1 /*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
28 * Documentation/RCU
29 */
30
31 #define pr_fmt(fmt) "rcu: " fmt
32
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/rcupdate_wait.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/sched/debug.h>
42 #include <linux/nmi.h>
43 #include <linux/atomic.h>
44 #include <linux/bitops.h>
45 #include <linux/export.h>
46 #include <linux/completion.h>
47 #include <linux/moduleparam.h>
48 #include <linux/percpu.h>
49 #include <linux/notifier.h>
50 #include <linux/cpu.h>
51 #include <linux/mutex.h>
52 #include <linux/time.h>
53 #include <linux/kernel_stat.h>
54 #include <linux/wait.h>
55 #include <linux/kthread.h>
56 #include <uapi/linux/sched/types.h>
57 #include <linux/prefetch.h>
58 #include <linux/delay.h>
59 #include <linux/stop_machine.h>
60 #include <linux/random.h>
61 #include <linux/trace_events.h>
62 #include <linux/suspend.h>
63 #include <linux/ftrace.h>
64
65 #include "tree.h"
66 #include "rcu.h"
67
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
70 #endif
71 #define MODULE_PARAM_PREFIX "rcutree."
72
73 /* Data structures. */
74
75 /*
76 * In order to export the rcu_state name to the tracing tools, it
77 * needs to be added in the __tracepoint_string section.
78 * This requires defining a separate variable tp_<sname>_varname
79 * that points to the string being used, and this will allow
80 * the tracing userspace tools to be able to decipher the string
81 * address to the matching string.
82 */
83 #ifdef CONFIG_TRACING
84 # define DEFINE_RCU_TPS(sname) \
85 static char sname##_varname[] = #sname; \
86 static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
87 # define RCU_STATE_NAME(sname) sname##_varname
88 #else
89 # define DEFINE_RCU_TPS(sname)
90 # define RCU_STATE_NAME(sname) __stringify(sname)
91 #endif
92
93 #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
94 DEFINE_RCU_TPS(sname) \
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
96 struct rcu_state sname##_state = { \
97 .level = { &sname##_state.node[0] }, \
98 .rda = &sname##_data, \
99 .call = cr, \
100 .gp_state = RCU_GP_IDLE, \
101 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT, \
102 .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
103 .name = RCU_STATE_NAME(sname), \
104 .abbr = sabbr, \
105 .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
106 .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
107 .ofl_lock = __SPIN_LOCK_UNLOCKED(sname##_state.ofl_lock), \
108 }
109
110 RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
111 RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
112
113 static struct rcu_state *const rcu_state_p;
114 LIST_HEAD(rcu_struct_flavors);
115
116 /* Dump rcu_node combining tree at boot to verify correct setup. */
117 static bool dump_tree;
118 module_param(dump_tree, bool, 0444);
119 /* Control rcu_node-tree auto-balancing at boot time. */
120 static bool rcu_fanout_exact;
121 module_param(rcu_fanout_exact, bool, 0444);
122 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
123 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
124 module_param(rcu_fanout_leaf, int, 0444);
125 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
126 /* Number of rcu_nodes at specified level. */
127 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
128 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
129 /* panic() on RCU Stall sysctl. */
130 int sysctl_panic_on_rcu_stall __read_mostly;
131
132 /*
133 * The rcu_scheduler_active variable is initialized to the value
134 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
135 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
136 * RCU can assume that there is but one task, allowing RCU to (for example)
137 * optimize synchronize_rcu() to a simple barrier(). When this variable
138 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
139 * to detect real grace periods. This variable is also used to suppress
140 * boot-time false positives from lockdep-RCU error checking. Finally, it
141 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
142 * is fully initialized, including all of its kthreads having been spawned.
143 */
144 int rcu_scheduler_active __read_mostly;
145 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
146
147 /*
148 * The rcu_scheduler_fully_active variable transitions from zero to one
149 * during the early_initcall() processing, which is after the scheduler
150 * is capable of creating new tasks. So RCU processing (for example,
151 * creating tasks for RCU priority boosting) must be delayed until after
152 * rcu_scheduler_fully_active transitions from zero to one. We also
153 * currently delay invocation of any RCU callbacks until after this point.
154 *
155 * It might later prove better for people registering RCU callbacks during
156 * early boot to take responsibility for these callbacks, but one step at
157 * a time.
158 */
159 static int rcu_scheduler_fully_active __read_mostly;
160
161 static void
162 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
163 struct rcu_node *rnp, unsigned long gps, unsigned long flags);
164 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
165 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
166 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
167 static void invoke_rcu_core(void);
168 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
169 static void rcu_report_exp_rdp(struct rcu_state *rsp,
170 struct rcu_data *rdp, bool wake);
171 static void sync_sched_exp_online_cleanup(int cpu);
172
173 /* rcuc/rcub kthread realtime priority */
174 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
175 module_param(kthread_prio, int, 0644);
176
177 /* Delay in jiffies for grace-period initialization delays, debug only. */
178
179 static int gp_preinit_delay;
180 module_param(gp_preinit_delay, int, 0444);
181 static int gp_init_delay;
182 module_param(gp_init_delay, int, 0444);
183 static int gp_cleanup_delay;
184 module_param(gp_cleanup_delay, int, 0444);
185
186 /* Retreive RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)187 int rcu_get_gp_kthreads_prio(void)
188 {
189 return kthread_prio;
190 }
191 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
192
193 /*
194 * Number of grace periods between delays, normalized by the duration of
195 * the delay. The longer the delay, the more the grace periods between
196 * each delay. The reason for this normalization is that it means that,
197 * for non-zero delays, the overall slowdown of grace periods is constant
198 * regardless of the duration of the delay. This arrangement balances
199 * the need for long delays to increase some race probabilities with the
200 * need for fast grace periods to increase other race probabilities.
201 */
202 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
203
204 /*
205 * Compute the mask of online CPUs for the specified rcu_node structure.
206 * This will not be stable unless the rcu_node structure's ->lock is
207 * held, but the bit corresponding to the current CPU will be stable
208 * in most contexts.
209 */
rcu_rnp_online_cpus(struct rcu_node * rnp)210 unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
211 {
212 return READ_ONCE(rnp->qsmaskinitnext);
213 }
214
215 /*
216 * Return true if an RCU grace period is in progress. The READ_ONCE()s
217 * permit this function to be invoked without holding the root rcu_node
218 * structure's ->lock, but of course results can be subject to change.
219 */
rcu_gp_in_progress(struct rcu_state * rsp)220 static int rcu_gp_in_progress(struct rcu_state *rsp)
221 {
222 return rcu_seq_state(rcu_seq_current(&rsp->gp_seq));
223 }
224
225 /*
226 * Note a quiescent state. Because we do not need to know
227 * how many quiescent states passed, just if there was at least
228 * one since the start of the grace period, this just sets a flag.
229 * The caller must have disabled preemption.
230 */
rcu_sched_qs(void)231 void rcu_sched_qs(void)
232 {
233 RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
234 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
235 return;
236 trace_rcu_grace_period(TPS("rcu_sched"),
237 __this_cpu_read(rcu_sched_data.gp_seq),
238 TPS("cpuqs"));
239 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
240 if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
241 return;
242 __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
243 rcu_report_exp_rdp(&rcu_sched_state,
244 this_cpu_ptr(&rcu_sched_data), true);
245 }
246
rcu_bh_qs(void)247 void rcu_bh_qs(void)
248 {
249 RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
250 if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
251 trace_rcu_grace_period(TPS("rcu_bh"),
252 __this_cpu_read(rcu_bh_data.gp_seq),
253 TPS("cpuqs"));
254 __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
255 }
256 }
257
258 /*
259 * Steal a bit from the bottom of ->dynticks for idle entry/exit
260 * control. Initially this is for TLB flushing.
261 */
262 #define RCU_DYNTICK_CTRL_MASK 0x1
263 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
264 #ifndef rcu_eqs_special_exit
265 #define rcu_eqs_special_exit() do { } while (0)
266 #endif
267
268 static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
269 .dynticks_nesting = 1,
270 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
271 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
272 };
273
274 /*
275 * Record entry into an extended quiescent state. This is only to be
276 * called when not already in an extended quiescent state.
277 */
rcu_dynticks_eqs_enter(void)278 static void rcu_dynticks_eqs_enter(void)
279 {
280 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
281 int seq;
282
283 /*
284 * CPUs seeing atomic_add_return() must see prior RCU read-side
285 * critical sections, and we also must force ordering with the
286 * next idle sojourn.
287 */
288 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
289 /* Better be in an extended quiescent state! */
290 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
291 (seq & RCU_DYNTICK_CTRL_CTR));
292 /* Better not have special action (TLB flush) pending! */
293 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
294 (seq & RCU_DYNTICK_CTRL_MASK));
295 }
296
297 /*
298 * Record exit from an extended quiescent state. This is only to be
299 * called from an extended quiescent state.
300 */
rcu_dynticks_eqs_exit(void)301 static void rcu_dynticks_eqs_exit(void)
302 {
303 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
304 int seq;
305
306 /*
307 * CPUs seeing atomic_add_return() must see prior idle sojourns,
308 * and we also must force ordering with the next RCU read-side
309 * critical section.
310 */
311 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
312 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
313 !(seq & RCU_DYNTICK_CTRL_CTR));
314 if (seq & RCU_DYNTICK_CTRL_MASK) {
315 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
316 smp_mb__after_atomic(); /* _exit after clearing mask. */
317 /* Prefer duplicate flushes to losing a flush. */
318 rcu_eqs_special_exit();
319 }
320 }
321
322 /*
323 * Reset the current CPU's ->dynticks counter to indicate that the
324 * newly onlined CPU is no longer in an extended quiescent state.
325 * This will either leave the counter unchanged, or increment it
326 * to the next non-quiescent value.
327 *
328 * The non-atomic test/increment sequence works because the upper bits
329 * of the ->dynticks counter are manipulated only by the corresponding CPU,
330 * or when the corresponding CPU is offline.
331 */
rcu_dynticks_eqs_online(void)332 static void rcu_dynticks_eqs_online(void)
333 {
334 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
335
336 if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
337 return;
338 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
339 }
340
341 /*
342 * Is the current CPU in an extended quiescent state?
343 *
344 * No ordering, as we are sampling CPU-local information.
345 */
rcu_dynticks_curr_cpu_in_eqs(void)346 bool rcu_dynticks_curr_cpu_in_eqs(void)
347 {
348 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
349
350 return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
351 }
352
353 /*
354 * Snapshot the ->dynticks counter with full ordering so as to allow
355 * stable comparison of this counter with past and future snapshots.
356 */
rcu_dynticks_snap(struct rcu_dynticks * rdtp)357 int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
358 {
359 int snap = atomic_add_return(0, &rdtp->dynticks);
360
361 return snap & ~RCU_DYNTICK_CTRL_MASK;
362 }
363
364 /*
365 * Return true if the snapshot returned from rcu_dynticks_snap()
366 * indicates that RCU is in an extended quiescent state.
367 */
rcu_dynticks_in_eqs(int snap)368 static bool rcu_dynticks_in_eqs(int snap)
369 {
370 return !(snap & RCU_DYNTICK_CTRL_CTR);
371 }
372
373 /*
374 * Return true if the CPU corresponding to the specified rcu_dynticks
375 * structure has spent some time in an extended quiescent state since
376 * rcu_dynticks_snap() returned the specified snapshot.
377 */
rcu_dynticks_in_eqs_since(struct rcu_dynticks * rdtp,int snap)378 static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
379 {
380 return snap != rcu_dynticks_snap(rdtp);
381 }
382
383 /*
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
389 */
rcu_eqs_special_set(int cpu)390 bool rcu_eqs_special_set(int cpu)
391 {
392 int old;
393 int new;
394 struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
395
396 do {
397 old = atomic_read(&rdtp->dynticks);
398 if (old & RCU_DYNTICK_CTRL_CTR)
399 return false;
400 new = old | RCU_DYNTICK_CTRL_MASK;
401 } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
402 return true;
403 }
404
405 /*
406 * Let the RCU core know that this CPU has gone through the scheduler,
407 * which is a quiescent state. This is called when the need for a
408 * quiescent state is urgent, so we burn an atomic operation and full
409 * memory barriers to let the RCU core know about it, regardless of what
410 * this CPU might (or might not) do in the near future.
411 *
412 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
413 *
414 * The caller must have disabled interrupts and must not be idle.
415 */
rcu_momentary_dyntick_idle(void)416 static void rcu_momentary_dyntick_idle(void)
417 {
418 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
419 int special;
420
421 raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
422 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
423 /* It is illegal to call this from idle state. */
424 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
425 }
426
427 /*
428 * Note a context switch. This is a quiescent state for RCU-sched,
429 * and requires special handling for preemptible RCU.
430 * The caller must have disabled interrupts.
431 */
rcu_note_context_switch(bool preempt)432 void rcu_note_context_switch(bool preempt)
433 {
434 barrier(); /* Avoid RCU read-side critical sections leaking down. */
435 trace_rcu_utilization(TPS("Start context switch"));
436 rcu_sched_qs();
437 rcu_preempt_note_context_switch(preempt);
438 /* Load rcu_urgent_qs before other flags. */
439 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
440 goto out;
441 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
442 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
443 rcu_momentary_dyntick_idle();
444 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
445 if (!preempt)
446 rcu_tasks_qs(current);
447 out:
448 trace_rcu_utilization(TPS("End context switch"));
449 barrier(); /* Avoid RCU read-side critical sections leaking up. */
450 }
451 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
452
453 /*
454 * Register a quiescent state for all RCU flavors. If there is an
455 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
456 * dyntick-idle quiescent state visible to other CPUs (but only for those
457 * RCU flavors in desperate need of a quiescent state, which will normally
458 * be none of them). Either way, do a lightweight quiescent state for
459 * all RCU flavors.
460 *
461 * The barrier() calls are redundant in the common case when this is
462 * called externally, but just in case this is called from within this
463 * file.
464 *
465 */
rcu_all_qs(void)466 void rcu_all_qs(void)
467 {
468 unsigned long flags;
469
470 if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
471 return;
472 preempt_disable();
473 /* Load rcu_urgent_qs before other flags. */
474 if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
475 preempt_enable();
476 return;
477 }
478 this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
479 barrier(); /* Avoid RCU read-side critical sections leaking down. */
480 if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
481 local_irq_save(flags);
482 rcu_momentary_dyntick_idle();
483 local_irq_restore(flags);
484 }
485 if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
486 rcu_sched_qs();
487 this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
488 barrier(); /* Avoid RCU read-side critical sections leaking up. */
489 preempt_enable();
490 }
491 EXPORT_SYMBOL_GPL(rcu_all_qs);
492
493 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
494 static long blimit = DEFAULT_RCU_BLIMIT;
495 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
496 static long qhimark = DEFAULT_RCU_QHIMARK;
497 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
498 static long qlowmark = DEFAULT_RCU_QLOMARK;
499
500 module_param(blimit, long, 0444);
501 module_param(qhimark, long, 0444);
502 module_param(qlowmark, long, 0444);
503
504 static ulong jiffies_till_first_fqs = ULONG_MAX;
505 static ulong jiffies_till_next_fqs = ULONG_MAX;
506 static bool rcu_kick_kthreads;
507
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)508 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
509 {
510 ulong j;
511 int ret = kstrtoul(val, 0, &j);
512
513 if (!ret)
514 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
515 return ret;
516 }
517
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)518 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
519 {
520 ulong j;
521 int ret = kstrtoul(val, 0, &j);
522
523 if (!ret)
524 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
525 return ret;
526 }
527
528 static struct kernel_param_ops first_fqs_jiffies_ops = {
529 .set = param_set_first_fqs_jiffies,
530 .get = param_get_ulong,
531 };
532
533 static struct kernel_param_ops next_fqs_jiffies_ops = {
534 .set = param_set_next_fqs_jiffies,
535 .get = param_get_ulong,
536 };
537
538 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
539 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
540 module_param(rcu_kick_kthreads, bool, 0644);
541
542 /*
543 * How long the grace period must be before we start recruiting
544 * quiescent-state help from rcu_note_context_switch().
545 */
546 static ulong jiffies_till_sched_qs = HZ / 10;
547 module_param(jiffies_till_sched_qs, ulong, 0444);
548
549 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
550 static void force_quiescent_state(struct rcu_state *rsp);
551 static int rcu_pending(void);
552
553 /*
554 * Return the number of RCU GPs completed thus far for debug & stats.
555 */
rcu_get_gp_seq(void)556 unsigned long rcu_get_gp_seq(void)
557 {
558 return READ_ONCE(rcu_state_p->gp_seq);
559 }
560 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
561
562 /*
563 * Return the number of RCU-sched GPs completed thus far for debug & stats.
564 */
rcu_sched_get_gp_seq(void)565 unsigned long rcu_sched_get_gp_seq(void)
566 {
567 return READ_ONCE(rcu_sched_state.gp_seq);
568 }
569 EXPORT_SYMBOL_GPL(rcu_sched_get_gp_seq);
570
571 /*
572 * Return the number of RCU-bh GPs completed thus far for debug & stats.
573 */
rcu_bh_get_gp_seq(void)574 unsigned long rcu_bh_get_gp_seq(void)
575 {
576 return READ_ONCE(rcu_bh_state.gp_seq);
577 }
578 EXPORT_SYMBOL_GPL(rcu_bh_get_gp_seq);
579
580 /*
581 * Return the number of RCU expedited batches completed thus far for
582 * debug & stats. Odd numbers mean that a batch is in progress, even
583 * numbers mean idle. The value returned will thus be roughly double
584 * the cumulative batches since boot.
585 */
rcu_exp_batches_completed(void)586 unsigned long rcu_exp_batches_completed(void)
587 {
588 return rcu_state_p->expedited_sequence;
589 }
590 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
591
592 /*
593 * Return the number of RCU-sched expedited batches completed thus far
594 * for debug & stats. Similar to rcu_exp_batches_completed().
595 */
rcu_exp_batches_completed_sched(void)596 unsigned long rcu_exp_batches_completed_sched(void)
597 {
598 return rcu_sched_state.expedited_sequence;
599 }
600 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
601
602 /*
603 * Force a quiescent state.
604 */
rcu_force_quiescent_state(void)605 void rcu_force_quiescent_state(void)
606 {
607 force_quiescent_state(rcu_state_p);
608 }
609 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
610
611 /*
612 * Force a quiescent state for RCU BH.
613 */
rcu_bh_force_quiescent_state(void)614 void rcu_bh_force_quiescent_state(void)
615 {
616 force_quiescent_state(&rcu_bh_state);
617 }
618 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
619
620 /*
621 * Force a quiescent state for RCU-sched.
622 */
rcu_sched_force_quiescent_state(void)623 void rcu_sched_force_quiescent_state(void)
624 {
625 force_quiescent_state(&rcu_sched_state);
626 }
627 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
628
629 /*
630 * Show the state of the grace-period kthreads.
631 */
show_rcu_gp_kthreads(void)632 void show_rcu_gp_kthreads(void)
633 {
634 int cpu;
635 struct rcu_data *rdp;
636 struct rcu_node *rnp;
637 struct rcu_state *rsp;
638
639 for_each_rcu_flavor(rsp) {
640 pr_info("%s: wait state: %d ->state: %#lx\n",
641 rsp->name, rsp->gp_state, rsp->gp_kthread->state);
642 rcu_for_each_node_breadth_first(rsp, rnp) {
643 if (ULONG_CMP_GE(rsp->gp_seq, rnp->gp_seq_needed))
644 continue;
645 pr_info("\trcu_node %d:%d ->gp_seq %lu ->gp_seq_needed %lu\n",
646 rnp->grplo, rnp->grphi, rnp->gp_seq,
647 rnp->gp_seq_needed);
648 if (!rcu_is_leaf_node(rnp))
649 continue;
650 for_each_leaf_node_possible_cpu(rnp, cpu) {
651 rdp = per_cpu_ptr(rsp->rda, cpu);
652 if (rdp->gpwrap ||
653 ULONG_CMP_GE(rsp->gp_seq,
654 rdp->gp_seq_needed))
655 continue;
656 pr_info("\tcpu %d ->gp_seq_needed %lu\n",
657 cpu, rdp->gp_seq_needed);
658 }
659 }
660 /* sched_show_task(rsp->gp_kthread); */
661 }
662 }
663 EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
664
665 /*
666 * Send along grace-period-related data for rcutorture diagnostics.
667 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)668 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
669 unsigned long *gp_seq)
670 {
671 struct rcu_state *rsp = NULL;
672
673 switch (test_type) {
674 case RCU_FLAVOR:
675 rsp = rcu_state_p;
676 break;
677 case RCU_BH_FLAVOR:
678 rsp = &rcu_bh_state;
679 break;
680 case RCU_SCHED_FLAVOR:
681 rsp = &rcu_sched_state;
682 break;
683 default:
684 break;
685 }
686 if (rsp == NULL)
687 return;
688 *flags = READ_ONCE(rsp->gp_flags);
689 *gp_seq = rcu_seq_current(&rsp->gp_seq);
690 }
691 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
692
693 /*
694 * Return the root node of the specified rcu_state structure.
695 */
rcu_get_root(struct rcu_state * rsp)696 static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
697 {
698 return &rsp->node[0];
699 }
700
701 /*
702 * Enter an RCU extended quiescent state, which can be either the
703 * idle loop or adaptive-tickless usermode execution.
704 *
705 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
706 * the possibility of usermode upcalls having messed up our count
707 * of interrupt nesting level during the prior busy period.
708 */
rcu_eqs_enter(bool user)709 static void rcu_eqs_enter(bool user)
710 {
711 struct rcu_state *rsp;
712 struct rcu_data *rdp;
713 struct rcu_dynticks *rdtp;
714
715 rdtp = this_cpu_ptr(&rcu_dynticks);
716 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
717 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
718 rdtp->dynticks_nesting == 0);
719 if (rdtp->dynticks_nesting != 1) {
720 rdtp->dynticks_nesting--;
721 return;
722 }
723
724 lockdep_assert_irqs_disabled();
725 trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
726 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
727 for_each_rcu_flavor(rsp) {
728 rdp = this_cpu_ptr(rsp->rda);
729 do_nocb_deferred_wakeup(rdp);
730 }
731 rcu_prepare_for_idle();
732 WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
733 rcu_dynticks_eqs_enter();
734 rcu_dynticks_task_enter();
735 }
736
737 /**
738 * rcu_idle_enter - inform RCU that current CPU is entering idle
739 *
740 * Enter idle mode, in other words, -leave- the mode in which RCU
741 * read-side critical sections can occur. (Though RCU read-side
742 * critical sections can occur in irq handlers in idle, a possibility
743 * handled by irq_enter() and irq_exit().)
744 *
745 * If you add or remove a call to rcu_idle_enter(), be sure to test with
746 * CONFIG_RCU_EQS_DEBUG=y.
747 */
rcu_idle_enter(void)748 void rcu_idle_enter(void)
749 {
750 lockdep_assert_irqs_disabled();
751 rcu_eqs_enter(false);
752 }
753
754 #ifdef CONFIG_NO_HZ_FULL
755 /**
756 * rcu_user_enter - inform RCU that we are resuming userspace.
757 *
758 * Enter RCU idle mode right before resuming userspace. No use of RCU
759 * is permitted between this call and rcu_user_exit(). This way the
760 * CPU doesn't need to maintain the tick for RCU maintenance purposes
761 * when the CPU runs in userspace.
762 *
763 * If you add or remove a call to rcu_user_enter(), be sure to test with
764 * CONFIG_RCU_EQS_DEBUG=y.
765 */
rcu_user_enter(void)766 void rcu_user_enter(void)
767 {
768 lockdep_assert_irqs_disabled();
769 rcu_eqs_enter(true);
770 }
771 #endif /* CONFIG_NO_HZ_FULL */
772
773 /**
774 * rcu_nmi_exit - inform RCU of exit from NMI context
775 *
776 * If we are returning from the outermost NMI handler that interrupted an
777 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
778 * to let the RCU grace-period handling know that the CPU is back to
779 * being RCU-idle.
780 *
781 * If you add or remove a call to rcu_nmi_exit(), be sure to test
782 * with CONFIG_RCU_EQS_DEBUG=y.
783 */
rcu_nmi_exit(void)784 void rcu_nmi_exit(void)
785 {
786 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
787
788 /*
789 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
790 * (We are exiting an NMI handler, so RCU better be paying attention
791 * to us!)
792 */
793 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
794 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
795
796 /*
797 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
798 * leave it in non-RCU-idle state.
799 */
800 if (rdtp->dynticks_nmi_nesting != 1) {
801 trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
802 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
803 rdtp->dynticks_nmi_nesting - 2);
804 return;
805 }
806
807 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
808 trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
809 WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
810 rcu_dynticks_eqs_enter();
811 }
812
813 /**
814 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
815 *
816 * Exit from an interrupt handler, which might possibly result in entering
817 * idle mode, in other words, leaving the mode in which read-side critical
818 * sections can occur. The caller must have disabled interrupts.
819 *
820 * This code assumes that the idle loop never does anything that might
821 * result in unbalanced calls to irq_enter() and irq_exit(). If your
822 * architecture's idle loop violates this assumption, RCU will give you what
823 * you deserve, good and hard. But very infrequently and irreproducibly.
824 *
825 * Use things like work queues to work around this limitation.
826 *
827 * You have been warned.
828 *
829 * If you add or remove a call to rcu_irq_exit(), be sure to test with
830 * CONFIG_RCU_EQS_DEBUG=y.
831 */
rcu_irq_exit(void)832 void rcu_irq_exit(void)
833 {
834 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
835
836 lockdep_assert_irqs_disabled();
837 if (rdtp->dynticks_nmi_nesting == 1)
838 rcu_prepare_for_idle();
839 rcu_nmi_exit();
840 if (rdtp->dynticks_nmi_nesting == 0)
841 rcu_dynticks_task_enter();
842 }
843
844 /*
845 * Wrapper for rcu_irq_exit() where interrupts are enabled.
846 *
847 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
848 * with CONFIG_RCU_EQS_DEBUG=y.
849 */
rcu_irq_exit_irqson(void)850 void rcu_irq_exit_irqson(void)
851 {
852 unsigned long flags;
853
854 local_irq_save(flags);
855 rcu_irq_exit();
856 local_irq_restore(flags);
857 }
858
859 /*
860 * Exit an RCU extended quiescent state, which can be either the
861 * idle loop or adaptive-tickless usermode execution.
862 *
863 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
864 * allow for the possibility of usermode upcalls messing up our count of
865 * interrupt nesting level during the busy period that is just now starting.
866 */
rcu_eqs_exit(bool user)867 static void rcu_eqs_exit(bool user)
868 {
869 struct rcu_dynticks *rdtp;
870 long oldval;
871
872 lockdep_assert_irqs_disabled();
873 rdtp = this_cpu_ptr(&rcu_dynticks);
874 oldval = rdtp->dynticks_nesting;
875 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
876 if (oldval) {
877 rdtp->dynticks_nesting++;
878 return;
879 }
880 rcu_dynticks_task_exit();
881 rcu_dynticks_eqs_exit();
882 rcu_cleanup_after_idle();
883 trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
884 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
885 WRITE_ONCE(rdtp->dynticks_nesting, 1);
886 WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
887 }
888
889 /**
890 * rcu_idle_exit - inform RCU that current CPU is leaving idle
891 *
892 * Exit idle mode, in other words, -enter- the mode in which RCU
893 * read-side critical sections can occur.
894 *
895 * If you add or remove a call to rcu_idle_exit(), be sure to test with
896 * CONFIG_RCU_EQS_DEBUG=y.
897 */
rcu_idle_exit(void)898 void rcu_idle_exit(void)
899 {
900 unsigned long flags;
901
902 local_irq_save(flags);
903 rcu_eqs_exit(false);
904 local_irq_restore(flags);
905 }
906
907 #ifdef CONFIG_NO_HZ_FULL
908 /**
909 * rcu_user_exit - inform RCU that we are exiting userspace.
910 *
911 * Exit RCU idle mode while entering the kernel because it can
912 * run a RCU read side critical section anytime.
913 *
914 * If you add or remove a call to rcu_user_exit(), be sure to test with
915 * CONFIG_RCU_EQS_DEBUG=y.
916 */
rcu_user_exit(void)917 void rcu_user_exit(void)
918 {
919 rcu_eqs_exit(1);
920 }
921 #endif /* CONFIG_NO_HZ_FULL */
922
923 /**
924 * rcu_nmi_enter - inform RCU of entry to NMI context
925 *
926 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
927 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
928 * that the CPU is active. This implementation permits nested NMIs, as
929 * long as the nesting level does not overflow an int. (You will probably
930 * run out of stack space first.)
931 *
932 * If you add or remove a call to rcu_nmi_enter(), be sure to test
933 * with CONFIG_RCU_EQS_DEBUG=y.
934 */
rcu_nmi_enter(void)935 void rcu_nmi_enter(void)
936 {
937 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
938 long incby = 2;
939
940 /* Complain about underflow. */
941 WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
942
943 /*
944 * If idle from RCU viewpoint, atomically increment ->dynticks
945 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
946 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
947 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
948 * to be in the outermost NMI handler that interrupted an RCU-idle
949 * period (observation due to Andy Lutomirski).
950 */
951 if (rcu_dynticks_curr_cpu_in_eqs()) {
952 rcu_dynticks_eqs_exit();
953 incby = 1;
954 }
955 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
956 rdtp->dynticks_nmi_nesting,
957 rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
958 WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
959 rdtp->dynticks_nmi_nesting + incby);
960 barrier();
961 }
962
963 /**
964 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
965 *
966 * Enter an interrupt handler, which might possibly result in exiting
967 * idle mode, in other words, entering the mode in which read-side critical
968 * sections can occur. The caller must have disabled interrupts.
969 *
970 * Note that the Linux kernel is fully capable of entering an interrupt
971 * handler that it never exits, for example when doing upcalls to user mode!
972 * This code assumes that the idle loop never does upcalls to user mode.
973 * If your architecture's idle loop does do upcalls to user mode (or does
974 * anything else that results in unbalanced calls to the irq_enter() and
975 * irq_exit() functions), RCU will give you what you deserve, good and hard.
976 * But very infrequently and irreproducibly.
977 *
978 * Use things like work queues to work around this limitation.
979 *
980 * You have been warned.
981 *
982 * If you add or remove a call to rcu_irq_enter(), be sure to test with
983 * CONFIG_RCU_EQS_DEBUG=y.
984 */
rcu_irq_enter(void)985 void rcu_irq_enter(void)
986 {
987 struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
988
989 lockdep_assert_irqs_disabled();
990 if (rdtp->dynticks_nmi_nesting == 0)
991 rcu_dynticks_task_exit();
992 rcu_nmi_enter();
993 if (rdtp->dynticks_nmi_nesting == 1)
994 rcu_cleanup_after_idle();
995 }
996
997 /*
998 * Wrapper for rcu_irq_enter() where interrupts are enabled.
999 *
1000 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1001 * with CONFIG_RCU_EQS_DEBUG=y.
1002 */
rcu_irq_enter_irqson(void)1003 void rcu_irq_enter_irqson(void)
1004 {
1005 unsigned long flags;
1006
1007 local_irq_save(flags);
1008 rcu_irq_enter();
1009 local_irq_restore(flags);
1010 }
1011
1012 /**
1013 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1014 *
1015 * Return true if RCU is watching the running CPU, which means that this
1016 * CPU can safely enter RCU read-side critical sections. In other words,
1017 * if the current CPU is in its idle loop and is neither in an interrupt
1018 * or NMI handler, return true.
1019 */
rcu_is_watching(void)1020 bool notrace rcu_is_watching(void)
1021 {
1022 bool ret;
1023
1024 preempt_disable_notrace();
1025 ret = !rcu_dynticks_curr_cpu_in_eqs();
1026 preempt_enable_notrace();
1027 return ret;
1028 }
1029 EXPORT_SYMBOL_GPL(rcu_is_watching);
1030
1031 /*
1032 * If a holdout task is actually running, request an urgent quiescent
1033 * state from its CPU. This is unsynchronized, so migrations can cause
1034 * the request to go to the wrong CPU. Which is OK, all that will happen
1035 * is that the CPU's next context switch will be a bit slower and next
1036 * time around this task will generate another request.
1037 */
rcu_request_urgent_qs_task(struct task_struct * t)1038 void rcu_request_urgent_qs_task(struct task_struct *t)
1039 {
1040 int cpu;
1041
1042 barrier();
1043 cpu = task_cpu(t);
1044 if (!task_curr(t))
1045 return; /* This task is not running on that CPU. */
1046 smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1047 }
1048
1049 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1050
1051 /*
1052 * Is the current CPU online as far as RCU is concerned?
1053 *
1054 * Disable preemption to avoid false positives that could otherwise
1055 * happen due to the current CPU number being sampled, this task being
1056 * preempted, its old CPU being taken offline, resuming on some other CPU,
1057 * then determining that its old CPU is now offline. Because there are
1058 * multiple flavors of RCU, and because this function can be called in the
1059 * midst of updating the flavors while a given CPU coming online or going
1060 * offline, it is necessary to check all flavors. If any of the flavors
1061 * believe that given CPU is online, it is considered to be online.
1062 *
1063 * Disable checking if in an NMI handler because we cannot safely
1064 * report errors from NMI handlers anyway. In addition, it is OK to use
1065 * RCU on an offline processor during initial boot, hence the check for
1066 * rcu_scheduler_fully_active.
1067 */
rcu_lockdep_current_cpu_online(void)1068 bool rcu_lockdep_current_cpu_online(void)
1069 {
1070 struct rcu_data *rdp;
1071 struct rcu_node *rnp;
1072 struct rcu_state *rsp;
1073
1074 if (in_nmi() || !rcu_scheduler_fully_active)
1075 return true;
1076 preempt_disable();
1077 for_each_rcu_flavor(rsp) {
1078 rdp = this_cpu_ptr(rsp->rda);
1079 rnp = rdp->mynode;
1080 if (rdp->grpmask & rcu_rnp_online_cpus(rnp)) {
1081 preempt_enable();
1082 return true;
1083 }
1084 }
1085 preempt_enable();
1086 return false;
1087 }
1088 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1089
1090 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1091
1092 /**
1093 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1094 *
1095 * If the current CPU is idle or running at a first-level (not nested)
1096 * interrupt from idle, return true. The caller must have at least
1097 * disabled preemption.
1098 */
rcu_is_cpu_rrupt_from_idle(void)1099 static int rcu_is_cpu_rrupt_from_idle(void)
1100 {
1101 return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1102 __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1103 }
1104
1105 /*
1106 * We are reporting a quiescent state on behalf of some other CPU, so
1107 * it is our responsibility to check for and handle potential overflow
1108 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1109 * After all, the CPU might be in deep idle state, and thus executing no
1110 * code whatsoever.
1111 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1112 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1113 {
1114 raw_lockdep_assert_held_rcu_node(rnp);
1115 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1116 rnp->gp_seq))
1117 WRITE_ONCE(rdp->gpwrap, true);
1118 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1119 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1120 }
1121
1122 /*
1123 * Snapshot the specified CPU's dynticks counter so that we can later
1124 * credit them with an implicit quiescent state. Return 1 if this CPU
1125 * is in dynticks idle mode, which is an extended quiescent state.
1126 */
dyntick_save_progress_counter(struct rcu_data * rdp)1127 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1128 {
1129 rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1130 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1131 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1132 rcu_gpnum_ovf(rdp->mynode, rdp);
1133 return 1;
1134 }
1135 return 0;
1136 }
1137
1138 /*
1139 * Handler for the irq_work request posted when a grace period has
1140 * gone on for too long, but not yet long enough for an RCU CPU
1141 * stall warning. Set state appropriately, but just complain if
1142 * there is unexpected state on entry.
1143 */
rcu_iw_handler(struct irq_work * iwp)1144 static void rcu_iw_handler(struct irq_work *iwp)
1145 {
1146 struct rcu_data *rdp;
1147 struct rcu_node *rnp;
1148
1149 rdp = container_of(iwp, struct rcu_data, rcu_iw);
1150 rnp = rdp->mynode;
1151 raw_spin_lock_rcu_node(rnp);
1152 if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1153 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1154 rdp->rcu_iw_pending = false;
1155 }
1156 raw_spin_unlock_rcu_node(rnp);
1157 }
1158
1159 /*
1160 * Return true if the specified CPU has passed through a quiescent
1161 * state by virtue of being in or having passed through an dynticks
1162 * idle state since the last call to dyntick_save_progress_counter()
1163 * for this same CPU, or by virtue of having been offline.
1164 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1165 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1166 {
1167 unsigned long jtsq;
1168 bool *rnhqp;
1169 bool *ruqp;
1170 struct rcu_node *rnp = rdp->mynode;
1171
1172 /*
1173 * If the CPU passed through or entered a dynticks idle phase with
1174 * no active irq/NMI handlers, then we can safely pretend that the CPU
1175 * already acknowledged the request to pass through a quiescent
1176 * state. Either way, that CPU cannot possibly be in an RCU
1177 * read-side critical section that started before the beginning
1178 * of the current RCU grace period.
1179 */
1180 if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1181 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1182 rdp->dynticks_fqs++;
1183 rcu_gpnum_ovf(rnp, rdp);
1184 return 1;
1185 }
1186
1187 /*
1188 * Has this CPU encountered a cond_resched() since the beginning
1189 * of the grace period? For this to be the case, the CPU has to
1190 * have noticed the current grace period. This might not be the
1191 * case for nohz_full CPUs looping in the kernel.
1192 */
1193 jtsq = jiffies_till_sched_qs;
1194 ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1195 if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1196 READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1197 rcu_seq_current(&rdp->gp_seq) == rnp->gp_seq && !rdp->gpwrap) {
1198 trace_rcu_fqs(rdp->rsp->name, rdp->gp_seq, rdp->cpu, TPS("rqc"));
1199 rcu_gpnum_ovf(rnp, rdp);
1200 return 1;
1201 } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1202 /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1203 smp_store_release(ruqp, true);
1204 }
1205
1206 /* If waiting too long on an offline CPU, complain. */
1207 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
1208 time_after(jiffies, rdp->rsp->gp_start + HZ)) {
1209 bool onl;
1210 struct rcu_node *rnp1;
1211
1212 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1213 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1214 __func__, rnp->grplo, rnp->grphi, rnp->level,
1215 (long)rnp->gp_seq, (long)rnp->completedqs);
1216 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1217 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1218 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1219 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1220 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1221 __func__, rdp->cpu, ".o"[onl],
1222 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1223 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1224 return 1; /* Break things loose after complaining. */
1225 }
1226
1227 /*
1228 * A CPU running for an extended time within the kernel can
1229 * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
1230 * even context-switching back and forth between a pair of
1231 * in-kernel CPU-bound tasks cannot advance grace periods.
1232 * So if the grace period is old enough, make the CPU pay attention.
1233 * Note that the unsynchronized assignments to the per-CPU
1234 * rcu_need_heavy_qs variable are safe. Yes, setting of
1235 * bits can be lost, but they will be set again on the next
1236 * force-quiescent-state pass. So lost bit sets do not result
1237 * in incorrect behavior, merely in a grace period lasting
1238 * a few jiffies longer than it might otherwise. Because
1239 * there are at most four threads involved, and because the
1240 * updates are only once every few jiffies, the probability of
1241 * lossage (and thus of slight grace-period extension) is
1242 * quite low.
1243 */
1244 rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1245 if (!READ_ONCE(*rnhqp) &&
1246 (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1247 time_after(jiffies, rdp->rsp->jiffies_resched))) {
1248 WRITE_ONCE(*rnhqp, true);
1249 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1250 smp_store_release(ruqp, true);
1251 rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
1252 }
1253
1254 /*
1255 * If more than halfway to RCU CPU stall-warning time, do a
1256 * resched_cpu() to try to loosen things up a bit. Also check to
1257 * see if the CPU is getting hammered with interrupts, but only
1258 * once per grace period, just to keep the IPIs down to a dull roar.
1259 */
1260 if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1261 resched_cpu(rdp->cpu);
1262 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1263 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1264 (rnp->ffmask & rdp->grpmask)) {
1265 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1266 rdp->rcu_iw_pending = true;
1267 rdp->rcu_iw_gp_seq = rnp->gp_seq;
1268 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1269 }
1270 }
1271
1272 return 0;
1273 }
1274
record_gp_stall_check_time(struct rcu_state * rsp)1275 static void record_gp_stall_check_time(struct rcu_state *rsp)
1276 {
1277 unsigned long j = jiffies;
1278 unsigned long j1;
1279
1280 rsp->gp_start = j;
1281 j1 = rcu_jiffies_till_stall_check();
1282 /* Record ->gp_start before ->jiffies_stall. */
1283 smp_store_release(&rsp->jiffies_stall, j + j1); /* ^^^ */
1284 rsp->jiffies_resched = j + j1 / 2;
1285 rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1286 }
1287
1288 /*
1289 * Convert a ->gp_state value to a character string.
1290 */
gp_state_getname(short gs)1291 static const char *gp_state_getname(short gs)
1292 {
1293 if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1294 return "???";
1295 return gp_state_names[gs];
1296 }
1297
1298 /*
1299 * Complain about starvation of grace-period kthread.
1300 */
rcu_check_gp_kthread_starvation(struct rcu_state * rsp)1301 static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1302 {
1303 unsigned long gpa;
1304 unsigned long j;
1305
1306 j = jiffies;
1307 gpa = READ_ONCE(rsp->gp_activity);
1308 if (j - gpa > 2 * HZ) {
1309 pr_err("%s kthread starved for %ld jiffies! g%ld f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1310 rsp->name, j - gpa,
1311 (long)rcu_seq_current(&rsp->gp_seq),
1312 rsp->gp_flags,
1313 gp_state_getname(rsp->gp_state), rsp->gp_state,
1314 rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1315 rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1316 if (rsp->gp_kthread) {
1317 pr_err("RCU grace-period kthread stack dump:\n");
1318 sched_show_task(rsp->gp_kthread);
1319 wake_up_process(rsp->gp_kthread);
1320 }
1321 }
1322 }
1323
1324 /*
1325 * Dump stacks of all tasks running on stalled CPUs. First try using
1326 * NMIs, but fall back to manual remote stack tracing on architectures
1327 * that don't support NMI-based stack dumps. The NMI-triggered stack
1328 * traces are more accurate because they are printed by the target CPU.
1329 */
rcu_dump_cpu_stacks(struct rcu_state * rsp)1330 static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1331 {
1332 int cpu;
1333 unsigned long flags;
1334 struct rcu_node *rnp;
1335
1336 rcu_for_each_leaf_node(rsp, rnp) {
1337 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1338 for_each_leaf_node_possible_cpu(rnp, cpu)
1339 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1340 if (!trigger_single_cpu_backtrace(cpu))
1341 dump_cpu_task(cpu);
1342 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1343 }
1344 }
1345
1346 /*
1347 * If too much time has passed in the current grace period, and if
1348 * so configured, go kick the relevant kthreads.
1349 */
rcu_stall_kick_kthreads(struct rcu_state * rsp)1350 static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1351 {
1352 unsigned long j;
1353
1354 if (!rcu_kick_kthreads)
1355 return;
1356 j = READ_ONCE(rsp->jiffies_kick_kthreads);
1357 if (time_after(jiffies, j) && rsp->gp_kthread &&
1358 (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1359 WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1360 rcu_ftrace_dump(DUMP_ALL);
1361 wake_up_process(rsp->gp_kthread);
1362 WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1363 }
1364 }
1365
panic_on_rcu_stall(void)1366 static void panic_on_rcu_stall(void)
1367 {
1368 if (sysctl_panic_on_rcu_stall)
1369 panic("RCU Stall\n");
1370 }
1371
print_other_cpu_stall(struct rcu_state * rsp,unsigned long gp_seq)1372 static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gp_seq)
1373 {
1374 int cpu;
1375 unsigned long flags;
1376 unsigned long gpa;
1377 unsigned long j;
1378 int ndetected = 0;
1379 struct rcu_node *rnp = rcu_get_root(rsp);
1380 long totqlen = 0;
1381
1382 /* Kick and suppress, if so configured. */
1383 rcu_stall_kick_kthreads(rsp);
1384 if (rcu_cpu_stall_suppress)
1385 return;
1386
1387 /*
1388 * OK, time to rat on our buddy...
1389 * See Documentation/RCU/stallwarn.txt for info on how to debug
1390 * RCU CPU stall warnings.
1391 */
1392 pr_err("INFO: %s detected stalls on CPUs/tasks:", rsp->name);
1393 print_cpu_stall_info_begin();
1394 rcu_for_each_leaf_node(rsp, rnp) {
1395 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1396 ndetected += rcu_print_task_stall(rnp);
1397 if (rnp->qsmask != 0) {
1398 for_each_leaf_node_possible_cpu(rnp, cpu)
1399 if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1400 print_cpu_stall_info(rsp, cpu);
1401 ndetected++;
1402 }
1403 }
1404 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1405 }
1406
1407 print_cpu_stall_info_end();
1408 for_each_possible_cpu(cpu)
1409 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1410 cpu)->cblist);
1411 pr_cont("(detected by %d, t=%ld jiffies, g=%ld, q=%lu)\n",
1412 smp_processor_id(), (long)(jiffies - rsp->gp_start),
1413 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
1414 if (ndetected) {
1415 rcu_dump_cpu_stacks(rsp);
1416
1417 /* Complain about tasks blocking the grace period. */
1418 rcu_print_detail_task_stall(rsp);
1419 } else {
1420 if (rcu_seq_current(&rsp->gp_seq) != gp_seq) {
1421 pr_err("INFO: Stall ended before state dump start\n");
1422 } else {
1423 j = jiffies;
1424 gpa = READ_ONCE(rsp->gp_activity);
1425 pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1426 rsp->name, j - gpa, j, gpa,
1427 jiffies_till_next_fqs,
1428 rcu_get_root(rsp)->qsmask);
1429 /* In this case, the current CPU might be at fault. */
1430 sched_show_task(current);
1431 }
1432 }
1433 /* Rewrite if needed in case of slow consoles. */
1434 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1435 WRITE_ONCE(rsp->jiffies_stall,
1436 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1437
1438 rcu_check_gp_kthread_starvation(rsp);
1439
1440 panic_on_rcu_stall();
1441
1442 force_quiescent_state(rsp); /* Kick them all. */
1443 }
1444
print_cpu_stall(struct rcu_state * rsp)1445 static void print_cpu_stall(struct rcu_state *rsp)
1446 {
1447 int cpu;
1448 unsigned long flags;
1449 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1450 struct rcu_node *rnp = rcu_get_root(rsp);
1451 long totqlen = 0;
1452
1453 /* Kick and suppress, if so configured. */
1454 rcu_stall_kick_kthreads(rsp);
1455 if (rcu_cpu_stall_suppress)
1456 return;
1457
1458 /*
1459 * OK, time to rat on ourselves...
1460 * See Documentation/RCU/stallwarn.txt for info on how to debug
1461 * RCU CPU stall warnings.
1462 */
1463 pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1464 print_cpu_stall_info_begin();
1465 raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1466 print_cpu_stall_info(rsp, smp_processor_id());
1467 raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1468 print_cpu_stall_info_end();
1469 for_each_possible_cpu(cpu)
1470 totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1471 cpu)->cblist);
1472 pr_cont(" (t=%lu jiffies g=%ld q=%lu)\n",
1473 jiffies - rsp->gp_start,
1474 (long)rcu_seq_current(&rsp->gp_seq), totqlen);
1475
1476 rcu_check_gp_kthread_starvation(rsp);
1477
1478 rcu_dump_cpu_stacks(rsp);
1479
1480 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1481 /* Rewrite if needed in case of slow consoles. */
1482 if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1483 WRITE_ONCE(rsp->jiffies_stall,
1484 jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1485 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1486
1487 panic_on_rcu_stall();
1488
1489 /*
1490 * Attempt to revive the RCU machinery by forcing a context switch.
1491 *
1492 * A context switch would normally allow the RCU state machine to make
1493 * progress and it could be we're stuck in kernel space without context
1494 * switches for an entirely unreasonable amount of time.
1495 */
1496 resched_cpu(smp_processor_id());
1497 }
1498
check_cpu_stall(struct rcu_state * rsp,struct rcu_data * rdp)1499 static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1500 {
1501 unsigned long gs1;
1502 unsigned long gs2;
1503 unsigned long gps;
1504 unsigned long j;
1505 unsigned long jn;
1506 unsigned long js;
1507 struct rcu_node *rnp;
1508
1509 if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1510 !rcu_gp_in_progress(rsp))
1511 return;
1512 rcu_stall_kick_kthreads(rsp);
1513 j = jiffies;
1514
1515 /*
1516 * Lots of memory barriers to reject false positives.
1517 *
1518 * The idea is to pick up rsp->gp_seq, then rsp->jiffies_stall,
1519 * then rsp->gp_start, and finally another copy of rsp->gp_seq.
1520 * These values are updated in the opposite order with memory
1521 * barriers (or equivalent) during grace-period initialization
1522 * and cleanup. Now, a false positive can occur if we get an new
1523 * value of rsp->gp_start and a old value of rsp->jiffies_stall.
1524 * But given the memory barriers, the only way that this can happen
1525 * is if one grace period ends and another starts between these
1526 * two fetches. This is detected by comparing the second fetch
1527 * of rsp->gp_seq with the previous fetch from rsp->gp_seq.
1528 *
1529 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1530 * and rsp->gp_start suffice to forestall false positives.
1531 */
1532 gs1 = READ_ONCE(rsp->gp_seq);
1533 smp_rmb(); /* Pick up ->gp_seq first... */
1534 js = READ_ONCE(rsp->jiffies_stall);
1535 smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1536 gps = READ_ONCE(rsp->gp_start);
1537 smp_rmb(); /* ...and finally ->gp_start before ->gp_seq again. */
1538 gs2 = READ_ONCE(rsp->gp_seq);
1539 if (gs1 != gs2 ||
1540 ULONG_CMP_LT(j, js) ||
1541 ULONG_CMP_GE(gps, js))
1542 return; /* No stall or GP completed since entering function. */
1543 rnp = rdp->mynode;
1544 jn = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
1545 if (rcu_gp_in_progress(rsp) &&
1546 (READ_ONCE(rnp->qsmask) & rdp->grpmask) &&
1547 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1548
1549 /* We haven't checked in, so go dump stack. */
1550 print_cpu_stall(rsp);
1551
1552 } else if (rcu_gp_in_progress(rsp) &&
1553 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY) &&
1554 cmpxchg(&rsp->jiffies_stall, js, jn) == js) {
1555
1556 /* They had a few time units to dump stack, so complain. */
1557 print_other_cpu_stall(rsp, gs2);
1558 }
1559 }
1560
1561 /**
1562 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1563 *
1564 * Set the stall-warning timeout way off into the future, thus preventing
1565 * any RCU CPU stall-warning messages from appearing in the current set of
1566 * RCU grace periods.
1567 *
1568 * The caller must disable hard irqs.
1569 */
rcu_cpu_stall_reset(void)1570 void rcu_cpu_stall_reset(void)
1571 {
1572 struct rcu_state *rsp;
1573
1574 for_each_rcu_flavor(rsp)
1575 WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1576 }
1577
1578 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1579 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1580 unsigned long gp_seq_req, const char *s)
1581 {
1582 trace_rcu_future_grace_period(rdp->rsp->name, rnp->gp_seq, gp_seq_req,
1583 rnp->level, rnp->grplo, rnp->grphi, s);
1584 }
1585
1586 /*
1587 * rcu_start_this_gp - Request the start of a particular grace period
1588 * @rnp_start: The leaf node of the CPU from which to start.
1589 * @rdp: The rcu_data corresponding to the CPU from which to start.
1590 * @gp_seq_req: The gp_seq of the grace period to start.
1591 *
1592 * Start the specified grace period, as needed to handle newly arrived
1593 * callbacks. The required future grace periods are recorded in each
1594 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1595 * is reason to awaken the grace-period kthread.
1596 *
1597 * The caller must hold the specified rcu_node structure's ->lock, which
1598 * is why the caller is responsible for waking the grace-period kthread.
1599 *
1600 * Returns true if the GP thread needs to be awakened else false.
1601 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1602 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1603 unsigned long gp_seq_req)
1604 {
1605 bool ret = false;
1606 struct rcu_state *rsp = rdp->rsp;
1607 struct rcu_node *rnp;
1608
1609 /*
1610 * Use funnel locking to either acquire the root rcu_node
1611 * structure's lock or bail out if the need for this grace period
1612 * has already been recorded -- or if that grace period has in
1613 * fact already started. If there is already a grace period in
1614 * progress in a non-leaf node, no recording is needed because the
1615 * end of the grace period will scan the leaf rcu_node structures.
1616 * Note that rnp_start->lock must not be released.
1617 */
1618 raw_lockdep_assert_held_rcu_node(rnp_start);
1619 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1620 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1621 if (rnp != rnp_start)
1622 raw_spin_lock_rcu_node(rnp);
1623 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1624 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1625 (rnp != rnp_start &&
1626 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1627 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1628 TPS("Prestarted"));
1629 goto unlock_out;
1630 }
1631 rnp->gp_seq_needed = gp_seq_req;
1632 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1633 /*
1634 * We just marked the leaf or internal node, and a
1635 * grace period is in progress, which means that
1636 * rcu_gp_cleanup() will see the marking. Bail to
1637 * reduce contention.
1638 */
1639 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1640 TPS("Startedleaf"));
1641 goto unlock_out;
1642 }
1643 if (rnp != rnp_start && rnp->parent != NULL)
1644 raw_spin_unlock_rcu_node(rnp);
1645 if (!rnp->parent)
1646 break; /* At root, and perhaps also leaf. */
1647 }
1648
1649 /* If GP already in progress, just leave, otherwise start one. */
1650 if (rcu_gp_in_progress(rsp)) {
1651 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1652 goto unlock_out;
1653 }
1654 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1655 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags | RCU_GP_FLAG_INIT);
1656 rsp->gp_req_activity = jiffies;
1657 if (!rsp->gp_kthread) {
1658 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1659 goto unlock_out;
1660 }
1661 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq), TPS("newreq"));
1662 ret = true; /* Caller must wake GP kthread. */
1663 unlock_out:
1664 /* Push furthest requested GP to leaf node and rcu_data structure. */
1665 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1666 rnp_start->gp_seq_needed = rnp->gp_seq_needed;
1667 rdp->gp_seq_needed = rnp->gp_seq_needed;
1668 }
1669 if (rnp != rnp_start)
1670 raw_spin_unlock_rcu_node(rnp);
1671 return ret;
1672 }
1673
1674 /*
1675 * Clean up any old requests for the just-ended grace period. Also return
1676 * whether any additional grace periods have been requested.
1677 */
rcu_future_gp_cleanup(struct rcu_state * rsp,struct rcu_node * rnp)1678 static bool rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1679 {
1680 bool needmore;
1681 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1682
1683 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1684 if (!needmore)
1685 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1686 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1687 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1688 return needmore;
1689 }
1690
1691 /*
1692 * Awaken the grace-period kthread for the specified flavor of RCU.
1693 * Don't do a self-awaken, and don't bother awakening when there is
1694 * nothing for the grace-period kthread to do (as in several CPUs
1695 * raced to awaken, and we lost), and finally don't try to awaken
1696 * a kthread that has not yet been created.
1697 */
rcu_gp_kthread_wake(struct rcu_state * rsp)1698 static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1699 {
1700 if (current == rsp->gp_kthread ||
1701 !READ_ONCE(rsp->gp_flags) ||
1702 !rsp->gp_kthread)
1703 return;
1704 swake_up_one(&rsp->gp_wq);
1705 }
1706
1707 /*
1708 * If there is room, assign a ->gp_seq number to any callbacks on this
1709 * CPU that have not already been assigned. Also accelerate any callbacks
1710 * that were previously assigned a ->gp_seq number that has since proven
1711 * to be too conservative, which can happen if callbacks get assigned a
1712 * ->gp_seq number while RCU is idle, but with reference to a non-root
1713 * rcu_node structure. This function is idempotent, so it does not hurt
1714 * to call it repeatedly. Returns an flag saying that we should awaken
1715 * the RCU grace-period kthread.
1716 *
1717 * The caller must hold rnp->lock with interrupts disabled.
1718 */
rcu_accelerate_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1719 static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1720 struct rcu_data *rdp)
1721 {
1722 unsigned long gp_seq_req;
1723 bool ret = false;
1724
1725 raw_lockdep_assert_held_rcu_node(rnp);
1726
1727 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1728 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1729 return false;
1730
1731 /*
1732 * Callbacks are often registered with incomplete grace-period
1733 * information. Something about the fact that getting exact
1734 * information requires acquiring a global lock... RCU therefore
1735 * makes a conservative estimate of the grace period number at which
1736 * a given callback will become ready to invoke. The following
1737 * code checks this estimate and improves it when possible, thus
1738 * accelerating callback invocation to an earlier grace-period
1739 * number.
1740 */
1741 gp_seq_req = rcu_seq_snap(&rsp->gp_seq);
1742 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1743 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1744
1745 /* Trace depending on how much we were able to accelerate. */
1746 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1747 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccWaitCB"));
1748 else
1749 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("AccReadyCB"));
1750 return ret;
1751 }
1752
1753 /*
1754 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1755 * rcu_node structure's ->lock be held. It consults the cached value
1756 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1757 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1758 * while holding the leaf rcu_node structure's ->lock.
1759 */
rcu_accelerate_cbs_unlocked(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1760 static void rcu_accelerate_cbs_unlocked(struct rcu_state *rsp,
1761 struct rcu_node *rnp,
1762 struct rcu_data *rdp)
1763 {
1764 unsigned long c;
1765 bool needwake;
1766
1767 lockdep_assert_irqs_disabled();
1768 c = rcu_seq_snap(&rsp->gp_seq);
1769 if (!rdp->gpwrap && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1770 /* Old request still live, so mark recent callbacks. */
1771 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1772 return;
1773 }
1774 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1775 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
1776 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1777 if (needwake)
1778 rcu_gp_kthread_wake(rsp);
1779 }
1780
1781 /*
1782 * Move any callbacks whose grace period has completed to the
1783 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1784 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1785 * sublist. This function is idempotent, so it does not hurt to
1786 * invoke it repeatedly. As long as it is not invoked -too- often...
1787 * Returns true if the RCU grace-period kthread needs to be awakened.
1788 *
1789 * The caller must hold rnp->lock with interrupts disabled.
1790 */
rcu_advance_cbs(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1791 static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1792 struct rcu_data *rdp)
1793 {
1794 raw_lockdep_assert_held_rcu_node(rnp);
1795
1796 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1797 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1798 return false;
1799
1800 /*
1801 * Find all callbacks whose ->gp_seq numbers indicate that they
1802 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1803 */
1804 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1805
1806 /* Classify any remaining callbacks. */
1807 return rcu_accelerate_cbs(rsp, rnp, rdp);
1808 }
1809
1810 /*
1811 * Update CPU-local rcu_data state to record the beginnings and ends of
1812 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1813 * structure corresponding to the current CPU, and must have irqs disabled.
1814 * Returns true if the grace-period kthread needs to be awakened.
1815 */
__note_gp_changes(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)1816 static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1817 struct rcu_data *rdp)
1818 {
1819 bool ret;
1820 bool need_gp;
1821
1822 raw_lockdep_assert_held_rcu_node(rnp);
1823
1824 if (rdp->gp_seq == rnp->gp_seq)
1825 return false; /* Nothing to do. */
1826
1827 /* Handle the ends of any preceding grace periods first. */
1828 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1829 unlikely(READ_ONCE(rdp->gpwrap))) {
1830 ret = rcu_advance_cbs(rsp, rnp, rdp); /* Advance callbacks. */
1831 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuend"));
1832 } else {
1833 ret = rcu_accelerate_cbs(rsp, rnp, rdp); /* Recent callbacks. */
1834 }
1835
1836 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1837 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1838 unlikely(READ_ONCE(rdp->gpwrap))) {
1839 /*
1840 * If the current grace period is waiting for this CPU,
1841 * set up to detect a quiescent state, otherwise don't
1842 * go looking for one.
1843 */
1844 trace_rcu_grace_period(rsp->name, rnp->gp_seq, TPS("cpustart"));
1845 need_gp = !!(rnp->qsmask & rdp->grpmask);
1846 rdp->cpu_no_qs.b.norm = need_gp;
1847 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1848 rdp->core_needs_qs = need_gp;
1849 zero_cpu_stall_ticks(rdp);
1850 }
1851 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1852 if (ULONG_CMP_GE(rnp->gp_seq_needed, rdp->gp_seq_needed) || rdp->gpwrap)
1853 rdp->gp_seq_needed = rnp->gp_seq_needed;
1854 WRITE_ONCE(rdp->gpwrap, false);
1855 rcu_gpnum_ovf(rnp, rdp);
1856 return ret;
1857 }
1858
note_gp_changes(struct rcu_state * rsp,struct rcu_data * rdp)1859 static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1860 {
1861 unsigned long flags;
1862 bool needwake;
1863 struct rcu_node *rnp;
1864
1865 local_irq_save(flags);
1866 rnp = rdp->mynode;
1867 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1868 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1869 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1870 local_irq_restore(flags);
1871 return;
1872 }
1873 needwake = __note_gp_changes(rsp, rnp, rdp);
1874 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1875 if (needwake)
1876 rcu_gp_kthread_wake(rsp);
1877 }
1878
rcu_gp_slow(struct rcu_state * rsp,int delay)1879 static void rcu_gp_slow(struct rcu_state *rsp, int delay)
1880 {
1881 if (delay > 0 &&
1882 !(rcu_seq_ctr(rsp->gp_seq) %
1883 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1884 schedule_timeout_uninterruptible(delay);
1885 }
1886
1887 /*
1888 * Initialize a new grace period. Return false if no grace period required.
1889 */
rcu_gp_init(struct rcu_state * rsp)1890 static bool rcu_gp_init(struct rcu_state *rsp)
1891 {
1892 unsigned long flags;
1893 unsigned long oldmask;
1894 unsigned long mask;
1895 struct rcu_data *rdp;
1896 struct rcu_node *rnp = rcu_get_root(rsp);
1897
1898 WRITE_ONCE(rsp->gp_activity, jiffies);
1899 raw_spin_lock_irq_rcu_node(rnp);
1900 if (!READ_ONCE(rsp->gp_flags)) {
1901 /* Spurious wakeup, tell caller to go back to sleep. */
1902 raw_spin_unlock_irq_rcu_node(rnp);
1903 return false;
1904 }
1905 WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1906
1907 if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1908 /*
1909 * Grace period already in progress, don't start another.
1910 * Not supposed to be able to happen.
1911 */
1912 raw_spin_unlock_irq_rcu_node(rnp);
1913 return false;
1914 }
1915
1916 /* Advance to a new grace period and initialize state. */
1917 record_gp_stall_check_time(rsp);
1918 /* Record GP times before starting GP, hence rcu_seq_start(). */
1919 rcu_seq_start(&rsp->gp_seq);
1920 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("start"));
1921 raw_spin_unlock_irq_rcu_node(rnp);
1922
1923 /*
1924 * Apply per-leaf buffered online and offline operations to the
1925 * rcu_node tree. Note that this new grace period need not wait
1926 * for subsequent online CPUs, and that quiescent-state forcing
1927 * will handle subsequent offline CPUs.
1928 */
1929 rsp->gp_state = RCU_GP_ONOFF;
1930 rcu_for_each_leaf_node(rsp, rnp) {
1931 spin_lock(&rsp->ofl_lock);
1932 raw_spin_lock_irq_rcu_node(rnp);
1933 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1934 !rnp->wait_blkd_tasks) {
1935 /* Nothing to do on this leaf rcu_node structure. */
1936 raw_spin_unlock_irq_rcu_node(rnp);
1937 spin_unlock(&rsp->ofl_lock);
1938 continue;
1939 }
1940
1941 /* Record old state, apply changes to ->qsmaskinit field. */
1942 oldmask = rnp->qsmaskinit;
1943 rnp->qsmaskinit = rnp->qsmaskinitnext;
1944
1945 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1946 if (!oldmask != !rnp->qsmaskinit) {
1947 if (!oldmask) { /* First online CPU for rcu_node. */
1948 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1949 rcu_init_new_rnp(rnp);
1950 } else if (rcu_preempt_has_tasks(rnp)) {
1951 rnp->wait_blkd_tasks = true; /* blocked tasks */
1952 } else { /* Last offline CPU and can propagate. */
1953 rcu_cleanup_dead_rnp(rnp);
1954 }
1955 }
1956
1957 /*
1958 * If all waited-on tasks from prior grace period are
1959 * done, and if all this rcu_node structure's CPUs are
1960 * still offline, propagate up the rcu_node tree and
1961 * clear ->wait_blkd_tasks. Otherwise, if one of this
1962 * rcu_node structure's CPUs has since come back online,
1963 * simply clear ->wait_blkd_tasks.
1964 */
1965 if (rnp->wait_blkd_tasks &&
1966 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1967 rnp->wait_blkd_tasks = false;
1968 if (!rnp->qsmaskinit)
1969 rcu_cleanup_dead_rnp(rnp);
1970 }
1971
1972 raw_spin_unlock_irq_rcu_node(rnp);
1973 spin_unlock(&rsp->ofl_lock);
1974 }
1975 rcu_gp_slow(rsp, gp_preinit_delay); /* Races with CPU hotplug. */
1976
1977 /*
1978 * Set the quiescent-state-needed bits in all the rcu_node
1979 * structures for all currently online CPUs in breadth-first order,
1980 * starting from the root rcu_node structure, relying on the layout
1981 * of the tree within the rsp->node[] array. Note that other CPUs
1982 * will access only the leaves of the hierarchy, thus seeing that no
1983 * grace period is in progress, at least until the corresponding
1984 * leaf node has been initialized.
1985 *
1986 * The grace period cannot complete until the initialization
1987 * process finishes, because this kthread handles both.
1988 */
1989 rsp->gp_state = RCU_GP_INIT;
1990 rcu_for_each_node_breadth_first(rsp, rnp) {
1991 rcu_gp_slow(rsp, gp_init_delay);
1992 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1993 rdp = this_cpu_ptr(rsp->rda);
1994 rcu_preempt_check_blocked_tasks(rsp, rnp);
1995 rnp->qsmask = rnp->qsmaskinit;
1996 WRITE_ONCE(rnp->gp_seq, rsp->gp_seq);
1997 if (rnp == rdp->mynode)
1998 (void)__note_gp_changes(rsp, rnp, rdp);
1999 rcu_preempt_boost_start_gp(rnp);
2000 trace_rcu_grace_period_init(rsp->name, rnp->gp_seq,
2001 rnp->level, rnp->grplo,
2002 rnp->grphi, rnp->qsmask);
2003 /* Quiescent states for tasks on any now-offline CPUs. */
2004 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
2005 rnp->rcu_gp_init_mask = mask;
2006 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
2007 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2008 else
2009 raw_spin_unlock_irq_rcu_node(rnp);
2010 cond_resched_tasks_rcu_qs();
2011 WRITE_ONCE(rsp->gp_activity, jiffies);
2012 }
2013
2014 return true;
2015 }
2016
2017 /*
2018 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
2019 * time.
2020 */
rcu_gp_fqs_check_wake(struct rcu_state * rsp,int * gfp)2021 static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2022 {
2023 struct rcu_node *rnp = rcu_get_root(rsp);
2024
2025 /* Someone like call_rcu() requested a force-quiescent-state scan. */
2026 *gfp = READ_ONCE(rsp->gp_flags);
2027 if (*gfp & RCU_GP_FLAG_FQS)
2028 return true;
2029
2030 /* The current grace period has completed. */
2031 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2032 return true;
2033
2034 return false;
2035 }
2036
2037 /*
2038 * Do one round of quiescent-state forcing.
2039 */
rcu_gp_fqs(struct rcu_state * rsp,bool first_time)2040 static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2041 {
2042 struct rcu_node *rnp = rcu_get_root(rsp);
2043
2044 WRITE_ONCE(rsp->gp_activity, jiffies);
2045 rsp->n_force_qs++;
2046 if (first_time) {
2047 /* Collect dyntick-idle snapshots. */
2048 force_qs_rnp(rsp, dyntick_save_progress_counter);
2049 } else {
2050 /* Handle dyntick-idle and offline CPUs. */
2051 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2052 }
2053 /* Clear flag to prevent immediate re-entry. */
2054 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2055 raw_spin_lock_irq_rcu_node(rnp);
2056 WRITE_ONCE(rsp->gp_flags,
2057 READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2058 raw_spin_unlock_irq_rcu_node(rnp);
2059 }
2060 }
2061
2062 /*
2063 * Clean up after the old grace period.
2064 */
rcu_gp_cleanup(struct rcu_state * rsp)2065 static void rcu_gp_cleanup(struct rcu_state *rsp)
2066 {
2067 unsigned long gp_duration;
2068 bool needgp = false;
2069 unsigned long new_gp_seq;
2070 struct rcu_data *rdp;
2071 struct rcu_node *rnp = rcu_get_root(rsp);
2072 struct swait_queue_head *sq;
2073
2074 WRITE_ONCE(rsp->gp_activity, jiffies);
2075 raw_spin_lock_irq_rcu_node(rnp);
2076 gp_duration = jiffies - rsp->gp_start;
2077 if (gp_duration > rsp->gp_max)
2078 rsp->gp_max = gp_duration;
2079
2080 /*
2081 * We know the grace period is complete, but to everyone else
2082 * it appears to still be ongoing. But it is also the case
2083 * that to everyone else it looks like there is nothing that
2084 * they can do to advance the grace period. It is therefore
2085 * safe for us to drop the lock in order to mark the grace
2086 * period as completed in all of the rcu_node structures.
2087 */
2088 raw_spin_unlock_irq_rcu_node(rnp);
2089
2090 /*
2091 * Propagate new ->gp_seq value to rcu_node structures so that
2092 * other CPUs don't have to wait until the start of the next grace
2093 * period to process their callbacks. This also avoids some nasty
2094 * RCU grace-period initialization races by forcing the end of
2095 * the current grace period to be completely recorded in all of
2096 * the rcu_node structures before the beginning of the next grace
2097 * period is recorded in any of the rcu_node structures.
2098 */
2099 new_gp_seq = rsp->gp_seq;
2100 rcu_seq_end(&new_gp_seq);
2101 rcu_for_each_node_breadth_first(rsp, rnp) {
2102 raw_spin_lock_irq_rcu_node(rnp);
2103 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2104 dump_blkd_tasks(rsp, rnp, 10);
2105 WARN_ON_ONCE(rnp->qsmask);
2106 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2107 rdp = this_cpu_ptr(rsp->rda);
2108 if (rnp == rdp->mynode)
2109 needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2110 /* smp_mb() provided by prior unlock-lock pair. */
2111 needgp = rcu_future_gp_cleanup(rsp, rnp) || needgp;
2112 sq = rcu_nocb_gp_get(rnp);
2113 raw_spin_unlock_irq_rcu_node(rnp);
2114 rcu_nocb_gp_cleanup(sq);
2115 cond_resched_tasks_rcu_qs();
2116 WRITE_ONCE(rsp->gp_activity, jiffies);
2117 rcu_gp_slow(rsp, gp_cleanup_delay);
2118 }
2119 rnp = rcu_get_root(rsp);
2120 raw_spin_lock_irq_rcu_node(rnp); /* GP before rsp->gp_seq update. */
2121
2122 /* Declare grace period done. */
2123 rcu_seq_end(&rsp->gp_seq);
2124 trace_rcu_grace_period(rsp->name, rsp->gp_seq, TPS("end"));
2125 rsp->gp_state = RCU_GP_IDLE;
2126 /* Check for GP requests since above loop. */
2127 rdp = this_cpu_ptr(rsp->rda);
2128 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2129 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2130 TPS("CleanupMore"));
2131 needgp = true;
2132 }
2133 /* Advance CBs to reduce false positives below. */
2134 if (!rcu_accelerate_cbs(rsp, rnp, rdp) && needgp) {
2135 WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2136 rsp->gp_req_activity = jiffies;
2137 trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gp_seq),
2138 TPS("newreq"));
2139 } else {
2140 WRITE_ONCE(rsp->gp_flags, rsp->gp_flags & RCU_GP_FLAG_INIT);
2141 }
2142 raw_spin_unlock_irq_rcu_node(rnp);
2143 }
2144
2145 /*
2146 * Body of kthread that handles grace periods.
2147 */
rcu_gp_kthread(void * arg)2148 static int __noreturn rcu_gp_kthread(void *arg)
2149 {
2150 bool first_gp_fqs;
2151 int gf;
2152 unsigned long j;
2153 int ret;
2154 struct rcu_state *rsp = arg;
2155 struct rcu_node *rnp = rcu_get_root(rsp);
2156
2157 rcu_bind_gp_kthread();
2158 for (;;) {
2159
2160 /* Handle grace-period start. */
2161 for (;;) {
2162 trace_rcu_grace_period(rsp->name,
2163 READ_ONCE(rsp->gp_seq),
2164 TPS("reqwait"));
2165 rsp->gp_state = RCU_GP_WAIT_GPS;
2166 swait_event_idle_exclusive(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2167 RCU_GP_FLAG_INIT);
2168 rsp->gp_state = RCU_GP_DONE_GPS;
2169 /* Locking provides needed memory barrier. */
2170 if (rcu_gp_init(rsp))
2171 break;
2172 cond_resched_tasks_rcu_qs();
2173 WRITE_ONCE(rsp->gp_activity, jiffies);
2174 WARN_ON(signal_pending(current));
2175 trace_rcu_grace_period(rsp->name,
2176 READ_ONCE(rsp->gp_seq),
2177 TPS("reqwaitsig"));
2178 }
2179
2180 /* Handle quiescent-state forcing. */
2181 first_gp_fqs = true;
2182 j = jiffies_till_first_fqs;
2183 ret = 0;
2184 for (;;) {
2185 if (!ret) {
2186 rsp->jiffies_force_qs = jiffies + j;
2187 WRITE_ONCE(rsp->jiffies_kick_kthreads,
2188 jiffies + 3 * j);
2189 }
2190 trace_rcu_grace_period(rsp->name,
2191 READ_ONCE(rsp->gp_seq),
2192 TPS("fqswait"));
2193 rsp->gp_state = RCU_GP_WAIT_FQS;
2194 ret = swait_event_idle_timeout_exclusive(rsp->gp_wq,
2195 rcu_gp_fqs_check_wake(rsp, &gf), j);
2196 rsp->gp_state = RCU_GP_DOING_FQS;
2197 /* Locking provides needed memory barriers. */
2198 /* If grace period done, leave loop. */
2199 if (!READ_ONCE(rnp->qsmask) &&
2200 !rcu_preempt_blocked_readers_cgp(rnp))
2201 break;
2202 /* If time for quiescent-state forcing, do it. */
2203 if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2204 (gf & RCU_GP_FLAG_FQS)) {
2205 trace_rcu_grace_period(rsp->name,
2206 READ_ONCE(rsp->gp_seq),
2207 TPS("fqsstart"));
2208 rcu_gp_fqs(rsp, first_gp_fqs);
2209 first_gp_fqs = false;
2210 trace_rcu_grace_period(rsp->name,
2211 READ_ONCE(rsp->gp_seq),
2212 TPS("fqsend"));
2213 cond_resched_tasks_rcu_qs();
2214 WRITE_ONCE(rsp->gp_activity, jiffies);
2215 ret = 0; /* Force full wait till next FQS. */
2216 j = jiffies_till_next_fqs;
2217 } else {
2218 /* Deal with stray signal. */
2219 cond_resched_tasks_rcu_qs();
2220 WRITE_ONCE(rsp->gp_activity, jiffies);
2221 WARN_ON(signal_pending(current));
2222 trace_rcu_grace_period(rsp->name,
2223 READ_ONCE(rsp->gp_seq),
2224 TPS("fqswaitsig"));
2225 ret = 1; /* Keep old FQS timing. */
2226 j = jiffies;
2227 if (time_after(jiffies, rsp->jiffies_force_qs))
2228 j = 1;
2229 else
2230 j = rsp->jiffies_force_qs - j;
2231 }
2232 }
2233
2234 /* Handle grace-period end. */
2235 rsp->gp_state = RCU_GP_CLEANUP;
2236 rcu_gp_cleanup(rsp);
2237 rsp->gp_state = RCU_GP_CLEANED;
2238 }
2239 }
2240
2241 /*
2242 * Report a full set of quiescent states to the specified rcu_state data
2243 * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
2244 * kthread if another grace period is required. Whether we wake
2245 * the grace-period kthread or it awakens itself for the next round
2246 * of quiescent-state forcing, that kthread will clean up after the
2247 * just-completed grace period. Note that the caller must hold rnp->lock,
2248 * which is released before return.
2249 */
rcu_report_qs_rsp(struct rcu_state * rsp,unsigned long flags)2250 static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2251 __releases(rcu_get_root(rsp)->lock)
2252 {
2253 raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2254 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2255 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2256 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2257 rcu_gp_kthread_wake(rsp);
2258 }
2259
2260 /*
2261 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2262 * Allows quiescent states for a group of CPUs to be reported at one go
2263 * to the specified rcu_node structure, though all the CPUs in the group
2264 * must be represented by the same rcu_node structure (which need not be a
2265 * leaf rcu_node structure, though it often will be). The gps parameter
2266 * is the grace-period snapshot, which means that the quiescent states
2267 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2268 * must be held upon entry, and it is released before return.
2269 *
2270 * As a special case, if mask is zero, the bit-already-cleared check is
2271 * disabled. This allows propagating quiescent state due to resumed tasks
2272 * during grace-period initialization.
2273 */
2274 static void
rcu_report_qs_rnp(unsigned long mask,struct rcu_state * rsp,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2275 rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2276 struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2277 __releases(rnp->lock)
2278 {
2279 unsigned long oldmask = 0;
2280 struct rcu_node *rnp_c;
2281
2282 raw_lockdep_assert_held_rcu_node(rnp);
2283
2284 /* Walk up the rcu_node hierarchy. */
2285 for (;;) {
2286 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2287
2288 /*
2289 * Our bit has already been cleared, or the
2290 * relevant grace period is already over, so done.
2291 */
2292 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2293 return;
2294 }
2295 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2296 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2297 rcu_preempt_blocked_readers_cgp(rnp));
2298 rnp->qsmask &= ~mask;
2299 trace_rcu_quiescent_state_report(rsp->name, rnp->gp_seq,
2300 mask, rnp->qsmask, rnp->level,
2301 rnp->grplo, rnp->grphi,
2302 !!rnp->gp_tasks);
2303 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2304
2305 /* Other bits still set at this level, so done. */
2306 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307 return;
2308 }
2309 rnp->completedqs = rnp->gp_seq;
2310 mask = rnp->grpmask;
2311 if (rnp->parent == NULL) {
2312
2313 /* No more levels. Exit loop holding root lock. */
2314
2315 break;
2316 }
2317 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2318 rnp_c = rnp;
2319 rnp = rnp->parent;
2320 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2321 oldmask = rnp_c->qsmask;
2322 }
2323
2324 /*
2325 * Get here if we are the last CPU to pass through a quiescent
2326 * state for this grace period. Invoke rcu_report_qs_rsp()
2327 * to clean up and start the next grace period if one is needed.
2328 */
2329 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2330 }
2331
2332 /*
2333 * Record a quiescent state for all tasks that were previously queued
2334 * on the specified rcu_node structure and that were blocking the current
2335 * RCU grace period. The caller must hold the specified rnp->lock with
2336 * irqs disabled, and this lock is released upon return, but irqs remain
2337 * disabled.
2338 */
2339 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_state * rsp,struct rcu_node * rnp,unsigned long flags)2340 rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2341 struct rcu_node *rnp, unsigned long flags)
2342 __releases(rnp->lock)
2343 {
2344 unsigned long gps;
2345 unsigned long mask;
2346 struct rcu_node *rnp_p;
2347
2348 raw_lockdep_assert_held_rcu_node(rnp);
2349 if (WARN_ON_ONCE(rcu_state_p == &rcu_sched_state) ||
2350 WARN_ON_ONCE(rsp != rcu_state_p) ||
2351 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2352 rnp->qsmask != 0) {
2353 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2354 return; /* Still need more quiescent states! */
2355 }
2356
2357 rnp->completedqs = rnp->gp_seq;
2358 rnp_p = rnp->parent;
2359 if (rnp_p == NULL) {
2360 /*
2361 * Only one rcu_node structure in the tree, so don't
2362 * try to report up to its nonexistent parent!
2363 */
2364 rcu_report_qs_rsp(rsp, flags);
2365 return;
2366 }
2367
2368 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2369 gps = rnp->gp_seq;
2370 mask = rnp->grpmask;
2371 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2372 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2373 rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2374 }
2375
2376 /*
2377 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2378 * structure. This must be called from the specified CPU.
2379 */
2380 static void
rcu_report_qs_rdp(int cpu,struct rcu_state * rsp,struct rcu_data * rdp)2381 rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2382 {
2383 unsigned long flags;
2384 unsigned long mask;
2385 bool needwake;
2386 struct rcu_node *rnp;
2387
2388 rnp = rdp->mynode;
2389 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2390 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2391 rdp->gpwrap) {
2392
2393 /*
2394 * The grace period in which this quiescent state was
2395 * recorded has ended, so don't report it upwards.
2396 * We will instead need a new quiescent state that lies
2397 * within the current grace period.
2398 */
2399 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2400 rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2401 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2402 return;
2403 }
2404 mask = rdp->grpmask;
2405 if ((rnp->qsmask & mask) == 0) {
2406 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2407 } else {
2408 rdp->core_needs_qs = false;
2409
2410 /*
2411 * This GP can't end until cpu checks in, so all of our
2412 * callbacks can be processed during the next GP.
2413 */
2414 needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
2415
2416 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2417 /* ^^^ Released rnp->lock */
2418 if (needwake)
2419 rcu_gp_kthread_wake(rsp);
2420 }
2421 }
2422
2423 /*
2424 * Check to see if there is a new grace period of which this CPU
2425 * is not yet aware, and if so, set up local rcu_data state for it.
2426 * Otherwise, see if this CPU has just passed through its first
2427 * quiescent state for this grace period, and record that fact if so.
2428 */
2429 static void
rcu_check_quiescent_state(struct rcu_state * rsp,struct rcu_data * rdp)2430 rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2431 {
2432 /* Check for grace-period ends and beginnings. */
2433 note_gp_changes(rsp, rdp);
2434
2435 /*
2436 * Does this CPU still need to do its part for current grace period?
2437 * If no, return and let the other CPUs do their part as well.
2438 */
2439 if (!rdp->core_needs_qs)
2440 return;
2441
2442 /*
2443 * Was there a quiescent state since the beginning of the grace
2444 * period? If no, then exit and wait for the next call.
2445 */
2446 if (rdp->cpu_no_qs.b.norm)
2447 return;
2448
2449 /*
2450 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2451 * judge of that).
2452 */
2453 rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2454 }
2455
2456 /*
2457 * Trace the fact that this CPU is going offline.
2458 */
rcu_cleanup_dying_cpu(struct rcu_state * rsp)2459 static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2460 {
2461 RCU_TRACE(bool blkd;)
2462 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2463 RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2464
2465 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2466 return;
2467
2468 RCU_TRACE(blkd = !!(rnp->qsmask & rdp->grpmask);)
2469 trace_rcu_grace_period(rsp->name, rnp->gp_seq,
2470 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
2471 }
2472
2473 /*
2474 * All CPUs for the specified rcu_node structure have gone offline,
2475 * and all tasks that were preempted within an RCU read-side critical
2476 * section while running on one of those CPUs have since exited their RCU
2477 * read-side critical section. Some other CPU is reporting this fact with
2478 * the specified rcu_node structure's ->lock held and interrupts disabled.
2479 * This function therefore goes up the tree of rcu_node structures,
2480 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2481 * the leaf rcu_node structure's ->qsmaskinit field has already been
2482 * updated.
2483 *
2484 * This function does check that the specified rcu_node structure has
2485 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2486 * prematurely. That said, invoking it after the fact will cost you
2487 * a needless lock acquisition. So once it has done its work, don't
2488 * invoke it again.
2489 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2490 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2491 {
2492 long mask;
2493 struct rcu_node *rnp = rnp_leaf;
2494
2495 raw_lockdep_assert_held_rcu_node(rnp_leaf);
2496 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2497 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2498 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2499 return;
2500 for (;;) {
2501 mask = rnp->grpmask;
2502 rnp = rnp->parent;
2503 if (!rnp)
2504 break;
2505 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2506 rnp->qsmaskinit &= ~mask;
2507 /* Between grace periods, so better already be zero! */
2508 WARN_ON_ONCE(rnp->qsmask);
2509 if (rnp->qsmaskinit) {
2510 raw_spin_unlock_rcu_node(rnp);
2511 /* irqs remain disabled. */
2512 return;
2513 }
2514 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2515 }
2516 }
2517
2518 /*
2519 * The CPU has been completely removed, and some other CPU is reporting
2520 * this fact from process context. Do the remainder of the cleanup.
2521 * There can only be one CPU hotplug operation at a time, so no need for
2522 * explicit locking.
2523 */
rcu_cleanup_dead_cpu(int cpu,struct rcu_state * rsp)2524 static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2525 {
2526 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2527 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
2528
2529 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2530 return;
2531
2532 /* Adjust any no-longer-needed kthreads. */
2533 rcu_boost_kthread_setaffinity(rnp, -1);
2534 }
2535
2536 /*
2537 * Invoke any RCU callbacks that have made it to the end of their grace
2538 * period. Thottle as specified by rdp->blimit.
2539 */
rcu_do_batch(struct rcu_state * rsp,struct rcu_data * rdp)2540 static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2541 {
2542 unsigned long flags;
2543 struct rcu_head *rhp;
2544 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2545 long bl, count;
2546
2547 /* If no callbacks are ready, just return. */
2548 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2549 trace_rcu_batch_start(rsp->name,
2550 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2551 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2552 trace_rcu_batch_end(rsp->name, 0,
2553 !rcu_segcblist_empty(&rdp->cblist),
2554 need_resched(), is_idle_task(current),
2555 rcu_is_callbacks_kthread());
2556 return;
2557 }
2558
2559 /*
2560 * Extract the list of ready callbacks, disabling to prevent
2561 * races with call_rcu() from interrupt handlers. Leave the
2562 * callback counts, as rcu_barrier() needs to be conservative.
2563 */
2564 local_irq_save(flags);
2565 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2566 bl = rdp->blimit;
2567 trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2568 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2569 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2570 local_irq_restore(flags);
2571
2572 /* Invoke callbacks. */
2573 rhp = rcu_cblist_dequeue(&rcl);
2574 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2575 debug_rcu_head_unqueue(rhp);
2576 if (__rcu_reclaim(rsp->name, rhp))
2577 rcu_cblist_dequeued_lazy(&rcl);
2578 /*
2579 * Stop only if limit reached and CPU has something to do.
2580 * Note: The rcl structure counts down from zero.
2581 */
2582 if (-rcl.len >= bl &&
2583 (need_resched() ||
2584 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2585 break;
2586 }
2587
2588 local_irq_save(flags);
2589 count = -rcl.len;
2590 trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2591 is_idle_task(current), rcu_is_callbacks_kthread());
2592
2593 /* Update counts and requeue any remaining callbacks. */
2594 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2595 smp_mb(); /* List handling before counting for rcu_barrier(). */
2596 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2597
2598 /* Reinstate batch limit if we have worked down the excess. */
2599 count = rcu_segcblist_n_cbs(&rdp->cblist);
2600 if (rdp->blimit == LONG_MAX && count <= qlowmark)
2601 rdp->blimit = blimit;
2602
2603 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2604 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2605 rdp->qlen_last_fqs_check = 0;
2606 rdp->n_force_qs_snap = rsp->n_force_qs;
2607 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2608 rdp->qlen_last_fqs_check = count;
2609
2610 /*
2611 * The following usually indicates a double call_rcu(). To track
2612 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2613 */
2614 WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
2615
2616 local_irq_restore(flags);
2617
2618 /* Re-invoke RCU core processing if there are callbacks remaining. */
2619 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2620 invoke_rcu_core();
2621 }
2622
2623 /*
2624 * Check to see if this CPU is in a non-context-switch quiescent state
2625 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2626 * Also schedule RCU core processing.
2627 *
2628 * This function must be called from hardirq context. It is normally
2629 * invoked from the scheduling-clock interrupt.
2630 */
rcu_check_callbacks(int user)2631 void rcu_check_callbacks(int user)
2632 {
2633 trace_rcu_utilization(TPS("Start scheduler-tick"));
2634 increment_cpu_stall_ticks();
2635 if (user || rcu_is_cpu_rrupt_from_idle()) {
2636
2637 /*
2638 * Get here if this CPU took its interrupt from user
2639 * mode or from the idle loop, and if this is not a
2640 * nested interrupt. In this case, the CPU is in
2641 * a quiescent state, so note it.
2642 *
2643 * No memory barrier is required here because both
2644 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2645 * variables that other CPUs neither access nor modify,
2646 * at least not while the corresponding CPU is online.
2647 */
2648
2649 rcu_sched_qs();
2650 rcu_bh_qs();
2651 rcu_note_voluntary_context_switch(current);
2652
2653 } else if (!in_softirq()) {
2654
2655 /*
2656 * Get here if this CPU did not take its interrupt from
2657 * softirq, in other words, if it is not interrupting
2658 * a rcu_bh read-side critical section. This is an _bh
2659 * critical section, so note it.
2660 */
2661
2662 rcu_bh_qs();
2663 }
2664 rcu_preempt_check_callbacks();
2665 if (rcu_pending())
2666 invoke_rcu_core();
2667
2668 trace_rcu_utilization(TPS("End scheduler-tick"));
2669 }
2670
2671 /*
2672 * Scan the leaf rcu_node structures, processing dyntick state for any that
2673 * have not yet encountered a quiescent state, using the function specified.
2674 * Also initiate boosting for any threads blocked on the root rcu_node.
2675 *
2676 * The caller must have suppressed start of new grace periods.
2677 */
force_qs_rnp(struct rcu_state * rsp,int (* f)(struct rcu_data * rsp))2678 static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2679 {
2680 int cpu;
2681 unsigned long flags;
2682 unsigned long mask;
2683 struct rcu_node *rnp;
2684
2685 rcu_for_each_leaf_node(rsp, rnp) {
2686 cond_resched_tasks_rcu_qs();
2687 mask = 0;
2688 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2689 if (rnp->qsmask == 0) {
2690 if (rcu_state_p == &rcu_sched_state ||
2691 rsp != rcu_state_p ||
2692 rcu_preempt_blocked_readers_cgp(rnp)) {
2693 /*
2694 * No point in scanning bits because they
2695 * are all zero. But we might need to
2696 * priority-boost blocked readers.
2697 */
2698 rcu_initiate_boost(rnp, flags);
2699 /* rcu_initiate_boost() releases rnp->lock */
2700 continue;
2701 }
2702 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2703 continue;
2704 }
2705 for_each_leaf_node_possible_cpu(rnp, cpu) {
2706 unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2707 if ((rnp->qsmask & bit) != 0) {
2708 if (f(per_cpu_ptr(rsp->rda, cpu)))
2709 mask |= bit;
2710 }
2711 }
2712 if (mask != 0) {
2713 /* Idle/offline CPUs, report (releases rnp->lock). */
2714 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
2715 } else {
2716 /* Nothing to do here, so just drop the lock. */
2717 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2718 }
2719 }
2720 }
2721
2722 /*
2723 * Force quiescent states on reluctant CPUs, and also detect which
2724 * CPUs are in dyntick-idle mode.
2725 */
force_quiescent_state(struct rcu_state * rsp)2726 static void force_quiescent_state(struct rcu_state *rsp)
2727 {
2728 unsigned long flags;
2729 bool ret;
2730 struct rcu_node *rnp;
2731 struct rcu_node *rnp_old = NULL;
2732
2733 /* Funnel through hierarchy to reduce memory contention. */
2734 rnp = __this_cpu_read(rsp->rda->mynode);
2735 for (; rnp != NULL; rnp = rnp->parent) {
2736 ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2737 !raw_spin_trylock(&rnp->fqslock);
2738 if (rnp_old != NULL)
2739 raw_spin_unlock(&rnp_old->fqslock);
2740 if (ret)
2741 return;
2742 rnp_old = rnp;
2743 }
2744 /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2745
2746 /* Reached the root of the rcu_node tree, acquire lock. */
2747 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2748 raw_spin_unlock(&rnp_old->fqslock);
2749 if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2750 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2751 return; /* Someone beat us to it. */
2752 }
2753 WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2754 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2755 rcu_gp_kthread_wake(rsp);
2756 }
2757
2758 /*
2759 * This function checks for grace-period requests that fail to motivate
2760 * RCU to come out of its idle mode.
2761 */
2762 static void
rcu_check_gp_start_stall(struct rcu_state * rsp,struct rcu_node * rnp,struct rcu_data * rdp)2763 rcu_check_gp_start_stall(struct rcu_state *rsp, struct rcu_node *rnp,
2764 struct rcu_data *rdp)
2765 {
2766 const unsigned long gpssdelay = rcu_jiffies_till_stall_check() * HZ;
2767 unsigned long flags;
2768 unsigned long j;
2769 struct rcu_node *rnp_root = rcu_get_root(rsp);
2770 static atomic_t warned = ATOMIC_INIT(0);
2771
2772 if (!IS_ENABLED(CONFIG_PROVE_RCU) || rcu_gp_in_progress(rsp) ||
2773 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed))
2774 return;
2775 j = jiffies; /* Expensive access, and in common case don't get here. */
2776 if (time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2777 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2778 atomic_read(&warned))
2779 return;
2780
2781 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2782 j = jiffies;
2783 if (rcu_gp_in_progress(rsp) ||
2784 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2785 time_before(j, READ_ONCE(rsp->gp_req_activity) + gpssdelay) ||
2786 time_before(j, READ_ONCE(rsp->gp_activity) + gpssdelay) ||
2787 atomic_read(&warned)) {
2788 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2789 return;
2790 }
2791 /* Hold onto the leaf lock to make others see warned==1. */
2792
2793 if (rnp_root != rnp)
2794 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
2795 j = jiffies;
2796 if (rcu_gp_in_progress(rsp) ||
2797 ULONG_CMP_GE(rnp_root->gp_seq, rnp_root->gp_seq_needed) ||
2798 time_before(j, rsp->gp_req_activity + gpssdelay) ||
2799 time_before(j, rsp->gp_activity + gpssdelay) ||
2800 atomic_xchg(&warned, 1)) {
2801 raw_spin_unlock_rcu_node(rnp_root); /* irqs remain disabled. */
2802 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2803 return;
2804 }
2805 pr_alert("%s: g%ld->%ld gar:%lu ga:%lu f%#x gs:%d %s->state:%#lx\n",
2806 __func__, (long)READ_ONCE(rsp->gp_seq),
2807 (long)READ_ONCE(rnp_root->gp_seq_needed),
2808 j - rsp->gp_req_activity, j - rsp->gp_activity,
2809 rsp->gp_flags, rsp->gp_state, rsp->name,
2810 rsp->gp_kthread ? rsp->gp_kthread->state : 0x1ffffL);
2811 WARN_ON(1);
2812 if (rnp_root != rnp)
2813 raw_spin_unlock_rcu_node(rnp_root);
2814 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2815 }
2816
2817 /*
2818 * This does the RCU core processing work for the specified rcu_state
2819 * and rcu_data structures. This may be called only from the CPU to
2820 * whom the rdp belongs.
2821 */
2822 static void
__rcu_process_callbacks(struct rcu_state * rsp)2823 __rcu_process_callbacks(struct rcu_state *rsp)
2824 {
2825 unsigned long flags;
2826 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
2827 struct rcu_node *rnp = rdp->mynode;
2828
2829 WARN_ON_ONCE(!rdp->beenonline);
2830
2831 /* Update RCU state based on any recent quiescent states. */
2832 rcu_check_quiescent_state(rsp, rdp);
2833
2834 /* No grace period and unregistered callbacks? */
2835 if (!rcu_gp_in_progress(rsp) &&
2836 rcu_segcblist_is_enabled(&rdp->cblist)) {
2837 local_irq_save(flags);
2838 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2839 rcu_accelerate_cbs_unlocked(rsp, rnp, rdp);
2840 local_irq_restore(flags);
2841 }
2842
2843 rcu_check_gp_start_stall(rsp, rnp, rdp);
2844
2845 /* If there are callbacks ready, invoke them. */
2846 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2847 invoke_rcu_callbacks(rsp, rdp);
2848
2849 /* Do any needed deferred wakeups of rcuo kthreads. */
2850 do_nocb_deferred_wakeup(rdp);
2851 }
2852
2853 /*
2854 * Do RCU core processing for the current CPU.
2855 */
rcu_process_callbacks(struct softirq_action * unused)2856 static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2857 {
2858 struct rcu_state *rsp;
2859
2860 if (cpu_is_offline(smp_processor_id()))
2861 return;
2862 trace_rcu_utilization(TPS("Start RCU core"));
2863 for_each_rcu_flavor(rsp)
2864 __rcu_process_callbacks(rsp);
2865 trace_rcu_utilization(TPS("End RCU core"));
2866 }
2867
2868 /*
2869 * Schedule RCU callback invocation. If the specified type of RCU
2870 * does not support RCU priority boosting, just do a direct call,
2871 * otherwise wake up the per-CPU kernel kthread. Note that because we
2872 * are running on the current CPU with softirqs disabled, the
2873 * rcu_cpu_kthread_task cannot disappear out from under us.
2874 */
invoke_rcu_callbacks(struct rcu_state * rsp,struct rcu_data * rdp)2875 static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2876 {
2877 if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2878 return;
2879 if (likely(!rsp->boost)) {
2880 rcu_do_batch(rsp, rdp);
2881 return;
2882 }
2883 invoke_rcu_callbacks_kthread();
2884 }
2885
invoke_rcu_core(void)2886 static void invoke_rcu_core(void)
2887 {
2888 if (cpu_online(smp_processor_id()))
2889 raise_softirq(RCU_SOFTIRQ);
2890 }
2891
2892 /*
2893 * Handle any core-RCU processing required by a call_rcu() invocation.
2894 */
__call_rcu_core(struct rcu_state * rsp,struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2895 static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2896 struct rcu_head *head, unsigned long flags)
2897 {
2898 /*
2899 * If called from an extended quiescent state, invoke the RCU
2900 * core in order to force a re-evaluation of RCU's idleness.
2901 */
2902 if (!rcu_is_watching())
2903 invoke_rcu_core();
2904
2905 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2906 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2907 return;
2908
2909 /*
2910 * Force the grace period if too many callbacks or too long waiting.
2911 * Enforce hysteresis, and don't invoke force_quiescent_state()
2912 * if some other CPU has recently done so. Also, don't bother
2913 * invoking force_quiescent_state() if the newly enqueued callback
2914 * is the only one waiting for a grace period to complete.
2915 */
2916 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2917 rdp->qlen_last_fqs_check + qhimark)) {
2918
2919 /* Are we ignoring a completed grace period? */
2920 note_gp_changes(rsp, rdp);
2921
2922 /* Start a new grace period if one not already started. */
2923 if (!rcu_gp_in_progress(rsp)) {
2924 rcu_accelerate_cbs_unlocked(rsp, rdp->mynode, rdp);
2925 } else {
2926 /* Give the grace period a kick. */
2927 rdp->blimit = LONG_MAX;
2928 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2929 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2930 force_quiescent_state(rsp);
2931 rdp->n_force_qs_snap = rsp->n_force_qs;
2932 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2933 }
2934 }
2935 }
2936
2937 /*
2938 * RCU callback function to leak a callback.
2939 */
rcu_leak_callback(struct rcu_head * rhp)2940 static void rcu_leak_callback(struct rcu_head *rhp)
2941 {
2942 }
2943
2944 /*
2945 * Helper function for call_rcu() and friends. The cpu argument will
2946 * normally be -1, indicating "currently running CPU". It may specify
2947 * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
2948 * is expected to specify a CPU.
2949 */
2950 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func,struct rcu_state * rsp,int cpu,bool lazy)2951 __call_rcu(struct rcu_head *head, rcu_callback_t func,
2952 struct rcu_state *rsp, int cpu, bool lazy)
2953 {
2954 unsigned long flags;
2955 struct rcu_data *rdp;
2956
2957 /* Misaligned rcu_head! */
2958 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2959
2960 if (debug_rcu_head_queue(head)) {
2961 /*
2962 * Probable double call_rcu(), so leak the callback.
2963 * Use rcu:rcu_callback trace event to find the previous
2964 * time callback was passed to __call_rcu().
2965 */
2966 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
2967 head, head->func);
2968 WRITE_ONCE(head->func, rcu_leak_callback);
2969 return;
2970 }
2971 head->func = func;
2972 head->next = NULL;
2973 local_irq_save(flags);
2974 rdp = this_cpu_ptr(rsp->rda);
2975
2976 /* Add the callback to our list. */
2977 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
2978 int offline;
2979
2980 if (cpu != -1)
2981 rdp = per_cpu_ptr(rsp->rda, cpu);
2982 if (likely(rdp->mynode)) {
2983 /* Post-boot, so this should be for a no-CBs CPU. */
2984 offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2985 WARN_ON_ONCE(offline);
2986 /* Offline CPU, _call_rcu() illegal, leak callback. */
2987 local_irq_restore(flags);
2988 return;
2989 }
2990 /*
2991 * Very early boot, before rcu_init(). Initialize if needed
2992 * and then drop through to queue the callback.
2993 */
2994 BUG_ON(cpu != -1);
2995 WARN_ON_ONCE(!rcu_is_watching());
2996 if (rcu_segcblist_empty(&rdp->cblist))
2997 rcu_segcblist_init(&rdp->cblist);
2998 }
2999 rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3000 if (!lazy)
3001 rcu_idle_count_callbacks_posted();
3002
3003 if (__is_kfree_rcu_offset((unsigned long)func))
3004 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3005 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3006 rcu_segcblist_n_cbs(&rdp->cblist));
3007 else
3008 trace_rcu_callback(rsp->name, head,
3009 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3010 rcu_segcblist_n_cbs(&rdp->cblist));
3011
3012 /* Go handle any RCU core processing required. */
3013 __call_rcu_core(rsp, rdp, head, flags);
3014 local_irq_restore(flags);
3015 }
3016
3017 /**
3018 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
3019 * @head: structure to be used for queueing the RCU updates.
3020 * @func: actual callback function to be invoked after the grace period
3021 *
3022 * The callback function will be invoked some time after a full grace
3023 * period elapses, in other words after all currently executing RCU
3024 * read-side critical sections have completed. call_rcu_sched() assumes
3025 * that the read-side critical sections end on enabling of preemption
3026 * or on voluntary preemption.
3027 * RCU read-side critical sections are delimited by:
3028 *
3029 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3030 * - anything that disables preemption.
3031 *
3032 * These may be nested.
3033 *
3034 * See the description of call_rcu() for more detailed information on
3035 * memory ordering guarantees.
3036 */
call_rcu_sched(struct rcu_head * head,rcu_callback_t func)3037 void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3038 {
3039 __call_rcu(head, func, &rcu_sched_state, -1, 0);
3040 }
3041 EXPORT_SYMBOL_GPL(call_rcu_sched);
3042
3043 /**
3044 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
3045 * @head: structure to be used for queueing the RCU updates.
3046 * @func: actual callback function to be invoked after the grace period
3047 *
3048 * The callback function will be invoked some time after a full grace
3049 * period elapses, in other words after all currently executing RCU
3050 * read-side critical sections have completed. call_rcu_bh() assumes
3051 * that the read-side critical sections end on completion of a softirq
3052 * handler. This means that read-side critical sections in process
3053 * context must not be interrupted by softirqs. This interface is to be
3054 * used when most of the read-side critical sections are in softirq context.
3055 * RCU read-side critical sections are delimited by:
3056 *
3057 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
3058 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3059 *
3060 * These may be nested.
3061 *
3062 * See the description of call_rcu() for more detailed information on
3063 * memory ordering guarantees.
3064 */
call_rcu_bh(struct rcu_head * head,rcu_callback_t func)3065 void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
3066 {
3067 __call_rcu(head, func, &rcu_bh_state, -1, 0);
3068 }
3069 EXPORT_SYMBOL_GPL(call_rcu_bh);
3070
3071 /*
3072 * Queue an RCU callback for lazy invocation after a grace period.
3073 * This will likely be later named something like "call_rcu_lazy()",
3074 * but this change will require some way of tagging the lazy RCU
3075 * callbacks in the list of pending callbacks. Until then, this
3076 * function may only be called from __kfree_rcu().
3077 */
kfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3078 void kfree_call_rcu(struct rcu_head *head,
3079 rcu_callback_t func)
3080 {
3081 __call_rcu(head, func, rcu_state_p, -1, 1);
3082 }
3083 EXPORT_SYMBOL_GPL(kfree_call_rcu);
3084
3085 /*
3086 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3087 * any blocking grace-period wait automatically implies a grace period
3088 * if there is only one CPU online at any point time during execution
3089 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
3090 * occasionally incorrectly indicate that there are multiple CPUs online
3091 * when there was in fact only one the whole time, as this just adds
3092 * some overhead: RCU still operates correctly.
3093 */
rcu_blocking_is_gp(void)3094 static int rcu_blocking_is_gp(void)
3095 {
3096 int ret;
3097
3098 might_sleep(); /* Check for RCU read-side critical section. */
3099 preempt_disable();
3100 ret = num_online_cpus() <= 1;
3101 preempt_enable();
3102 return ret;
3103 }
3104
3105 /**
3106 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3107 *
3108 * Control will return to the caller some time after a full rcu-sched
3109 * grace period has elapsed, in other words after all currently executing
3110 * rcu-sched read-side critical sections have completed. These read-side
3111 * critical sections are delimited by rcu_read_lock_sched() and
3112 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
3113 * local_irq_disable(), and so on may be used in place of
3114 * rcu_read_lock_sched().
3115 *
3116 * This means that all preempt_disable code sequences, including NMI and
3117 * non-threaded hardware-interrupt handlers, in progress on entry will
3118 * have completed before this primitive returns. However, this does not
3119 * guarantee that softirq handlers will have completed, since in some
3120 * kernels, these handlers can run in process context, and can block.
3121 *
3122 * Note that this guarantee implies further memory-ordering guarantees.
3123 * On systems with more than one CPU, when synchronize_sched() returns,
3124 * each CPU is guaranteed to have executed a full memory barrier since the
3125 * end of its last RCU-sched read-side critical section whose beginning
3126 * preceded the call to synchronize_sched(). In addition, each CPU having
3127 * an RCU read-side critical section that extends beyond the return from
3128 * synchronize_sched() is guaranteed to have executed a full memory barrier
3129 * after the beginning of synchronize_sched() and before the beginning of
3130 * that RCU read-side critical section. Note that these guarantees include
3131 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3132 * that are executing in the kernel.
3133 *
3134 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3135 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3136 * to have executed a full memory barrier during the execution of
3137 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3138 * again only if the system has more than one CPU).
3139 */
synchronize_sched(void)3140 void synchronize_sched(void)
3141 {
3142 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3143 lock_is_held(&rcu_lock_map) ||
3144 lock_is_held(&rcu_sched_lock_map),
3145 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3146 if (rcu_blocking_is_gp())
3147 return;
3148 if (rcu_gp_is_expedited())
3149 synchronize_sched_expedited();
3150 else
3151 wait_rcu_gp(call_rcu_sched);
3152 }
3153 EXPORT_SYMBOL_GPL(synchronize_sched);
3154
3155 /**
3156 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3157 *
3158 * Control will return to the caller some time after a full rcu_bh grace
3159 * period has elapsed, in other words after all currently executing rcu_bh
3160 * read-side critical sections have completed. RCU read-side critical
3161 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3162 * and may be nested.
3163 *
3164 * See the description of synchronize_sched() for more detailed information
3165 * on memory ordering guarantees.
3166 */
synchronize_rcu_bh(void)3167 void synchronize_rcu_bh(void)
3168 {
3169 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3170 lock_is_held(&rcu_lock_map) ||
3171 lock_is_held(&rcu_sched_lock_map),
3172 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3173 if (rcu_blocking_is_gp())
3174 return;
3175 if (rcu_gp_is_expedited())
3176 synchronize_rcu_bh_expedited();
3177 else
3178 wait_rcu_gp(call_rcu_bh);
3179 }
3180 EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3181
3182 /**
3183 * get_state_synchronize_rcu - Snapshot current RCU state
3184 *
3185 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3186 * to determine whether or not a full grace period has elapsed in the
3187 * meantime.
3188 */
get_state_synchronize_rcu(void)3189 unsigned long get_state_synchronize_rcu(void)
3190 {
3191 /*
3192 * Any prior manipulation of RCU-protected data must happen
3193 * before the load from ->gp_seq.
3194 */
3195 smp_mb(); /* ^^^ */
3196 return rcu_seq_snap(&rcu_state_p->gp_seq);
3197 }
3198 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3199
3200 /**
3201 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3202 *
3203 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3204 *
3205 * If a full RCU grace period has elapsed since the earlier call to
3206 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3207 * synchronize_rcu() to wait for a full grace period.
3208 *
3209 * Yes, this function does not take counter wrap into account. But
3210 * counter wrap is harmless. If the counter wraps, we have waited for
3211 * more than 2 billion grace periods (and way more on a 64-bit system!),
3212 * so waiting for one additional grace period should be just fine.
3213 */
cond_synchronize_rcu(unsigned long oldstate)3214 void cond_synchronize_rcu(unsigned long oldstate)
3215 {
3216 if (!rcu_seq_done(&rcu_state_p->gp_seq, oldstate))
3217 synchronize_rcu();
3218 else
3219 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3220 }
3221 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3222
3223 /**
3224 * get_state_synchronize_sched - Snapshot current RCU-sched state
3225 *
3226 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3227 * to determine whether or not a full grace period has elapsed in the
3228 * meantime.
3229 */
get_state_synchronize_sched(void)3230 unsigned long get_state_synchronize_sched(void)
3231 {
3232 /*
3233 * Any prior manipulation of RCU-protected data must happen
3234 * before the load from ->gp_seq.
3235 */
3236 smp_mb(); /* ^^^ */
3237 return rcu_seq_snap(&rcu_sched_state.gp_seq);
3238 }
3239 EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3240
3241 /**
3242 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
3243 *
3244 * @oldstate: return value from earlier call to get_state_synchronize_sched()
3245 *
3246 * If a full RCU-sched grace period has elapsed since the earlier call to
3247 * get_state_synchronize_sched(), just return. Otherwise, invoke
3248 * synchronize_sched() to wait for a full grace period.
3249 *
3250 * Yes, this function does not take counter wrap into account. But
3251 * counter wrap is harmless. If the counter wraps, we have waited for
3252 * more than 2 billion grace periods (and way more on a 64-bit system!),
3253 * so waiting for one additional grace period should be just fine.
3254 */
cond_synchronize_sched(unsigned long oldstate)3255 void cond_synchronize_sched(unsigned long oldstate)
3256 {
3257 if (!rcu_seq_done(&rcu_sched_state.gp_seq, oldstate))
3258 synchronize_sched();
3259 else
3260 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3261 }
3262 EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3263
3264 /*
3265 * Check to see if there is any immediate RCU-related work to be done
3266 * by the current CPU, for the specified type of RCU, returning 1 if so.
3267 * The checks are in order of increasing expense: checks that can be
3268 * carried out against CPU-local state are performed first. However,
3269 * we must check for CPU stalls first, else we might not get a chance.
3270 */
__rcu_pending(struct rcu_state * rsp,struct rcu_data * rdp)3271 static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3272 {
3273 struct rcu_node *rnp = rdp->mynode;
3274
3275 /* Check for CPU stalls, if enabled. */
3276 check_cpu_stall(rsp, rdp);
3277
3278 /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3279 if (rcu_nohz_full_cpu(rsp))
3280 return 0;
3281
3282 /* Is the RCU core waiting for a quiescent state from this CPU? */
3283 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
3284 return 1;
3285
3286 /* Does this CPU have callbacks ready to invoke? */
3287 if (rcu_segcblist_ready_cbs(&rdp->cblist))
3288 return 1;
3289
3290 /* Has RCU gone idle with this CPU needing another grace period? */
3291 if (!rcu_gp_in_progress(rsp) &&
3292 rcu_segcblist_is_enabled(&rdp->cblist) &&
3293 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3294 return 1;
3295
3296 /* Have RCU grace period completed or started? */
3297 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3298 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3299 return 1;
3300
3301 /* Does this CPU need a deferred NOCB wakeup? */
3302 if (rcu_nocb_need_deferred_wakeup(rdp))
3303 return 1;
3304
3305 /* nothing to do */
3306 return 0;
3307 }
3308
3309 /*
3310 * Check to see if there is any immediate RCU-related work to be done
3311 * by the current CPU, returning 1 if so. This function is part of the
3312 * RCU implementation; it is -not- an exported member of the RCU API.
3313 */
rcu_pending(void)3314 static int rcu_pending(void)
3315 {
3316 struct rcu_state *rsp;
3317
3318 for_each_rcu_flavor(rsp)
3319 if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3320 return 1;
3321 return 0;
3322 }
3323
3324 /*
3325 * Return true if the specified CPU has any callback. If all_lazy is
3326 * non-NULL, store an indication of whether all callbacks are lazy.
3327 * (If there are no callbacks, all of them are deemed to be lazy.)
3328 */
rcu_cpu_has_callbacks(bool * all_lazy)3329 static bool rcu_cpu_has_callbacks(bool *all_lazy)
3330 {
3331 bool al = true;
3332 bool hc = false;
3333 struct rcu_data *rdp;
3334 struct rcu_state *rsp;
3335
3336 for_each_rcu_flavor(rsp) {
3337 rdp = this_cpu_ptr(rsp->rda);
3338 if (rcu_segcblist_empty(&rdp->cblist))
3339 continue;
3340 hc = true;
3341 if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3342 al = false;
3343 break;
3344 }
3345 }
3346 if (all_lazy)
3347 *all_lazy = al;
3348 return hc;
3349 }
3350
3351 /*
3352 * Helper function for _rcu_barrier() tracing. If tracing is disabled,
3353 * the compiler is expected to optimize this away.
3354 */
_rcu_barrier_trace(struct rcu_state * rsp,const char * s,int cpu,unsigned long done)3355 static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3356 int cpu, unsigned long done)
3357 {
3358 trace_rcu_barrier(rsp->name, s, cpu,
3359 atomic_read(&rsp->barrier_cpu_count), done);
3360 }
3361
3362 /*
3363 * RCU callback function for _rcu_barrier(). If we are last, wake
3364 * up the task executing _rcu_barrier().
3365 */
rcu_barrier_callback(struct rcu_head * rhp)3366 static void rcu_barrier_callback(struct rcu_head *rhp)
3367 {
3368 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3369 struct rcu_state *rsp = rdp->rsp;
3370
3371 if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3372 _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3373 rsp->barrier_sequence);
3374 complete(&rsp->barrier_completion);
3375 } else {
3376 _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
3377 }
3378 }
3379
3380 /*
3381 * Called with preemption disabled, and from cross-cpu IRQ context.
3382 */
rcu_barrier_func(void * type)3383 static void rcu_barrier_func(void *type)
3384 {
3385 struct rcu_state *rsp = type;
3386 struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3387
3388 _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3389 rdp->barrier_head.func = rcu_barrier_callback;
3390 debug_rcu_head_queue(&rdp->barrier_head);
3391 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3392 atomic_inc(&rsp->barrier_cpu_count);
3393 } else {
3394 debug_rcu_head_unqueue(&rdp->barrier_head);
3395 _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3396 rsp->barrier_sequence);
3397 }
3398 }
3399
3400 /*
3401 * Orchestrate the specified type of RCU barrier, waiting for all
3402 * RCU callbacks of the specified type to complete.
3403 */
_rcu_barrier(struct rcu_state * rsp)3404 static void _rcu_barrier(struct rcu_state *rsp)
3405 {
3406 int cpu;
3407 struct rcu_data *rdp;
3408 unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3409
3410 _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3411
3412 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3413 mutex_lock(&rsp->barrier_mutex);
3414
3415 /* Did someone else do our work for us? */
3416 if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3417 _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3418 rsp->barrier_sequence);
3419 smp_mb(); /* caller's subsequent code after above check. */
3420 mutex_unlock(&rsp->barrier_mutex);
3421 return;
3422 }
3423
3424 /* Mark the start of the barrier operation. */
3425 rcu_seq_start(&rsp->barrier_sequence);
3426 _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
3427
3428 /*
3429 * Initialize the count to one rather than to zero in order to
3430 * avoid a too-soon return to zero in case of a short grace period
3431 * (or preemption of this task). Exclude CPU-hotplug operations
3432 * to ensure that no offline CPU has callbacks queued.
3433 */
3434 init_completion(&rsp->barrier_completion);
3435 atomic_set(&rsp->barrier_cpu_count, 1);
3436 get_online_cpus();
3437
3438 /*
3439 * Force each CPU with callbacks to register a new callback.
3440 * When that callback is invoked, we will know that all of the
3441 * corresponding CPU's preceding callbacks have been invoked.
3442 */
3443 for_each_possible_cpu(cpu) {
3444 if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
3445 continue;
3446 rdp = per_cpu_ptr(rsp->rda, cpu);
3447 if (rcu_is_nocb_cpu(cpu)) {
3448 if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3449 _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3450 rsp->barrier_sequence);
3451 } else {
3452 _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3453 rsp->barrier_sequence);
3454 smp_mb__before_atomic();
3455 atomic_inc(&rsp->barrier_cpu_count);
3456 __call_rcu(&rdp->barrier_head,
3457 rcu_barrier_callback, rsp, cpu, 0);
3458 }
3459 } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3460 _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3461 rsp->barrier_sequence);
3462 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3463 } else {
3464 _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3465 rsp->barrier_sequence);
3466 }
3467 }
3468 put_online_cpus();
3469
3470 /*
3471 * Now that we have an rcu_barrier_callback() callback on each
3472 * CPU, and thus each counted, remove the initial count.
3473 */
3474 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3475 complete(&rsp->barrier_completion);
3476
3477 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3478 wait_for_completion(&rsp->barrier_completion);
3479
3480 /* Mark the end of the barrier operation. */
3481 _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3482 rcu_seq_end(&rsp->barrier_sequence);
3483
3484 /* Other rcu_barrier() invocations can now safely proceed. */
3485 mutex_unlock(&rsp->barrier_mutex);
3486 }
3487
3488 /**
3489 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3490 */
rcu_barrier_bh(void)3491 void rcu_barrier_bh(void)
3492 {
3493 _rcu_barrier(&rcu_bh_state);
3494 }
3495 EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3496
3497 /**
3498 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3499 */
rcu_barrier_sched(void)3500 void rcu_barrier_sched(void)
3501 {
3502 _rcu_barrier(&rcu_sched_state);
3503 }
3504 EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3505
3506 /*
3507 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3508 * first CPU in a given leaf rcu_node structure coming online. The caller
3509 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3510 * disabled.
3511 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)3512 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3513 {
3514 long mask;
3515 long oldmask;
3516 struct rcu_node *rnp = rnp_leaf;
3517
3518 raw_lockdep_assert_held_rcu_node(rnp_leaf);
3519 WARN_ON_ONCE(rnp->wait_blkd_tasks);
3520 for (;;) {
3521 mask = rnp->grpmask;
3522 rnp = rnp->parent;
3523 if (rnp == NULL)
3524 return;
3525 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
3526 oldmask = rnp->qsmaskinit;
3527 rnp->qsmaskinit |= mask;
3528 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
3529 if (oldmask)
3530 return;
3531 }
3532 }
3533
3534 /*
3535 * Do boot-time initialization of a CPU's per-CPU RCU data.
3536 */
3537 static void __init
rcu_boot_init_percpu_data(int cpu,struct rcu_state * rsp)3538 rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3539 {
3540 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3541
3542 /* Set up local state, ensuring consistent view of global state. */
3543 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3544 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3545 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3546 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
3547 rdp->rcu_ofl_gp_seq = rsp->gp_seq;
3548 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
3549 rdp->rcu_onl_gp_seq = rsp->gp_seq;
3550 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
3551 rdp->cpu = cpu;
3552 rdp->rsp = rsp;
3553 rcu_boot_init_nocb_percpu_data(rdp);
3554 }
3555
3556 /*
3557 * Initialize a CPU's per-CPU RCU data. Note that only one online or
3558 * offline event can be happening at a given time. Note also that we can
3559 * accept some slop in the rsp->gp_seq access due to the fact that this
3560 * CPU cannot possibly have any RCU callbacks in flight yet.
3561 */
3562 static void
rcu_init_percpu_data(int cpu,struct rcu_state * rsp)3563 rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3564 {
3565 unsigned long flags;
3566 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3567 struct rcu_node *rnp = rcu_get_root(rsp);
3568
3569 /* Set up local state, ensuring consistent view of global state. */
3570 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3571 rdp->qlen_last_fqs_check = 0;
3572 rdp->n_force_qs_snap = rsp->n_force_qs;
3573 rdp->blimit = blimit;
3574 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3575 !init_nocb_callback_list(rdp))
3576 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
3577 rdp->dynticks->dynticks_nesting = 1; /* CPU not up, no tearing. */
3578 rcu_dynticks_eqs_online();
3579 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
3580
3581 /*
3582 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3583 * propagation up the rcu_node tree will happen at the beginning
3584 * of the next grace period.
3585 */
3586 rnp = rdp->mynode;
3587 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
3588 rdp->beenonline = true; /* We have now been online. */
3589 rdp->gp_seq = rnp->gp_seq;
3590 rdp->gp_seq_needed = rnp->gp_seq;
3591 rdp->cpu_no_qs.b.norm = true;
3592 rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3593 rdp->core_needs_qs = false;
3594 rdp->rcu_iw_pending = false;
3595 rdp->rcu_iw_gp_seq = rnp->gp_seq - 1;
3596 trace_rcu_grace_period(rsp->name, rdp->gp_seq, TPS("cpuonl"));
3597 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3598 }
3599
3600 /*
3601 * Invoked early in the CPU-online process, when pretty much all
3602 * services are available. The incoming CPU is not present.
3603 */
rcutree_prepare_cpu(unsigned int cpu)3604 int rcutree_prepare_cpu(unsigned int cpu)
3605 {
3606 struct rcu_state *rsp;
3607
3608 for_each_rcu_flavor(rsp)
3609 rcu_init_percpu_data(cpu, rsp);
3610
3611 rcu_prepare_kthreads(cpu);
3612 rcu_spawn_all_nocb_kthreads(cpu);
3613
3614 return 0;
3615 }
3616
3617 /*
3618 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3619 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)3620 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3621 {
3622 struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3623
3624 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3625 }
3626
3627 /*
3628 * Near the end of the CPU-online process. Pretty much all services
3629 * enabled, and the CPU is now very much alive.
3630 */
rcutree_online_cpu(unsigned int cpu)3631 int rcutree_online_cpu(unsigned int cpu)
3632 {
3633 unsigned long flags;
3634 struct rcu_data *rdp;
3635 struct rcu_node *rnp;
3636 struct rcu_state *rsp;
3637
3638 for_each_rcu_flavor(rsp) {
3639 rdp = per_cpu_ptr(rsp->rda, cpu);
3640 rnp = rdp->mynode;
3641 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3642 rnp->ffmask |= rdp->grpmask;
3643 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3644 }
3645 if (IS_ENABLED(CONFIG_TREE_SRCU))
3646 srcu_online_cpu(cpu);
3647 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3648 return 0; /* Too early in boot for scheduler work. */
3649 sync_sched_exp_online_cleanup(cpu);
3650 rcutree_affinity_setting(cpu, -1);
3651 return 0;
3652 }
3653
3654 /*
3655 * Near the beginning of the process. The CPU is still very much alive
3656 * with pretty much all services enabled.
3657 */
rcutree_offline_cpu(unsigned int cpu)3658 int rcutree_offline_cpu(unsigned int cpu)
3659 {
3660 unsigned long flags;
3661 struct rcu_data *rdp;
3662 struct rcu_node *rnp;
3663 struct rcu_state *rsp;
3664
3665 for_each_rcu_flavor(rsp) {
3666 rdp = per_cpu_ptr(rsp->rda, cpu);
3667 rnp = rdp->mynode;
3668 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3669 rnp->ffmask &= ~rdp->grpmask;
3670 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3671 }
3672
3673 rcutree_affinity_setting(cpu, cpu);
3674 if (IS_ENABLED(CONFIG_TREE_SRCU))
3675 srcu_offline_cpu(cpu);
3676 return 0;
3677 }
3678
3679 /*
3680 * Near the end of the offline process. We do only tracing here.
3681 */
rcutree_dying_cpu(unsigned int cpu)3682 int rcutree_dying_cpu(unsigned int cpu)
3683 {
3684 struct rcu_state *rsp;
3685
3686 for_each_rcu_flavor(rsp)
3687 rcu_cleanup_dying_cpu(rsp);
3688 return 0;
3689 }
3690
3691 /*
3692 * The outgoing CPU is gone and we are running elsewhere.
3693 */
rcutree_dead_cpu(unsigned int cpu)3694 int rcutree_dead_cpu(unsigned int cpu)
3695 {
3696 struct rcu_state *rsp;
3697
3698 for_each_rcu_flavor(rsp) {
3699 rcu_cleanup_dead_cpu(cpu, rsp);
3700 do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3701 }
3702 return 0;
3703 }
3704
3705 static DEFINE_PER_CPU(int, rcu_cpu_started);
3706
3707 /*
3708 * Mark the specified CPU as being online so that subsequent grace periods
3709 * (both expedited and normal) will wait on it. Note that this means that
3710 * incoming CPUs are not allowed to use RCU read-side critical sections
3711 * until this function is called. Failing to observe this restriction
3712 * will result in lockdep splats.
3713 *
3714 * Note that this function is special in that it is invoked directly
3715 * from the incoming CPU rather than from the cpuhp_step mechanism.
3716 * This is because this function must be invoked at a precise location.
3717 */
rcu_cpu_starting(unsigned int cpu)3718 void rcu_cpu_starting(unsigned int cpu)
3719 {
3720 unsigned long flags;
3721 unsigned long mask;
3722 int nbits;
3723 unsigned long oldmask;
3724 struct rcu_data *rdp;
3725 struct rcu_node *rnp;
3726 struct rcu_state *rsp;
3727
3728 if (per_cpu(rcu_cpu_started, cpu))
3729 return;
3730
3731 per_cpu(rcu_cpu_started, cpu) = 1;
3732
3733 for_each_rcu_flavor(rsp) {
3734 rdp = per_cpu_ptr(rsp->rda, cpu);
3735 rnp = rdp->mynode;
3736 mask = rdp->grpmask;
3737 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3738 rnp->qsmaskinitnext |= mask;
3739 oldmask = rnp->expmaskinitnext;
3740 rnp->expmaskinitnext |= mask;
3741 oldmask ^= rnp->expmaskinitnext;
3742 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3743 /* Allow lockless access for expedited grace periods. */
3744 smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3745 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
3746 rdp->rcu_onl_gp_seq = READ_ONCE(rsp->gp_seq);
3747 rdp->rcu_onl_gp_flags = READ_ONCE(rsp->gp_flags);
3748 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
3749 /* Report QS -after- changing ->qsmaskinitnext! */
3750 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3751 } else {
3752 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3753 }
3754 }
3755 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3756 }
3757
3758 #ifdef CONFIG_HOTPLUG_CPU
3759 /*
3760 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3761 * function. We now remove it from the rcu_node tree's ->qsmaskinitnext
3762 * bit masks.
3763 */
rcu_cleanup_dying_idle_cpu(int cpu,struct rcu_state * rsp)3764 static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3765 {
3766 unsigned long flags;
3767 unsigned long mask;
3768 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3769 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3770
3771 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3772 mask = rdp->grpmask;
3773 spin_lock(&rsp->ofl_lock);
3774 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3775 rdp->rcu_ofl_gp_seq = READ_ONCE(rsp->gp_seq);
3776 rdp->rcu_ofl_gp_flags = READ_ONCE(rsp->gp_flags);
3777 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3778 /* Report quiescent state -before- changing ->qsmaskinitnext! */
3779 rcu_report_qs_rnp(mask, rsp, rnp, rnp->gp_seq, flags);
3780 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3781 }
3782 rnp->qsmaskinitnext &= ~mask;
3783 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3784 spin_unlock(&rsp->ofl_lock);
3785 }
3786
3787 /*
3788 * The outgoing function has no further need of RCU, so remove it from
3789 * the list of CPUs that RCU must track.
3790 *
3791 * Note that this function is special in that it is invoked directly
3792 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3793 * This is because this function must be invoked at a precise location.
3794 */
rcu_report_dead(unsigned int cpu)3795 void rcu_report_dead(unsigned int cpu)
3796 {
3797 struct rcu_state *rsp;
3798
3799 /* QS for any half-done expedited RCU-sched GP. */
3800 preempt_disable();
3801 rcu_report_exp_rdp(&rcu_sched_state,
3802 this_cpu_ptr(rcu_sched_state.rda), true);
3803 preempt_enable();
3804 for_each_rcu_flavor(rsp)
3805 rcu_cleanup_dying_idle_cpu(cpu, rsp);
3806
3807 per_cpu(rcu_cpu_started, cpu) = 0;
3808 }
3809
3810 /* Migrate the dead CPU's callbacks to the current CPU. */
rcu_migrate_callbacks(int cpu,struct rcu_state * rsp)3811 static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3812 {
3813 unsigned long flags;
3814 struct rcu_data *my_rdp;
3815 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3816 struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
3817 bool needwake;
3818
3819 if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
3820 return; /* No callbacks to migrate. */
3821
3822 local_irq_save(flags);
3823 my_rdp = this_cpu_ptr(rsp->rda);
3824 if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3825 local_irq_restore(flags);
3826 return;
3827 }
3828 raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3829 /* Leverage recent GPs and set GP for new callbacks. */
3830 needwake = rcu_advance_cbs(rsp, rnp_root, rdp) ||
3831 rcu_advance_cbs(rsp, rnp_root, my_rdp);
3832 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3833 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3834 !rcu_segcblist_n_cbs(&my_rdp->cblist));
3835 raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3836 if (needwake)
3837 rcu_gp_kthread_wake(rsp);
3838 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3839 !rcu_segcblist_empty(&rdp->cblist),
3840 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3841 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3842 rcu_segcblist_first_cb(&rdp->cblist));
3843 }
3844
3845 /*
3846 * The outgoing CPU has just passed through the dying-idle state,
3847 * and we are being invoked from the CPU that was IPIed to continue the
3848 * offline operation. We need to migrate the outgoing CPU's callbacks.
3849 */
rcutree_migrate_callbacks(int cpu)3850 void rcutree_migrate_callbacks(int cpu)
3851 {
3852 struct rcu_state *rsp;
3853
3854 for_each_rcu_flavor(rsp)
3855 rcu_migrate_callbacks(cpu, rsp);
3856 }
3857 #endif
3858
3859 /*
3860 * On non-huge systems, use expedited RCU grace periods to make suspend
3861 * and hibernation run faster.
3862 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)3863 static int rcu_pm_notify(struct notifier_block *self,
3864 unsigned long action, void *hcpu)
3865 {
3866 switch (action) {
3867 case PM_HIBERNATION_PREPARE:
3868 case PM_SUSPEND_PREPARE:
3869 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3870 rcu_expedite_gp();
3871 break;
3872 case PM_POST_HIBERNATION:
3873 case PM_POST_SUSPEND:
3874 if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3875 rcu_unexpedite_gp();
3876 break;
3877 default:
3878 break;
3879 }
3880 return NOTIFY_OK;
3881 }
3882
3883 /*
3884 * Spawn the kthreads that handle each RCU flavor's grace periods.
3885 */
rcu_spawn_gp_kthread(void)3886 static int __init rcu_spawn_gp_kthread(void)
3887 {
3888 unsigned long flags;
3889 int kthread_prio_in = kthread_prio;
3890 struct rcu_node *rnp;
3891 struct rcu_state *rsp;
3892 struct sched_param sp;
3893 struct task_struct *t;
3894
3895 /* Force priority into range. */
3896 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3897 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3898 kthread_prio = 2;
3899 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3900 kthread_prio = 1;
3901 else if (kthread_prio < 0)
3902 kthread_prio = 0;
3903 else if (kthread_prio > 99)
3904 kthread_prio = 99;
3905
3906 if (kthread_prio != kthread_prio_in)
3907 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3908 kthread_prio, kthread_prio_in);
3909
3910 rcu_scheduler_fully_active = 1;
3911 for_each_rcu_flavor(rsp) {
3912 t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3913 BUG_ON(IS_ERR(t));
3914 rnp = rcu_get_root(rsp);
3915 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3916 rsp->gp_kthread = t;
3917 if (kthread_prio) {
3918 sp.sched_priority = kthread_prio;
3919 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3920 }
3921 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3922 wake_up_process(t);
3923 }
3924 rcu_spawn_nocb_kthreads();
3925 rcu_spawn_boost_kthreads();
3926 return 0;
3927 }
3928 early_initcall(rcu_spawn_gp_kthread);
3929
3930 /*
3931 * This function is invoked towards the end of the scheduler's
3932 * initialization process. Before this is called, the idle task might
3933 * contain synchronous grace-period primitives (during which time, this idle
3934 * task is booting the system, and such primitives are no-ops). After this
3935 * function is called, any synchronous grace-period primitives are run as
3936 * expedited, with the requesting task driving the grace period forward.
3937 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3938 * runtime RCU functionality.
3939 */
rcu_scheduler_starting(void)3940 void rcu_scheduler_starting(void)
3941 {
3942 WARN_ON(num_online_cpus() != 1);
3943 WARN_ON(nr_context_switches() > 0);
3944 rcu_test_sync_prims();
3945 rcu_scheduler_active = RCU_SCHEDULER_INIT;
3946 rcu_test_sync_prims();
3947 }
3948
3949 /*
3950 * Helper function for rcu_init() that initializes one rcu_state structure.
3951 */
rcu_init_one(struct rcu_state * rsp)3952 static void __init rcu_init_one(struct rcu_state *rsp)
3953 {
3954 static const char * const buf[] = RCU_NODE_NAME_INIT;
3955 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3956 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3957 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3958
3959 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
3960 int cpustride = 1;
3961 int i;
3962 int j;
3963 struct rcu_node *rnp;
3964
3965 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
3966
3967 /* Silence gcc 4.8 false positive about array index out of range. */
3968 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
3969 panic("rcu_init_one: rcu_num_lvls out of range");
3970
3971 /* Initialize the level-tracking arrays. */
3972
3973 for (i = 1; i < rcu_num_lvls; i++)
3974 rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
3975 rcu_init_levelspread(levelspread, num_rcu_lvl);
3976
3977 /* Initialize the elements themselves, starting from the leaves. */
3978
3979 for (i = rcu_num_lvls - 1; i >= 0; i--) {
3980 cpustride *= levelspread[i];
3981 rnp = rsp->level[i];
3982 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
3983 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
3984 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
3985 &rcu_node_class[i], buf[i]);
3986 raw_spin_lock_init(&rnp->fqslock);
3987 lockdep_set_class_and_name(&rnp->fqslock,
3988 &rcu_fqs_class[i], fqs[i]);
3989 rnp->gp_seq = rsp->gp_seq;
3990 rnp->gp_seq_needed = rsp->gp_seq;
3991 rnp->completedqs = rsp->gp_seq;
3992 rnp->qsmask = 0;
3993 rnp->qsmaskinit = 0;
3994 rnp->grplo = j * cpustride;
3995 rnp->grphi = (j + 1) * cpustride - 1;
3996 if (rnp->grphi >= nr_cpu_ids)
3997 rnp->grphi = nr_cpu_ids - 1;
3998 if (i == 0) {
3999 rnp->grpnum = 0;
4000 rnp->grpmask = 0;
4001 rnp->parent = NULL;
4002 } else {
4003 rnp->grpnum = j % levelspread[i - 1];
4004 rnp->grpmask = 1UL << rnp->grpnum;
4005 rnp->parent = rsp->level[i - 1] +
4006 j / levelspread[i - 1];
4007 }
4008 rnp->level = i;
4009 INIT_LIST_HEAD(&rnp->blkd_tasks);
4010 rcu_init_one_nocb(rnp);
4011 init_waitqueue_head(&rnp->exp_wq[0]);
4012 init_waitqueue_head(&rnp->exp_wq[1]);
4013 init_waitqueue_head(&rnp->exp_wq[2]);
4014 init_waitqueue_head(&rnp->exp_wq[3]);
4015 spin_lock_init(&rnp->exp_lock);
4016 }
4017 }
4018
4019 init_swait_queue_head(&rsp->gp_wq);
4020 init_swait_queue_head(&rsp->expedited_wq);
4021 rnp = rcu_first_leaf_node(rsp);
4022 for_each_possible_cpu(i) {
4023 while (i > rnp->grphi)
4024 rnp++;
4025 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4026 rcu_boot_init_percpu_data(i, rsp);
4027 }
4028 list_add(&rsp->flavors, &rcu_struct_flavors);
4029 }
4030
4031 /*
4032 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4033 * replace the definitions in tree.h because those are needed to size
4034 * the ->node array in the rcu_state structure.
4035 */
rcu_init_geometry(void)4036 static void __init rcu_init_geometry(void)
4037 {
4038 ulong d;
4039 int i;
4040 int rcu_capacity[RCU_NUM_LVLS];
4041
4042 /*
4043 * Initialize any unspecified boot parameters.
4044 * The default values of jiffies_till_first_fqs and
4045 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4046 * value, which is a function of HZ, then adding one for each
4047 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4048 */
4049 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4050 if (jiffies_till_first_fqs == ULONG_MAX)
4051 jiffies_till_first_fqs = d;
4052 if (jiffies_till_next_fqs == ULONG_MAX)
4053 jiffies_till_next_fqs = d;
4054
4055 /* If the compile-time values are accurate, just leave. */
4056 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4057 nr_cpu_ids == NR_CPUS)
4058 return;
4059 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4060 rcu_fanout_leaf, nr_cpu_ids);
4061
4062 /*
4063 * The boot-time rcu_fanout_leaf parameter must be at least two
4064 * and cannot exceed the number of bits in the rcu_node masks.
4065 * Complain and fall back to the compile-time values if this
4066 * limit is exceeded.
4067 */
4068 if (rcu_fanout_leaf < 2 ||
4069 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4070 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4071 WARN_ON(1);
4072 return;
4073 }
4074
4075 /*
4076 * Compute number of nodes that can be handled an rcu_node tree
4077 * with the given number of levels.
4078 */
4079 rcu_capacity[0] = rcu_fanout_leaf;
4080 for (i = 1; i < RCU_NUM_LVLS; i++)
4081 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4082
4083 /*
4084 * The tree must be able to accommodate the configured number of CPUs.
4085 * If this limit is exceeded, fall back to the compile-time values.
4086 */
4087 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4088 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4089 WARN_ON(1);
4090 return;
4091 }
4092
4093 /* Calculate the number of levels in the tree. */
4094 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4095 }
4096 rcu_num_lvls = i + 1;
4097
4098 /* Calculate the number of rcu_nodes at each level of the tree. */
4099 for (i = 0; i < rcu_num_lvls; i++) {
4100 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4101 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4102 }
4103
4104 /* Calculate the total number of rcu_node structures. */
4105 rcu_num_nodes = 0;
4106 for (i = 0; i < rcu_num_lvls; i++)
4107 rcu_num_nodes += num_rcu_lvl[i];
4108 }
4109
4110 /*
4111 * Dump out the structure of the rcu_node combining tree associated
4112 * with the rcu_state structure referenced by rsp.
4113 */
rcu_dump_rcu_node_tree(struct rcu_state * rsp)4114 static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4115 {
4116 int level = 0;
4117 struct rcu_node *rnp;
4118
4119 pr_info("rcu_node tree layout dump\n");
4120 pr_info(" ");
4121 rcu_for_each_node_breadth_first(rsp, rnp) {
4122 if (rnp->level != level) {
4123 pr_cont("\n");
4124 pr_info(" ");
4125 level = rnp->level;
4126 }
4127 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4128 }
4129 pr_cont("\n");
4130 }
4131
4132 struct workqueue_struct *rcu_gp_wq;
4133 struct workqueue_struct *rcu_par_gp_wq;
4134
rcu_init(void)4135 void __init rcu_init(void)
4136 {
4137 int cpu;
4138
4139 rcu_early_boot_tests();
4140
4141 rcu_bootup_announce();
4142 rcu_init_geometry();
4143 rcu_init_one(&rcu_bh_state);
4144 rcu_init_one(&rcu_sched_state);
4145 if (dump_tree)
4146 rcu_dump_rcu_node_tree(&rcu_sched_state);
4147 __rcu_init_preempt();
4148 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4149
4150 /*
4151 * We don't need protection against CPU-hotplug here because
4152 * this is called early in boot, before either interrupts
4153 * or the scheduler are operational.
4154 */
4155 pm_notifier(rcu_pm_notify, 0);
4156 for_each_online_cpu(cpu) {
4157 rcutree_prepare_cpu(cpu);
4158 rcu_cpu_starting(cpu);
4159 rcutree_online_cpu(cpu);
4160 }
4161
4162 /* Create workqueue for expedited GPs and for Tree SRCU. */
4163 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4164 WARN_ON(!rcu_gp_wq);
4165 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4166 WARN_ON(!rcu_par_gp_wq);
4167 }
4168
4169 #include "tree_exp.h"
4170 #include "tree_plugin.h"
4171