1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GPMC support functions
4 *
5 * Copyright (C) 2005-2006 Nokia Corporation
6 *
7 * Author: Juha Yrjola
8 *
9 * Copyright (C) 2009 Texas Instruments
10 * Added OMAP4 support - Santosh Shilimkar <santosh.shilimkar@ti.com>
11 */
12 #include <linux/irq.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/err.h>
16 #include <linux/clk.h>
17 #include <linux/ioport.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/gpio/driver.h>
21 #include <linux/gpio/consumer.h> /* GPIO descriptor enum */
22 #include <linux/gpio/machine.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/platform_device.h>
26 #include <linux/of.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/of_platform.h>
30 #include <linux/omap-gpmc.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sizes.h>
33
34 #include <linux/platform_data/mtd-nand-omap2.h>
35
36 #define DEVICE_NAME "omap-gpmc"
37
38 /* GPMC register offsets */
39 #define GPMC_REVISION 0x00
40 #define GPMC_SYSCONFIG 0x10
41 #define GPMC_SYSSTATUS 0x14
42 #define GPMC_IRQSTATUS 0x18
43 #define GPMC_IRQENABLE 0x1c
44 #define GPMC_TIMEOUT_CONTROL 0x40
45 #define GPMC_ERR_ADDRESS 0x44
46 #define GPMC_ERR_TYPE 0x48
47 #define GPMC_CONFIG 0x50
48 #define GPMC_STATUS 0x54
49 #define GPMC_PREFETCH_CONFIG1 0x1e0
50 #define GPMC_PREFETCH_CONFIG2 0x1e4
51 #define GPMC_PREFETCH_CONTROL 0x1ec
52 #define GPMC_PREFETCH_STATUS 0x1f0
53 #define GPMC_ECC_CONFIG 0x1f4
54 #define GPMC_ECC_CONTROL 0x1f8
55 #define GPMC_ECC_SIZE_CONFIG 0x1fc
56 #define GPMC_ECC1_RESULT 0x200
57 #define GPMC_ECC_BCH_RESULT_0 0x240 /* not available on OMAP2 */
58 #define GPMC_ECC_BCH_RESULT_1 0x244 /* not available on OMAP2 */
59 #define GPMC_ECC_BCH_RESULT_2 0x248 /* not available on OMAP2 */
60 #define GPMC_ECC_BCH_RESULT_3 0x24c /* not available on OMAP2 */
61 #define GPMC_ECC_BCH_RESULT_4 0x300 /* not available on OMAP2 */
62 #define GPMC_ECC_BCH_RESULT_5 0x304 /* not available on OMAP2 */
63 #define GPMC_ECC_BCH_RESULT_6 0x308 /* not available on OMAP2 */
64
65 /* GPMC ECC control settings */
66 #define GPMC_ECC_CTRL_ECCCLEAR 0x100
67 #define GPMC_ECC_CTRL_ECCDISABLE 0x000
68 #define GPMC_ECC_CTRL_ECCREG1 0x001
69 #define GPMC_ECC_CTRL_ECCREG2 0x002
70 #define GPMC_ECC_CTRL_ECCREG3 0x003
71 #define GPMC_ECC_CTRL_ECCREG4 0x004
72 #define GPMC_ECC_CTRL_ECCREG5 0x005
73 #define GPMC_ECC_CTRL_ECCREG6 0x006
74 #define GPMC_ECC_CTRL_ECCREG7 0x007
75 #define GPMC_ECC_CTRL_ECCREG8 0x008
76 #define GPMC_ECC_CTRL_ECCREG9 0x009
77
78 #define GPMC_CONFIG_LIMITEDADDRESS BIT(1)
79
80 #define GPMC_STATUS_EMPTYWRITEBUFFERSTATUS BIT(0)
81
82 #define GPMC_CONFIG2_CSEXTRADELAY BIT(7)
83 #define GPMC_CONFIG3_ADVEXTRADELAY BIT(7)
84 #define GPMC_CONFIG4_OEEXTRADELAY BIT(7)
85 #define GPMC_CONFIG4_WEEXTRADELAY BIT(23)
86 #define GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN BIT(6)
87 #define GPMC_CONFIG6_CYCLE2CYCLESAMECSEN BIT(7)
88
89 #define GPMC_CS0_OFFSET 0x60
90 #define GPMC_CS_SIZE 0x30
91 #define GPMC_BCH_SIZE 0x10
92
93 /*
94 * The first 1MB of GPMC address space is typically mapped to
95 * the internal ROM. Never allocate the first page, to
96 * facilitate bug detection; even if we didn't boot from ROM.
97 * As GPMC minimum partition size is 16MB we can only start from
98 * there.
99 */
100 #define GPMC_MEM_START 0x1000000
101 #define GPMC_MEM_END 0x3FFFFFFF
102
103 #define GPMC_CHUNK_SHIFT 24 /* 16 MB */
104 #define GPMC_SECTION_SHIFT 28 /* 128 MB */
105
106 #define CS_NUM_SHIFT 24
107 #define ENABLE_PREFETCH (0x1 << 7)
108 #define DMA_MPU_MODE 2
109
110 #define GPMC_REVISION_MAJOR(l) (((l) >> 4) & 0xf)
111 #define GPMC_REVISION_MINOR(l) ((l) & 0xf)
112
113 #define GPMC_HAS_WR_ACCESS 0x1
114 #define GPMC_HAS_WR_DATA_MUX_BUS 0x2
115 #define GPMC_HAS_MUX_AAD 0x4
116
117 #define GPMC_NR_WAITPINS 4
118
119 #define GPMC_CS_CONFIG1 0x00
120 #define GPMC_CS_CONFIG2 0x04
121 #define GPMC_CS_CONFIG3 0x08
122 #define GPMC_CS_CONFIG4 0x0c
123 #define GPMC_CS_CONFIG5 0x10
124 #define GPMC_CS_CONFIG6 0x14
125 #define GPMC_CS_CONFIG7 0x18
126 #define GPMC_CS_NAND_COMMAND 0x1c
127 #define GPMC_CS_NAND_ADDRESS 0x20
128 #define GPMC_CS_NAND_DATA 0x24
129
130 /* Control Commands */
131 #define GPMC_CONFIG_RDY_BSY 0x00000001
132 #define GPMC_CONFIG_DEV_SIZE 0x00000002
133 #define GPMC_CONFIG_DEV_TYPE 0x00000003
134
135 #define GPMC_CONFIG1_WRAPBURST_SUPP (1 << 31)
136 #define GPMC_CONFIG1_READMULTIPLE_SUPP (1 << 30)
137 #define GPMC_CONFIG1_READTYPE_ASYNC (0 << 29)
138 #define GPMC_CONFIG1_READTYPE_SYNC (1 << 29)
139 #define GPMC_CONFIG1_WRITEMULTIPLE_SUPP (1 << 28)
140 #define GPMC_CONFIG1_WRITETYPE_ASYNC (0 << 27)
141 #define GPMC_CONFIG1_WRITETYPE_SYNC (1 << 27)
142 #define GPMC_CONFIG1_CLKACTIVATIONTIME(val) (((val) & 3) << 25)
143 /** CLKACTIVATIONTIME Max Ticks */
144 #define GPMC_CONFIG1_CLKACTIVATIONTIME_MAX 2
145 #define GPMC_CONFIG1_PAGE_LEN(val) (((val) & 3) << 23)
146 /** ATTACHEDDEVICEPAGELENGTH Max Value */
147 #define GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX 2
148 #define GPMC_CONFIG1_WAIT_READ_MON (1 << 22)
149 #define GPMC_CONFIG1_WAIT_WRITE_MON (1 << 21)
150 #define GPMC_CONFIG1_WAIT_MON_TIME(val) (((val) & 3) << 18)
151 /** WAITMONITORINGTIME Max Ticks */
152 #define GPMC_CONFIG1_WAITMONITORINGTIME_MAX 2
153 #define GPMC_CONFIG1_WAIT_PIN_SEL(val) (((val) & 3) << 16)
154 #define GPMC_CONFIG1_DEVICESIZE(val) (((val) & 3) << 12)
155 #define GPMC_CONFIG1_DEVICESIZE_16 GPMC_CONFIG1_DEVICESIZE(1)
156 /** DEVICESIZE Max Value */
157 #define GPMC_CONFIG1_DEVICESIZE_MAX 1
158 #define GPMC_CONFIG1_DEVICETYPE(val) (((val) & 3) << 10)
159 #define GPMC_CONFIG1_DEVICETYPE_NOR GPMC_CONFIG1_DEVICETYPE(0)
160 #define GPMC_CONFIG1_MUXTYPE(val) (((val) & 3) << 8)
161 #define GPMC_CONFIG1_TIME_PARA_GRAN (1 << 4)
162 #define GPMC_CONFIG1_FCLK_DIV(val) ((val) & 3)
163 #define GPMC_CONFIG1_FCLK_DIV2 (GPMC_CONFIG1_FCLK_DIV(1))
164 #define GPMC_CONFIG1_FCLK_DIV3 (GPMC_CONFIG1_FCLK_DIV(2))
165 #define GPMC_CONFIG1_FCLK_DIV4 (GPMC_CONFIG1_FCLK_DIV(3))
166 #define GPMC_CONFIG7_CSVALID (1 << 6)
167
168 #define GPMC_CONFIG7_BASEADDRESS_MASK 0x3f
169 #define GPMC_CONFIG7_CSVALID_MASK BIT(6)
170 #define GPMC_CONFIG7_MASKADDRESS_OFFSET 8
171 #define GPMC_CONFIG7_MASKADDRESS_MASK (0xf << GPMC_CONFIG7_MASKADDRESS_OFFSET)
172 /* All CONFIG7 bits except reserved bits */
173 #define GPMC_CONFIG7_MASK (GPMC_CONFIG7_BASEADDRESS_MASK | \
174 GPMC_CONFIG7_CSVALID_MASK | \
175 GPMC_CONFIG7_MASKADDRESS_MASK)
176
177 #define GPMC_DEVICETYPE_NOR 0
178 #define GPMC_DEVICETYPE_NAND 2
179 #define GPMC_CONFIG_WRITEPROTECT 0x00000010
180 #define WR_RD_PIN_MONITORING 0x00600000
181
182 /* ECC commands */
183 #define GPMC_ECC_READ 0 /* Reset Hardware ECC for read */
184 #define GPMC_ECC_WRITE 1 /* Reset Hardware ECC for write */
185 #define GPMC_ECC_READSYN 2 /* Reset before syndrom is read back */
186
187 #define GPMC_NR_NAND_IRQS 2 /* number of NAND specific IRQs */
188
189 enum gpmc_clk_domain {
190 GPMC_CD_FCLK,
191 GPMC_CD_CLK
192 };
193
194 struct gpmc_cs_data {
195 const char *name;
196
197 #define GPMC_CS_RESERVED (1 << 0)
198 u32 flags;
199
200 struct resource mem;
201 };
202
203 /* Structure to save gpmc cs context */
204 struct gpmc_cs_config {
205 u32 config1;
206 u32 config2;
207 u32 config3;
208 u32 config4;
209 u32 config5;
210 u32 config6;
211 u32 config7;
212 int is_valid;
213 };
214
215 /*
216 * Structure to save/restore gpmc context
217 * to support core off on OMAP3
218 */
219 struct omap3_gpmc_regs {
220 u32 sysconfig;
221 u32 irqenable;
222 u32 timeout_ctrl;
223 u32 config;
224 u32 prefetch_config1;
225 u32 prefetch_config2;
226 u32 prefetch_control;
227 struct gpmc_cs_config cs_context[GPMC_CS_NUM];
228 };
229
230 struct gpmc_device {
231 struct device *dev;
232 int irq;
233 struct irq_chip irq_chip;
234 struct gpio_chip gpio_chip;
235 int nirqs;
236 };
237
238 static struct irq_domain *gpmc_irq_domain;
239
240 static struct resource gpmc_mem_root;
241 static struct gpmc_cs_data gpmc_cs[GPMC_CS_NUM];
242 static DEFINE_SPINLOCK(gpmc_mem_lock);
243 /* Define chip-selects as reserved by default until probe completes */
244 static unsigned int gpmc_cs_num = GPMC_CS_NUM;
245 static unsigned int gpmc_nr_waitpins;
246 static unsigned int gpmc_capability;
247 static void __iomem *gpmc_base;
248
249 static struct clk *gpmc_l3_clk;
250
251 static irqreturn_t gpmc_handle_irq(int irq, void *dev);
252
gpmc_write_reg(int idx,u32 val)253 static void gpmc_write_reg(int idx, u32 val)
254 {
255 writel_relaxed(val, gpmc_base + idx);
256 }
257
gpmc_read_reg(int idx)258 static u32 gpmc_read_reg(int idx)
259 {
260 return readl_relaxed(gpmc_base + idx);
261 }
262
gpmc_cs_write_reg(int cs,int idx,u32 val)263 void gpmc_cs_write_reg(int cs, int idx, u32 val)
264 {
265 void __iomem *reg_addr;
266
267 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
268 writel_relaxed(val, reg_addr);
269 }
270
gpmc_cs_read_reg(int cs,int idx)271 static u32 gpmc_cs_read_reg(int cs, int idx)
272 {
273 void __iomem *reg_addr;
274
275 reg_addr = gpmc_base + GPMC_CS0_OFFSET + (cs * GPMC_CS_SIZE) + idx;
276 return readl_relaxed(reg_addr);
277 }
278
279 /* TODO: Add support for gpmc_fck to clock framework and use it */
gpmc_get_fclk_period(void)280 static unsigned long gpmc_get_fclk_period(void)
281 {
282 unsigned long rate = clk_get_rate(gpmc_l3_clk);
283
284 rate /= 1000;
285 rate = 1000000000 / rate; /* In picoseconds */
286
287 return rate;
288 }
289
290 /**
291 * gpmc_get_clk_period - get period of selected clock domain in ps
292 * @cs: Chip Select Region.
293 * @cd: Clock Domain.
294 *
295 * GPMC_CS_CONFIG1 GPMCFCLKDIVIDER for cs has to be setup
296 * prior to calling this function with GPMC_CD_CLK.
297 */
gpmc_get_clk_period(int cs,enum gpmc_clk_domain cd)298 static unsigned long gpmc_get_clk_period(int cs, enum gpmc_clk_domain cd)
299 {
300 unsigned long tick_ps = gpmc_get_fclk_period();
301 u32 l;
302 int div;
303
304 switch (cd) {
305 case GPMC_CD_CLK:
306 /* get current clk divider */
307 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
308 div = (l & 0x03) + 1;
309 /* get GPMC_CLK period */
310 tick_ps *= div;
311 break;
312 case GPMC_CD_FCLK:
313 default:
314 break;
315 }
316
317 return tick_ps;
318 }
319
gpmc_ns_to_clk_ticks(unsigned int time_ns,int cs,enum gpmc_clk_domain cd)320 static unsigned int gpmc_ns_to_clk_ticks(unsigned int time_ns, int cs,
321 enum gpmc_clk_domain cd)
322 {
323 unsigned long tick_ps;
324
325 /* Calculate in picosecs to yield more exact results */
326 tick_ps = gpmc_get_clk_period(cs, cd);
327
328 return (time_ns * 1000 + tick_ps - 1) / tick_ps;
329 }
330
gpmc_ns_to_ticks(unsigned int time_ns)331 static unsigned int gpmc_ns_to_ticks(unsigned int time_ns)
332 {
333 return gpmc_ns_to_clk_ticks(time_ns, /* any CS */ 0, GPMC_CD_FCLK);
334 }
335
gpmc_ps_to_ticks(unsigned int time_ps)336 static unsigned int gpmc_ps_to_ticks(unsigned int time_ps)
337 {
338 unsigned long tick_ps;
339
340 /* Calculate in picosecs to yield more exact results */
341 tick_ps = gpmc_get_fclk_period();
342
343 return (time_ps + tick_ps - 1) / tick_ps;
344 }
345
gpmc_clk_ticks_to_ns(unsigned int ticks,int cs,enum gpmc_clk_domain cd)346 static unsigned int gpmc_clk_ticks_to_ns(unsigned int ticks, int cs,
347 enum gpmc_clk_domain cd)
348 {
349 return ticks * gpmc_get_clk_period(cs, cd) / 1000;
350 }
351
gpmc_ticks_to_ns(unsigned int ticks)352 unsigned int gpmc_ticks_to_ns(unsigned int ticks)
353 {
354 return gpmc_clk_ticks_to_ns(ticks, /* any CS */ 0, GPMC_CD_FCLK);
355 }
356
gpmc_ticks_to_ps(unsigned int ticks)357 static unsigned int gpmc_ticks_to_ps(unsigned int ticks)
358 {
359 return ticks * gpmc_get_fclk_period();
360 }
361
gpmc_round_ps_to_ticks(unsigned int time_ps)362 static unsigned int gpmc_round_ps_to_ticks(unsigned int time_ps)
363 {
364 unsigned long ticks = gpmc_ps_to_ticks(time_ps);
365
366 return ticks * gpmc_get_fclk_period();
367 }
368
gpmc_cs_modify_reg(int cs,int reg,u32 mask,bool value)369 static inline void gpmc_cs_modify_reg(int cs, int reg, u32 mask, bool value)
370 {
371 u32 l;
372
373 l = gpmc_cs_read_reg(cs, reg);
374 if (value)
375 l |= mask;
376 else
377 l &= ~mask;
378 gpmc_cs_write_reg(cs, reg, l);
379 }
380
gpmc_cs_bool_timings(int cs,const struct gpmc_bool_timings * p)381 static void gpmc_cs_bool_timings(int cs, const struct gpmc_bool_timings *p)
382 {
383 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG1,
384 GPMC_CONFIG1_TIME_PARA_GRAN,
385 p->time_para_granularity);
386 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG2,
387 GPMC_CONFIG2_CSEXTRADELAY, p->cs_extra_delay);
388 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG3,
389 GPMC_CONFIG3_ADVEXTRADELAY, p->adv_extra_delay);
390 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
391 GPMC_CONFIG4_OEEXTRADELAY, p->oe_extra_delay);
392 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG4,
393 GPMC_CONFIG4_WEEXTRADELAY, p->we_extra_delay);
394 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
395 GPMC_CONFIG6_CYCLE2CYCLESAMECSEN,
396 p->cycle2cyclesamecsen);
397 gpmc_cs_modify_reg(cs, GPMC_CS_CONFIG6,
398 GPMC_CONFIG6_CYCLE2CYCLEDIFFCSEN,
399 p->cycle2cyclediffcsen);
400 }
401
402 #ifdef CONFIG_OMAP_GPMC_DEBUG
403 /**
404 * get_gpmc_timing_reg - read a timing parameter and print DTS settings for it.
405 * @cs: Chip Select Region
406 * @reg: GPMC_CS_CONFIGn register offset.
407 * @st_bit: Start Bit
408 * @end_bit: End Bit. Must be >= @st_bit.
409 * @max: Maximum parameter value (before optional @shift).
410 * If 0, maximum is as high as @st_bit and @end_bit allow.
411 * @name: DTS node name, w/o "gpmc,"
412 * @cd: Clock Domain of timing parameter.
413 * @shift: Parameter value left shifts @shift, which is then printed instead of value.
414 * @raw: Raw Format Option.
415 * raw format: gpmc,name = <value>
416 * tick format: gpmc,name = <value> /‍* x ns -- y ns; x ticks *‍/
417 * Where x ns -- y ns result in the same tick value.
418 * When @max is exceeded, "invalid" is printed inside comment.
419 * @noval: Parameter values equal to 0 are not printed.
420 * @return: Specified timing parameter (after optional @shift).
421 *
422 */
get_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,const char * name,const enum gpmc_clk_domain cd,int shift,bool raw,bool noval)423 static int get_gpmc_timing_reg(
424 /* timing specifiers */
425 int cs, int reg, int st_bit, int end_bit, int max,
426 const char *name, const enum gpmc_clk_domain cd,
427 /* value transform */
428 int shift,
429 /* format specifiers */
430 bool raw, bool noval)
431 {
432 u32 l;
433 int nr_bits;
434 int mask;
435 bool invalid;
436
437 l = gpmc_cs_read_reg(cs, reg);
438 nr_bits = end_bit - st_bit + 1;
439 mask = (1 << nr_bits) - 1;
440 l = (l >> st_bit) & mask;
441 if (!max)
442 max = mask;
443 invalid = l > max;
444 if (shift)
445 l = (shift << l);
446 if (noval && (l == 0))
447 return 0;
448 if (!raw) {
449 /* DTS tick format for timings in ns */
450 unsigned int time_ns;
451 unsigned int time_ns_min = 0;
452
453 if (l)
454 time_ns_min = gpmc_clk_ticks_to_ns(l - 1, cs, cd) + 1;
455 time_ns = gpmc_clk_ticks_to_ns(l, cs, cd);
456 pr_info("gpmc,%s = <%u>; /* %u ns - %u ns; %i ticks%s*/\n",
457 name, time_ns, time_ns_min, time_ns, l,
458 invalid ? "; invalid " : " ");
459 } else {
460 /* raw format */
461 pr_info("gpmc,%s = <%u>;%s\n", name, l,
462 invalid ? " /* invalid */" : "");
463 }
464
465 return l;
466 }
467
468 #define GPMC_PRINT_CONFIG(cs, config) \
469 pr_info("cs%i %s: 0x%08x\n", cs, #config, \
470 gpmc_cs_read_reg(cs, config))
471 #define GPMC_GET_RAW(reg, st, end, field) \
472 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 0)
473 #define GPMC_GET_RAW_MAX(reg, st, end, max, field) \
474 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, 0, 1, 0)
475 #define GPMC_GET_RAW_BOOL(reg, st, end, field) \
476 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 1, 1)
477 #define GPMC_GET_RAW_SHIFT_MAX(reg, st, end, shift, max, field) \
478 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, GPMC_CD_FCLK, (shift), 1, 1)
479 #define GPMC_GET_TICKS(reg, st, end, field) \
480 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, GPMC_CD_FCLK, 0, 0, 0)
481 #define GPMC_GET_TICKS_CD(reg, st, end, field, cd) \
482 get_gpmc_timing_reg(cs, (reg), (st), (end), 0, field, (cd), 0, 0, 0)
483 #define GPMC_GET_TICKS_CD_MAX(reg, st, end, max, field, cd) \
484 get_gpmc_timing_reg(cs, (reg), (st), (end), (max), field, (cd), 0, 0, 0)
485
gpmc_show_regs(int cs,const char * desc)486 static void gpmc_show_regs(int cs, const char *desc)
487 {
488 pr_info("gpmc cs%i %s:\n", cs, desc);
489 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG1);
490 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG2);
491 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG3);
492 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG4);
493 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG5);
494 GPMC_PRINT_CONFIG(cs, GPMC_CS_CONFIG6);
495 }
496
497 /*
498 * Note that gpmc,wait-pin handing wrongly assumes bit 8 is available,
499 * see commit c9fb809.
500 */
gpmc_cs_show_timings(int cs,const char * desc)501 static void gpmc_cs_show_timings(int cs, const char *desc)
502 {
503 gpmc_show_regs(cs, desc);
504
505 pr_info("gpmc cs%i access configuration:\n", cs);
506 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 4, 4, "time-para-granularity");
507 GPMC_GET_RAW(GPMC_CS_CONFIG1, 8, 9, "mux-add-data");
508 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 12, 13, 1,
509 GPMC_CONFIG1_DEVICESIZE_MAX, "device-width");
510 GPMC_GET_RAW(GPMC_CS_CONFIG1, 16, 17, "wait-pin");
511 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 21, 21, "wait-on-write");
512 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 22, 22, "wait-on-read");
513 GPMC_GET_RAW_SHIFT_MAX(GPMC_CS_CONFIG1, 23, 24, 4,
514 GPMC_CONFIG1_ATTACHEDDEVICEPAGELENGTH_MAX,
515 "burst-length");
516 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 27, 27, "sync-write");
517 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 28, 28, "burst-write");
518 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 29, 29, "gpmc,sync-read");
519 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 30, 30, "burst-read");
520 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG1, 31, 31, "burst-wrap");
521
522 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG2, 7, 7, "cs-extra-delay");
523
524 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG3, 7, 7, "adv-extra-delay");
525
526 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 23, 23, "we-extra-delay");
527 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG4, 7, 7, "oe-extra-delay");
528
529 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 7, 7, "cycle2cycle-samecsen");
530 GPMC_GET_RAW_BOOL(GPMC_CS_CONFIG6, 6, 6, "cycle2cycle-diffcsen");
531
532 pr_info("gpmc cs%i timings configuration:\n", cs);
533 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 0, 3, "cs-on-ns");
534 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 8, 12, "cs-rd-off-ns");
535 GPMC_GET_TICKS(GPMC_CS_CONFIG2, 16, 20, "cs-wr-off-ns");
536
537 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 0, 3, "adv-on-ns");
538 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 8, 12, "adv-rd-off-ns");
539 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 16, 20, "adv-wr-off-ns");
540 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
541 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 4, 6, "adv-aad-mux-on-ns");
542 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 24, 26,
543 "adv-aad-mux-rd-off-ns");
544 GPMC_GET_TICKS(GPMC_CS_CONFIG3, 28, 30,
545 "adv-aad-mux-wr-off-ns");
546 }
547
548 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 0, 3, "oe-on-ns");
549 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 8, 12, "oe-off-ns");
550 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
551 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 4, 6, "oe-aad-mux-on-ns");
552 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 13, 15, "oe-aad-mux-off-ns");
553 }
554 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 16, 19, "we-on-ns");
555 GPMC_GET_TICKS(GPMC_CS_CONFIG4, 24, 28, "we-off-ns");
556
557 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 0, 4, "rd-cycle-ns");
558 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 8, 12, "wr-cycle-ns");
559 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 16, 20, "access-ns");
560
561 GPMC_GET_TICKS(GPMC_CS_CONFIG5, 24, 27, "page-burst-access-ns");
562
563 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 0, 3, "bus-turnaround-ns");
564 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 8, 11, "cycle2cycle-delay-ns");
565
566 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 18, 19,
567 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
568 "wait-monitoring-ns", GPMC_CD_CLK);
569 GPMC_GET_TICKS_CD_MAX(GPMC_CS_CONFIG1, 25, 26,
570 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
571 "clk-activation-ns", GPMC_CD_FCLK);
572
573 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 16, 19, "wr-data-mux-bus-ns");
574 GPMC_GET_TICKS(GPMC_CS_CONFIG6, 24, 28, "wr-access-ns");
575 }
576 #else
gpmc_cs_show_timings(int cs,const char * desc)577 static inline void gpmc_cs_show_timings(int cs, const char *desc)
578 {
579 }
580 #endif
581
582 /**
583 * set_gpmc_timing_reg - set a single timing parameter for Chip Select Region.
584 * Caller is expected to have initialized CONFIG1 GPMCFCLKDIVIDER
585 * prior to calling this function with @cd equal to GPMC_CD_CLK.
586 *
587 * @cs: Chip Select Region.
588 * @reg: GPMC_CS_CONFIGn register offset.
589 * @st_bit: Start Bit
590 * @end_bit: End Bit. Must be >= @st_bit.
591 * @max: Maximum parameter value.
592 * If 0, maximum is as high as @st_bit and @end_bit allow.
593 * @time: Timing parameter in ns.
594 * @cd: Timing parameter clock domain.
595 * @name: Timing parameter name.
596 * @return: 0 on success, -1 on error.
597 */
set_gpmc_timing_reg(int cs,int reg,int st_bit,int end_bit,int max,int time,enum gpmc_clk_domain cd,const char * name)598 static int set_gpmc_timing_reg(int cs, int reg, int st_bit, int end_bit, int max,
599 int time, enum gpmc_clk_domain cd, const char *name)
600 {
601 u32 l;
602 int ticks, mask, nr_bits;
603
604 if (time == 0)
605 ticks = 0;
606 else
607 ticks = gpmc_ns_to_clk_ticks(time, cs, cd);
608 nr_bits = end_bit - st_bit + 1;
609 mask = (1 << nr_bits) - 1;
610
611 if (!max)
612 max = mask;
613
614 if (ticks > max) {
615 pr_err("%s: GPMC CS%d: %s %d ns, %d ticks > %d ticks\n",
616 __func__, cs, name, time, ticks, max);
617
618 return -1;
619 }
620
621 l = gpmc_cs_read_reg(cs, reg);
622 #ifdef CONFIG_OMAP_GPMC_DEBUG
623 pr_info("GPMC CS%d: %-17s: %3d ticks, %3lu ns (was %3i ticks) %3d ns\n",
624 cs, name, ticks, gpmc_get_clk_period(cs, cd) * ticks / 1000,
625 (l >> st_bit) & mask, time);
626 #endif
627 l &= ~(mask << st_bit);
628 l |= ticks << st_bit;
629 gpmc_cs_write_reg(cs, reg, l);
630
631 return 0;
632 }
633
634 /**
635 * gpmc_calc_waitmonitoring_divider - calculate proper GPMCFCLKDIVIDER based on WAITMONITORINGTIME
636 * WAITMONITORINGTIME will be _at least_ as long as desired, i.e.
637 * read --> don't sample bus too early
638 * write --> data is longer on bus
639 *
640 * Formula:
641 * gpmc_clk_div + 1 = ceil(ceil(waitmonitoringtime_ns / gpmc_fclk_ns)
642 * / waitmonitoring_ticks)
643 * WAITMONITORINGTIME resulting in 0 or 1 tick with div = 1 are caught by
644 * div <= 0 check.
645 *
646 * @wait_monitoring: WAITMONITORINGTIME in ns.
647 * @return: -1 on failure to scale, else proper divider > 0.
648 */
gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)649 static int gpmc_calc_waitmonitoring_divider(unsigned int wait_monitoring)
650 {
651 int div = gpmc_ns_to_ticks(wait_monitoring);
652
653 div += GPMC_CONFIG1_WAITMONITORINGTIME_MAX - 1;
654 div /= GPMC_CONFIG1_WAITMONITORINGTIME_MAX;
655
656 if (div > 4)
657 return -1;
658 if (div <= 0)
659 div = 1;
660
661 return div;
662 }
663
664 /**
665 * gpmc_calc_divider - calculate GPMC_FCLK divider for sync_clk GPMC_CLK period.
666 * @sync_clk: GPMC_CLK period in ps.
667 * @return: Returns at least 1 if GPMC_FCLK can be divided to GPMC_CLK.
668 * Else, returns -1.
669 */
gpmc_calc_divider(unsigned int sync_clk)670 int gpmc_calc_divider(unsigned int sync_clk)
671 {
672 int div = gpmc_ps_to_ticks(sync_clk);
673
674 if (div > 4)
675 return -1;
676 if (div <= 0)
677 div = 1;
678
679 return div;
680 }
681
682 /**
683 * gpmc_cs_set_timings - program timing parameters for Chip Select Region.
684 * @cs: Chip Select Region.
685 * @t: GPMC timing parameters.
686 * @s: GPMC timing settings.
687 * @return: 0 on success, -1 on error.
688 */
gpmc_cs_set_timings(int cs,const struct gpmc_timings * t,const struct gpmc_settings * s)689 int gpmc_cs_set_timings(int cs, const struct gpmc_timings *t,
690 const struct gpmc_settings *s)
691 {
692 int div, ret;
693 u32 l;
694
695 div = gpmc_calc_divider(t->sync_clk);
696 if (div < 0)
697 return -EINVAL;
698
699 /*
700 * See if we need to change the divider for waitmonitoringtime.
701 *
702 * Calculate GPMCFCLKDIVIDER independent of gpmc,sync-clk-ps in DT for
703 * pure asynchronous accesses, i.e. both read and write asynchronous.
704 * However, only do so if WAITMONITORINGTIME is actually used, i.e.
705 * either WAITREADMONITORING or WAITWRITEMONITORING is set.
706 *
707 * This statement must not change div to scale async WAITMONITORINGTIME
708 * to protect mixed synchronous and asynchronous accesses.
709 *
710 * We raise an error later if WAITMONITORINGTIME does not fit.
711 */
712 if (!s->sync_read && !s->sync_write &&
713 (s->wait_on_read || s->wait_on_write)
714 ) {
715 div = gpmc_calc_waitmonitoring_divider(t->wait_monitoring);
716 if (div < 0) {
717 pr_err("%s: waitmonitoringtime %3d ns too large for greatest gpmcfclkdivider.\n",
718 __func__,
719 t->wait_monitoring
720 );
721 return -ENXIO;
722 }
723 }
724
725 ret = 0;
726 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 0, 3, 0, t->cs_on,
727 GPMC_CD_FCLK, "cs_on");
728 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 8, 12, 0, t->cs_rd_off,
729 GPMC_CD_FCLK, "cs_rd_off");
730 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG2, 16, 20, 0, t->cs_wr_off,
731 GPMC_CD_FCLK, "cs_wr_off");
732 if (ret)
733 return -ENXIO;
734
735 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 0, 3, 0, t->adv_on,
736 GPMC_CD_FCLK, "adv_on");
737 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 8, 12, 0, t->adv_rd_off,
738 GPMC_CD_FCLK, "adv_rd_off");
739 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 16, 20, 0, t->adv_wr_off,
740 GPMC_CD_FCLK, "adv_wr_off");
741 if (ret)
742 return -ENXIO;
743
744 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
745 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 4, 6, 0,
746 t->adv_aad_mux_on, GPMC_CD_FCLK,
747 "adv_aad_mux_on");
748 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 24, 26, 0,
749 t->adv_aad_mux_rd_off, GPMC_CD_FCLK,
750 "adv_aad_mux_rd_off");
751 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG3, 28, 30, 0,
752 t->adv_aad_mux_wr_off, GPMC_CD_FCLK,
753 "adv_aad_mux_wr_off");
754 if (ret)
755 return -ENXIO;
756 }
757
758 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 0, 3, 0, t->oe_on,
759 GPMC_CD_FCLK, "oe_on");
760 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 8, 12, 0, t->oe_off,
761 GPMC_CD_FCLK, "oe_off");
762 if (gpmc_capability & GPMC_HAS_MUX_AAD) {
763 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 4, 6, 0,
764 t->oe_aad_mux_on, GPMC_CD_FCLK,
765 "oe_aad_mux_on");
766 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 13, 15, 0,
767 t->oe_aad_mux_off, GPMC_CD_FCLK,
768 "oe_aad_mux_off");
769 }
770 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 16, 19, 0, t->we_on,
771 GPMC_CD_FCLK, "we_on");
772 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG4, 24, 28, 0, t->we_off,
773 GPMC_CD_FCLK, "we_off");
774 if (ret)
775 return -ENXIO;
776
777 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 0, 4, 0, t->rd_cycle,
778 GPMC_CD_FCLK, "rd_cycle");
779 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 8, 12, 0, t->wr_cycle,
780 GPMC_CD_FCLK, "wr_cycle");
781 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 16, 20, 0, t->access,
782 GPMC_CD_FCLK, "access");
783 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG5, 24, 27, 0,
784 t->page_burst_access, GPMC_CD_FCLK,
785 "page_burst_access");
786 if (ret)
787 return -ENXIO;
788
789 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 0, 3, 0,
790 t->bus_turnaround, GPMC_CD_FCLK,
791 "bus_turnaround");
792 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 8, 11, 0,
793 t->cycle2cycle_delay, GPMC_CD_FCLK,
794 "cycle2cycle_delay");
795 if (ret)
796 return -ENXIO;
797
798 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS) {
799 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 16, 19, 0,
800 t->wr_data_mux_bus, GPMC_CD_FCLK,
801 "wr_data_mux_bus");
802 if (ret)
803 return -ENXIO;
804 }
805 if (gpmc_capability & GPMC_HAS_WR_ACCESS) {
806 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG6, 24, 28, 0,
807 t->wr_access, GPMC_CD_FCLK,
808 "wr_access");
809 if (ret)
810 return -ENXIO;
811 }
812
813 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG1);
814 l &= ~0x03;
815 l |= (div - 1);
816 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, l);
817
818 ret = 0;
819 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 18, 19,
820 GPMC_CONFIG1_WAITMONITORINGTIME_MAX,
821 t->wait_monitoring, GPMC_CD_CLK,
822 "wait_monitoring");
823 ret |= set_gpmc_timing_reg(cs, GPMC_CS_CONFIG1, 25, 26,
824 GPMC_CONFIG1_CLKACTIVATIONTIME_MAX,
825 t->clk_activation, GPMC_CD_FCLK,
826 "clk_activation");
827 if (ret)
828 return -ENXIO;
829
830 #ifdef CONFIG_OMAP_GPMC_DEBUG
831 pr_info("GPMC CS%d CLK period is %lu ns (div %d)\n",
832 cs, (div * gpmc_get_fclk_period()) / 1000, div);
833 #endif
834
835 gpmc_cs_bool_timings(cs, &t->bool_timings);
836 gpmc_cs_show_timings(cs, "after gpmc_cs_set_timings");
837
838 return 0;
839 }
840
gpmc_cs_set_memconf(int cs,u32 base,u32 size)841 static int gpmc_cs_set_memconf(int cs, u32 base, u32 size)
842 {
843 u32 l;
844 u32 mask;
845
846 /*
847 * Ensure that base address is aligned on a
848 * boundary equal to or greater than size.
849 */
850 if (base & (size - 1))
851 return -EINVAL;
852
853 base >>= GPMC_CHUNK_SHIFT;
854 mask = (1 << GPMC_SECTION_SHIFT) - size;
855 mask >>= GPMC_CHUNK_SHIFT;
856 mask <<= GPMC_CONFIG7_MASKADDRESS_OFFSET;
857
858 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
859 l &= ~GPMC_CONFIG7_MASK;
860 l |= base & GPMC_CONFIG7_BASEADDRESS_MASK;
861 l |= mask & GPMC_CONFIG7_MASKADDRESS_MASK;
862 l |= GPMC_CONFIG7_CSVALID;
863 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
864
865 return 0;
866 }
867
gpmc_cs_enable_mem(int cs)868 static void gpmc_cs_enable_mem(int cs)
869 {
870 u32 l;
871
872 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
873 l |= GPMC_CONFIG7_CSVALID;
874 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
875 }
876
gpmc_cs_disable_mem(int cs)877 static void gpmc_cs_disable_mem(int cs)
878 {
879 u32 l;
880
881 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
882 l &= ~GPMC_CONFIG7_CSVALID;
883 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG7, l);
884 }
885
gpmc_cs_get_memconf(int cs,u32 * base,u32 * size)886 static void gpmc_cs_get_memconf(int cs, u32 *base, u32 *size)
887 {
888 u32 l;
889 u32 mask;
890
891 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
892 *base = (l & 0x3f) << GPMC_CHUNK_SHIFT;
893 mask = (l >> 8) & 0x0f;
894 *size = (1 << GPMC_SECTION_SHIFT) - (mask << GPMC_CHUNK_SHIFT);
895 }
896
gpmc_cs_mem_enabled(int cs)897 static int gpmc_cs_mem_enabled(int cs)
898 {
899 u32 l;
900
901 l = gpmc_cs_read_reg(cs, GPMC_CS_CONFIG7);
902 return l & GPMC_CONFIG7_CSVALID;
903 }
904
gpmc_cs_set_reserved(int cs,int reserved)905 static void gpmc_cs_set_reserved(int cs, int reserved)
906 {
907 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
908
909 gpmc->flags |= GPMC_CS_RESERVED;
910 }
911
gpmc_cs_reserved(int cs)912 static bool gpmc_cs_reserved(int cs)
913 {
914 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
915
916 return gpmc->flags & GPMC_CS_RESERVED;
917 }
918
gpmc_mem_align(unsigned long size)919 static unsigned long gpmc_mem_align(unsigned long size)
920 {
921 int order;
922
923 size = (size - 1) >> (GPMC_CHUNK_SHIFT - 1);
924 order = GPMC_CHUNK_SHIFT - 1;
925 do {
926 size >>= 1;
927 order++;
928 } while (size);
929 size = 1 << order;
930 return size;
931 }
932
gpmc_cs_insert_mem(int cs,unsigned long base,unsigned long size)933 static int gpmc_cs_insert_mem(int cs, unsigned long base, unsigned long size)
934 {
935 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
936 struct resource *res = &gpmc->mem;
937 int r;
938
939 size = gpmc_mem_align(size);
940 spin_lock(&gpmc_mem_lock);
941 res->start = base;
942 res->end = base + size - 1;
943 r = request_resource(&gpmc_mem_root, res);
944 spin_unlock(&gpmc_mem_lock);
945
946 return r;
947 }
948
gpmc_cs_delete_mem(int cs)949 static int gpmc_cs_delete_mem(int cs)
950 {
951 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
952 struct resource *res = &gpmc->mem;
953 int r;
954
955 spin_lock(&gpmc_mem_lock);
956 r = release_resource(res);
957 res->start = 0;
958 res->end = 0;
959 spin_unlock(&gpmc_mem_lock);
960
961 return r;
962 }
963
gpmc_cs_request(int cs,unsigned long size,unsigned long * base)964 int gpmc_cs_request(int cs, unsigned long size, unsigned long *base)
965 {
966 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
967 struct resource *res = &gpmc->mem;
968 int r = -1;
969
970 if (cs >= gpmc_cs_num) {
971 pr_err("%s: requested chip-select is disabled\n", __func__);
972 return -ENODEV;
973 }
974 size = gpmc_mem_align(size);
975 if (size > (1 << GPMC_SECTION_SHIFT))
976 return -ENOMEM;
977
978 spin_lock(&gpmc_mem_lock);
979 if (gpmc_cs_reserved(cs)) {
980 r = -EBUSY;
981 goto out;
982 }
983 if (gpmc_cs_mem_enabled(cs))
984 r = adjust_resource(res, res->start & ~(size - 1), size);
985 if (r < 0)
986 r = allocate_resource(&gpmc_mem_root, res, size, 0, ~0,
987 size, NULL, NULL);
988 if (r < 0)
989 goto out;
990
991 /* Disable CS while changing base address and size mask */
992 gpmc_cs_disable_mem(cs);
993
994 r = gpmc_cs_set_memconf(cs, res->start, resource_size(res));
995 if (r < 0) {
996 release_resource(res);
997 goto out;
998 }
999
1000 /* Enable CS */
1001 gpmc_cs_enable_mem(cs);
1002 *base = res->start;
1003 gpmc_cs_set_reserved(cs, 1);
1004 out:
1005 spin_unlock(&gpmc_mem_lock);
1006 return r;
1007 }
1008 EXPORT_SYMBOL(gpmc_cs_request);
1009
gpmc_cs_free(int cs)1010 void gpmc_cs_free(int cs)
1011 {
1012 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1013 struct resource *res = &gpmc->mem;
1014
1015 spin_lock(&gpmc_mem_lock);
1016 if (cs >= gpmc_cs_num || cs < 0 || !gpmc_cs_reserved(cs)) {
1017 WARN(1, "Trying to free non-reserved GPMC CS%d\n", cs);
1018 spin_unlock(&gpmc_mem_lock);
1019 return;
1020 }
1021 gpmc_cs_disable_mem(cs);
1022 if (res->flags)
1023 release_resource(res);
1024 gpmc_cs_set_reserved(cs, 0);
1025 spin_unlock(&gpmc_mem_lock);
1026 }
1027 EXPORT_SYMBOL(gpmc_cs_free);
1028
1029 /**
1030 * gpmc_configure - write request to configure gpmc
1031 * @cmd: command type
1032 * @wval: value to write
1033 * @return status of the operation
1034 */
gpmc_configure(int cmd,int wval)1035 int gpmc_configure(int cmd, int wval)
1036 {
1037 u32 regval;
1038
1039 switch (cmd) {
1040 case GPMC_CONFIG_WP:
1041 regval = gpmc_read_reg(GPMC_CONFIG);
1042 if (wval)
1043 regval &= ~GPMC_CONFIG_WRITEPROTECT; /* WP is ON */
1044 else
1045 regval |= GPMC_CONFIG_WRITEPROTECT; /* WP is OFF */
1046 gpmc_write_reg(GPMC_CONFIG, regval);
1047 break;
1048
1049 default:
1050 pr_err("%s: command not supported\n", __func__);
1051 return -EINVAL;
1052 }
1053
1054 return 0;
1055 }
1056 EXPORT_SYMBOL(gpmc_configure);
1057
gpmc_nand_writebuffer_empty(void)1058 static bool gpmc_nand_writebuffer_empty(void)
1059 {
1060 if (gpmc_read_reg(GPMC_STATUS) & GPMC_STATUS_EMPTYWRITEBUFFERSTATUS)
1061 return true;
1062
1063 return false;
1064 }
1065
1066 static struct gpmc_nand_ops nand_ops = {
1067 .nand_writebuffer_empty = gpmc_nand_writebuffer_empty,
1068 };
1069
1070 /**
1071 * gpmc_omap_get_nand_ops - Get the GPMC NAND interface
1072 * @reg: the GPMC NAND register map exclusive for NAND use.
1073 * @cs: GPMC chip select number on which the NAND sits. The
1074 * register map returned will be specific to this chip select.
1075 *
1076 * Returns NULL on error e.g. invalid cs.
1077 */
gpmc_omap_get_nand_ops(struct gpmc_nand_regs * reg,int cs)1078 struct gpmc_nand_ops *gpmc_omap_get_nand_ops(struct gpmc_nand_regs *reg, int cs)
1079 {
1080 int i;
1081
1082 if (cs >= gpmc_cs_num)
1083 return NULL;
1084
1085 reg->gpmc_nand_command = gpmc_base + GPMC_CS0_OFFSET +
1086 GPMC_CS_NAND_COMMAND + GPMC_CS_SIZE * cs;
1087 reg->gpmc_nand_address = gpmc_base + GPMC_CS0_OFFSET +
1088 GPMC_CS_NAND_ADDRESS + GPMC_CS_SIZE * cs;
1089 reg->gpmc_nand_data = gpmc_base + GPMC_CS0_OFFSET +
1090 GPMC_CS_NAND_DATA + GPMC_CS_SIZE * cs;
1091 reg->gpmc_prefetch_config1 = gpmc_base + GPMC_PREFETCH_CONFIG1;
1092 reg->gpmc_prefetch_config2 = gpmc_base + GPMC_PREFETCH_CONFIG2;
1093 reg->gpmc_prefetch_control = gpmc_base + GPMC_PREFETCH_CONTROL;
1094 reg->gpmc_prefetch_status = gpmc_base + GPMC_PREFETCH_STATUS;
1095 reg->gpmc_ecc_config = gpmc_base + GPMC_ECC_CONFIG;
1096 reg->gpmc_ecc_control = gpmc_base + GPMC_ECC_CONTROL;
1097 reg->gpmc_ecc_size_config = gpmc_base + GPMC_ECC_SIZE_CONFIG;
1098 reg->gpmc_ecc1_result = gpmc_base + GPMC_ECC1_RESULT;
1099
1100 for (i = 0; i < GPMC_BCH_NUM_REMAINDER; i++) {
1101 reg->gpmc_bch_result0[i] = gpmc_base + GPMC_ECC_BCH_RESULT_0 +
1102 GPMC_BCH_SIZE * i;
1103 reg->gpmc_bch_result1[i] = gpmc_base + GPMC_ECC_BCH_RESULT_1 +
1104 GPMC_BCH_SIZE * i;
1105 reg->gpmc_bch_result2[i] = gpmc_base + GPMC_ECC_BCH_RESULT_2 +
1106 GPMC_BCH_SIZE * i;
1107 reg->gpmc_bch_result3[i] = gpmc_base + GPMC_ECC_BCH_RESULT_3 +
1108 GPMC_BCH_SIZE * i;
1109 reg->gpmc_bch_result4[i] = gpmc_base + GPMC_ECC_BCH_RESULT_4 +
1110 i * GPMC_BCH_SIZE;
1111 reg->gpmc_bch_result5[i] = gpmc_base + GPMC_ECC_BCH_RESULT_5 +
1112 i * GPMC_BCH_SIZE;
1113 reg->gpmc_bch_result6[i] = gpmc_base + GPMC_ECC_BCH_RESULT_6 +
1114 i * GPMC_BCH_SIZE;
1115 }
1116
1117 return &nand_ops;
1118 }
1119 EXPORT_SYMBOL_GPL(gpmc_omap_get_nand_ops);
1120
gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings * t,struct gpmc_settings * s,int freq,int latency)1121 static void gpmc_omap_onenand_calc_sync_timings(struct gpmc_timings *t,
1122 struct gpmc_settings *s,
1123 int freq, int latency)
1124 {
1125 struct gpmc_device_timings dev_t;
1126 const int t_cer = 15;
1127 const int t_avdp = 12;
1128 const int t_cez = 20; /* max of t_cez, t_oez */
1129 const int t_wpl = 40;
1130 const int t_wph = 30;
1131 int min_gpmc_clk_period, t_ces, t_avds, t_avdh, t_ach, t_aavdh, t_rdyo;
1132
1133 switch (freq) {
1134 case 104:
1135 min_gpmc_clk_period = 9600; /* 104 MHz */
1136 t_ces = 3;
1137 t_avds = 4;
1138 t_avdh = 2;
1139 t_ach = 3;
1140 t_aavdh = 6;
1141 t_rdyo = 6;
1142 break;
1143 case 83:
1144 min_gpmc_clk_period = 12000; /* 83 MHz */
1145 t_ces = 5;
1146 t_avds = 4;
1147 t_avdh = 2;
1148 t_ach = 6;
1149 t_aavdh = 6;
1150 t_rdyo = 9;
1151 break;
1152 case 66:
1153 min_gpmc_clk_period = 15000; /* 66 MHz */
1154 t_ces = 6;
1155 t_avds = 5;
1156 t_avdh = 2;
1157 t_ach = 6;
1158 t_aavdh = 6;
1159 t_rdyo = 11;
1160 break;
1161 default:
1162 min_gpmc_clk_period = 18500; /* 54 MHz */
1163 t_ces = 7;
1164 t_avds = 7;
1165 t_avdh = 7;
1166 t_ach = 9;
1167 t_aavdh = 7;
1168 t_rdyo = 15;
1169 break;
1170 }
1171
1172 /* Set synchronous read timings */
1173 memset(&dev_t, 0, sizeof(dev_t));
1174
1175 if (!s->sync_write) {
1176 dev_t.t_avdp_w = max(t_avdp, t_cer) * 1000;
1177 dev_t.t_wpl = t_wpl * 1000;
1178 dev_t.t_wph = t_wph * 1000;
1179 dev_t.t_aavdh = t_aavdh * 1000;
1180 }
1181 dev_t.ce_xdelay = true;
1182 dev_t.avd_xdelay = true;
1183 dev_t.oe_xdelay = true;
1184 dev_t.we_xdelay = true;
1185 dev_t.clk = min_gpmc_clk_period;
1186 dev_t.t_bacc = dev_t.clk;
1187 dev_t.t_ces = t_ces * 1000;
1188 dev_t.t_avds = t_avds * 1000;
1189 dev_t.t_avdh = t_avdh * 1000;
1190 dev_t.t_ach = t_ach * 1000;
1191 dev_t.cyc_iaa = (latency + 1);
1192 dev_t.t_cez_r = t_cez * 1000;
1193 dev_t.t_cez_w = dev_t.t_cez_r;
1194 dev_t.cyc_aavdh_oe = 1;
1195 dev_t.t_rdyo = t_rdyo * 1000 + min_gpmc_clk_period;
1196
1197 gpmc_calc_timings(t, s, &dev_t);
1198 }
1199
gpmc_omap_onenand_set_timings(struct device * dev,int cs,int freq,int latency,struct gpmc_onenand_info * info)1200 int gpmc_omap_onenand_set_timings(struct device *dev, int cs, int freq,
1201 int latency,
1202 struct gpmc_onenand_info *info)
1203 {
1204 int ret;
1205 struct gpmc_timings gpmc_t;
1206 struct gpmc_settings gpmc_s;
1207
1208 gpmc_read_settings_dt(dev->of_node, &gpmc_s);
1209
1210 info->sync_read = gpmc_s.sync_read;
1211 info->sync_write = gpmc_s.sync_write;
1212 info->burst_len = gpmc_s.burst_len;
1213
1214 if (!gpmc_s.sync_read && !gpmc_s.sync_write)
1215 return 0;
1216
1217 gpmc_omap_onenand_calc_sync_timings(&gpmc_t, &gpmc_s, freq, latency);
1218
1219 ret = gpmc_cs_program_settings(cs, &gpmc_s);
1220 if (ret < 0)
1221 return ret;
1222
1223 return gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
1224 }
1225 EXPORT_SYMBOL_GPL(gpmc_omap_onenand_set_timings);
1226
gpmc_get_client_irq(unsigned int irq_config)1227 int gpmc_get_client_irq(unsigned int irq_config)
1228 {
1229 if (!gpmc_irq_domain) {
1230 pr_warn("%s called before GPMC IRQ domain available\n",
1231 __func__);
1232 return 0;
1233 }
1234
1235 /* we restrict this to NAND IRQs only */
1236 if (irq_config >= GPMC_NR_NAND_IRQS)
1237 return 0;
1238
1239 return irq_create_mapping(gpmc_irq_domain, irq_config);
1240 }
1241
gpmc_irq_endis(unsigned long hwirq,bool endis)1242 static int gpmc_irq_endis(unsigned long hwirq, bool endis)
1243 {
1244 u32 regval;
1245
1246 /* bits GPMC_NR_NAND_IRQS to 8 are reserved */
1247 if (hwirq >= GPMC_NR_NAND_IRQS)
1248 hwirq += 8 - GPMC_NR_NAND_IRQS;
1249
1250 regval = gpmc_read_reg(GPMC_IRQENABLE);
1251 if (endis)
1252 regval |= BIT(hwirq);
1253 else
1254 regval &= ~BIT(hwirq);
1255 gpmc_write_reg(GPMC_IRQENABLE, regval);
1256
1257 return 0;
1258 }
1259
gpmc_irq_disable(struct irq_data * p)1260 static void gpmc_irq_disable(struct irq_data *p)
1261 {
1262 gpmc_irq_endis(p->hwirq, false);
1263 }
1264
gpmc_irq_enable(struct irq_data * p)1265 static void gpmc_irq_enable(struct irq_data *p)
1266 {
1267 gpmc_irq_endis(p->hwirq, true);
1268 }
1269
gpmc_irq_mask(struct irq_data * d)1270 static void gpmc_irq_mask(struct irq_data *d)
1271 {
1272 gpmc_irq_endis(d->hwirq, false);
1273 }
1274
gpmc_irq_unmask(struct irq_data * d)1275 static void gpmc_irq_unmask(struct irq_data *d)
1276 {
1277 gpmc_irq_endis(d->hwirq, true);
1278 }
1279
gpmc_irq_edge_config(unsigned long hwirq,bool rising_edge)1280 static void gpmc_irq_edge_config(unsigned long hwirq, bool rising_edge)
1281 {
1282 u32 regval;
1283
1284 /* NAND IRQs polarity is not configurable */
1285 if (hwirq < GPMC_NR_NAND_IRQS)
1286 return;
1287
1288 /* WAITPIN starts at BIT 8 */
1289 hwirq += 8 - GPMC_NR_NAND_IRQS;
1290
1291 regval = gpmc_read_reg(GPMC_CONFIG);
1292 if (rising_edge)
1293 regval &= ~BIT(hwirq);
1294 else
1295 regval |= BIT(hwirq);
1296
1297 gpmc_write_reg(GPMC_CONFIG, regval);
1298 }
1299
gpmc_irq_ack(struct irq_data * d)1300 static void gpmc_irq_ack(struct irq_data *d)
1301 {
1302 unsigned int hwirq = d->hwirq;
1303
1304 /* skip reserved bits */
1305 if (hwirq >= GPMC_NR_NAND_IRQS)
1306 hwirq += 8 - GPMC_NR_NAND_IRQS;
1307
1308 /* Setting bit to 1 clears (or Acks) the interrupt */
1309 gpmc_write_reg(GPMC_IRQSTATUS, BIT(hwirq));
1310 }
1311
gpmc_irq_set_type(struct irq_data * d,unsigned int trigger)1312 static int gpmc_irq_set_type(struct irq_data *d, unsigned int trigger)
1313 {
1314 /* can't set type for NAND IRQs */
1315 if (d->hwirq < GPMC_NR_NAND_IRQS)
1316 return -EINVAL;
1317
1318 /* We can support either rising or falling edge at a time */
1319 if (trigger == IRQ_TYPE_EDGE_FALLING)
1320 gpmc_irq_edge_config(d->hwirq, false);
1321 else if (trigger == IRQ_TYPE_EDGE_RISING)
1322 gpmc_irq_edge_config(d->hwirq, true);
1323 else
1324 return -EINVAL;
1325
1326 return 0;
1327 }
1328
gpmc_irq_map(struct irq_domain * d,unsigned int virq,irq_hw_number_t hw)1329 static int gpmc_irq_map(struct irq_domain *d, unsigned int virq,
1330 irq_hw_number_t hw)
1331 {
1332 struct gpmc_device *gpmc = d->host_data;
1333
1334 irq_set_chip_data(virq, gpmc);
1335 if (hw < GPMC_NR_NAND_IRQS) {
1336 irq_modify_status(virq, IRQ_NOREQUEST, IRQ_NOAUTOEN);
1337 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1338 handle_simple_irq);
1339 } else {
1340 irq_set_chip_and_handler(virq, &gpmc->irq_chip,
1341 handle_edge_irq);
1342 }
1343
1344 return 0;
1345 }
1346
1347 static const struct irq_domain_ops gpmc_irq_domain_ops = {
1348 .map = gpmc_irq_map,
1349 .xlate = irq_domain_xlate_twocell,
1350 };
1351
gpmc_handle_irq(int irq,void * data)1352 static irqreturn_t gpmc_handle_irq(int irq, void *data)
1353 {
1354 int hwirq, virq;
1355 u32 regval, regvalx;
1356 struct gpmc_device *gpmc = data;
1357
1358 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1359 regvalx = regval;
1360
1361 if (!regval)
1362 return IRQ_NONE;
1363
1364 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++) {
1365 /* skip reserved status bits */
1366 if (hwirq == GPMC_NR_NAND_IRQS)
1367 regvalx >>= 8 - GPMC_NR_NAND_IRQS;
1368
1369 if (regvalx & BIT(hwirq)) {
1370 virq = irq_find_mapping(gpmc_irq_domain, hwirq);
1371 if (!virq) {
1372 dev_warn(gpmc->dev,
1373 "spurious irq detected hwirq %d, virq %d\n",
1374 hwirq, virq);
1375 }
1376
1377 generic_handle_irq(virq);
1378 }
1379 }
1380
1381 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1382
1383 return IRQ_HANDLED;
1384 }
1385
gpmc_setup_irq(struct gpmc_device * gpmc)1386 static int gpmc_setup_irq(struct gpmc_device *gpmc)
1387 {
1388 u32 regval;
1389 int rc;
1390
1391 /* Disable interrupts */
1392 gpmc_write_reg(GPMC_IRQENABLE, 0);
1393
1394 /* clear interrupts */
1395 regval = gpmc_read_reg(GPMC_IRQSTATUS);
1396 gpmc_write_reg(GPMC_IRQSTATUS, regval);
1397
1398 gpmc->irq_chip.name = "gpmc";
1399 gpmc->irq_chip.irq_enable = gpmc_irq_enable;
1400 gpmc->irq_chip.irq_disable = gpmc_irq_disable;
1401 gpmc->irq_chip.irq_ack = gpmc_irq_ack;
1402 gpmc->irq_chip.irq_mask = gpmc_irq_mask;
1403 gpmc->irq_chip.irq_unmask = gpmc_irq_unmask;
1404 gpmc->irq_chip.irq_set_type = gpmc_irq_set_type;
1405
1406 gpmc_irq_domain = irq_domain_add_linear(gpmc->dev->of_node,
1407 gpmc->nirqs,
1408 &gpmc_irq_domain_ops,
1409 gpmc);
1410 if (!gpmc_irq_domain) {
1411 dev_err(gpmc->dev, "IRQ domain add failed\n");
1412 return -ENODEV;
1413 }
1414
1415 rc = request_irq(gpmc->irq, gpmc_handle_irq, 0, "gpmc", gpmc);
1416 if (rc) {
1417 dev_err(gpmc->dev, "failed to request irq %d: %d\n",
1418 gpmc->irq, rc);
1419 irq_domain_remove(gpmc_irq_domain);
1420 gpmc_irq_domain = NULL;
1421 }
1422
1423 return rc;
1424 }
1425
gpmc_free_irq(struct gpmc_device * gpmc)1426 static int gpmc_free_irq(struct gpmc_device *gpmc)
1427 {
1428 int hwirq;
1429
1430 free_irq(gpmc->irq, gpmc);
1431
1432 for (hwirq = 0; hwirq < gpmc->nirqs; hwirq++)
1433 irq_dispose_mapping(irq_find_mapping(gpmc_irq_domain, hwirq));
1434
1435 irq_domain_remove(gpmc_irq_domain);
1436 gpmc_irq_domain = NULL;
1437
1438 return 0;
1439 }
1440
gpmc_mem_exit(void)1441 static void gpmc_mem_exit(void)
1442 {
1443 int cs;
1444
1445 for (cs = 0; cs < gpmc_cs_num; cs++) {
1446 if (!gpmc_cs_mem_enabled(cs))
1447 continue;
1448 gpmc_cs_delete_mem(cs);
1449 }
1450 }
1451
gpmc_mem_init(void)1452 static void gpmc_mem_init(void)
1453 {
1454 int cs;
1455
1456 gpmc_mem_root.start = GPMC_MEM_START;
1457 gpmc_mem_root.end = GPMC_MEM_END;
1458
1459 /* Reserve all regions that has been set up by bootloader */
1460 for (cs = 0; cs < gpmc_cs_num; cs++) {
1461 u32 base, size;
1462
1463 if (!gpmc_cs_mem_enabled(cs))
1464 continue;
1465 gpmc_cs_get_memconf(cs, &base, &size);
1466 if (gpmc_cs_insert_mem(cs, base, size)) {
1467 pr_warn("%s: disabling cs %d mapped at 0x%x-0x%x\n",
1468 __func__, cs, base, base + size);
1469 gpmc_cs_disable_mem(cs);
1470 }
1471 }
1472 }
1473
gpmc_round_ps_to_sync_clk(u32 time_ps,u32 sync_clk)1474 static u32 gpmc_round_ps_to_sync_clk(u32 time_ps, u32 sync_clk)
1475 {
1476 u32 temp;
1477 int div;
1478
1479 div = gpmc_calc_divider(sync_clk);
1480 temp = gpmc_ps_to_ticks(time_ps);
1481 temp = (temp + div - 1) / div;
1482 return gpmc_ticks_to_ps(temp * div);
1483 }
1484
1485 /* XXX: can the cycles be avoided ? */
gpmc_calc_sync_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1486 static int gpmc_calc_sync_read_timings(struct gpmc_timings *gpmc_t,
1487 struct gpmc_device_timings *dev_t,
1488 bool mux)
1489 {
1490 u32 temp;
1491
1492 /* adv_rd_off */
1493 temp = dev_t->t_avdp_r;
1494 /* XXX: mux check required ? */
1495 if (mux) {
1496 /* XXX: t_avdp not to be required for sync, only added for tusb
1497 * this indirectly necessitates requirement of t_avdp_r and
1498 * t_avdp_w instead of having a single t_avdp
1499 */
1500 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_avdh);
1501 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1502 }
1503 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1504
1505 /* oe_on */
1506 temp = dev_t->t_oeasu; /* XXX: remove this ? */
1507 if (mux) {
1508 temp = max_t(u32, temp, gpmc_t->clk_activation + dev_t->t_ach);
1509 temp = max_t(u32, temp, gpmc_t->adv_rd_off +
1510 gpmc_ticks_to_ps(dev_t->cyc_aavdh_oe));
1511 }
1512 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1513
1514 /* access */
1515 /* XXX: any scope for improvement ?, by combining oe_on
1516 * and clk_activation, need to check whether
1517 * access = clk_activation + round to sync clk ?
1518 */
1519 temp = max_t(u32, dev_t->t_iaa, dev_t->cyc_iaa * gpmc_t->sync_clk);
1520 temp += gpmc_t->clk_activation;
1521 if (dev_t->cyc_oe)
1522 temp = max_t(u32, temp, gpmc_t->oe_on +
1523 gpmc_ticks_to_ps(dev_t->cyc_oe));
1524 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1525
1526 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1527 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1528
1529 /* rd_cycle */
1530 temp = max_t(u32, dev_t->t_cez_r, dev_t->t_oez);
1531 temp = gpmc_round_ps_to_sync_clk(temp, gpmc_t->sync_clk) +
1532 gpmc_t->access;
1533 /* XXX: barter t_ce_rdyz with t_cez_r ? */
1534 if (dev_t->t_ce_rdyz)
1535 temp = max_t(u32, temp, gpmc_t->cs_rd_off + dev_t->t_ce_rdyz);
1536 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1537
1538 return 0;
1539 }
1540
gpmc_calc_sync_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1541 static int gpmc_calc_sync_write_timings(struct gpmc_timings *gpmc_t,
1542 struct gpmc_device_timings *dev_t,
1543 bool mux)
1544 {
1545 u32 temp;
1546
1547 /* adv_wr_off */
1548 temp = dev_t->t_avdp_w;
1549 if (mux) {
1550 temp = max_t(u32, temp,
1551 gpmc_t->clk_activation + dev_t->t_avdh);
1552 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1553 }
1554 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1555
1556 /* wr_data_mux_bus */
1557 temp = max_t(u32, dev_t->t_weasu,
1558 gpmc_t->clk_activation + dev_t->t_rdyo);
1559 /* XXX: shouldn't mux be kept as a whole for wr_data_mux_bus ?,
1560 * and in that case remember to handle we_on properly
1561 */
1562 if (mux) {
1563 temp = max_t(u32, temp,
1564 gpmc_t->adv_wr_off + dev_t->t_aavdh);
1565 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1566 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1567 }
1568 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1569
1570 /* we_on */
1571 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1572 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1573 else
1574 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1575
1576 /* wr_access */
1577 /* XXX: gpmc_capability check reqd ? , even if not, will not harm */
1578 gpmc_t->wr_access = gpmc_t->access;
1579
1580 /* we_off */
1581 temp = gpmc_t->we_on + dev_t->t_wpl;
1582 temp = max_t(u32, temp,
1583 gpmc_t->wr_access + gpmc_ticks_to_ps(1));
1584 temp = max_t(u32, temp,
1585 gpmc_t->we_on + gpmc_ticks_to_ps(dev_t->cyc_wpl));
1586 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1587
1588 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1589 dev_t->t_wph);
1590
1591 /* wr_cycle */
1592 temp = gpmc_round_ps_to_sync_clk(dev_t->t_cez_w, gpmc_t->sync_clk);
1593 temp += gpmc_t->wr_access;
1594 /* XXX: barter t_ce_rdyz with t_cez_w ? */
1595 if (dev_t->t_ce_rdyz)
1596 temp = max_t(u32, temp,
1597 gpmc_t->cs_wr_off + dev_t->t_ce_rdyz);
1598 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1599
1600 return 0;
1601 }
1602
gpmc_calc_async_read_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1603 static int gpmc_calc_async_read_timings(struct gpmc_timings *gpmc_t,
1604 struct gpmc_device_timings *dev_t,
1605 bool mux)
1606 {
1607 u32 temp;
1608
1609 /* adv_rd_off */
1610 temp = dev_t->t_avdp_r;
1611 if (mux)
1612 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1613 gpmc_t->adv_rd_off = gpmc_round_ps_to_ticks(temp);
1614
1615 /* oe_on */
1616 temp = dev_t->t_oeasu;
1617 if (mux)
1618 temp = max_t(u32, temp, gpmc_t->adv_rd_off + dev_t->t_aavdh);
1619 gpmc_t->oe_on = gpmc_round_ps_to_ticks(temp);
1620
1621 /* access */
1622 temp = max_t(u32, dev_t->t_iaa, /* XXX: remove t_iaa in async ? */
1623 gpmc_t->oe_on + dev_t->t_oe);
1624 temp = max_t(u32, temp, gpmc_t->cs_on + dev_t->t_ce);
1625 temp = max_t(u32, temp, gpmc_t->adv_on + dev_t->t_aa);
1626 gpmc_t->access = gpmc_round_ps_to_ticks(temp);
1627
1628 gpmc_t->oe_off = gpmc_t->access + gpmc_ticks_to_ps(1);
1629 gpmc_t->cs_rd_off = gpmc_t->oe_off;
1630
1631 /* rd_cycle */
1632 temp = max_t(u32, dev_t->t_rd_cycle,
1633 gpmc_t->cs_rd_off + dev_t->t_cez_r);
1634 temp = max_t(u32, temp, gpmc_t->oe_off + dev_t->t_oez);
1635 gpmc_t->rd_cycle = gpmc_round_ps_to_ticks(temp);
1636
1637 return 0;
1638 }
1639
gpmc_calc_async_write_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool mux)1640 static int gpmc_calc_async_write_timings(struct gpmc_timings *gpmc_t,
1641 struct gpmc_device_timings *dev_t,
1642 bool mux)
1643 {
1644 u32 temp;
1645
1646 /* adv_wr_off */
1647 temp = dev_t->t_avdp_w;
1648 if (mux)
1649 temp = max_t(u32, gpmc_t->adv_on + gpmc_ticks_to_ps(1), temp);
1650 gpmc_t->adv_wr_off = gpmc_round_ps_to_ticks(temp);
1651
1652 /* wr_data_mux_bus */
1653 temp = dev_t->t_weasu;
1654 if (mux) {
1655 temp = max_t(u32, temp, gpmc_t->adv_wr_off + dev_t->t_aavdh);
1656 temp = max_t(u32, temp, gpmc_t->adv_wr_off +
1657 gpmc_ticks_to_ps(dev_t->cyc_aavdh_we));
1658 }
1659 gpmc_t->wr_data_mux_bus = gpmc_round_ps_to_ticks(temp);
1660
1661 /* we_on */
1662 if (gpmc_capability & GPMC_HAS_WR_DATA_MUX_BUS)
1663 gpmc_t->we_on = gpmc_round_ps_to_ticks(dev_t->t_weasu);
1664 else
1665 gpmc_t->we_on = gpmc_t->wr_data_mux_bus;
1666
1667 /* we_off */
1668 temp = gpmc_t->we_on + dev_t->t_wpl;
1669 gpmc_t->we_off = gpmc_round_ps_to_ticks(temp);
1670
1671 gpmc_t->cs_wr_off = gpmc_round_ps_to_ticks(gpmc_t->we_off +
1672 dev_t->t_wph);
1673
1674 /* wr_cycle */
1675 temp = max_t(u32, dev_t->t_wr_cycle,
1676 gpmc_t->cs_wr_off + dev_t->t_cez_w);
1677 gpmc_t->wr_cycle = gpmc_round_ps_to_ticks(temp);
1678
1679 return 0;
1680 }
1681
gpmc_calc_sync_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t)1682 static int gpmc_calc_sync_common_timings(struct gpmc_timings *gpmc_t,
1683 struct gpmc_device_timings *dev_t)
1684 {
1685 u32 temp;
1686
1687 gpmc_t->sync_clk = gpmc_calc_divider(dev_t->clk) *
1688 gpmc_get_fclk_period();
1689
1690 gpmc_t->page_burst_access = gpmc_round_ps_to_sync_clk(
1691 dev_t->t_bacc,
1692 gpmc_t->sync_clk);
1693
1694 temp = max_t(u32, dev_t->t_ces, dev_t->t_avds);
1695 gpmc_t->clk_activation = gpmc_round_ps_to_ticks(temp);
1696
1697 if (gpmc_calc_divider(gpmc_t->sync_clk) != 1)
1698 return 0;
1699
1700 if (dev_t->ce_xdelay)
1701 gpmc_t->bool_timings.cs_extra_delay = true;
1702 if (dev_t->avd_xdelay)
1703 gpmc_t->bool_timings.adv_extra_delay = true;
1704 if (dev_t->oe_xdelay)
1705 gpmc_t->bool_timings.oe_extra_delay = true;
1706 if (dev_t->we_xdelay)
1707 gpmc_t->bool_timings.we_extra_delay = true;
1708
1709 return 0;
1710 }
1711
gpmc_calc_common_timings(struct gpmc_timings * gpmc_t,struct gpmc_device_timings * dev_t,bool sync)1712 static int gpmc_calc_common_timings(struct gpmc_timings *gpmc_t,
1713 struct gpmc_device_timings *dev_t,
1714 bool sync)
1715 {
1716 u32 temp;
1717
1718 /* cs_on */
1719 gpmc_t->cs_on = gpmc_round_ps_to_ticks(dev_t->t_ceasu);
1720
1721 /* adv_on */
1722 temp = dev_t->t_avdasu;
1723 if (dev_t->t_ce_avd)
1724 temp = max_t(u32, temp,
1725 gpmc_t->cs_on + dev_t->t_ce_avd);
1726 gpmc_t->adv_on = gpmc_round_ps_to_ticks(temp);
1727
1728 if (sync)
1729 gpmc_calc_sync_common_timings(gpmc_t, dev_t);
1730
1731 return 0;
1732 }
1733
1734 /*
1735 * TODO: remove this function once all peripherals are confirmed to
1736 * work with generic timing. Simultaneously gpmc_cs_set_timings()
1737 * has to be modified to handle timings in ps instead of ns
1738 */
gpmc_convert_ps_to_ns(struct gpmc_timings * t)1739 static void gpmc_convert_ps_to_ns(struct gpmc_timings *t)
1740 {
1741 t->cs_on /= 1000;
1742 t->cs_rd_off /= 1000;
1743 t->cs_wr_off /= 1000;
1744 t->adv_on /= 1000;
1745 t->adv_rd_off /= 1000;
1746 t->adv_wr_off /= 1000;
1747 t->we_on /= 1000;
1748 t->we_off /= 1000;
1749 t->oe_on /= 1000;
1750 t->oe_off /= 1000;
1751 t->page_burst_access /= 1000;
1752 t->access /= 1000;
1753 t->rd_cycle /= 1000;
1754 t->wr_cycle /= 1000;
1755 t->bus_turnaround /= 1000;
1756 t->cycle2cycle_delay /= 1000;
1757 t->wait_monitoring /= 1000;
1758 t->clk_activation /= 1000;
1759 t->wr_access /= 1000;
1760 t->wr_data_mux_bus /= 1000;
1761 }
1762
gpmc_calc_timings(struct gpmc_timings * gpmc_t,struct gpmc_settings * gpmc_s,struct gpmc_device_timings * dev_t)1763 int gpmc_calc_timings(struct gpmc_timings *gpmc_t,
1764 struct gpmc_settings *gpmc_s,
1765 struct gpmc_device_timings *dev_t)
1766 {
1767 bool mux = false, sync = false;
1768
1769 if (gpmc_s) {
1770 mux = gpmc_s->mux_add_data ? true : false;
1771 sync = (gpmc_s->sync_read || gpmc_s->sync_write);
1772 }
1773
1774 memset(gpmc_t, 0, sizeof(*gpmc_t));
1775
1776 gpmc_calc_common_timings(gpmc_t, dev_t, sync);
1777
1778 if (gpmc_s && gpmc_s->sync_read)
1779 gpmc_calc_sync_read_timings(gpmc_t, dev_t, mux);
1780 else
1781 gpmc_calc_async_read_timings(gpmc_t, dev_t, mux);
1782
1783 if (gpmc_s && gpmc_s->sync_write)
1784 gpmc_calc_sync_write_timings(gpmc_t, dev_t, mux);
1785 else
1786 gpmc_calc_async_write_timings(gpmc_t, dev_t, mux);
1787
1788 /* TODO: remove, see function definition */
1789 gpmc_convert_ps_to_ns(gpmc_t);
1790
1791 return 0;
1792 }
1793
1794 /**
1795 * gpmc_cs_program_settings - programs non-timing related settings
1796 * @cs: GPMC chip-select to program
1797 * @p: pointer to GPMC settings structure
1798 *
1799 * Programs non-timing related settings for a GPMC chip-select, such as
1800 * bus-width, burst configuration, etc. Function should be called once
1801 * for each chip-select that is being used and must be called before
1802 * calling gpmc_cs_set_timings() as timing parameters in the CONFIG1
1803 * register will be initialised to zero by this function. Returns 0 on
1804 * success and appropriate negative error code on failure.
1805 */
gpmc_cs_program_settings(int cs,struct gpmc_settings * p)1806 int gpmc_cs_program_settings(int cs, struct gpmc_settings *p)
1807 {
1808 u32 config1;
1809
1810 if ((!p->device_width) || (p->device_width > GPMC_DEVWIDTH_16BIT)) {
1811 pr_err("%s: invalid width %d!", __func__, p->device_width);
1812 return -EINVAL;
1813 }
1814
1815 /* Address-data multiplexing not supported for NAND devices */
1816 if (p->device_nand && p->mux_add_data) {
1817 pr_err("%s: invalid configuration!\n", __func__);
1818 return -EINVAL;
1819 }
1820
1821 if ((p->mux_add_data > GPMC_MUX_AD) ||
1822 ((p->mux_add_data == GPMC_MUX_AAD) &&
1823 !(gpmc_capability & GPMC_HAS_MUX_AAD))) {
1824 pr_err("%s: invalid multiplex configuration!\n", __func__);
1825 return -EINVAL;
1826 }
1827
1828 /* Page/burst mode supports lengths of 4, 8 and 16 bytes */
1829 if (p->burst_read || p->burst_write) {
1830 switch (p->burst_len) {
1831 case GPMC_BURST_4:
1832 case GPMC_BURST_8:
1833 case GPMC_BURST_16:
1834 break;
1835 default:
1836 pr_err("%s: invalid page/burst-length (%d)\n",
1837 __func__, p->burst_len);
1838 return -EINVAL;
1839 }
1840 }
1841
1842 if (p->wait_pin > gpmc_nr_waitpins) {
1843 pr_err("%s: invalid wait-pin (%d)\n", __func__, p->wait_pin);
1844 return -EINVAL;
1845 }
1846
1847 config1 = GPMC_CONFIG1_DEVICESIZE((p->device_width - 1));
1848
1849 if (p->sync_read)
1850 config1 |= GPMC_CONFIG1_READTYPE_SYNC;
1851 if (p->sync_write)
1852 config1 |= GPMC_CONFIG1_WRITETYPE_SYNC;
1853 if (p->wait_on_read)
1854 config1 |= GPMC_CONFIG1_WAIT_READ_MON;
1855 if (p->wait_on_write)
1856 config1 |= GPMC_CONFIG1_WAIT_WRITE_MON;
1857 if (p->wait_on_read || p->wait_on_write)
1858 config1 |= GPMC_CONFIG1_WAIT_PIN_SEL(p->wait_pin);
1859 if (p->device_nand)
1860 config1 |= GPMC_CONFIG1_DEVICETYPE(GPMC_DEVICETYPE_NAND);
1861 if (p->mux_add_data)
1862 config1 |= GPMC_CONFIG1_MUXTYPE(p->mux_add_data);
1863 if (p->burst_read)
1864 config1 |= GPMC_CONFIG1_READMULTIPLE_SUPP;
1865 if (p->burst_write)
1866 config1 |= GPMC_CONFIG1_WRITEMULTIPLE_SUPP;
1867 if (p->burst_read || p->burst_write) {
1868 config1 |= GPMC_CONFIG1_PAGE_LEN(p->burst_len >> 3);
1869 config1 |= p->burst_wrap ? GPMC_CONFIG1_WRAPBURST_SUPP : 0;
1870 }
1871
1872 gpmc_cs_write_reg(cs, GPMC_CS_CONFIG1, config1);
1873
1874 return 0;
1875 }
1876
1877 #ifdef CONFIG_OF
1878 static const struct of_device_id gpmc_dt_ids[] = {
1879 { .compatible = "ti,omap2420-gpmc" },
1880 { .compatible = "ti,omap2430-gpmc" },
1881 { .compatible = "ti,omap3430-gpmc" }, /* omap3430 & omap3630 */
1882 { .compatible = "ti,omap4430-gpmc" }, /* omap4430 & omap4460 & omap543x */
1883 { .compatible = "ti,am3352-gpmc" }, /* am335x devices */
1884 { }
1885 };
1886
gpmc_cs_set_name(int cs,const char * name)1887 static void gpmc_cs_set_name(int cs, const char *name)
1888 {
1889 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1890
1891 gpmc->name = name;
1892 }
1893
gpmc_cs_get_name(int cs)1894 static const char *gpmc_cs_get_name(int cs)
1895 {
1896 struct gpmc_cs_data *gpmc = &gpmc_cs[cs];
1897
1898 return gpmc->name;
1899 }
1900
1901 /**
1902 * gpmc_cs_remap - remaps a chip-select physical base address
1903 * @cs: chip-select to remap
1904 * @base: physical base address to re-map chip-select to
1905 *
1906 * Re-maps a chip-select to a new physical base address specified by
1907 * "base". Returns 0 on success and appropriate negative error code
1908 * on failure.
1909 */
gpmc_cs_remap(int cs,u32 base)1910 static int gpmc_cs_remap(int cs, u32 base)
1911 {
1912 int ret;
1913 u32 old_base, size;
1914
1915 if (cs >= gpmc_cs_num) {
1916 pr_err("%s: requested chip-select is disabled\n", __func__);
1917 return -ENODEV;
1918 }
1919
1920 /*
1921 * Make sure we ignore any device offsets from the GPMC partition
1922 * allocated for the chip select and that the new base confirms
1923 * to the GPMC 16MB minimum granularity.
1924 */
1925 base &= ~(SZ_16M - 1);
1926
1927 gpmc_cs_get_memconf(cs, &old_base, &size);
1928 if (base == old_base)
1929 return 0;
1930
1931 ret = gpmc_cs_delete_mem(cs);
1932 if (ret < 0)
1933 return ret;
1934
1935 ret = gpmc_cs_insert_mem(cs, base, size);
1936 if (ret < 0)
1937 return ret;
1938
1939 ret = gpmc_cs_set_memconf(cs, base, size);
1940
1941 return ret;
1942 }
1943
1944 /**
1945 * gpmc_read_settings_dt - read gpmc settings from device-tree
1946 * @np: pointer to device-tree node for a gpmc child device
1947 * @p: pointer to gpmc settings structure
1948 *
1949 * Reads the GPMC settings for a GPMC child device from device-tree and
1950 * stores them in the GPMC settings structure passed. The GPMC settings
1951 * structure is initialised to zero by this function and so any
1952 * previously stored settings will be cleared.
1953 */
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)1954 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
1955 {
1956 memset(p, 0, sizeof(struct gpmc_settings));
1957
1958 p->sync_read = of_property_read_bool(np, "gpmc,sync-read");
1959 p->sync_write = of_property_read_bool(np, "gpmc,sync-write");
1960 of_property_read_u32(np, "gpmc,device-width", &p->device_width);
1961 of_property_read_u32(np, "gpmc,mux-add-data", &p->mux_add_data);
1962
1963 if (!of_property_read_u32(np, "gpmc,burst-length", &p->burst_len)) {
1964 p->burst_wrap = of_property_read_bool(np, "gpmc,burst-wrap");
1965 p->burst_read = of_property_read_bool(np, "gpmc,burst-read");
1966 p->burst_write = of_property_read_bool(np, "gpmc,burst-write");
1967 if (!p->burst_read && !p->burst_write)
1968 pr_warn("%s: page/burst-length set but not used!\n",
1969 __func__);
1970 }
1971
1972 if (!of_property_read_u32(np, "gpmc,wait-pin", &p->wait_pin)) {
1973 p->wait_on_read = of_property_read_bool(np,
1974 "gpmc,wait-on-read");
1975 p->wait_on_write = of_property_read_bool(np,
1976 "gpmc,wait-on-write");
1977 if (!p->wait_on_read && !p->wait_on_write)
1978 pr_debug("%s: rd/wr wait monitoring not enabled!\n",
1979 __func__);
1980 }
1981 }
1982
gpmc_read_timings_dt(struct device_node * np,struct gpmc_timings * gpmc_t)1983 static void __maybe_unused gpmc_read_timings_dt(struct device_node *np,
1984 struct gpmc_timings *gpmc_t)
1985 {
1986 struct gpmc_bool_timings *p;
1987
1988 if (!np || !gpmc_t)
1989 return;
1990
1991 memset(gpmc_t, 0, sizeof(*gpmc_t));
1992
1993 /* minimum clock period for syncronous mode */
1994 of_property_read_u32(np, "gpmc,sync-clk-ps", &gpmc_t->sync_clk);
1995
1996 /* chip select timtings */
1997 of_property_read_u32(np, "gpmc,cs-on-ns", &gpmc_t->cs_on);
1998 of_property_read_u32(np, "gpmc,cs-rd-off-ns", &gpmc_t->cs_rd_off);
1999 of_property_read_u32(np, "gpmc,cs-wr-off-ns", &gpmc_t->cs_wr_off);
2000
2001 /* ADV signal timings */
2002 of_property_read_u32(np, "gpmc,adv-on-ns", &gpmc_t->adv_on);
2003 of_property_read_u32(np, "gpmc,adv-rd-off-ns", &gpmc_t->adv_rd_off);
2004 of_property_read_u32(np, "gpmc,adv-wr-off-ns", &gpmc_t->adv_wr_off);
2005 of_property_read_u32(np, "gpmc,adv-aad-mux-on-ns",
2006 &gpmc_t->adv_aad_mux_on);
2007 of_property_read_u32(np, "gpmc,adv-aad-mux-rd-off-ns",
2008 &gpmc_t->adv_aad_mux_rd_off);
2009 of_property_read_u32(np, "gpmc,adv-aad-mux-wr-off-ns",
2010 &gpmc_t->adv_aad_mux_wr_off);
2011
2012 /* WE signal timings */
2013 of_property_read_u32(np, "gpmc,we-on-ns", &gpmc_t->we_on);
2014 of_property_read_u32(np, "gpmc,we-off-ns", &gpmc_t->we_off);
2015
2016 /* OE signal timings */
2017 of_property_read_u32(np, "gpmc,oe-on-ns", &gpmc_t->oe_on);
2018 of_property_read_u32(np, "gpmc,oe-off-ns", &gpmc_t->oe_off);
2019 of_property_read_u32(np, "gpmc,oe-aad-mux-on-ns",
2020 &gpmc_t->oe_aad_mux_on);
2021 of_property_read_u32(np, "gpmc,oe-aad-mux-off-ns",
2022 &gpmc_t->oe_aad_mux_off);
2023
2024 /* access and cycle timings */
2025 of_property_read_u32(np, "gpmc,page-burst-access-ns",
2026 &gpmc_t->page_burst_access);
2027 of_property_read_u32(np, "gpmc,access-ns", &gpmc_t->access);
2028 of_property_read_u32(np, "gpmc,rd-cycle-ns", &gpmc_t->rd_cycle);
2029 of_property_read_u32(np, "gpmc,wr-cycle-ns", &gpmc_t->wr_cycle);
2030 of_property_read_u32(np, "gpmc,bus-turnaround-ns",
2031 &gpmc_t->bus_turnaround);
2032 of_property_read_u32(np, "gpmc,cycle2cycle-delay-ns",
2033 &gpmc_t->cycle2cycle_delay);
2034 of_property_read_u32(np, "gpmc,wait-monitoring-ns",
2035 &gpmc_t->wait_monitoring);
2036 of_property_read_u32(np, "gpmc,clk-activation-ns",
2037 &gpmc_t->clk_activation);
2038
2039 /* only applicable to OMAP3+ */
2040 of_property_read_u32(np, "gpmc,wr-access-ns", &gpmc_t->wr_access);
2041 of_property_read_u32(np, "gpmc,wr-data-mux-bus-ns",
2042 &gpmc_t->wr_data_mux_bus);
2043
2044 /* bool timing parameters */
2045 p = &gpmc_t->bool_timings;
2046
2047 p->cycle2cyclediffcsen =
2048 of_property_read_bool(np, "gpmc,cycle2cycle-diffcsen");
2049 p->cycle2cyclesamecsen =
2050 of_property_read_bool(np, "gpmc,cycle2cycle-samecsen");
2051 p->we_extra_delay = of_property_read_bool(np, "gpmc,we-extra-delay");
2052 p->oe_extra_delay = of_property_read_bool(np, "gpmc,oe-extra-delay");
2053 p->adv_extra_delay = of_property_read_bool(np, "gpmc,adv-extra-delay");
2054 p->cs_extra_delay = of_property_read_bool(np, "gpmc,cs-extra-delay");
2055 p->time_para_granularity =
2056 of_property_read_bool(np, "gpmc,time-para-granularity");
2057 }
2058
2059 /**
2060 * gpmc_probe_generic_child - configures the gpmc for a child device
2061 * @pdev: pointer to gpmc platform device
2062 * @child: pointer to device-tree node for child device
2063 *
2064 * Allocates and configures a GPMC chip-select for a child device.
2065 * Returns 0 on success and appropriate negative error code on failure.
2066 */
gpmc_probe_generic_child(struct platform_device * pdev,struct device_node * child)2067 static int gpmc_probe_generic_child(struct platform_device *pdev,
2068 struct device_node *child)
2069 {
2070 struct gpmc_settings gpmc_s;
2071 struct gpmc_timings gpmc_t;
2072 struct resource res;
2073 unsigned long base;
2074 const char *name;
2075 int ret, cs;
2076 u32 val;
2077 struct gpio_desc *waitpin_desc = NULL;
2078 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2079
2080 if (of_property_read_u32(child, "reg", &cs) < 0) {
2081 dev_err(&pdev->dev, "%pOF has no 'reg' property\n",
2082 child);
2083 return -ENODEV;
2084 }
2085
2086 if (of_address_to_resource(child, 0, &res) < 0) {
2087 dev_err(&pdev->dev, "%pOF has malformed 'reg' property\n",
2088 child);
2089 return -ENODEV;
2090 }
2091
2092 /*
2093 * Check if we have multiple instances of the same device
2094 * on a single chip select. If so, use the already initialized
2095 * timings.
2096 */
2097 name = gpmc_cs_get_name(cs);
2098 if (name && of_node_name_eq(child, name))
2099 goto no_timings;
2100
2101 ret = gpmc_cs_request(cs, resource_size(&res), &base);
2102 if (ret < 0) {
2103 dev_err(&pdev->dev, "cannot request GPMC CS %d\n", cs);
2104 return ret;
2105 }
2106 gpmc_cs_set_name(cs, child->full_name);
2107
2108 gpmc_read_settings_dt(child, &gpmc_s);
2109 gpmc_read_timings_dt(child, &gpmc_t);
2110
2111 /*
2112 * For some GPMC devices we still need to rely on the bootloader
2113 * timings because the devices can be connected via FPGA.
2114 * REVISIT: Add timing support from slls644g.pdf.
2115 */
2116 if (!gpmc_t.cs_rd_off) {
2117 WARN(1, "enable GPMC debug to configure .dts timings for CS%i\n",
2118 cs);
2119 gpmc_cs_show_timings(cs,
2120 "please add GPMC bootloader timings to .dts");
2121 goto no_timings;
2122 }
2123
2124 /* CS must be disabled while making changes to gpmc configuration */
2125 gpmc_cs_disable_mem(cs);
2126
2127 /*
2128 * FIXME: gpmc_cs_request() will map the CS to an arbitrary
2129 * location in the gpmc address space. When booting with
2130 * device-tree we want the NOR flash to be mapped to the
2131 * location specified in the device-tree blob. So remap the
2132 * CS to this location. Once DT migration is complete should
2133 * just make gpmc_cs_request() map a specific address.
2134 */
2135 ret = gpmc_cs_remap(cs, res.start);
2136 if (ret < 0) {
2137 dev_err(&pdev->dev, "cannot remap GPMC CS %d to %pa\n",
2138 cs, &res.start);
2139 if (res.start < GPMC_MEM_START) {
2140 dev_info(&pdev->dev,
2141 "GPMC CS %d start cannot be lesser than 0x%x\n",
2142 cs, GPMC_MEM_START);
2143 } else if (res.end > GPMC_MEM_END) {
2144 dev_info(&pdev->dev,
2145 "GPMC CS %d end cannot be greater than 0x%x\n",
2146 cs, GPMC_MEM_END);
2147 }
2148 goto err;
2149 }
2150
2151 if (of_node_name_eq(child, "nand")) {
2152 /* Warn about older DT blobs with no compatible property */
2153 if (!of_property_read_bool(child, "compatible")) {
2154 dev_warn(&pdev->dev,
2155 "Incompatible NAND node: missing compatible");
2156 ret = -EINVAL;
2157 goto err;
2158 }
2159 }
2160
2161 if (of_node_name_eq(child, "onenand")) {
2162 /* Warn about older DT blobs with no compatible property */
2163 if (!of_property_read_bool(child, "compatible")) {
2164 dev_warn(&pdev->dev,
2165 "Incompatible OneNAND node: missing compatible");
2166 ret = -EINVAL;
2167 goto err;
2168 }
2169 }
2170
2171 if (of_device_is_compatible(child, "ti,omap2-nand")) {
2172 /* NAND specific setup */
2173 val = 8;
2174 of_property_read_u32(child, "nand-bus-width", &val);
2175 switch (val) {
2176 case 8:
2177 gpmc_s.device_width = GPMC_DEVWIDTH_8BIT;
2178 break;
2179 case 16:
2180 gpmc_s.device_width = GPMC_DEVWIDTH_16BIT;
2181 break;
2182 default:
2183 dev_err(&pdev->dev, "%pOFn: invalid 'nand-bus-width'\n",
2184 child);
2185 ret = -EINVAL;
2186 goto err;
2187 }
2188
2189 /* disable write protect */
2190 gpmc_configure(GPMC_CONFIG_WP, 0);
2191 gpmc_s.device_nand = true;
2192 } else {
2193 ret = of_property_read_u32(child, "bank-width",
2194 &gpmc_s.device_width);
2195 if (ret < 0 && !gpmc_s.device_width) {
2196 dev_err(&pdev->dev,
2197 "%pOF has no 'gpmc,device-width' property\n",
2198 child);
2199 goto err;
2200 }
2201 }
2202
2203 /* Reserve wait pin if it is required and valid */
2204 if (gpmc_s.wait_on_read || gpmc_s.wait_on_write) {
2205 unsigned int wait_pin = gpmc_s.wait_pin;
2206
2207 waitpin_desc = gpiochip_request_own_desc(&gpmc->gpio_chip,
2208 wait_pin, "WAITPIN",
2209 GPIO_ACTIVE_HIGH,
2210 GPIOD_IN);
2211 if (IS_ERR(waitpin_desc)) {
2212 dev_err(&pdev->dev, "invalid wait-pin: %d\n", wait_pin);
2213 ret = PTR_ERR(waitpin_desc);
2214 goto err;
2215 }
2216 }
2217
2218 gpmc_cs_show_timings(cs, "before gpmc_cs_program_settings");
2219
2220 ret = gpmc_cs_program_settings(cs, &gpmc_s);
2221 if (ret < 0)
2222 goto err_cs;
2223
2224 ret = gpmc_cs_set_timings(cs, &gpmc_t, &gpmc_s);
2225 if (ret) {
2226 dev_err(&pdev->dev, "failed to set gpmc timings for: %pOFn\n",
2227 child);
2228 goto err_cs;
2229 }
2230
2231 /* Clear limited address i.e. enable A26-A11 */
2232 val = gpmc_read_reg(GPMC_CONFIG);
2233 val &= ~GPMC_CONFIG_LIMITEDADDRESS;
2234 gpmc_write_reg(GPMC_CONFIG, val);
2235
2236 /* Enable CS region */
2237 gpmc_cs_enable_mem(cs);
2238
2239 no_timings:
2240
2241 /* create platform device, NULL on error or when disabled */
2242 if (!of_platform_device_create(child, NULL, &pdev->dev))
2243 goto err_child_fail;
2244
2245 /* is child a common bus? */
2246 if (of_match_node(of_default_bus_match_table, child))
2247 /* create children and other common bus children */
2248 if (of_platform_default_populate(child, NULL, &pdev->dev))
2249 goto err_child_fail;
2250
2251 return 0;
2252
2253 err_child_fail:
2254
2255 dev_err(&pdev->dev, "failed to create gpmc child %pOFn\n", child);
2256 ret = -ENODEV;
2257
2258 err_cs:
2259 gpiochip_free_own_desc(waitpin_desc);
2260 err:
2261 gpmc_cs_free(cs);
2262
2263 return ret;
2264 }
2265
gpmc_probe_dt(struct platform_device * pdev)2266 static int gpmc_probe_dt(struct platform_device *pdev)
2267 {
2268 int ret;
2269 const struct of_device_id *of_id =
2270 of_match_device(gpmc_dt_ids, &pdev->dev);
2271
2272 if (!of_id)
2273 return 0;
2274
2275 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-cs",
2276 &gpmc_cs_num);
2277 if (ret < 0) {
2278 pr_err("%s: number of chip-selects not defined\n", __func__);
2279 return ret;
2280 } else if (gpmc_cs_num < 1) {
2281 pr_err("%s: all chip-selects are disabled\n", __func__);
2282 return -EINVAL;
2283 } else if (gpmc_cs_num > GPMC_CS_NUM) {
2284 pr_err("%s: number of supported chip-selects cannot be > %d\n",
2285 __func__, GPMC_CS_NUM);
2286 return -EINVAL;
2287 }
2288
2289 ret = of_property_read_u32(pdev->dev.of_node, "gpmc,num-waitpins",
2290 &gpmc_nr_waitpins);
2291 if (ret < 0) {
2292 pr_err("%s: number of wait pins not found!\n", __func__);
2293 return ret;
2294 }
2295
2296 return 0;
2297 }
2298
gpmc_probe_dt_children(struct platform_device * pdev)2299 static void gpmc_probe_dt_children(struct platform_device *pdev)
2300 {
2301 int ret;
2302 struct device_node *child;
2303
2304 for_each_available_child_of_node(pdev->dev.of_node, child) {
2305 ret = gpmc_probe_generic_child(pdev, child);
2306 if (ret) {
2307 dev_err(&pdev->dev, "failed to probe DT child '%pOFn': %d\n",
2308 child, ret);
2309 }
2310 }
2311 }
2312 #else
gpmc_read_settings_dt(struct device_node * np,struct gpmc_settings * p)2313 void gpmc_read_settings_dt(struct device_node *np, struct gpmc_settings *p)
2314 {
2315 memset(p, 0, sizeof(*p));
2316 }
gpmc_probe_dt(struct platform_device * pdev)2317 static int gpmc_probe_dt(struct platform_device *pdev)
2318 {
2319 return 0;
2320 }
2321
gpmc_probe_dt_children(struct platform_device * pdev)2322 static void gpmc_probe_dt_children(struct platform_device *pdev)
2323 {
2324 }
2325 #endif /* CONFIG_OF */
2326
gpmc_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)2327 static int gpmc_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
2328 {
2329 return 1; /* we're input only */
2330 }
2331
gpmc_gpio_direction_input(struct gpio_chip * chip,unsigned int offset)2332 static int gpmc_gpio_direction_input(struct gpio_chip *chip,
2333 unsigned int offset)
2334 {
2335 return 0; /* we're input only */
2336 }
2337
gpmc_gpio_direction_output(struct gpio_chip * chip,unsigned int offset,int value)2338 static int gpmc_gpio_direction_output(struct gpio_chip *chip,
2339 unsigned int offset, int value)
2340 {
2341 return -EINVAL; /* we're input only */
2342 }
2343
gpmc_gpio_set(struct gpio_chip * chip,unsigned int offset,int value)2344 static void gpmc_gpio_set(struct gpio_chip *chip, unsigned int offset,
2345 int value)
2346 {
2347 }
2348
gpmc_gpio_get(struct gpio_chip * chip,unsigned int offset)2349 static int gpmc_gpio_get(struct gpio_chip *chip, unsigned int offset)
2350 {
2351 u32 reg;
2352
2353 offset += 8;
2354
2355 reg = gpmc_read_reg(GPMC_STATUS) & BIT(offset);
2356
2357 return !!reg;
2358 }
2359
gpmc_gpio_init(struct gpmc_device * gpmc)2360 static int gpmc_gpio_init(struct gpmc_device *gpmc)
2361 {
2362 int ret;
2363
2364 gpmc->gpio_chip.parent = gpmc->dev;
2365 gpmc->gpio_chip.owner = THIS_MODULE;
2366 gpmc->gpio_chip.label = DEVICE_NAME;
2367 gpmc->gpio_chip.ngpio = gpmc_nr_waitpins;
2368 gpmc->gpio_chip.get_direction = gpmc_gpio_get_direction;
2369 gpmc->gpio_chip.direction_input = gpmc_gpio_direction_input;
2370 gpmc->gpio_chip.direction_output = gpmc_gpio_direction_output;
2371 gpmc->gpio_chip.set = gpmc_gpio_set;
2372 gpmc->gpio_chip.get = gpmc_gpio_get;
2373 gpmc->gpio_chip.base = -1;
2374
2375 ret = devm_gpiochip_add_data(gpmc->dev, &gpmc->gpio_chip, NULL);
2376 if (ret < 0) {
2377 dev_err(gpmc->dev, "could not register gpio chip: %d\n", ret);
2378 return ret;
2379 }
2380
2381 return 0;
2382 }
2383
gpmc_probe(struct platform_device * pdev)2384 static int gpmc_probe(struct platform_device *pdev)
2385 {
2386 int rc;
2387 u32 l;
2388 struct resource *res;
2389 struct gpmc_device *gpmc;
2390
2391 gpmc = devm_kzalloc(&pdev->dev, sizeof(*gpmc), GFP_KERNEL);
2392 if (!gpmc)
2393 return -ENOMEM;
2394
2395 gpmc->dev = &pdev->dev;
2396 platform_set_drvdata(pdev, gpmc);
2397
2398 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2399 if (!res)
2400 return -ENOENT;
2401
2402 gpmc_base = devm_ioremap_resource(&pdev->dev, res);
2403 if (IS_ERR(gpmc_base))
2404 return PTR_ERR(gpmc_base);
2405
2406 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2407 if (!res) {
2408 dev_err(&pdev->dev, "Failed to get resource: irq\n");
2409 return -ENOENT;
2410 }
2411
2412 gpmc->irq = res->start;
2413
2414 gpmc_l3_clk = devm_clk_get(&pdev->dev, "fck");
2415 if (IS_ERR(gpmc_l3_clk)) {
2416 dev_err(&pdev->dev, "Failed to get GPMC fck\n");
2417 return PTR_ERR(gpmc_l3_clk);
2418 }
2419
2420 if (!clk_get_rate(gpmc_l3_clk)) {
2421 dev_err(&pdev->dev, "Invalid GPMC fck clock rate\n");
2422 return -EINVAL;
2423 }
2424
2425 if (pdev->dev.of_node) {
2426 rc = gpmc_probe_dt(pdev);
2427 if (rc)
2428 return rc;
2429 } else {
2430 gpmc_cs_num = GPMC_CS_NUM;
2431 gpmc_nr_waitpins = GPMC_NR_WAITPINS;
2432 }
2433
2434 pm_runtime_enable(&pdev->dev);
2435 pm_runtime_get_sync(&pdev->dev);
2436
2437 l = gpmc_read_reg(GPMC_REVISION);
2438
2439 /*
2440 * FIXME: Once device-tree migration is complete the below flags
2441 * should be populated based upon the device-tree compatible
2442 * string. For now just use the IP revision. OMAP3+ devices have
2443 * the wr_access and wr_data_mux_bus register fields. OMAP4+
2444 * devices support the addr-addr-data multiplex protocol.
2445 *
2446 * GPMC IP revisions:
2447 * - OMAP24xx = 2.0
2448 * - OMAP3xxx = 5.0
2449 * - OMAP44xx/54xx/AM335x = 6.0
2450 */
2451 if (GPMC_REVISION_MAJOR(l) > 0x4)
2452 gpmc_capability = GPMC_HAS_WR_ACCESS | GPMC_HAS_WR_DATA_MUX_BUS;
2453 if (GPMC_REVISION_MAJOR(l) > 0x5)
2454 gpmc_capability |= GPMC_HAS_MUX_AAD;
2455 dev_info(gpmc->dev, "GPMC revision %d.%d\n", GPMC_REVISION_MAJOR(l),
2456 GPMC_REVISION_MINOR(l));
2457
2458 gpmc_mem_init();
2459 rc = gpmc_gpio_init(gpmc);
2460 if (rc)
2461 goto gpio_init_failed;
2462
2463 gpmc->nirqs = GPMC_NR_NAND_IRQS + gpmc_nr_waitpins;
2464 rc = gpmc_setup_irq(gpmc);
2465 if (rc) {
2466 dev_err(gpmc->dev, "gpmc_setup_irq failed\n");
2467 goto gpio_init_failed;
2468 }
2469
2470 gpmc_probe_dt_children(pdev);
2471
2472 return 0;
2473
2474 gpio_init_failed:
2475 gpmc_mem_exit();
2476 pm_runtime_put_sync(&pdev->dev);
2477 pm_runtime_disable(&pdev->dev);
2478
2479 return rc;
2480 }
2481
gpmc_remove(struct platform_device * pdev)2482 static int gpmc_remove(struct platform_device *pdev)
2483 {
2484 struct gpmc_device *gpmc = platform_get_drvdata(pdev);
2485
2486 gpmc_free_irq(gpmc);
2487 gpmc_mem_exit();
2488 pm_runtime_put_sync(&pdev->dev);
2489 pm_runtime_disable(&pdev->dev);
2490
2491 return 0;
2492 }
2493
2494 #ifdef CONFIG_PM_SLEEP
gpmc_suspend(struct device * dev)2495 static int gpmc_suspend(struct device *dev)
2496 {
2497 omap3_gpmc_save_context();
2498 pm_runtime_put_sync(dev);
2499 return 0;
2500 }
2501
gpmc_resume(struct device * dev)2502 static int gpmc_resume(struct device *dev)
2503 {
2504 pm_runtime_get_sync(dev);
2505 omap3_gpmc_restore_context();
2506 return 0;
2507 }
2508 #endif
2509
2510 static SIMPLE_DEV_PM_OPS(gpmc_pm_ops, gpmc_suspend, gpmc_resume);
2511
2512 static struct platform_driver gpmc_driver = {
2513 .probe = gpmc_probe,
2514 .remove = gpmc_remove,
2515 .driver = {
2516 .name = DEVICE_NAME,
2517 .of_match_table = of_match_ptr(gpmc_dt_ids),
2518 .pm = &gpmc_pm_ops,
2519 },
2520 };
2521
gpmc_init(void)2522 static __init int gpmc_init(void)
2523 {
2524 return platform_driver_register(&gpmc_driver);
2525 }
2526 postcore_initcall(gpmc_init);
2527
2528 static struct omap3_gpmc_regs gpmc_context;
2529
omap3_gpmc_save_context(void)2530 void omap3_gpmc_save_context(void)
2531 {
2532 int i;
2533
2534 if (!gpmc_base)
2535 return;
2536
2537 gpmc_context.sysconfig = gpmc_read_reg(GPMC_SYSCONFIG);
2538 gpmc_context.irqenable = gpmc_read_reg(GPMC_IRQENABLE);
2539 gpmc_context.timeout_ctrl = gpmc_read_reg(GPMC_TIMEOUT_CONTROL);
2540 gpmc_context.config = gpmc_read_reg(GPMC_CONFIG);
2541 gpmc_context.prefetch_config1 = gpmc_read_reg(GPMC_PREFETCH_CONFIG1);
2542 gpmc_context.prefetch_config2 = gpmc_read_reg(GPMC_PREFETCH_CONFIG2);
2543 gpmc_context.prefetch_control = gpmc_read_reg(GPMC_PREFETCH_CONTROL);
2544 for (i = 0; i < gpmc_cs_num; i++) {
2545 gpmc_context.cs_context[i].is_valid = gpmc_cs_mem_enabled(i);
2546 if (gpmc_context.cs_context[i].is_valid) {
2547 gpmc_context.cs_context[i].config1 =
2548 gpmc_cs_read_reg(i, GPMC_CS_CONFIG1);
2549 gpmc_context.cs_context[i].config2 =
2550 gpmc_cs_read_reg(i, GPMC_CS_CONFIG2);
2551 gpmc_context.cs_context[i].config3 =
2552 gpmc_cs_read_reg(i, GPMC_CS_CONFIG3);
2553 gpmc_context.cs_context[i].config4 =
2554 gpmc_cs_read_reg(i, GPMC_CS_CONFIG4);
2555 gpmc_context.cs_context[i].config5 =
2556 gpmc_cs_read_reg(i, GPMC_CS_CONFIG5);
2557 gpmc_context.cs_context[i].config6 =
2558 gpmc_cs_read_reg(i, GPMC_CS_CONFIG6);
2559 gpmc_context.cs_context[i].config7 =
2560 gpmc_cs_read_reg(i, GPMC_CS_CONFIG7);
2561 }
2562 }
2563 }
2564
omap3_gpmc_restore_context(void)2565 void omap3_gpmc_restore_context(void)
2566 {
2567 int i;
2568
2569 if (!gpmc_base)
2570 return;
2571
2572 gpmc_write_reg(GPMC_SYSCONFIG, gpmc_context.sysconfig);
2573 gpmc_write_reg(GPMC_IRQENABLE, gpmc_context.irqenable);
2574 gpmc_write_reg(GPMC_TIMEOUT_CONTROL, gpmc_context.timeout_ctrl);
2575 gpmc_write_reg(GPMC_CONFIG, gpmc_context.config);
2576 gpmc_write_reg(GPMC_PREFETCH_CONFIG1, gpmc_context.prefetch_config1);
2577 gpmc_write_reg(GPMC_PREFETCH_CONFIG2, gpmc_context.prefetch_config2);
2578 gpmc_write_reg(GPMC_PREFETCH_CONTROL, gpmc_context.prefetch_control);
2579 for (i = 0; i < gpmc_cs_num; i++) {
2580 if (gpmc_context.cs_context[i].is_valid) {
2581 gpmc_cs_write_reg(i, GPMC_CS_CONFIG1,
2582 gpmc_context.cs_context[i].config1);
2583 gpmc_cs_write_reg(i, GPMC_CS_CONFIG2,
2584 gpmc_context.cs_context[i].config2);
2585 gpmc_cs_write_reg(i, GPMC_CS_CONFIG3,
2586 gpmc_context.cs_context[i].config3);
2587 gpmc_cs_write_reg(i, GPMC_CS_CONFIG4,
2588 gpmc_context.cs_context[i].config4);
2589 gpmc_cs_write_reg(i, GPMC_CS_CONFIG5,
2590 gpmc_context.cs_context[i].config5);
2591 gpmc_cs_write_reg(i, GPMC_CS_CONFIG6,
2592 gpmc_context.cs_context[i].config6);
2593 gpmc_cs_write_reg(i, GPMC_CS_CONFIG7,
2594 gpmc_context.cs_context[i].config7);
2595 }
2596 }
2597 }
2598