1  /*
2   * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved.
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice shall be included in
12   * all copies or substantial portions of the Software.
13   *
14   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20   * DEALINGS IN THE SOFTWARE.
21   *
22   * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
23   *
24   */
25  #include "priv.h"
26  #include "gk20a.h"
27  
28  #include <core/tegra.h>
29  #include <subdev/timer.h>
30  
31  static const u8 _pl_to_div[] = {
32  /* PL:   0, 1, 2, 3, 4, 5, 6,  7,  8,  9, 10, 11, 12, 13, 14 */
33  /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
34  };
35  
pl_to_div(u32 pl)36  static u32 pl_to_div(u32 pl)
37  {
38  	if (pl >= ARRAY_SIZE(_pl_to_div))
39  		return 1;
40  
41  	return _pl_to_div[pl];
42  }
43  
div_to_pl(u32 div)44  static u32 div_to_pl(u32 div)
45  {
46  	u32 pl;
47  
48  	for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) {
49  		if (_pl_to_div[pl] >= div)
50  			return pl;
51  	}
52  
53  	return ARRAY_SIZE(_pl_to_div) - 1;
54  }
55  
56  static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
57  	.min_vco = 1000000, .max_vco = 2064000,
58  	.min_u = 12000, .max_u = 38000,
59  	.min_m = 1, .max_m = 255,
60  	.min_n = 8, .max_n = 255,
61  	.min_pl = 1, .max_pl = 32,
62  };
63  
64  void
gk20a_pllg_read_mnp(struct gk20a_clk * clk,struct gk20a_pll * pll)65  gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll)
66  {
67  	struct nvkm_device *device = clk->base.subdev.device;
68  	u32 val;
69  
70  	val = nvkm_rd32(device, GPCPLL_COEFF);
71  	pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
72  	pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
73  	pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
74  }
75  
76  void
gk20a_pllg_write_mnp(struct gk20a_clk * clk,const struct gk20a_pll * pll)77  gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
78  {
79  	struct nvkm_device *device = clk->base.subdev.device;
80  	u32 val;
81  
82  	val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT;
83  	val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
84  	val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT;
85  	nvkm_wr32(device, GPCPLL_COEFF, val);
86  }
87  
88  u32
gk20a_pllg_calc_rate(struct gk20a_clk * clk,struct gk20a_pll * pll)89  gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll)
90  {
91  	u32 rate;
92  	u32 divider;
93  
94  	rate = clk->parent_rate * pll->n;
95  	divider = pll->m * clk->pl_to_div(pll->pl);
96  
97  	return rate / divider / 2;
98  }
99  
100  int
gk20a_pllg_calc_mnp(struct gk20a_clk * clk,unsigned long rate,struct gk20a_pll * pll)101  gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate,
102  		    struct gk20a_pll *pll)
103  {
104  	struct nvkm_subdev *subdev = &clk->base.subdev;
105  	u32 target_clk_f, ref_clk_f, target_freq;
106  	u32 min_vco_f, max_vco_f;
107  	u32 low_pl, high_pl, best_pl;
108  	u32 target_vco_f;
109  	u32 best_m, best_n;
110  	u32 best_delta = ~0;
111  	u32 pl;
112  
113  	target_clk_f = rate * 2 / KHZ;
114  	ref_clk_f = clk->parent_rate / KHZ;
115  
116  	target_vco_f = target_clk_f + target_clk_f / 50;
117  	max_vco_f = max(clk->params->max_vco, target_vco_f);
118  	min_vco_f = clk->params->min_vco;
119  	best_m = clk->params->max_m;
120  	best_n = clk->params->min_n;
121  	best_pl = clk->params->min_pl;
122  
123  	/* min_pl <= high_pl <= max_pl */
124  	high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
125  	high_pl = min(high_pl, clk->params->max_pl);
126  	high_pl = max(high_pl, clk->params->min_pl);
127  	high_pl = clk->div_to_pl(high_pl);
128  
129  	/* min_pl <= low_pl <= max_pl */
130  	low_pl = min_vco_f / target_vco_f;
131  	low_pl = min(low_pl, clk->params->max_pl);
132  	low_pl = max(low_pl, clk->params->min_pl);
133  	low_pl = clk->div_to_pl(low_pl);
134  
135  	nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
136  		   clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl));
137  
138  	/* Select lowest possible VCO */
139  	for (pl = low_pl; pl <= high_pl; pl++) {
140  		u32 m, n, n2;
141  
142  		target_vco_f = target_clk_f * clk->pl_to_div(pl);
143  
144  		for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
145  			u32 u_f = ref_clk_f / m;
146  
147  			if (u_f < clk->params->min_u)
148  				break;
149  			if (u_f > clk->params->max_u)
150  				continue;
151  
152  			n = (target_vco_f * m) / ref_clk_f;
153  			n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
154  
155  			if (n > clk->params->max_n)
156  				break;
157  
158  			for (; n <= n2; n++) {
159  				u32 vco_f;
160  
161  				if (n < clk->params->min_n)
162  					continue;
163  				if (n > clk->params->max_n)
164  					break;
165  
166  				vco_f = ref_clk_f * n / m;
167  
168  				if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
169  					u32 delta, lwv;
170  
171  					lwv = (vco_f + (clk->pl_to_div(pl) / 2))
172  						/ clk->pl_to_div(pl);
173  					delta = abs(lwv - target_clk_f);
174  
175  					if (delta < best_delta) {
176  						best_delta = delta;
177  						best_m = m;
178  						best_n = n;
179  						best_pl = pl;
180  
181  						if (best_delta == 0)
182  							goto found_match;
183  					}
184  				}
185  			}
186  		}
187  	}
188  
189  found_match:
190  	WARN_ON(best_delta == ~0);
191  
192  	if (best_delta != 0)
193  		nvkm_debug(subdev,
194  			   "no best match for target @ %dMHz on gpc_pll",
195  			   target_clk_f / KHZ);
196  
197  	pll->m = best_m;
198  	pll->n = best_n;
199  	pll->pl = best_pl;
200  
201  	target_freq = gk20a_pllg_calc_rate(clk, pll);
202  
203  	nvkm_debug(subdev,
204  		   "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n",
205  		   target_freq / KHZ, pll->m, pll->n, pll->pl,
206  		   clk->pl_to_div(pll->pl));
207  	return 0;
208  }
209  
210  static int
gk20a_pllg_slide(struct gk20a_clk * clk,u32 n)211  gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
212  {
213  	struct nvkm_subdev *subdev = &clk->base.subdev;
214  	struct nvkm_device *device = subdev->device;
215  	struct gk20a_pll pll;
216  	int ret = 0;
217  
218  	/* get old coefficients */
219  	gk20a_pllg_read_mnp(clk, &pll);
220  	/* do nothing if NDIV is the same */
221  	if (n == pll.n)
222  		return 0;
223  
224  	/* pll slowdown mode */
225  	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
226  		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
227  		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
228  
229  	/* new ndiv ready for ramp */
230  	pll.n = n;
231  	udelay(1);
232  	gk20a_pllg_write_mnp(clk, &pll);
233  
234  	/* dynamic ramp to new ndiv */
235  	udelay(1);
236  	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
237  		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT),
238  		  BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT));
239  
240  	/* wait for ramping to complete */
241  	if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG,
242  		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK,
243  		GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0)
244  		ret = -ETIMEDOUT;
245  
246  	/* exit slowdown mode */
247  	nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
248  		BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
249  		BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
250  	nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
251  
252  	return ret;
253  }
254  
255  static int
gk20a_pllg_enable(struct gk20a_clk * clk)256  gk20a_pllg_enable(struct gk20a_clk *clk)
257  {
258  	struct nvkm_device *device = clk->base.subdev.device;
259  	u32 val;
260  
261  	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
262  	nvkm_rd32(device, GPCPLL_CFG);
263  
264  	/* enable lock detection */
265  	val = nvkm_rd32(device, GPCPLL_CFG);
266  	if (val & GPCPLL_CFG_LOCK_DET_OFF) {
267  		val &= ~GPCPLL_CFG_LOCK_DET_OFF;
268  		nvkm_wr32(device, GPCPLL_CFG, val);
269  	}
270  
271  	/* wait for lock */
272  	if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
273  			   GPCPLL_CFG_LOCK) < 0)
274  		return -ETIMEDOUT;
275  
276  	/* switch to VCO mode */
277  	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
278  		BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
279  
280  	return 0;
281  }
282  
283  static void
gk20a_pllg_disable(struct gk20a_clk * clk)284  gk20a_pllg_disable(struct gk20a_clk *clk)
285  {
286  	struct nvkm_device *device = clk->base.subdev.device;
287  
288  	/* put PLL in bypass before disabling it */
289  	nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
290  
291  	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
292  	nvkm_rd32(device, GPCPLL_CFG);
293  }
294  
295  static int
gk20a_pllg_program_mnp(struct gk20a_clk * clk,const struct gk20a_pll * pll)296  gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
297  {
298  	struct nvkm_subdev *subdev = &clk->base.subdev;
299  	struct nvkm_device *device = subdev->device;
300  	struct gk20a_pll cur_pll;
301  	int ret;
302  
303  	gk20a_pllg_read_mnp(clk, &cur_pll);
304  
305  	/* split VCO-to-bypass jump in half by setting out divider 1:2 */
306  	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
307  		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
308  	/* Intentional 2nd write to assure linear divider operation */
309  	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
310  		  GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
311  	nvkm_rd32(device, GPC2CLK_OUT);
312  	udelay(2);
313  
314  	gk20a_pllg_disable(clk);
315  
316  	gk20a_pllg_write_mnp(clk, pll);
317  
318  	ret = gk20a_pllg_enable(clk);
319  	if (ret)
320  		return ret;
321  
322  	/* restore out divider 1:1 */
323  	udelay(2);
324  	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
325  		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
326  	/* Intentional 2nd write to assure linear divider operation */
327  	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
328  		  GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
329  	nvkm_rd32(device, GPC2CLK_OUT);
330  
331  	return 0;
332  }
333  
334  static int
gk20a_pllg_program_mnp_slide(struct gk20a_clk * clk,const struct gk20a_pll * pll)335  gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
336  {
337  	struct gk20a_pll cur_pll;
338  	int ret;
339  
340  	if (gk20a_pllg_is_enabled(clk)) {
341  		gk20a_pllg_read_mnp(clk, &cur_pll);
342  
343  		/* just do NDIV slide if there is no change to M and PL */
344  		if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
345  			return gk20a_pllg_slide(clk, pll->n);
346  
347  		/* slide down to current NDIV_LO */
348  		cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
349  		ret = gk20a_pllg_slide(clk, cur_pll.n);
350  		if (ret)
351  			return ret;
352  	}
353  
354  	/* program MNP with the new clock parameters and new NDIV_LO */
355  	cur_pll = *pll;
356  	cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
357  	ret = gk20a_pllg_program_mnp(clk, &cur_pll);
358  	if (ret)
359  		return ret;
360  
361  	/* slide up to new NDIV */
362  	return gk20a_pllg_slide(clk, pll->n);
363  }
364  
365  static struct nvkm_pstate
366  gk20a_pstates[] = {
367  	{
368  		.base = {
369  			.domain[nv_clk_src_gpc] = 72000,
370  			.voltage = 0,
371  		},
372  	},
373  	{
374  		.base = {
375  			.domain[nv_clk_src_gpc] = 108000,
376  			.voltage = 1,
377  		},
378  	},
379  	{
380  		.base = {
381  			.domain[nv_clk_src_gpc] = 180000,
382  			.voltage = 2,
383  		},
384  	},
385  	{
386  		.base = {
387  			.domain[nv_clk_src_gpc] = 252000,
388  			.voltage = 3,
389  		},
390  	},
391  	{
392  		.base = {
393  			.domain[nv_clk_src_gpc] = 324000,
394  			.voltage = 4,
395  		},
396  	},
397  	{
398  		.base = {
399  			.domain[nv_clk_src_gpc] = 396000,
400  			.voltage = 5,
401  		},
402  	},
403  	{
404  		.base = {
405  			.domain[nv_clk_src_gpc] = 468000,
406  			.voltage = 6,
407  		},
408  	},
409  	{
410  		.base = {
411  			.domain[nv_clk_src_gpc] = 540000,
412  			.voltage = 7,
413  		},
414  	},
415  	{
416  		.base = {
417  			.domain[nv_clk_src_gpc] = 612000,
418  			.voltage = 8,
419  		},
420  	},
421  	{
422  		.base = {
423  			.domain[nv_clk_src_gpc] = 648000,
424  			.voltage = 9,
425  		},
426  	},
427  	{
428  		.base = {
429  			.domain[nv_clk_src_gpc] = 684000,
430  			.voltage = 10,
431  		},
432  	},
433  	{
434  		.base = {
435  			.domain[nv_clk_src_gpc] = 708000,
436  			.voltage = 11,
437  		},
438  	},
439  	{
440  		.base = {
441  			.domain[nv_clk_src_gpc] = 756000,
442  			.voltage = 12,
443  		},
444  	},
445  	{
446  		.base = {
447  			.domain[nv_clk_src_gpc] = 804000,
448  			.voltage = 13,
449  		},
450  	},
451  	{
452  		.base = {
453  			.domain[nv_clk_src_gpc] = 852000,
454  			.voltage = 14,
455  		},
456  	},
457  };
458  
459  int
gk20a_clk_read(struct nvkm_clk * base,enum nv_clk_src src)460  gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
461  {
462  	struct gk20a_clk *clk = gk20a_clk(base);
463  	struct nvkm_subdev *subdev = &clk->base.subdev;
464  	struct nvkm_device *device = subdev->device;
465  	struct gk20a_pll pll;
466  
467  	switch (src) {
468  	case nv_clk_src_crystal:
469  		return device->crystal;
470  	case nv_clk_src_gpc:
471  		gk20a_pllg_read_mnp(clk, &pll);
472  		return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV;
473  	default:
474  		nvkm_error(subdev, "invalid clock source %d\n", src);
475  		return -EINVAL;
476  	}
477  }
478  
479  int
gk20a_clk_calc(struct nvkm_clk * base,struct nvkm_cstate * cstate)480  gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
481  {
482  	struct gk20a_clk *clk = gk20a_clk(base);
483  
484  	return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
485  					 GK20A_CLK_GPC_MDIV, &clk->pll);
486  }
487  
488  int
gk20a_clk_prog(struct nvkm_clk * base)489  gk20a_clk_prog(struct nvkm_clk *base)
490  {
491  	struct gk20a_clk *clk = gk20a_clk(base);
492  	int ret;
493  
494  	ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
495  	if (ret)
496  		ret = gk20a_pllg_program_mnp(clk, &clk->pll);
497  
498  	return ret;
499  }
500  
501  void
gk20a_clk_tidy(struct nvkm_clk * base)502  gk20a_clk_tidy(struct nvkm_clk *base)
503  {
504  }
505  
506  int
gk20a_clk_setup_slide(struct gk20a_clk * clk)507  gk20a_clk_setup_slide(struct gk20a_clk *clk)
508  {
509  	struct nvkm_subdev *subdev = &clk->base.subdev;
510  	struct nvkm_device *device = subdev->device;
511  	u32 step_a, step_b;
512  
513  	switch (clk->parent_rate) {
514  	case 12000000:
515  	case 12800000:
516  	case 13000000:
517  		step_a = 0x2b;
518  		step_b = 0x0b;
519  		break;
520  	case 19200000:
521  		step_a = 0x12;
522  		step_b = 0x08;
523  		break;
524  	case 38400000:
525  		step_a = 0x04;
526  		step_b = 0x05;
527  		break;
528  	default:
529  		nvkm_error(subdev, "invalid parent clock rate %u KHz",
530  			   clk->parent_rate / KHZ);
531  		return -EINVAL;
532  	}
533  
534  	nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
535  		step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT);
536  	nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
537  		step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT);
538  
539  	return 0;
540  }
541  
542  void
gk20a_clk_fini(struct nvkm_clk * base)543  gk20a_clk_fini(struct nvkm_clk *base)
544  {
545  	struct nvkm_device *device = base->subdev.device;
546  	struct gk20a_clk *clk = gk20a_clk(base);
547  
548  	/* slide to VCO min */
549  	if (gk20a_pllg_is_enabled(clk)) {
550  		struct gk20a_pll pll;
551  		u32 n_lo;
552  
553  		gk20a_pllg_read_mnp(clk, &pll);
554  		n_lo = gk20a_pllg_n_lo(clk, &pll);
555  		gk20a_pllg_slide(clk, n_lo);
556  	}
557  
558  	gk20a_pllg_disable(clk);
559  
560  	/* set IDDQ */
561  	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
562  }
563  
564  static int
gk20a_clk_init(struct nvkm_clk * base)565  gk20a_clk_init(struct nvkm_clk *base)
566  {
567  	struct gk20a_clk *clk = gk20a_clk(base);
568  	struct nvkm_subdev *subdev = &clk->base.subdev;
569  	struct nvkm_device *device = subdev->device;
570  	int ret;
571  
572  	/* get out from IDDQ */
573  	nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
574  	nvkm_rd32(device, GPCPLL_CFG);
575  	udelay(5);
576  
577  	nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
578  		  GPC2CLK_OUT_INIT_VAL);
579  
580  	ret = gk20a_clk_setup_slide(clk);
581  	if (ret)
582  		return ret;
583  
584  	/* Start with lowest frequency */
585  	base->func->calc(base, &base->func->pstates[0].base);
586  	ret = base->func->prog(&clk->base);
587  	if (ret) {
588  		nvkm_error(subdev, "cannot initialize clock\n");
589  		return ret;
590  	}
591  
592  	return 0;
593  }
594  
595  static const struct nvkm_clk_func
596  gk20a_clk = {
597  	.init = gk20a_clk_init,
598  	.fini = gk20a_clk_fini,
599  	.read = gk20a_clk_read,
600  	.calc = gk20a_clk_calc,
601  	.prog = gk20a_clk_prog,
602  	.tidy = gk20a_clk_tidy,
603  	.pstates = gk20a_pstates,
604  	.nr_pstates = ARRAY_SIZE(gk20a_pstates),
605  	.domains = {
606  		{ nv_clk_src_crystal, 0xff },
607  		{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
608  		{ nv_clk_src_max }
609  	}
610  };
611  
612  int
gk20a_clk_ctor(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,const struct nvkm_clk_func * func,const struct gk20a_clk_pllg_params * params,struct gk20a_clk * clk)613  gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
614  	       const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params,
615  	       struct gk20a_clk *clk)
616  {
617  	struct nvkm_device_tegra *tdev = device->func->tegra(device);
618  	int ret;
619  	int i;
620  
621  	/* Finish initializing the pstates */
622  	for (i = 0; i < func->nr_pstates; i++) {
623  		INIT_LIST_HEAD(&func->pstates[i].list);
624  		func->pstates[i].pstate = i + 1;
625  	}
626  
627  	clk->params = params;
628  	clk->parent_rate = clk_get_rate(tdev->clk);
629  
630  	ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base);
631  	if (ret)
632  		return ret;
633  
634  	nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n",
635  		   clk->parent_rate / KHZ);
636  
637  	return 0;
638  }
639  
640  int
gk20a_clk_new(struct nvkm_device * device,enum nvkm_subdev_type type,int inst,struct nvkm_clk ** pclk)641  gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
642  	      struct nvkm_clk **pclk)
643  {
644  	struct gk20a_clk *clk;
645  	int ret;
646  
647  	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
648  	if (!clk)
649  		return -ENOMEM;
650  	*pclk = &clk->base;
651  
652  	ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk);
653  
654  	clk->pl_to_div = pl_to_div;
655  	clk->div_to_pl = div_to_pl;
656  	return ret;
657  }
658