two reasons: 1) many of the LO registers are
240 * not quad word aligned and 2) the GPU hardware designers have a bit
241 * of a history of putting registers where they fit, especially in
242 * spins. The longer a GPU family goes the higher the chance that
243 * we'll get burned. We could do a series of validity checks if we
244 * wanted to, but really is a readq() that much better? Nah.
245 */
246
247 /*
248 * For some lo/hi registers (like perfcounters), the hi value is latched
249 * when the lo is read, so make sure to read the lo first to trigger
250 * that
251 */
252 val = (u64) msm_readl(gpu->mmio + (lo << 2));
253 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
254
255 return val;
256 }
257
gpu_write64(struct msm_gpu * gpu,u32 lo,u32 hi,u64 val)258 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
259 {
260 /* Why not a writeq here? Read the screed above */
261 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
262 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
263 }
264
265 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
266 int msm_gpu_pm_resume(struct msm_gpu *gpu);
267
268 int msm_gpu_hw_init(struct msm_gpu *gpu);
269
270 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
271 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
272 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
273 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
274
275 void msm_gpu_retire(struct msm_gpu *gpu);
276 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit,
277 struct msm_file_private *ctx);
278
279 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
280 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
281 const char *name, struct msm_gpu_config *config);
282
283 void msm_gpu_cleanup(struct msm_gpu *gpu);
284
285 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
286 void __init adreno_register(void);
287 void __exit adreno_unregister(void);
288
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)289 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
290 {
291 if (queue)
292 kref_put(&queue->ref, msm_submitqueue_destroy);
293 }
294
msm_gpu_crashstate_get(struct msm_gpu * gpu)295 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
296 {
297 struct msm_gpu_state *state = NULL;
298
299 mutex_lock(&gpu->dev->struct_mutex);
300
301 if (gpu->crashstate) {
302 kref_get(&gpu->crashstate->ref);
303 state = gpu->crashstate;
304 }
305
306 mutex_unlock(&gpu->dev->struct_mutex);
307
308 return state;
309 }
310
msm_gpu_crashstate_put(struct msm_gpu * gpu)311 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
312 {
313 mutex_lock(&gpu->dev->struct_mutex);
314
315 if (gpu->crashstate) {
316 if (gpu->funcs->gpu_state_put(gpu->crashstate))
317 gpu->crashstate = NULL;
318 }
319
320 mutex_unlock(&gpu->dev->struct_mutex);
321 }
322
323 #endif /* __MSM_GPU_H__ */
324